vserver 1.9.5.x5
[linux-2.6.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
69
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 static char version[] __devinitdata =
92         "$Rev: 1224 $ Ben Collins <bcollins@debian.org>";
93
94 struct fragment_info {
95         struct list_head list;
96         int offset;
97         int len;
98 };
99
100 struct partial_datagram {
101         struct list_head list;
102         u16 dgl;
103         u16 dg_size;
104         u16 ether_type;
105         struct sk_buff *skb;
106         char *pbuf;
107         struct list_head frag_info;
108 };
109
110 struct pdg_list {
111         struct list_head list;          /* partial datagram list per node       */
112         unsigned int sz;                /* partial datagram list size per node  */
113         spinlock_t lock;                /* partial datagram lock                */
114 };
115
116 struct eth1394_host_info {
117         struct hpsb_host *host;
118         struct net_device *dev;
119 };
120
121 struct eth1394_node_ref {
122         struct unit_directory *ud;
123         struct list_head list;
124 };
125
126 struct eth1394_node_info {
127         u16 maxpayload;                 /* Max payload                  */
128         u8 sspd;                        /* Max speed                    */
129         u64 fifo;                       /* FIFO address                 */
130         struct pdg_list pdg;            /* partial RX datagram lists    */
131         int dgl;                        /* Outgoing datagram label      */
132 };
133
134 /* Our ieee1394 highlevel driver */
135 #define ETH1394_DRIVER_NAME "eth1394"
136 static const char driver_name[] = ETH1394_DRIVER_NAME;
137
138 static kmem_cache_t *packet_task_cache;
139
140 static struct hpsb_highlevel eth1394_highlevel;
141
142 /* Use common.lf to determine header len */
143 static const int hdr_type_len[] = {
144         sizeof (struct eth1394_uf_hdr),
145         sizeof (struct eth1394_ff_hdr),
146         sizeof (struct eth1394_sf_hdr),
147         sizeof (struct eth1394_sf_hdr)
148 };
149
150 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
151 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
152
153 /* For now, this needs to be 1500, so that XP works with us */
154 #define ETH1394_DATA_LEN        ETH_DATA_LEN
155
156 static const u16 eth1394_speedto_maxpayload[] = {
157 /*     S100, S200, S400, S800, S1600, S3200 */
158         512, 1024, 2048, 4096,  4096,  4096
159 };
160
161 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
162 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
163 MODULE_LICENSE("GPL");
164
165 /* The max_partial_datagrams parameter is the maximum number of fragmented
166  * datagrams per node that eth1394 will keep in memory.  Providing an upper
167  * bound allows us to limit the amount of memory that partial datagrams
168  * consume in the event that some partial datagrams are never completed.  This
169  * should probably change to a sysctl item or the like if possible.
170  */
171 static int max_partial_datagrams = 25;
172 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
173 MODULE_PARM_DESC(max_partial_datagrams,
174                  "Maximum number of partially received fragmented datagrams "
175                  "(default = 25).");
176
177
178 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
179                             unsigned short type, void *daddr, void *saddr,
180                             unsigned len);
181 static int ether1394_rebuild_header(struct sk_buff *skb);
182 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
183 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
184 static void ether1394_header_cache_update(struct hh_cache *hh,
185                                           struct net_device *dev,
186                                           unsigned char * haddr);
187 static int ether1394_mac_addr(struct net_device *dev, void *p);
188
189 static inline void purge_partial_datagram(struct list_head *old);
190 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
191 static void ether1394_iso(struct hpsb_iso *iso);
192
193 static struct ethtool_ops ethtool_ops;
194
195 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
196                            quadlet_t *data, u64 addr, size_t len, u16 flags);
197 static void ether1394_add_host (struct hpsb_host *host);
198 static void ether1394_remove_host (struct hpsb_host *host);
199 static void ether1394_host_reset (struct hpsb_host *host);
200
201 /* Function for incoming 1394 packets */
202 static struct hpsb_address_ops addr_ops = {
203         .write =        ether1394_write,
204 };
205
206 /* Ieee1394 highlevel driver functions */
207 static struct hpsb_highlevel eth1394_highlevel = {
208         .name =         driver_name,
209         .add_host =     ether1394_add_host,
210         .remove_host =  ether1394_remove_host,
211         .host_reset =   ether1394_host_reset,
212 };
213
214
215 /* This is called after an "ifup" */
216 static int ether1394_open (struct net_device *dev)
217 {
218         struct eth1394_priv *priv = netdev_priv(dev);
219         int ret = 0;
220
221         /* Something bad happened, don't even try */
222         if (priv->bc_state == ETHER1394_BC_ERROR) {
223                 /* we'll try again */
224                 priv->iso = hpsb_iso_recv_init(priv->host,
225                                                ETHER1394_GASP_BUFFERS * 2 *
226                                                (1 << (priv->host->csr.max_rec +
227                                                       1)),
228                                                ETHER1394_GASP_BUFFERS,
229                                                priv->broadcast_channel,
230                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
231                                                1, ether1394_iso);
232                 if (priv->iso == NULL) {
233                         ETH1394_PRINT(KERN_ERR, dev->name,
234                                       "Could not allocate isochronous receive "
235                                       "context for the broadcast channel\n");
236                         priv->bc_state = ETHER1394_BC_ERROR;
237                         ret = -EAGAIN;
238                 } else {
239                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
240                                 priv->bc_state = ETHER1394_BC_STOPPED;
241                         else
242                                 priv->bc_state = ETHER1394_BC_RUNNING;
243                 }
244         }
245
246         if (ret)
247                 return ret;
248
249         netif_start_queue (dev);
250         return 0;
251 }
252
253 /* This is called after an "ifdown" */
254 static int ether1394_stop (struct net_device *dev)
255 {
256         netif_stop_queue (dev);
257         return 0;
258 }
259
260 /* Return statistics to the caller */
261 static struct net_device_stats *ether1394_stats (struct net_device *dev)
262 {
263         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
264 }
265
266 /* What to do if we timeout. I think a host reset is probably in order, so
267  * that's what we do. Should we increment the stat counters too?  */
268 static void ether1394_tx_timeout (struct net_device *dev)
269 {
270         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
271                        ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
272
273         highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
274
275         netif_wake_queue (dev);
276 }
277
278 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
279 {
280         struct eth1394_priv *priv = netdev_priv(dev);
281
282         if ((new_mtu < 68) ||
283             (new_mtu > min(ETH1394_DATA_LEN,
284                            (int)((1 << (priv->host->csr.max_rec + 1)) -
285                                  (sizeof(union eth1394_hdr) +
286                                   ETHER1394_GASP_OVERHEAD)))))
287                 return -EINVAL;
288         dev->mtu = new_mtu;
289         return 0;
290 }
291
292 static inline void purge_partial_datagram(struct list_head *old)
293 {
294         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
295         struct list_head *lh, *n;
296
297         list_for_each_safe(lh, n, &pd->frag_info) {
298                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
299                 list_del(lh);
300                 kfree(fi);
301         }
302         list_del(old);
303         kfree_skb(pd->skb);
304         kfree(pd);
305 }
306
307 /******************************************
308  * 1394 bus activity functions
309  ******************************************/
310
311 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
312                                                   struct unit_directory *ud)
313 {
314         struct eth1394_node_ref *node;
315
316         list_for_each_entry(node, inl, list)
317                 if (node->ud == ud)
318                         return node;
319
