patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slewing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *
50  * History:
51  *
52  *  Nov. 13, 2003 : 0.5
53  *      - First release
54  *
55  *  Nov. 14, 2003 : 0.6
56  *      - Read fan speed from FCU, low level fan routines now deal
57  *        with errors & check fan status, though higher level don't
58  *        do much.
59  *      - Move a bunch of definitions to .h file
60  *
61  *  Nov. 18, 2003 : 0.7
62  *      - Fix build on ppc64 kernel
63  *      - Move back statics definitions to .c file
64  *      - Avoid calling schedule_timeout with a negative number
65  *
66  *  Dec. 18, 2003 : 0.8
67  *      - Fix typo when reading back fan speed on 2 CPU machines
68  *
69  *  Mar. 11, 2004 : 0.9
70  *      - Rework code accessing the ADC chips, make it more robust and
71  *        closer to the chip spec. Also make sure it is configured properly,
72  *        I've seen yet unexplained cases where on startup, I would have stale
73  *        values in the configuration register
74  *      - Switch back to use of target fan speed for PID, thus lowering
75  *        pressure on i2c
76  */
77
78 #include <linux/config.h>
79 #include <linux/types.h>
80 #include <linux/module.h>
81 #include <linux/errno.h>
82 #include <linux/kernel.h>
83 #include <linux/delay.h>
84 #include <linux/sched.h>
85 #include <linux/i2c.h>
86 #include <linux/slab.h>
87 #include <linux/init.h>
88 #include <linux/spinlock.h>
89 #include <linux/smp_lock.h>
90 #include <linux/wait.h>
91 #include <linux/reboot.h>
92 #include <linux/kmod.h>
93 #include <linux/i2c.h>
94 #include <linux/i2c-dev.h>
95 #include <asm/prom.h>
96 #include <asm/machdep.h>
97 #include <asm/io.h>
98 #include <asm/system.h>
99 #include <asm/sections.h>
100 #include <asm/of_device.h>
101
102 #include "therm_pm72.h"
103
104 #define VERSION "0.9"
105
106 #undef DEBUG
107
108 #ifdef DEBUG
109 #define DBG(args...)    printk(args)
110 #else
111 #define DBG(args...)    do { } while(0)
112 #endif
113
114
115 /*
116  * Driver statics
117  */
118
119 static struct of_device *               of_dev;
120 static struct i2c_adapter *             u3_0;
121 static struct i2c_adapter *             u3_1;
122 static struct i2c_client *              fcu;
123 static struct cpu_pid_state             cpu_state[2];
124 static struct backside_pid_state        backside_state;
125 static struct drives_pid_state          drives_state;
126 static int                              state;
127 static int                              cpu_count;
128 static pid_t                            ctrl_task;
129 static struct completion                ctrl_complete;
130 static int                              critical_state;
131 static DECLARE_MUTEX(driver_lock);
132
133 /*
134  * i2c_driver structure to attach to the host i2c controller
135  */
136
137 static int therm_pm72_attach(struct i2c_adapter *adapter);
138 static int therm_pm72_detach(struct i2c_adapter *adapter);
139
140 static struct i2c_driver therm_pm72_driver =
141 {
142         .name           = "therm_pm72",
143         .id             = 0xDEADBEEF,
144         .flags          = I2C_DF_NOTIFY,
145         .attach_adapter = therm_pm72_attach,
146         .detach_adapter = therm_pm72_detach,
147 };
148
149 /*
150  * Utility function to create an i2c_client structure and
151  * attach it to one of u3 adapters
152  */
153 static struct i2c_client *attach_i2c_chip(int id, const char *name)
154 {
155         struct i2c_client *clt;
156         struct i2c_adapter *adap;
157
158         if (id & 0x100)
159                 adap = u3_1;
160         else
161                 adap = u3_0;
162         if (adap == NULL)
163                 return NULL;
164
165         clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
166         if (clt == NULL)
167                 return NULL;
168         memset(clt, 0, sizeof(struct i2c_client));
169
170         clt->addr = (id >> 1) & 0x7f;
171         clt->adapter = adap;
172         clt->driver = &therm_pm72_driver;
173         clt->id = 0xDEADBEEF;
174         strncpy(clt->name, name, I2C_NAME_SIZE-1);
175
176         if (i2c_attach_client(clt)) {
177                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
178                 kfree(clt);
179                 return NULL;
180         }
181         return clt;
182 }
183
184 /*
185  * Utility function to get rid of the i2c_client structure
186  * (will also detach from the adapter hopepfully)
187  */
188 static void detach_i2c_chip(struct i2c_client *clt)
189 {
190         i2c_detach_client(clt);
191         kfree(clt);
192 }
193
194 /*
195  * Here are the i2c chip access wrappers
196  */
197
198 static void initialize_adc(struct cpu_pid_state *state)
199 {
200         int rc;
201         u8 buf[2];
202
203         /* Read ADC the configuration register and cache it. We
204          * also make sure Config2 contains proper values, I've seen
205          * cases where we got stale grabage in there, thus preventing
206          * proper reading of conv. values
207          */
208
209         /* Clear Config2 */
210         buf[0] = 5;
211         buf[1] = 0;
212         i2c_master_send(state->monitor, buf, 2);
213
214         /* Read & cache Config1 */
215         buf[0] = 1;
216         rc = i2c_master_send(state->monitor, buf, 1);
217         if (rc > 0) {
218                 rc = i2c_master_recv(state->monitor, buf, 1);
219                 if (rc > 0) {
220                         state->adc_config = buf[0];
221                         DBG("ADC config reg: %02x\n", state->adc_config);
222                         /* Disable shutdown mode */
223                         state->adc_config &= 0xfe;
224                         buf[0] = 1;
