vserver 1.9.3
[linux-2.6.git] / drivers / md / multipath.c
1 /*
2  * multipath.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * MULTIPATH management functions.
9  *
10  * derived from raid1.c.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * You should have received a copy of the GNU General Public License
18  * (for example /usr/src/linux/COPYING); if not, write to the Free
19  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/raid/multipath.h>
26 #include <linux/buffer_head.h>
27 #include <asm/atomic.h>
28
29 #define MAJOR_NR MD_MAJOR
30 #define MD_DRIVER
31 #define MD_PERSONALITY
32
33 #define MAX_WORK_PER_DISK 128
34
35 #define NR_RESERVED_BUFS        32
36
37
38 static mdk_personality_t multipath_personality;
39 static spinlock_t retry_list_lock = SPIN_LOCK_UNLOCKED;
40 struct multipath_bh *multipath_retry_list = NULL, **multipath_retry_tail;
41
42
43 static void *mp_pool_alloc(int gfp_flags, void *data)
44 {
45         struct multipath_bh *mpb;
46         mpb = kmalloc(sizeof(*mpb), gfp_flags);
47         if (mpb) 
48                 memset(mpb, 0, sizeof(*mpb));
49         return mpb;
50 }
51
52 static void mp_pool_free(void *mpb, void *data)
53 {
54         kfree(mpb);
55 }
56
57 static int multipath_map (multipath_conf_t *conf)
58 {
59         int i, disks = conf->raid_disks;
60
61         /*
62          * Later we do read balancing on the read side 
63          * now we use the first available disk.
64          */
65
66         spin_lock_irq(&conf->device_lock);
67         for (i = 0; i < disks; i++) {
68                 mdk_rdev_t *rdev = conf->multipaths[i].rdev;
69                 if (rdev && rdev->in_sync) {
70                         atomic_inc(&rdev->nr_pending);
71                         spin_unlock_irq(&conf->device_lock);
72                         return i;
73                 }
74         }
75         spin_unlock_irq(&conf->device_lock);
76
77         printk(KERN_ERR "multipath_map(): no more operational IO paths?\n");
78         return (-1);
79 }
80
81 static void multipath_reschedule_retry (struct multipath_bh *mp_bh)
82 {
83         unsigned long flags;
84         mddev_t *mddev = mp_bh->mddev;
85
86         spin_lock_irqsave(&retry_list_lock, flags);
87         if (multipath_retry_list == NULL)
88                 multipath_retry_tail = &multipath_retry_list;
89         *multipath_retry_tail = mp_bh;
90         multipath_retry_tail = &mp_bh->next_mp;
91         mp_bh->next_mp = NULL;
92         spin_unlock_irqrestore(&retry_list_lock, flags);
93         md_wakeup_thread(mddev->thread);
94 }
95
96
97 /*
98  * multipath_end_bh_io() is called when we have finished servicing a multipathed
99  * operation and are ready to return a success/failure code to the buffer
100  * cache layer.