320         return NULL;
321 }
322
323 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
324                                                        u64 guid)
325 {
326         struct eth1394_node_ref *node;
327
328         list_for_each_entry(node, inl, list)
329                 if (node->ud->ne->guid == guid)
330                         return node;
331
332         return NULL;
333 }
334
335 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
336                                                          nodeid_t nodeid)
337 {
338         struct eth1394_node_ref *node;
339         list_for_each_entry(node, inl, list) {
340                 if (node->ud->ne->nodeid == nodeid)
341                         return node;
342         }
343
344         return NULL;
345 }
346
347 static int eth1394_probe(struct device *dev)
348 {
349         struct unit_directory *ud;
350         struct eth1394_host_info *hi;
351         struct eth1394_priv *priv;
352         struct eth1394_node_ref *new_node;
353         struct eth1394_node_info *node_info;
354
355         ud = container_of(dev, struct unit_directory, device);
356
357         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
358         if (!hi)
359                 return -ENOENT;
360
361         new_node = kmalloc(sizeof(struct eth1394_node_ref),
362                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
363         if (!new_node)
364                 return -ENOMEM;
365
366         node_info = kmalloc(sizeof(struct eth1394_node_info),
367                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
368         if (!node_info) {
369                 kfree(new_node);
370                 return -ENOMEM;
371         }
372
373         spin_lock_init(&node_info->pdg.lock);
374         INIT_LIST_HEAD(&node_info->pdg.list);
375         node_info->pdg.sz = 0;
376         node_info->fifo = ETHER1394_INVALID_ADDR;
377
378         ud->device.driver_data = node_info;
379         new_node->ud = ud;
380
381         priv = netdev_priv(hi->dev);
382         list_add_tail(&new_node->list, &priv->ip_node_list);
383
384         return 0;
385 }
386
387 static int eth1394_remove(struct device *dev)
388 {
389         struct unit_directory *ud;
390         struct eth1394_host_info *hi;
391         struct eth1394_priv *priv;
392         struct eth1394_node_ref *old_node;
393         struct eth1394_node_info *node_info;
394         struct list_head *lh, *n;
395         unsigned long flags;
396
397         ud = container_of(dev, struct unit_directory, device);
398         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
399         if (!hi)
400                 return -ENOENT;
401
402         priv = netdev_priv(hi->dev);
403
404         old_node = eth1394_find_node(&priv->ip_node_list, ud);
405
406         if (old_node) {
407                 list_del(&old_node->list);
408                 kfree(old_node);
409
410                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
411
412                 spin_lock_irqsave(&node_info->pdg.lock, flags);
413                 /* The partial datagram list should be empty, but we'll just
414                  * make sure anyway... */
415                 list_for_each_safe(lh, n, &node_info->pdg.list) {
416                         purge_partial_datagram(lh);
417                 }
418                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
419
420                 kfree(node_info);
421                 ud->device.driver_data = NULL;
422         }
423         return 0;
424 }
425
426 static int eth1394_update(struct unit_directory *ud)
427 {
428         struct eth1394_host_info *hi;
429         struct eth1394_priv *priv;
430         struct eth1394_node_ref *node;
431         struct eth1394_node_info *node_info;
432
433         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
434         if (!hi)
435                 return -ENOENT;
436
437         priv = netdev_priv(hi->dev);
438
439         node = eth1394_find_node(&priv->ip_node_list, ud);
440
441         if (!node) {
442                 node = kmalloc(sizeof(struct eth1394_node_ref),
443                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
444                 if (!node)
445                         return -ENOMEM;
446
447                 node_info = kmalloc(sizeof(struct eth1394_node_info),
448                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
449                 if (!node_info) {
450                         kfree(node);
451                         return -ENOMEM;
452                 }
453
454                 spin_lock_init(&node_info->pdg.lock);
455                 INIT_LIST_HEAD(&node_info->pdg.list);
456                 node_info->pdg.sz = 0;
457
458                 ud->device.driver_data = node_info;
459                 node->ud = ud;
460
461                 priv = netdev_priv(hi->dev);
462                 list_add_tail(&node->list, &priv->ip_node_list);
463         }
464
465         return 0;
466 }
467
468
469 static struct ieee1394_device_id eth1394_id_table[] = {
470         {
471                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
472                                 IEEE1394_MATCH_VERSION),
473                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
474                 .version = ETHER1394_GASP_VERSION,
475         },
476         {}
477 };
478
479 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
480
481 static struct hpsb_protocol_driver eth1394_proto_driver = {
482         .name           = "IPv4 over 1394 Driver",
483         .id_table       = eth1394_id_table,
484         .update         = eth1394_update,
485         .driver         = {
486                 .name           = ETH1394_DRIVER_NAME,
487                 .bus            = &ieee1394_bus_type,
488                 .probe          = eth1394_probe,
489                 .remove         = eth1394_remove,
490         },
491 };
492
493
494 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
495 {
496         unsigned long flags;
497         int i;
498         struct eth1394_priv *priv = netdev_priv(dev);
499         struct hpsb_host *host = priv->host;
500         u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
501         u16 maxpayload = 1 << (host->csr.max_rec + 1);
502         int max_speed = IEEE1394_SPEED_MAX;
503
504         spin_lock_irqsave (&priv->lock, flags);
505
506         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
507         priv->bc_maxpayload = 512;
508
509         /* Determine speed limit */
510         for (i = 0; i < host->node_count; i++)
511                 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
512                                                 64 + i])
513                         max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
514                                                     64 + i];
515         priv->bc_sspd = max_speed;
516
517         /* We'll use our maxpayload as the default mtu */
518         if (set_mtu) {
519                 dev->mtu = min(ETH1394_DATA_LEN,
520                                (int)(maxpayload -
521                                      (sizeof(union eth1394_hdr) +
522                                       ETHER1394_GASP_OVERHEAD)));
523
524                 /* Set our hardware address while we're at it */
525                 *(u64*)dev->dev_addr = guid;
526                 *(u64*)dev->broadcast = ~0x0ULL;
527         }
528
529         spin_unlock_irqrestore (&priv->lock, flags);
530 }
531
532 /* This function is called right before register_netdev */
533 static void ether1394_init_dev (struct net_device *dev)
534 {
535         /* Our functions */
536         dev->open               = ether1394_open;
537         dev->stop               = ether1394_stop;
538         dev->hard_start_xmit    = ether1394_tx;
539         dev->get_stats          = ether1394_stats;
540         dev->tx_timeout         = ether1394_tx_timeout;
541         dev->change_mtu         = ether1394_change_mtu;
542
543         dev->hard_header        = ether1394_header;
544         dev->rebuild_header     = ether1394_rebuild_header;
545         dev->hard_header_cache  = ether1394_header_cache;
546         dev->header_cache_update= ether1394_header_cache_update;
547         dev->hard_header_parse  = ether1394_header_parse;
548         dev->set_mac_address    = ether1394_mac_addr;
549         SET_ETHTOOL_OPS(dev, &ethtool_ops);
550
551         /* Some constants */
552         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
553         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
554         dev->features           = NETIF_F_HIGHDMA;
555         dev->addr_len           = ETH1394_ALEN;
556         dev->hard_header_len    = ETH1394_HLEN;
557         dev->type               = ARPHRD_IEEE1394;
558
559         ether1394_reset_priv (dev, 1);
560 }
561
562 /*
563  * This function is called every time a card is found. It is generally called
564  * when the module is installed. This is where we add all of our ethernet
565  * devices. One for each host.