225                         buf[1] = state->adc_config;
226                         rc = i2c_master_send(state->monitor, buf, 2);
227                 }
228         }
229         if (rc <= 0)
230                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
231                        " register !\n");
232 }
233
234 static int read_smon_adc(struct cpu_pid_state *state, int chan)
235 {
236         int rc, data, tries = 0;
237         u8 buf[2];
238
239         for (;;) {
240                 /* Set channel */
241                 buf[0] = 1;
242                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
243                 rc = i2c_master_send(state->monitor, buf, 2);
244                 if (rc <= 0)
245                         goto error;
246                 /* Wait for convertion */
247                 msleep(1);
248                 /* Switch to data register */
249                 buf[0] = 4;
250                 rc = i2c_master_send(state->monitor, buf, 1);
251                 if (rc <= 0)
252                         goto error;
253                 /* Read result */
254                 rc = i2c_master_recv(state->monitor, buf, 2);
255                 if (rc < 0)
256                         goto error;
257                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
258                 return data >> 6;
259         error:
260                 DBG("Error reading ADC, retrying...\n");
261                 if (++tries > 10) {
262                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
263                         return -1;
264                 }
265                 msleep(10);
266         }
267 }
268
269 static int fan_read_reg(int reg, unsigned char *buf, int nb)
270 {
271         int tries, nr, nw;
272
273         buf[0] = reg;
274         tries = 0;
275         for (;;) {
276                 nw = i2c_master_send(fcu, buf, 1);
277                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
278                         break;
279                 msleep(10);
280                 ++tries;
281         }
282         if (nw <= 0) {
283                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
284                 return -EIO;
285         }
286         tries = 0;
287         for (;;) {
288                 nr = i2c_master_recv(fcu, buf, nb);
289                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
290                         break;
291                 msleep(10);
292                 ++tries;
293         }
294         if (nr <= 0)
295                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
296         return nr;
297 }
298
299 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
300 {
301         int tries, nw;
302         unsigned char buf[16];
303
304         buf[0] = reg;
305         memcpy(buf+1, ptr, nb);
306         ++nb;
307         tries = 0;
308         for (;;) {
309                 nw = i2c_master_send(fcu, buf, nb);
310                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
311                         break;
312                 msleep(10);
313                 ++tries;
314         }
315         if (nw < 0)
316                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
317         return nw;
318 }
319
320 static int set_rpm_fan(int fan, int rpm)
321 {
322         unsigned char buf[2];
323         int rc;
324
325         if (rpm < 300)
326                 rpm = 300;
327         else if (rpm > 8191)
328                 rpm = 8191;
329         buf[0] = rpm >> 5;
330         buf[1] = rpm << 3;
331         rc = fan_write_reg(0x10 + (fan * 2), buf, 2);
332         if (rc < 0)
333                 return -EIO;
334         return 0;
335 }
336
337 static int get_rpm_fan(int fan, int programmed)
338 {
339         unsigned char failure;
340         unsigned char active;
341         unsigned char buf[2];
342         int rc, reg_base;
343
344         rc = fan_read_reg(0xb, &failure, 1);
345         if (rc != 1)
346                 return -EIO;
347         if ((failure & (1 << fan)) != 0)
348                 return -EFAULT;
349         rc = fan_read_reg(0xd, &active, 1);
350         if (rc != 1)
351                 return -EIO;
352         if ((active & (1 << fan)) == 0)
353                 return -ENXIO;
354
355         /* Programmed value or real current speed */
356         reg_base = programmed ? 0x10 : 0x11;
357         rc = fan_read_reg(reg_base + (fan * 2), buf, 2);
358         if (rc != 2)
359                 return -EIO;
360
361         return (buf[0] << 5) | buf[1] >> 3;
362 }
363
364 static int set_pwm_fan(int fan, int pwm)
365 {
366         unsigned char buf[2];
367         int rc;
368
369         if (pwm < 10)
370                 pwm = 10;
371         else if (pwm > 100)
372                 pwm = 100;
373         pwm = (pwm * 2559) / 1000;
374         buf[0] = pwm;
375         rc = fan_write_reg(0x30 + (fan * 2), buf, 1);
376         if (rc < 0)
377                 return rc;
378         return 0;
379 }
380
381 static int get_pwm_fan(int fan)
382 {
383         unsigned char failure;
384         unsigned char active;
385         unsigned char buf[2];
386         int rc;
387
388         rc = fan_read_reg(0x2b, &failure, 1);
389         if (rc != 1)
390                 return -EIO;
391         if ((failure & (1 << fan)) != 0)
392                 return -EFAULT;
393         rc = fan_read_reg(0x2d, &active, 1);
394         if (rc != 1)
395                 return -EIO;
396         if ((active & (1 << fan)) == 0)
397                 return -ENXIO;
398
399         /* Programmed value or real current speed */
400         rc = fan_read_reg(0x30 + (fan * 2), buf, 1);
401         if (rc != 1)
402                 return -EIO;
403
404         return (buf[0] * 1000) / 2559;