566  */
567 static void ether1394_add_host (struct hpsb_host *host)
568 {
569         struct eth1394_host_info *hi = NULL;
570         struct net_device *dev = NULL;
571         struct eth1394_priv *priv;
572         static int version_printed = 0;
573         u64 fifo_addr;
574
575         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
576                 return;
577
578         fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
579                                                          host,
580                                                          &addr_ops,
581                                                          ETHER1394_REGION_ADDR_LEN,
582                                                          ETHER1394_REGION_ADDR_LEN,
583                                                          -1, -1);
584         if (fifo_addr == ~0ULL)
585                 goto out;
586
587         if (version_printed++ == 0)
588                 ETH1394_PRINT_G (KERN_INFO, "%s\n", version);
589
590         /* We should really have our own alloc_hpsbdev() function in
591          * net_init.c instead of calling the one for ethernet then hijacking
592          * it for ourselves.  That way we'd be a real networking device. */
593         dev = alloc_etherdev(sizeof (struct eth1394_priv));
594
595         if (dev == NULL) {
596                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
597                                  "etherdevice for IEEE 1394 device %s-%d\n",
598                                  host->driver->name, host->id);
599                 goto out;
600         }
601
602         SET_MODULE_OWNER(dev);
603         SET_NETDEV_DEV(dev, &host->device);
604
605         priv = netdev_priv(dev);
606
607         INIT_LIST_HEAD(&priv->ip_node_list);
608
609         spin_lock_init(&priv->lock);
610         priv->host = host;
611         priv->local_fifo = fifo_addr;
612
613         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
614
615         if (hi == NULL) {
616                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
617                                  "hostinfo for IEEE 1394 device %s-%d\n",
618                                  host->driver->name, host->id);
619                 goto out;
620         }
621
622         ether1394_init_dev(dev);
623
624         if (register_netdev (dev)) {
625                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
626                 goto out;
627         }
628
629         ETH1394_PRINT (KERN_ERR, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
630                        host->id);
631
632         hi->host = host;
633         hi->dev = dev;
634
635         /* Ignore validity in hopes that it will be set in the future.  It'll
636          * be checked when the eth device is opened. */
637         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
638
639         priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 *
640                                               (1 << (host->csr.max_rec + 1))),
641                                        ETHER1394_GASP_BUFFERS,
642                                        priv->broadcast_channel,
643                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
644                                        1, ether1394_iso);
645         if (priv->iso == NULL) {
646                 ETH1394_PRINT(KERN_ERR, dev->name,
647                               "Could not allocate isochronous receive context "
648                               "for the broadcast channel\n");
649                 priv->bc_state = ETHER1394_BC_ERROR;
650         } else {
651                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
652                         priv->bc_state = ETHER1394_BC_STOPPED;
653                 else
654                         priv->bc_state = ETHER1394_BC_RUNNING;
655         }
656
657         return;
658
659 out:
660         if (dev != NULL)
661                 free_netdev(dev);
662         if (hi)
663                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
664
665         return;
666 }
667
668 /* Remove a card from our list */
669 static void ether1394_remove_host (struct hpsb_host *host)
670 {
671         struct eth1394_host_info *hi;
672
673         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
674         if (hi != NULL) {
675                 struct eth1394_priv *priv = netdev_priv(hi->dev);
676
677                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
678                                           priv->local_fifo);
679
680                 if (priv->iso != NULL)
681                         hpsb_iso_shutdown(priv->iso);
682
683                 if (hi->dev) {
684                         unregister_netdev (hi->dev);
685                         free_netdev(hi->dev);
686                 }
687         }
688
689         return;
690 }
691
692 /* A reset has just arisen */
693 static void ether1394_host_reset (struct hpsb_host *host)
694 {
695         struct eth1394_host_info *hi;
696         struct eth1394_priv *priv;
697         struct net_device *dev;
698         struct list_head *lh, *n;
699         struct eth1394_node_ref *node;
700         struct eth1394_node_info *node_info;
701         unsigned long flags;
702
703         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
704
705         /* This can happen for hosts that we don't use */
706         if (hi == NULL)
707                 return;
708
709         dev = hi->dev;
710         priv = netdev_priv(dev);
711
712         /* Reset our private host data, but not our mtu */
713         netif_stop_queue (dev);
714         ether1394_reset_priv (dev, 0);
715
716         list_for_each_entry(node, &priv->ip_node_list, list) {
717                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
718
719                 spin_lock_irqsave(&node_info->pdg.lock, flags);
720
721                 list_for_each_safe(lh, n, &node_info->pdg.list) {
722                         purge_partial_datagram(lh);
723                 }
724
725                 INIT_LIST_HEAD(&(node_info->pdg.list));
726                 node_info->pdg.sz = 0;
727
728                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
729         }
730
731         netif_wake_queue (dev);
732 }
733
734 /******************************************
735  * HW Header net device functions
736  ******************************************/
737 /* These functions have been adapted from net/ethernet/eth.c */
738
739
740 /* Create a fake MAC header for an arbitrary protocol layer.