405 }
406
407 /*
408  * Utility routine to read the CPU calibration EEPROM data
409  * from the device-tree
410  */
411 static int read_eeprom(int cpu, struct mpu_data *out)
412 {
413         struct device_node *np;
414         char nodename[64];
415         u8 *data;
416         int len;
417
418         /* prom.c routine for finding a node by path is a bit brain dead
419          * and requires exact @xxx unit numbers. This is a bit ugly but
420          * will work for these machines
421          */
422         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
423         np = of_find_node_by_path(nodename);
424         if (np == NULL) {
425                 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid node from device-tree\n");
426                 return -ENODEV;
427         }
428         data = (u8 *)get_property(np, "cpuid", &len);
429         if (data == NULL) {
430                 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid property from device-tree\n");
431                 of_node_put(np);
432                 return -ENODEV;
433         }
434         memcpy(out, data, sizeof(struct mpu_data));
435         of_node_put(np);
436         
437         return 0;
438 }
439
440 /* 
441  * Now, unfortunately, sysfs doesn't give us a nice void * we could
442  * pass around to the attribute functions, so we don't really have
443  * choice but implement a bunch of them...
444  *
445  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
446  * the input twice... I accept patches :)
447  */
448 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
449 static ssize_t show_##name(struct device *dev, char *buf)       \
450 {                                                               \
451         ssize_t r;                                              \
452         down(&driver_lock);                                     \
453         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
454         up(&driver_lock);                                       \
455         return r;                                               \
456 }
457 #define BUILD_SHOW_FUNC_INT(name, data)                         \
458 static ssize_t show_##name(struct device *dev, char *buf)       \
459 {                                                               \
460         return sprintf(buf, "%d", data);                        \
461 }
462
463 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
464 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
465 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
466 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
467 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
468
469 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
470 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
471 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
472 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
473 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
474
475 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
476 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
477
478 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
479 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
480
481 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
482 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
483 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
484 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
485 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
486
487 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
488 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
489 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
490 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
491 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
492
493 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
494 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
495
496 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
497 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
498
499 /*
500  * CPUs fans control loop
501  */
502 static void do_monitor_cpu(struct cpu_pid_state *state)
503 {
504         s32 temp, voltage, current_a, power, power_target;
505         s32 integral, derivative, proportional, adj_in_target, sval;
506         s64 integ_p, deriv_p, prop_p, sum; 
507         int i, intake, rc;
508
509         DBG("cpu %d:\n", state->index);
510
511         /* Read current fan status */
512         if (state->index == 0)
513                 rc = get_rpm_fan(CPUA_EXHAUST_FAN_RPM_ID, !RPM_PID_USE_ACTUAL_SPEED);
514         else
515                 rc = get_rpm_fan(CPUB_EXHAUST_FAN_RPM_ID, !RPM_PID_USE_ACTUAL_SPEED);
516         if (rc < 0) {
517                 printk(KERN_WARNING "Error %d reading CPU %d exhaust fan !\n",
518                        rc, state->index);
519                 /* XXX What do we do now ? */
520         } else
521                 state->rpm = rc;
522         DBG("  current rpm: %d\n", state->rpm);
523
524         /* Get some sensor readings and scale it */
525         temp = read_smon_adc(state, 1);
526         if (temp == -1) {
527                 state->overtemp++;
528                 return;
529         }
530         voltage = read_smon_adc(state, 3);
531         current_a = read_smon_adc(state, 4);
532
533         /* Fixup temperature according to diode calibration
534          */
535         DBG("  temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
536             temp, state->mpu.mdiode, state->mpu.bdiode);
537         temp = ((s32)temp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
538         state->last_temp = temp;
539         DBG("  temp: %d.%03d\n", FIX32TOPRINT(temp));
540
541         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
542          * full blown immediately and try to trigger a shutdown
543          */
544         if (temp >= ((state->mpu.tmax + 8) << 16)) {
545                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
546                        " (%d) !\n",
547                        state->index, temp >> 16);
548                 state->overtemp = CPU_MAX_OVERTEMP;
549         } else if (temp > (state->mpu.tmax << 16))
550                 state->overtemp++;
551         else
552                 state->overtemp = 0;
553         if (state->overtemp >= CPU_MAX_OVERTEMP)
554                 critical_state = 1;
555         if (state->overtemp > 0) {
556                 state->rpm = state->mpu.rmaxn_exhaust_fan;
557                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
558                 goto do_set_fans;
559         }
560         
561         /* Scale other sensor values according to fixed scales
562          * obtained in Darwin and calculate power from I and V
563          */
564         state->voltage = voltage *= ADC_CPU_VOLTAGE_SCALE;
565         state->current_a = current_a *= ADC_CPU_CURRENT_SCALE;
566         power = (((u64)current_a) * ((u64)voltage)) >> 16;
567
568         /* Calculate power target value (could be done once for all)
569          * and convert to a 16.16 fp number
570          */
571         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
572
573         DBG("  current: %d.%03d, voltage: %d.%03d\n",
574             FIX32TOPRINT(current_a), FIX32TOPRINT(voltage));
575         DBG("  power: %d.%03d W, target: %d.%03d, error: %d.%03d\n", FIX32TOPRINT(power),
576             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
577
578         /* Store temperature and power in history array */
579         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
580         state->temp_history[state->cur_temp] = temp;
581         state->cur_power = (state->cur_power + 1) % state->count_power;
582         state->power_history[state->cur_power] = power;
583         state->error_history[state->cur_power] = power_target - power;
584         
585         /* If first loop, fill the history table */
586         if (state->first) {
587                 for (i = 0; i < (state->count_power - 1); i++) {
588                         state->cur_power = (state->cur_power + 1) % state->count_power;
589                         state->power_history[state->cur_power] = power;
590                         state->error_history[state->cur_power] = power_target - power;
591                 }
592                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
593                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
594                         state->temp_history[state->cur_temp] = temp;                    
595                 }
596                 state->first = 0;
597         }
598
599         /* Calculate the integral term normally based on the "power" values */
600         sum = 0;
601         integral = 0;
602         for (i = 0; i < state->count_power; i++)
603                 integral += state->error_history[i];
604         integral *= CPU_PID_INTERVAL;
605         DBG("  integral: %08x\n", integral);
606
607         /* Calculate the adjusted input (sense value).
608          *   G_r is 12.20
609          *   integ is 16.16
610          *   so the result is 28.36
611          *
612          * input target is mpu.ttarget, input max is mpu.tmax
613          */
614         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
615         DBG("   integ_p: %d\n", (int)(deriv_p >> 36));
616         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
617         adj_in_target = (state->mpu.ttarget << 16);
618         if (adj_in_target > sval)
619                 adj_in_target = sval;
620         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
621             state->mpu.ttarget);
622
623         /* Calculate the derivative term */
624         derivative = state->temp_history[state->cur_temp] -
625                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
626                                     % CPU_TEMP_HISTORY_SIZE];
627         derivative /= CPU_PID_INTERVAL;
628         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
629         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
630         sum += deriv_p;
631
632         /* Calculate the proportional term */
633         proportional = temp - adj_in_target;
634         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
635         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
636         sum += prop_p;
637
638         /* Scale sum */
639         sum >>= 36;
640
641         DBG("   sum: %d\n", (int)sum);
642         state->rpm += (s32)sum;
643
644         if (state->rpm < state->mpu.rminn_exhaust_fan)
645                 state->rpm = state->mpu.rminn_exhaust_fan;
646         if (state->rpm > state->mpu.rmaxn_exhaust_fan)
647                 state->rpm = state->mpu.rmaxn_exhaust_fan;
648
649         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
650         if (intake < state->mpu.rminn_intake_fan)
651                 intake = state->mpu.rminn_intake_fan;
652         if (intake > state->mpu.rmaxn_intake_fan)
653                 intake = state->mpu.rmaxn_intake_fan;
654         state->intake_rpm = intake;
655
656  do_set_fans:
657         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
658             state->index, (int)state->rpm, intake, state->overtemp);
659
660         /* We should check for errors, shouldn't we ? But then, what
661          * do we do once the error occurs ? For FCU notified fan
662          * failures (-EFAULT) we probably want to notify userland
663          * some way...