741  * saddr=NULL means use device source address
742  * daddr=NULL means leave destination address (eg unresolved arp). */
743 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
744                             unsigned short type, void *daddr, void *saddr,
745                             unsigned len)
746 {
747         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
748
749         eth->h_proto = htons(type);
750
751         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
752                 memset(eth->h_dest, 0, dev->addr_len);
753                 return(dev->hard_header_len);
754         }
755
756         if (daddr) {
757                 memcpy(eth->h_dest,daddr,dev->addr_len);
758                 return dev->hard_header_len;
759         }
760
761         return -dev->hard_header_len;
762
763 }
764
765
766 /* Rebuild the faked MAC header. This is called after an ARP
767  * (or in future other address resolution) has completed on this
768  * sk_buff. We now let ARP fill in the other fields.
769  *
770  * This routine CANNOT use cached dst->neigh!
771  * Really, it is used only when dst->neigh is wrong.
772  */
773 static int ether1394_rebuild_header(struct sk_buff *skb)
774 {
775         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
776         struct net_device *dev = skb->dev;
777
778         switch (eth->h_proto) {
779
780 #ifdef CONFIG_INET
781         case __constant_htons(ETH_P_IP):
782                 return arp_find((unsigned char*)&eth->h_dest, skb);
783 #endif
784         default:
785                 ETH1394_PRINT(KERN_DEBUG, dev->name,
786                               "unable to resolve type %04x addresses.\n",
787                               eth->h_proto);
788                 break;
789         }
790
791         return 0;
792 }
793
794 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
795 {
796         struct net_device *dev = skb->dev;
797         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
798         return ETH1394_ALEN;
799 }
800
801
802 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
803 {
804         unsigned short type = hh->hh_type;
805         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
806                                                       (16 - ETH1394_HLEN));
807         struct net_device *dev = neigh->dev;
808
809         if (type == __constant_htons(ETH_P_802_3)) {
810                 return -1;
811         }
812
813         eth->h_proto = type;
814         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
815
816         hh->hh_len = ETH1394_HLEN;
817         return 0;
818 }
819
820 /* Called by Address Resolution module to notify changes in address. */
821 static void ether1394_header_cache_update(struct hh_cache *hh,
822                                           struct net_device *dev,
823                                           unsigned char * haddr)
824 {
825         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
826 }
827
828 static int ether1394_mac_addr(struct net_device *dev, void *p)
829 {
830         if (netif_running(dev))
831                 return -EBUSY;
832
833         /* Not going to allow setting the MAC address, we really need to use
834          * the real one supplied by the hardware */
835          return -EINVAL;
836  }
837
838
839
840 /******************************************
841  * Datagram reception code
842  ******************************************/
843
844 /* Copied from net/ethernet/eth.c */
845 static inline u16 ether1394_type_trans(struct sk_buff *skb,
846                                        struct net_device *dev)
847 {
848         struct eth1394hdr *eth;
849         unsigned char *rawp;
850
851         skb->mac.raw = skb->data;
852         skb_pull (skb, ETH1394_HLEN);
853         eth = eth1394_hdr(skb);
854
855         if (*eth->h_dest & 1) {
856                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
857                         skb->pkt_type = PACKET_BROADCAST;
858 #if 0
859                 else
860                         skb->pkt_type = PACKET_MULTICAST;
861 #endif
862         } else {
863                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
864                         skb->pkt_type = PACKET_OTHERHOST;
865         }
866
867         if (ntohs (eth->h_proto) >= 1536)
868                 return eth->h_proto;
869
870         rawp = skb->data;
871
872         if (*(unsigned short *)rawp == 0xFFFF)
873                 return htons (ETH_P_802_3);
874
875         return htons (ETH_P_802_2);
876 }
877
878 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
879  * We also perform ARP translation here, if need be.  */
880 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
881                                         struct net_device *dev,
882                                         nodeid_t srcid, nodeid_t destid,
883                                         u16 ether_type)
884 {
885         struct eth1394_priv *priv = netdev_priv(dev);
886         u64 dest_hw;
887         unsigned short ret = 0;
888
889         /* Setup our hw addresses. We use these to build the
890          * ethernet header.  */
891         if (destid == (LOCAL_BUS | ALL_NODES))
892                 dest_hw = ~0ULL;  /* broadcast */
893         else
894                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
895                                       priv->host->csr.guid_lo);
896
897         /* If this is an ARP packet, convert it. First, we want to make
898          * use of some of the fields, since they tell us a little bit
899          * about the sending machine.  */
900         if (ether_type == __constant_htons (ETH_P_ARP)) {
901                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
902                 struct arphdr *arp = (struct arphdr *)skb->data;
903                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
904                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
905                         ntohl(arp1394->fifo_lo);
906                 u8 max_rec = min(priv->host->csr.max_rec,
907                                  (u8)(arp1394->max_rec));
908                 int sspd = arp1394->sspd;
909                 u16 maxpayload;
910                 struct eth1394_node_ref *node;
911                 struct eth1394_node_info *node_info;
912
913                 /* Sanity check. MacOSX seems to be sending us 131 in this
914                  * field (atleast on my Panther G5). Not sure why. */
915                 if (sspd > 5 || sspd < 0)
916                         sspd = 0;
917
918                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
919
920                 node = eth1394_find_node_guid(&priv->ip_node_list,
921                                               be64_to_cpu(arp1394->s_uniq_id));
922                 if (!node) {
923                         return 0;
924                 }
925
926                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
927
928                 /* Update our speed/payload/fifo_offset table */
929                 node_info->maxpayload = maxpayload;
930                 node_info->sspd =       sspd;
931                 node_info->fifo =       fifo_addr;
932
933                 /* Now that we're done with the 1394 specific stuff, we'll
934                  * need to alter some of the data.  Believe it or not, all
935                  * that needs to be done is sender_IP_address needs to be
936                  * moved, the destination hardware address get stuffed
937                  * in and the hardware address length set to 8.