664          */
665         if (state->index == 0) {
666                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_ID, intake);
667                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_ID, state->rpm);
668         } else {
669                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_ID, intake);
670                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_ID, state->rpm);
671         }
672 }
673
674 /*
675  * Initialize the state structure for one CPU control loop
676  */
677 static int init_cpu_state(struct cpu_pid_state *state, int index)
678 {
679         state->index = index;
680         state->first = 1;
681         state->rpm = 1000;
682         state->overtemp = 0;
683         state->adc_config = 0x00;
684
685         if (index == 0)
686                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
687         else if (index == 1)
688                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
689         if (state->monitor == NULL)
690                 goto fail;
691
692         if (read_eeprom(index, &state->mpu))
693                 goto fail;
694
695         state->count_power = state->mpu.tguardband;
696         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
697                 printk(KERN_WARNING "Warning ! too many power history slots\n");
698                 state->count_power = CPU_POWER_HISTORY_SIZE;
699         }
700         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
701
702         if (index == 0) {
703                 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
704                 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
705                 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
706                 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
707                 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
708         } else {
709                 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
710                 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
711                 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
712                 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
713                 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
714         }
715
716         return 0;
717  fail:
718         if (state->monitor)
719                 detach_i2c_chip(state->monitor);
720         state->monitor = NULL;
721         
722         return -ENODEV;
723 }
724
725 /*
726  * Dispose of the state data for one CPU control loop
727  */
728 static void dispose_cpu_state(struct cpu_pid_state *state)
729 {
730         if (state->monitor == NULL)
731                 return;
732
733         if (state->index == 0) {
734                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
735                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
736                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
737                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
738                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
739         } else {
740                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
741                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
742                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
743                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
744                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
745         }
746
747         detach_i2c_chip(state->monitor);
748         state->monitor = NULL;
749 }
750
751 /*
752  * Motherboard backside & U3 heatsink fan control loop
753  */
754 static void do_monitor_backside(struct backside_pid_state *state)
755 {
756         s32 temp, integral, derivative;
757         s64 integ_p, deriv_p, prop_p, sum; 
758         int i, rc;
759
760         if (--state->ticks != 0)
761                 return;
762         state->ticks = BACKSIDE_PID_INTERVAL;
763
764         DBG("backside:\n");
765
766         /* Check fan status */
767         rc = get_pwm_fan(BACKSIDE_FAN_PWM_ID);
768         if (rc < 0) {
769                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
770                 /* XXX What do we do now ? */
771         } else
772                 state->pwm = rc;
773         DBG("  current pwm: %d\n", state->pwm);
774
775         /* Get some sensor readings */
776         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
777         state->last_temp = temp;
778         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
779             FIX32TOPRINT(BACKSIDE_PID_INPUT_TARGET));
780
781         /* Store temperature and error in history array */
782         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
783         state->sample_history[state->cur_sample] = temp;
784         state->error_history[state->cur_sample] = temp - BACKSIDE_PID_INPUT_TARGET;
785         
786         /* If first loop, fill the history table */
787         if (state->first) {
788                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
789                         state->cur_sample = (state->cur_sample + 1) %
790                                 BACKSIDE_PID_HISTORY_SIZE;
791                         state->sample_history[state->cur_sample] = temp;
792                         state->error_history[state->cur_sample] =
793                                 temp - BACKSIDE_PID_INPUT_TARGET;
794                 }
795                 state->first = 0;
796         }
797
798         /* Calculate the integral term */
799         sum = 0;
800         integral = 0;
801         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
802                 integral += state->error_history[i];
803         integral *= BACKSIDE_PID_INTERVAL;
804         DBG("  integral: %08x\n", integral);
805         integ_p = ((s64)BACKSIDE_PID_G_r) * (s64)integral;
806         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
807         sum += integ_p;
808
809         /* Calculate the derivative term */
810         derivative = state->error_history[state->cur_sample] -
811                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
812                                     % BACKSIDE_PID_HISTORY_SIZE];
813         derivative /= BACKSIDE_PID_INTERVAL;
814         deriv_p = ((s64)BACKSIDE_PID_G_d) * (s64)derivative;
815         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
816         sum += deriv_p;
817
818         /* Calculate the proportional term */
819         prop_p = ((s64)BACKSIDE_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
820         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
821         sum += prop_p;
822
823         /* Scale sum */
824         sum >>= 36;
825
826         DBG("   sum: %d\n", (int)sum);
827         state->pwm += (s32)sum;
828         if (state->pwm < BACKSIDE_PID_OUTPUT_MIN)
829                 state->pwm = BACKSIDE_PID_OUTPUT_MIN;
830         if (state->pwm > BACKSIDE_PID_OUTPUT_MAX)
831                 state->pwm = BACKSIDE_PID_OUTPUT_MAX;
832
833         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
834         set_pwm_fan(BACKSIDE_FAN_PWM_ID, state->pwm);
835 }
836
837 /*
838  * Initialize the state structure for the backside fan control loop
839  */
840 static int init_backside_state(struct backside_pid_state *state)
841 {
842         state->ticks = 1;
843         state->first = 1;
844         state->pwm = 50;
845
846         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
847         if (state->monitor == NULL)
848                 return -ENODEV;
849
850         device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
851         device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
852
853         return 0;
854 }
855
856 /*
857  * Dispose of the state data for the backside control loop
858  */
859 static void dispose_backside_state(struct backside_pid_state *state)
860 {
861         if (state->monitor == NULL)
862                 return;
863
864         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
865         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
866
867         detach_i2c_chip(state->monitor);
868         state->monitor = NULL;
869 }
870  
871 /*
872  * Drives bay fan control loop
873  */
874 static void do_monitor_drives(struct drives_pid_state *state)
875 {
876         s32 temp, integral, derivative;
877         s64 integ_p, deriv_p, prop_p, sum; 
878         int i, rc;
879
880         if (--state->ticks != 0)
881                 return;
882         state->ticks = DRIVES_PID_INTERVAL;
883
884         DBG("drives:\n");
885
886         /* Check fan status */
887         rc = get_rpm_fan(DRIVES_FAN_RPM_ID, !RPM_PID_USE_ACTUAL_SPEED);
888         if (rc < 0) {
889                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
890                 /* XXX What do we do now ? */
891         } else
892                 state->rpm = rc;
893         DBG("  current rpm: %d\n", state->rpm);
894
895         /* Get some sensor readings */
896         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
897         state->last_temp = temp;
898         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
899             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
900
901         /* Store temperature and error in history array */
902         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
903         state->sample_history[state->cur_sample] = temp;
904         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
905         
906         /* If first loop, fill the history table */
907         if (state->first) {
908                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
909                         state->cur_sample = (state->cur_sample + 1) %
910                                 DRIVES_PID_HISTORY_SIZE;
911                         state->sample_history[state->cur_sample] = temp;
912                         state->error_history[state->cur_sample] =
913                                 temp - DRIVES_PID_INPUT_TARGET;
914                 }
915                 state->first = 0;
916         }
917
918         /* Calculate the integral term */
919         sum = 0;
920         integral = 0;
921         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
922                 integral += state->error_history[i];
923         integral *= DRIVES_PID_INTERVAL;
924         DBG("  integral: %08x\n", integral);
925         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
926         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
927         sum += integ_p;
928
929         /* Calculate the derivative term */
930         derivative = state->error_history[state->cur_sample] -
931                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
932                                     % DRIVES_PID_HISTORY_SIZE];
933         derivative /= DRIVES_PID_INTERVAL;
934         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
935         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
936         sum += deriv_p;
937
938         /* Calculate the proportional term */
939         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
940         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
941         sum += prop_p;
942
943         /* Scale sum */
944         sum >>= 36;
945
946         DBG("   sum: %d\n", (int)sum);
947         state->rpm += (s32)sum;
948         if (state->rpm < DRIVES_PID_OUTPUT_MIN)
949                 state->rpm = DRIVES_PID_OUTPUT_MIN;
950         if (state->rpm > DRIVES_PID_OUTPUT_MAX)
951                 state->rpm = DRIVES_PID_OUTPUT_MAX;
952
953         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
954         set_rpm_fan(DRIVES_FAN_RPM_ID, state->rpm);
955 }
956
957 /*
958  * Initialize the state structure for the drives bay fan control loop
959  */
960 static int init_drives_state(struct drives_pid_state *state)
961 {
962         state->ticks = 1;
963         state->first = 1;
964         state->rpm = 1000;
965
966         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
967         if (state->monitor == NULL)
968                 return -ENODEV;
969
970         device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
971         device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
972
973         return 0;
974 }
975
976 /*
977  * Dispose of the state data for the drives control loop
978  */
979 static void dispose_drives_state(struct drives_pid_state *state)
980 {
981         if (state->monitor == NULL)
982                 return;
983
984         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
985         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
986
987         detach_i2c_chip(state->monitor);
988         state->monitor = NULL;
989 }
990
991 static int call_critical_overtemp(void)
992 {
993         char *argv[] = { critical_overtemp_path, NULL };
994         static char *envp[] = { "HOME=/",
995                                 "TERM=linux",
996                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
997                                 NULL };
998
999         return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1000 }
1001
1002
1003 /*