938                  *
939                  * IMPORTANT: The code below overwrites 1394 specific data
940                  * needed above so keep the munging of the data for the
941                  * higher level IP stack last. */
942
943                 arp->ar_hln = 8;
944                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
945                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
946                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
947
948                 if (arp->ar_op == 1)
949                         /* just set ARP req target unique ID to 0 */
950                         *((u64*)arp_ptr) = 0;
951                 else
952                         *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
953         }
954
955         /* Now add the ethernet header. */
956         if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
957                               &dest_hw, NULL, skb->len) >= 0)
958                 ret = ether1394_type_trans(skb, dev);
959
960         return ret;
961 }
962
963 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
964 {
965         struct fragment_info *fi;
966
967         list_for_each_entry(fi, frag_list, list) {
968                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
969                        ((offset + len - 1) < fi->offset)))
970                         return 1;
971         }
972         return 0;
973 }
974
975 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
976 {
977         struct partial_datagram *pd;
978
979         list_for_each_entry(pd, pdgl, list) {
980                 if (pd->dgl == dgl)
981                         return &pd->list;
982         }
983         return NULL;
984 }
985
986 /* Assumes that new fragment does not overlap any existing fragments */
987 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
988 {
989         struct list_head *lh;
990         struct fragment_info *fi, *fi2, *new;
991
992         list_for_each(lh, frag_info) {
993                 fi = list_entry(lh, struct fragment_info, list);
994                 if ((fi->offset + fi->len) == offset) {
995                         /* The new fragment can be tacked on to the end */
996                         fi->len += len;
997                         /* Did the new fragment plug a hole? */
998                         fi2 = list_entry(lh->next, struct fragment_info, list);
999                         if ((fi->offset + fi->len) == fi2->offset) {
1000                                 /* glue fragments together */
1001                                 fi->len += fi2->len;
1002                                 list_del(lh->next);
1003                                 kfree(fi2);
1004                         }
1005                         return 0;
1006                 } else if ((offset + len) == fi->offset) {
1007                         /* The new fragment can be tacked on to the beginning */
1008                         fi->offset = offset;
1009                         fi->len += len;
1010                         /* Did the new fragment plug a hole? */
1011                         fi2 = list_entry(lh->prev, struct fragment_info, list);
1012                         if ((fi2->offset + fi2->len) == fi->offset) {
1013                                 /* glue fragments together */
1014                                 fi2->len += fi->len;
1015                                 list_del(lh);
1016                                 kfree(fi);
1017                         }
1018                         return 0;
1019                 } else if (offset > (fi->offset + fi->len)) {
1020                         break;
1021                 } else if ((offset + len) < fi->offset) {
1022                         lh = lh->prev;
1023                         break;
1024                 }
1025         }
1026
1027         new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1028         if (!new)
1029                 return -ENOMEM;
1030
1031         new->offset = offset;
1032         new->len = len;
1033
1034         list_add(&new->list, lh);
1035
1036         return 0;
1037 }
1038
1039 static inline int new_partial_datagram(struct net_device *dev,
1040                                        struct list_head *pdgl, int dgl,
1041                                        int dg_size, char *frag_buf,
1042                                        int frag_off, int frag_len)
1043 {
1044         struct partial_datagram *new;
1045
1046         new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1047         if (!new)
1048                 return -ENOMEM;
1049
1050         INIT_LIST_HEAD(&new->frag_info);
1051
1052         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1053                 kfree(new);
1054                 return -ENOMEM;
1055         }
1056
1057         new->dgl = dgl;
1058         new->dg_size = dg_size;
1059
1060         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1061         if (!new->skb) {
1062                 struct fragment_info *fi = list_entry(new->frag_info.next,
1063                                                       struct fragment_info,
1064                                                       list);
1065                 kfree(fi);
1066                 kfree(new);
1067                 return -ENOMEM;
1068         }
1069
1070         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1071         new->pbuf = skb_put(new->skb, dg_size);
1072         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1073
1074         list_add(&new->list, pdgl);
1075
1076         return 0;
1077 }
1078
1079 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1080                                           char *frag_buf, int frag_off, int frag_len)
1081 {
1082         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1083
1084         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1085                 return -ENOMEM;
1086         }
1087
1088         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1089
1090         /* Move list entry to beginnig of list so that oldest partial
1091          * datagrams percolate to the end of the list */
1092         list_del(lh);
1093         list_add(lh, pdgl);
1094
1095         return 0;
1096 }
1097
1098 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1099 {
1100         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1101         struct fragment_info *fi = list_entry(pd->frag_info.next,
1102                                               struct fragment_info, list);
1103
1104         return (fi->len == dg_size);
1105 }
1106
1107 /* Packet reception. We convert the IP1394 encapsulation header to an
1108  * ethernet header, and fill it with some of our other fields. This is
1109  * an incoming packet from the 1394 bus.  */
1110 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1111                                   char *buf, int len)
1112 {
1113         struct sk_buff *skb;
1114         unsigned long flags;
1115         struct eth1394_priv *priv = netdev_priv(dev);
1116         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1117         u16 ether_type = 0;  /* initialized to clear warning */
1118         int hdr_len;
1119         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1120         struct eth1394_node_info *node_info;
1121
1122         if (!ud) {
1123                 struct eth1394_node_ref *node;
1124                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1125                 if (!node) {
1126                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1127                                    "lookup failure: " NODE_BUS_FMT,
1128                                    NODE_BUS_ARGS(priv->host, srcid));
1129                         priv->stats.rx_dropped++;
1130                         return -1;
1131                 }
1132                 ud = node->ud;
1133
1134                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1135         }
1136
1137         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1138
1139         /* First, did we receive a fragmented or unfragmented datagram? */
1140         hdr->words.word1 = ntohs(hdr->words.word1);
1141
1142         hdr_len = hdr_type_len[hdr->common.lf];
1143
1144         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1145                 /* An unfragmented datagram has been received by the ieee1394
1146                  * bus. Build an skbuff around it so we can pass it to the
1147                  * high level network layer. */
1148
1149                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1150                 if (!skb) {
1151                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1152                         priv->stats.rx_dropped++;
1153                         return -1;
1154                 }
1155                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1156                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1157                 ether_type = hdr->uf.ether_type;
1158         } else {
1159                 /* A datagram fragment has been received, now the fun begins. */
1160
1161                 struct list_head *pdgl, *lh;
1162                 struct partial_datagram *pd;
1163                 int fg_off;
1164                 int fg_len = len - hdr_len;
1165                 int dg_size;
1166                 int dgl;
1167                 int retval;
1168                 struct pdg_list *pdg = &(node_info->pdg);