1004  * Here's the kernel thread that calls the various control loops
1005  */
1006 static int main_control_loop(void *x)
1007 {
1008         daemonize("kfand");
1009
1010         DBG("main_control_loop started\n");
1011
1012         down(&driver_lock);
1013
1014         /* Set the PCI fan once for now */
1015         set_pwm_fan(SLOTS_FAN_PWM_ID, SLOTS_FAN_DEFAULT_PWM);
1016
1017         /* Initialize ADCs */
1018         initialize_adc(&cpu_state[0]);
1019         if (cpu_state[1].monitor != NULL)
1020                 initialize_adc(&cpu_state[1]);
1021
1022         up(&driver_lock);
1023
1024         while (state == state_attached) {
1025                 unsigned long elapsed, start;
1026
1027                 start = jiffies;
1028
1029                 down(&driver_lock);
1030                 do_monitor_cpu(&cpu_state[0]);
1031                 if (cpu_state[1].monitor != NULL)
1032                         do_monitor_cpu(&cpu_state[1]);
1033                 do_monitor_backside(&backside_state);
1034                 do_monitor_drives(&drives_state);
1035                 up(&driver_lock);
1036
1037                 if (critical_state == 1) {
1038                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1039                         printk(KERN_WARNING "Attempting to shut down...\n");
1040                         if (call_critical_overtemp()) {
1041                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1042                                        critical_overtemp_path);
1043                                 machine_power_off();
1044                         }
1045                 }
1046                 if (critical_state > 0)
1047                         critical_state++;
1048                 if (critical_state > MAX_CRITICAL_STATE) {
1049                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1050                         machine_power_off();
1051                 }
1052
1053                 // FIXME: Deal with signals
1054                 set_current_state(TASK_INTERRUPTIBLE);
1055                 elapsed = jiffies - start;
1056                 if (elapsed < HZ)
1057                         schedule_timeout(HZ - elapsed);
1058         }
1059
1060         DBG("main_control_loop ended\n");
1061
1062         ctrl_task = 0;
1063         complete_and_exit(&ctrl_complete, 0);
1064 }
1065
1066 /*
1067  * Dispose the control loops when tearing down
1068  */
1069 static void dispose_control_loops(void)
1070 {
1071         dispose_cpu_state(&cpu_state[0]);
1072         dispose_cpu_state(&cpu_state[1]);
1073
1074         dispose_backside_state(&backside_state);
1075         dispose_drives_state(&drives_state);
1076 }
1077
1078 /*
1079  * Create the control loops. U3-0 i2c bus is up, so we can now
1080  * get to the various sensors
1081  */
1082 static int create_control_loops(void)
1083 {
1084         struct device_node *np;
1085
1086         /* Count CPUs from the device-tree, we don't care how many are
1087          * actually used by Linux
1088          */
1089         cpu_count = 0;
1090         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1091                 cpu_count++;
1092
1093         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1094
1095         /* Create control loops for everything. If any fail, everything
1096          * fails
1097          */
1098         if (init_cpu_state(&cpu_state[0], 0))
1099                 goto fail;
1100         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1101                 goto fail;
1102         if (init_backside_state(&backside_state))
1103                 goto fail;
1104         if (init_drives_state(&drives_state))
1105                 goto fail;
1106
1107         DBG("all control loops up !\n");
1108
1109         return 0;
1110         
1111  fail:
1112         DBG("failure creating control loops, disposing\n");
1113
1114         dispose_control_loops();
1115
1116         return -ENODEV;
1117 }
1118
1119 /*
1120  * Start the control loops after everything is up, that is create
1121  * the thread that will make them run
1122  */
1123 static void start_control_loops(void)
1124 {
1125         init_completion(&ctrl_complete);
1126
1127         ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1128 }
1129
1130 /*
1131  * Stop the control loops when tearing down
1132  */
1133 static void stop_control_loops(void)
1134 {
1135         if (ctrl_task != 0)
1136                 wait_for_completion(&ctrl_complete);
1137 }
1138
1139 /*
1140  * Attach to the i2c FCU after detecting U3-1 bus
1141  */
1142 static int attach_fcu(void)
1143 {
1144         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1145         if (fcu == NULL)
1146                 return -ENODEV;
1147
1148         DBG("FCU attached\n");
1149
1150         return 0;
1151 }
1152
1153 /*
1154  * Detach from the i2c FCU when tearing down
1155  */
1156 static void detach_fcu(void)
1157 {
1158         if (fcu)
1159                 detach_i2c_chip(fcu);
1160         fcu = NULL;
1161 }
1162
1163 /*
1164  * Attach to the i2c controller. We probe the various chips based
1165  * on the device-tree nodes and build everything for the driver to
1166  * run, we then kick the driver monitoring thread
1167  */
1168 static int therm_pm72_attach(struct i2c_adapter *adapter)
1169 {
1170         down(&driver_lock);
1171
1172         /* Check state */
1173         if (state == state_detached)
1174                 state = state_attaching;
1175         if (state != state_attaching) {
1176                 up(&driver_lock);
1177                 return 0;
1178         }
1179
1180         /* Check if we are looking for one of these */
1181         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1182                 u3_0 = adapter;
1183                 DBG("found U3-0, creating control loops\n");
1184                 if (create_control_loops())
1185                         u3_0 = NULL;
1186         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1187                 u3_1 = adapter;
1188                 DBG("found U3-1, attaching FCU\n");
1189                 if (attach_fcu())
1190                         u3_1 = NULL;
1191         }
1192         /* We got all we need, start control loops */
1193         if (u3_0 != NULL && u3_1 != NULL) {
1194                 DBG("everything up, starting control loops\n");
1195                 state = state_attached;
1196                 start_control_loops();
1197         }
1198         up(&driver_lock);
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Called on every adapter when the driver or the i2c controller
1205  * is going away.
1206  */
1207 static int therm_pm72_detach(struct i2c_adapter *adapter)
1208 {
1209         down(&driver_lock);
1210
1211         if (state != state_detached)
1212                 state = state_detaching;
1213
1214         /* Stop control loops if any */
1215         DBG("stopping control loops\n");
1216         up(&driver_lock);
1217         stop_control_loops();
1218         down(&driver_lock);
1219
1220         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1221                 DBG("lost U3-0, disposing control loops\n");
1222                 dispose_control_loops();
1223                 u3_0 = NULL;
1224         }
1225         
1226         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1227                 DBG("lost U3-1, detaching FCU\n");
1228                 detach_fcu();
1229                 u3_1 = NULL;
1230         }
1231         if (u3_0 == NULL && u3_1 == NULL)
1232                 state = state_detached;
1233
1234         up(&driver_lock);
1235
1236         return 0;
1237 }
1238
1239 static int fcu_of_probe(struct of_device* dev, const struct of_match *match)
1240 {
1241         int rc;
1242
1243         state = state_detached;
1244
1245         rc = i2c_add_driver(&therm_pm72_driver);
1246         if (rc < 0)
1247                 return rc;
1248         return 0;
1249 }
1250
1251 static int fcu_of_remove(struct of_device* dev)
1252 {
1253         i2c_del_driver(&therm_pm72_driver);
1254
1255         return 0;
1256 }
1257
1258 static struct of_match fcu_of_match[] = 
1259 {
1260         {
1261         .name           = OF_ANY_MATCH,
1262         .type           = "fcu",
1263         .compatible     = OF_ANY_MATCH
1264         },
1265         {},
1266 };
1267
1268 static struct of_platform_driver fcu_of_platform_driver = 
1269 {
1270         .name           = "temperature",
1271         .match_table    = fcu_of_match,
1272         .probe          = fcu_of_probe,
1273         .remove         = fcu_of_remove
1274 };
1275
1276 /*
1277  * Check machine type, attach to i2c controller
1278  */
1279 static int __init therm_pm72_init(void)
1280 {
1281         struct device_node *np;
1282
1283         if (!machine_is_compatible("PowerMac7,2"))
1284                 return -ENODEV;
1285
1286         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
1287
1288         np = of_find_node_by_type(NULL, "fcu");
1289         if (np == NULL) {
1290                 printk(KERN_ERR "Can't find FCU in device-tree !\n");
1291                 return -ENODEV;
1292         }
1293         of_dev = of_platform_device_create(np, "temperature");
1294         if (of_dev == NULL) {
1295                 printk(KERN_ERR "Can't register FCU platform device !\n");
1296                 return -ENODEV;
1297         }
1298
1299         of_register_driver(&fcu_of_platform_driver);
1300         
1301         return 0;
1302 }
1303
1304 static void __exit therm_pm72_exit(void)
1305 {
1306         of_unregister_driver(&fcu_of_platform_driver);
1307
1308         if (of_dev)
1309                 of_device_unregister(of_dev);
1310 }
1311
1312 module_init(therm_pm72_init);
1313 module_exit(therm_pm72_exit);
1314
1315 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
1316 MODULE_DESCRIPTION("Driver for Apple's PowerMac7,2 G5 thermal control");
1317 MODULE_LICENSE("GPL");
1318