1169
1170                 hdr->words.word3 = ntohs(hdr->words.word3);
1171                 /* The 4th header word is reserved so no need to do ntohs() */
1172
1173                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1174                         ether_type = hdr->ff.ether_type;
1175                         dgl = hdr->ff.dgl;
1176                         dg_size = hdr->ff.dg_size + 1;
1177                         fg_off = 0;
1178                 } else {
1179                         hdr->words.word2 = ntohs(hdr->words.word2);
1180                         dgl = hdr->sf.dgl;
1181                         dg_size = hdr->sf.dg_size + 1;
1182                         fg_off = hdr->sf.fg_off;
1183                 }
1184                 spin_lock_irqsave(&pdg->lock, flags);
1185
1186                 pdgl = &(pdg->list);
1187                 lh = find_partial_datagram(pdgl, dgl);
1188
1189                 if (lh == NULL) {
1190                         if (pdg->sz == max_partial_datagrams) {
1191                                 /* remove the oldest */
1192                                 purge_partial_datagram(pdgl->prev);
1193                                 pdg->sz--;
1194                         }
1195
1196                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1197                                                       buf + hdr_len, fg_off,
1198                                                       fg_len);
1199                         if (retval < 0) {
1200                                 spin_unlock_irqrestore(&pdg->lock, flags);
1201                                 goto bad_proto;
1202                         }
1203                         pdg->sz++;
1204                         lh = find_partial_datagram(pdgl, dgl);
1205                 } else {
1206                         struct partial_datagram *pd;
1207
1208                         pd = list_entry(lh, struct partial_datagram, list);
1209
1210                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1211                                 /* Overlapping fragments, obliterate old
1212                                  * datagram and start new one. */
1213                                 purge_partial_datagram(lh);
1214                                 retval = new_partial_datagram(dev, pdgl, dgl,
1215                                                               dg_size,
1216                                                               buf + hdr_len,
1217                                                               fg_off, fg_len);
1218                                 if (retval < 0) {
1219                                         pdg->sz--;
1220                                         spin_unlock_irqrestore(&pdg->lock, flags);
1221                                         goto bad_proto;
1222                                 }
1223                         } else {
1224                                 retval = update_partial_datagram(pdgl, lh,
1225                                                                  buf + hdr_len,
1226                                                                  fg_off, fg_len);
1227                                 if (retval < 0) {
1228                                         /* Couldn't save off fragment anyway
1229                                          * so might as well obliterate the
1230                                          * datagram now. */
1231                                         purge_partial_datagram(lh);
1232                                         pdg->sz--;
1233                                         spin_unlock_irqrestore(&pdg->lock, flags);
1234                                         goto bad_proto;
1235                                 }
1236                         } /* fragment overlap */
1237                 } /* new datagram or add to existing one */
1238
1239                 pd = list_entry(lh, struct partial_datagram, list);
1240
1241                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1242                         pd->ether_type = ether_type;
1243                 }
1244
1245                 if (is_datagram_complete(lh, dg_size)) {
1246                         ether_type = pd->ether_type;
1247                         pdg->sz--;
1248                         skb = skb_get(pd->skb);
1249                         purge_partial_datagram(lh);
1250                         spin_unlock_irqrestore(&pdg->lock, flags);
1251                 } else {
1252                         /* Datagram is not complete, we're done for the
1253                          * moment. */
1254                         spin_unlock_irqrestore(&pdg->lock, flags);
1255                         return 0;
1256                 }
1257         } /* unframgented datagram or fragmented one */
1258
1259         /* Write metadata, and then pass to the receive level */
1260         skb->dev = dev;
1261         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1262
1263         /* Parse the encapsulation header. This actually does the job of
1264          * converting to an ethernet frame header, aswell as arp
1265          * conversion if needed. ARP conversion is easier in this
1266          * direction, since we are using ethernet as our backend.  */
1267         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1268                                               ether_type);
1269
1270
1271         spin_lock_irqsave(&priv->lock, flags);
1272         if (!skb->protocol) {
1273                 priv->stats.rx_errors++;
1274                 priv->stats.rx_dropped++;
1275                 dev_kfree_skb_any(skb);
1276                 goto bad_proto;
1277         }
1278
1279         if (netif_rx(skb) == NET_RX_DROP) {
1280                 priv->stats.rx_errors++;
1281                 priv->stats.rx_dropped++;
1282                 goto bad_proto;
1283         }
1284
1285         /* Statistics */
1286         priv->stats.rx_packets++;
1287         priv->stats.rx_bytes += skb->len;
1288
1289 bad_proto:
1290         if (netif_queue_stopped(dev))
1291                 netif_wake_queue(dev);
1292         spin_unlock_irqrestore(&priv->lock, flags);
1293
1294         dev->last_rx = jiffies;
1295
1296         return 0;
1297 }
1298
1299 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1300                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1301 {
1302         struct eth1394_host_info *hi;
1303
1304         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1305         if (hi == NULL) {
1306                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1307                                 host->driver->name);
1308                 return RCODE_ADDRESS_ERROR;
1309         }
1310
1311         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1312                 return RCODE_ADDRESS_ERROR;
1313         else
1314                 return RCODE_COMPLETE;
1315 }
1316
1317 static void ether1394_iso(struct hpsb_iso *iso)
1318 {
1319         quadlet_t *data;
1320         char *buf;
1321         struct eth1394_host_info *hi;
1322         struct net_device *dev;
1323         struct eth1394_priv *priv;
1324         unsigned int len;
1325         u32 specifier_id;
1326         u16 source_id;
1327         int i;
1328         int nready;
1329
1330         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1331         if (hi == NULL) {
1332                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1333                                 iso->host->driver->name);
1334                 return;
1335         }
1336
1337         dev = hi->dev;
1338
1339         nready = hpsb_iso_n_ready(iso);
1340         for (i = 0; i < nready; i++) {
1341                 struct hpsb_iso_packet_info *info =
1342                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1343                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1344
1345                 /* skip over GASP header */
1346                 buf = (char *)data + 8;
1347                 len = info->len - 8;
1348
1349                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1350                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1351                 source_id = be32_to_cpu(data[0]) >> 16;
1352
1353                 priv = netdev_priv(dev);
1354
1355                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1356                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1357                         /* This packet is not for us */
1358                         continue;
1359                 }
1360                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1361                                        buf, len);
1362         }
1363
1364         hpsb_iso_recv_release_packets(iso, i);
1365
1366         dev->last_rx = jiffies;
1367 }
1368
1369 /******************************************
1370  * Datagram transmission code
1371  ******************************************/
1372
1373 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1374  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1375  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1376  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1377  * judge.
1378  *
1379  * Now that the EUI is used for the hardware address all we need to do to make
1380  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1381  * speed, and unicast FIFO address information between the sender_unique_id
1382  * and the IP addresses.
1383  */
1384 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1385                                             struct net_device *dev)
1386 {
1387         struct eth1394_priv *priv = netdev_priv(dev);
1388
1389         struct arphdr *arp = (struct arphdr *)skb->data;
1390         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1391         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1392
1393         /* Believe it or not, all that need to happen is sender IP get moved
1394          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1395         arp1394->hw_addr_len    = 16;
1396         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1397         arp1394->max_rec        = priv->host->csr.max_rec;
1398         arp1394->sspd           = priv->host->csr.lnk_spd;
1399         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1400         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1401
1402         return;
1403 }
1404
1405 /* We need to encapsulate the standard header with our own. We use the
1406  * ethernet header's proto for our own. */
1407 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1408                                                       int proto,
1409                                                       union eth1394_hdr *hdr,
1410                                                       u16 dg_size, u16 dgl)
1411 {
1412         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1413
1414         /* Does it all fit in one packet? */
1415         if (dg_size <= adj_max_payload) {
1416                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1417                 hdr->uf.ether_type = proto;
1418         } else {
1419                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1420                 hdr->ff.ether_type = proto;
1421                 hdr->ff.dg_size = dg_size - 1;
1422                 hdr->ff.dgl = dgl;
1423                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1424         }
1425         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1426 }
1427
1428 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1429                                                  unsigned int max_payload,
1430                                                  union eth1394_hdr *hdr)
1431 {
1432         union eth1394_hdr *bufhdr;
1433         int ftype = hdr->common.lf;
1434         int hdrsz = hdr_type_len[ftype];
1435         unsigned int adj_max_payload = max_payload - hdrsz;
1436
1437         switch(ftype) {
1438         case ETH1394_HDR_LF_UF:
1439                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1440                 bufhdr->words.word1 = htons(hdr->words.word1);
1441                 bufhdr->words.word2 = hdr->words.word2;
1442                 break;
1443
1444         case ETH1394_HDR_LF_FF:
1445                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1446                 bufhdr->words.word1 = htons(hdr->words.word1);
1447                 bufhdr->words.word2 = hdr->words.word2;
1448                 bufhdr->words.word3 = htons(hdr->words.word3);
1449                 bufhdr->words.word4 = 0;
1450
1451                 /* Set frag type here for future interior fragments */
1452                 hdr->common.lf = ETH1394_HDR_LF_IF;
1453                 hdr->sf.fg_off = 0;
1454                 break;
1455
1456         default:
1457                 hdr->sf.fg_off += adj_max_payload;
1458                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1459                 if (max_payload >= skb->len)
1460                         hdr->common.lf = ETH1394_HDR_LF_LF;
1461                 bufhdr->words.word1 = htons(hdr->words.word1);
1462                 bufhdr->words.word2 = htons(hdr->words.word2);
1463                 bufhdr->words.word3 = htons(hdr->words.word3);
1464                 bufhdr->words.word4 = 0;
1465         }
1466
1467         return min(max_payload, skb->len);
1468 }
1469
1470 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1471 {
1472         struct hpsb_packet *p;
1473
1474         p = hpsb_alloc_packet(0);
1475         if (p) {
1476                 p->host = host;
1477                 p->generation = get_hpsb_generation(host);
1478                 p->type = hpsb_async;
1479         }
1480         return p;
1481 }
1482
1483 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1484                                               struct hpsb_host *host,
1485                                               nodeid_t node, u64 addr,
1486                                               void * data, int tx_len)
1487 {
1488         p->node_id = node;
1489         p->data = NULL;
1490
1491         p->tcode = TCODE_WRITEB;
1492         p->header[1] = (host->node_id << 16) | (addr >> 32);
1493         p->header[2] = addr & 0xffffffff;
1494
1495         p->header_size = 16;
1496         p->expect_response = 1;
1497
1498         if (hpsb_get_tlabel(p)) {
1499                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1500                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1501                 return -1;
1502         }
1503         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1504                 | (1 << 8) | (TCODE_WRITEB << 4);
1505
1506         p->header[3] = tx_len << 16;
1507         p->data_size = (tx_len + 3) & ~3;
1508         p->data = (quadlet_t*)data;
1509
1510         return 0;
1511 }
1512
1513 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1514                                               struct eth1394_priv *priv,
1515                                               struct sk_buff *skb, int length)
1516 {
1517         p->header_size = 4;
1518         p->tcode = TCODE_STREAM_DATA;
1519
1520         p->header[0] = (length << 16) | (3 << 14)
1521                 | ((priv->broadcast_channel) << 8)
1522                 | (TCODE_STREAM_DATA << 4);
1523         p->data_size = length;
1524         p->data = ((quadlet_t*)skb->data) - 2;
1525         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1526                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1527         p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1528                                             ETHER1394_GASP_VERSION);
1529
1530         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1531          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1532          * value based on packet->node_id if packet->node_id is not set. */
1533         p->node_id = ALL_NODES;
1534         p->speed_code = priv->bc_sspd;
1535 }
1536
1537 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1538 {
1539         if (packet->tcode != TCODE_STREAM_DATA)
1540                 hpsb_free_tlabel(packet);
1541         hpsb_free_packet(packet);
1542 }
1543
1544 static void ether1394_complete_cb(void *__ptask);
1545
1546 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1547 {
1548         struct eth1394_priv *priv = ptask->priv;
1549         struct hpsb_packet *packet = NULL;
1550
1551         packet = ether1394_alloc_common_packet(priv->host);
1552         if (!packet)
1553                 return -1;
1554
1555         if (ptask->tx_type == ETH1394_GASP) {
1556                 int length = tx_len + (2 * sizeof(quadlet_t));
1557
1558                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1559         } else if (ether1394_prep_write_packet(packet, priv->host,
1560                                                ptask->dest_node,
1561                                                ptask->addr, ptask->skb->data,
1562                                                tx_len)) {
1563                 hpsb_free_packet(packet);
1564                 return -1;
1565         }
1566
1567         ptask->packet = packet;
1568         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1569                                       ptask);
1570
1571         if (hpsb_send_packet(packet) < 0) {
1572                 ether1394_free_packet(packet);
1573                 return -1;
1574         }
1575
1576         return 0;
1577 }
1578
1579
1580 /* Task function to be run when a datagram transmission is completed */
1581 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1582 {
1583         struct sk_buff *skb = ptask->skb;
1584         struct net_device *dev = skb->dev;
1585         struct eth1394_priv *priv = netdev_priv(dev);
1586         unsigned long flags;
1587
1588         /* Statistics */
1589         spin_lock_irqsave(&priv->lock, flags);
1590         if (fail) {
1591                 priv->stats.tx_dropped++;
1592                 priv->stats.tx_errors++;
1593         } else {
1594                 priv->stats.tx_bytes += skb->len;
1595                 priv->stats.tx_packets++;
1596         }
1597         spin_unlock_irqrestore(&priv->lock, flags);
1598
1599         dev_kfree_skb_any(skb);
1600         kmem_cache_free(packet_task_cache, ptask);
1601 }
1602
1603
1604 /* Callback for when a packet has been sent and the status of that packet is
1605  * known */
1606 static void ether1394_complete_cb(void *__ptask)
1607 {
1608         struct packet_task *ptask = (struct packet_task *)__ptask;
1609         struct hpsb_packet *packet = ptask->packet;
1610         int fail = 0;
1611
1612         if (packet->tcode != TCODE_STREAM_DATA)
1613                 fail = hpsb_packet_success(packet);
1614
1615         ether1394_free_packet(packet);
1616
1617         ptask->outstanding_pkts--;
1618         if (ptask->outstanding_pkts > 0 && !fail) {
1619                 int tx_len;
1620
1621                 /* Add the encapsulation header to the fragment */
1622                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1623                                                &ptask->hdr);
1624                 if (ether1394_send_packet(ptask, tx_len))
1625                         ether1394_dg_complete(ptask, 1);
1626         } else {
1627                 ether1394_dg_complete(ptask, fail);
1628         }
1629 }
1630
1631
1632
1633 /* Transmit a packet (called by kernel) */
1634 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1635 {
1636         int kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1637         struct eth1394hdr *eth;
1638         struct eth1394_priv *priv = netdev_priv(dev);
1639         int proto;
1640         unsigned long flags;
1641         nodeid_t dest_node;
1642         eth1394_tx_type tx_type;
1643         int ret = 0;
1644         unsigned int tx_len;
1645         unsigned int max_payload;
1646         u16 dg_size;
1647         u16 dgl;
1648         struct packet_task *ptask;
1649         struct eth1394_node_ref *node;
1650         struct eth1394_node_info *node_info = NULL;
1651
1652         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1653         if (ptask == NULL) {
1654                 ret = -ENOMEM;
1655                 goto fail;
1656         }
1657
1658         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1659          * it does not set our validity bit. We need to compensate for
1660          * that somewhere else, but not in eth1394. */
1661 #if 0
1662         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1663                 ret = -EAGAIN;
1664                 goto fail;
1665         }
1666 #endif
1667
1668         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1669                 ret = -ENOMEM;
1670                 goto fail;
1671         }
1672
1673         /* Get rid of the fake eth1394 header, but save a pointer */
1674         eth = (struct eth1394hdr*)skb->data;
1675         skb_pull(skb, ETH1394_HLEN);
1676
1677         proto = eth->h_proto;
1678         dg_size = skb->len;
1679
1680         /* Set the transmission type for the packet.  ARP packets and IP
1681          * broadcast packets are sent via GASP. */
1682         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1683             proto == __constant_htons(ETH_P_ARP) ||
1684             (proto == __constant_htons(ETH_P_IP) &&
1685              IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1686                 tx_type = ETH1394_GASP;
1687                 dest_node = LOCAL_BUS | ALL_NODES;
1688                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1689                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1690                 dgl = priv->bc_dgl;
1691                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1692                         priv->bc_dgl++;
1693         } else {
1694                 node = eth1394_find_node_guid(&priv->ip_node_list,
1695                                               be64_to_cpu(*(u64*)eth->h_dest));
1696                 if (!node) {
1697                         ret = -EAGAIN;
1698                         goto fail;
1699                 }
1700                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1701                 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1702                         ret = -EAGAIN;
1703                         goto fail;
1704                 }
1705
1706                 dest_node = node->ud->ne->nodeid;
1707                 max_payload = node_info->maxpayload;
1708                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1709
1710                 dgl = node_info->dgl;
1711                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1712                         node_info->dgl++;
1713                 tx_type = ETH1394_WRREQ;
1714         }
1715
1716         /* If this is an ARP packet, convert it */
1717         if (proto == __constant_htons (ETH_P_ARP))
1718                 ether1394_arp_to_1394arp (skb, dev);
1719
1720         ptask->hdr.words.word1 = 0;
1721         ptask->hdr.words.word2 = 0;
1722         ptask->hdr.words.word3 = 0;
1723         ptask->hdr.words.word4 = 0;
1724         ptask->skb = skb;
1725         ptask->priv = priv;
1726         ptask->tx_type = tx_type;
1727
1728         if (tx_type != ETH1394_GASP) {
1729                 u64 addr;
1730
1731                 spin_lock_irqsave(&priv->lock, flags);
1732                 addr = node_info->fifo;
1733                 spin_unlock_irqrestore(&priv->lock, flags);
1734
1735                 ptask->addr = addr;
1736                 ptask->dest_node = dest_node;
1737         }
1738
1739         ptask->tx_type = tx_type;
1740         ptask->max_payload = max_payload;
1741         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1742                                                              &ptask->hdr, dg_size,
1743                                                              dgl);
1744
1745         /* Add the encapsulation header to the fragment */
1746         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1747         dev->trans_start = jiffies;
1748         if (ether1394_send_packet(ptask, tx_len))
1749                 goto fail;
1750
1751         netif_wake_queue(dev);
1752         return 0;
1753 fail:
1754         if (ptask)
1755                 kmem_cache_free(packet_task_cache, ptask);
1756
1757         if (skb != NULL)
1758                 dev_kfree_skb(skb);
1759
1760         spin_lock_irqsave (&priv->lock, flags);
1761         priv->stats.tx_dropped++;
1762         priv->stats.tx_errors++;
1763         spin_unlock_irqrestore (&priv->lock, flags);
1764
1765         if (netif_queue_stopped(dev))
1766                 netif_wake_queue(dev);
1767
1768         return 0;  /* returning non-zero causes serious problems */
1769 }
1770
1771 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1772 {
1773         strcpy (info->driver, driver_name);
1774         strcpy (info->version, "$Rev: 1224 $");
1775         /* FIXME XXX provide sane businfo */
1776         strcpy (info->bus_info, "ieee1394");
1777 }
1778
1779 static struct ethtool_ops ethtool_ops = {
1780         .get_drvinfo = ether1394_get_drvinfo
1781 };
1782
1783 static int __init ether1394_init_module (void)
1784 {
1785         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1786                                               0, 0, NULL, NULL);
1787
1788         /* Register ourselves as a highlevel driver */
1789         hpsb_register_highlevel(&eth1394_highlevel);
1790
1791         return hpsb_register_protocol(&eth1394_proto_driver);
1792 }
1793
1794 static void __exit ether1394_exit_module (void)
1795 {
1796         hpsb_unregister_protocol(&eth1394_proto_driver);
1797         hpsb_unregister_highlevel(&eth1394_highlevel);
1798         kmem_cache_destroy(packet_task_cache);
1799 }
1800
1801 module_init(ether1394_init_module);
1802 module_exit(ether1394_exit_module);