101  */
102 static void multipath_end_bh_io (struct multipath_bh *mp_bh, int err)
103 {
104         struct bio *bio = mp_bh->master_bio;
105         multipath_conf_t *conf = mddev_to_conf(mp_bh->mddev);
106
107         bio_endio(bio, bio->bi_size, err);
108         mempool_free(mp_bh, conf->pool);
109 }
110
111 int multipath_end_request(struct bio *bio, unsigned int bytes_done, int error)
112 {
113         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
114         struct multipath_bh * mp_bh = (struct multipath_bh *)(bio->bi_private);
115         multipath_conf_t *conf = mddev_to_conf(mp_bh->mddev);
116         mdk_rdev_t *rdev = conf->multipaths[mp_bh->path].rdev;
117
118         if (bio->bi_size)
119                 return 1;
120
121         if (uptodate)
122                 multipath_end_bh_io(mp_bh, 0);
123         else if (!bio_rw_ahead(bio)) {
124                 /*
125                  * oops, IO error:
126                  */
127                 char b[BDEVNAME_SIZE];
128                 md_error (mp_bh->mddev, rdev);
129                 printk(KERN_ERR "multipath: %s: rescheduling sector %llu\n", 
130                        bdevname(rdev->bdev,b), 
131                        (unsigned long long)bio->bi_sector);
132                 multipath_reschedule_retry(mp_bh);
133         } else
134                 multipath_end_bh_io(mp_bh, error);
135         rdev_dec_pending(rdev, conf->mddev);
136         return 0;
137 }
138
139 static void unplug_slaves(mddev_t *mddev)
140 {
141         multipath_conf_t *conf = mddev_to_conf(mddev);
142         int i;
143         unsigned long flags;
144
145         spin_lock_irqsave(&conf->device_lock, flags);
146         for (i=0; i<mddev->raid_disks; i++) {
147                 mdk_rdev_t *rdev = conf->multipaths[i].rdev;
148                 if (rdev && !rdev->faulty) {
149                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
150
151                         atomic_inc(&rdev->nr_pending);
152                         spin_unlock_irqrestore(&conf->device_lock, flags);
153
154                         if (r_queue->unplug_fn)
155                                 r_queue->unplug_fn(r_queue);
156
157                         spin_lock_irqsave(&conf->device_lock, flags);
158                         atomic_dec(&rdev->nr_pending);
159                 }
160         }
161         spin_unlock_irqrestore(&conf->device_lock, flags);
162 }
163 static void multipath_unplug(request_queue_t *q)
164 {
165         unplug_slaves(q->queuedata);
166 }
167
168
169 static int multipath_make_request (request_queue_t *q, struct bio * bio)
170 {
171         mddev_t *mddev = q->queuedata;
172         multipath_conf_t *conf = mddev_to_conf(mddev);
173         struct multipath_bh * mp_bh;
174         struct multipath_info *multipath;
175
176         mp_bh = mempool_alloc(conf->pool, GFP_NOIO);
177
178         mp_bh->master_bio = bio;
179         mp_bh->mddev = mddev;
180
181         if (bio_data_dir(bio)==WRITE) {
182                 disk_stat_inc(mddev->gendisk, writes);
183                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
184         } else {
185                 disk_stat_inc(mddev->gendisk, reads);
186                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
187         }
188
189         mp_bh->path = multipath_map(conf);
190         if (mp_bh->path < 0) {
191                 bio_endio(bio, bio->bi_size, -EIO);
192                 mempool_free(mp_bh, conf->pool);
193                 return 0;
194         }
195         multipath = conf->multipaths + mp_bh->path;
196
197         mp_bh->bio = *bio;
198         mp_bh->bio.bi_bdev = multipath->rdev->bdev;
199         mp_bh->bio.bi_rw |= (1 << BIO_RW_FAILFAST);
200         mp_bh->bio.bi_end_io = multipath_end_request;
201         mp_bh->bio.bi_private = mp_bh;
202         generic_make_request(&mp_bh->bio);
203         return 0;
204 }
205
206 static void multipath_status (struct seq_file *seq, mddev_t *mddev)
207 {
208         multipath_conf_t *conf = mddev_to_conf(mddev);
209         int i;
210         
211         seq_printf (seq, " [%d/%d] [", conf->raid_disks,
212                                                  conf->working_disks);
213         for (i = 0; i < conf->raid_disks; i++)
214                 seq_printf (seq, "%s",
215                                conf->multipaths[i].rdev && 
216                                conf->multipaths[i].rdev->in_sync ? "U" : "_");
217         seq_printf (seq, "]");
218 }
219
220 static int multipath_issue_flush(request_queue_t *q, struct gendisk *disk,
221                                  sector_t *error_sector)
222 {
223         mddev_t *mddev = q->queuedata;
224         multipath_conf_t *conf = mddev_to_conf(mddev);
225         int i, ret = 0;
226
227         for (i=0; i<mddev->raid_disks; i++) {
228                 mdk_rdev_t *rdev = conf->multipaths[i].rdev;
229                 if (rdev && !rdev->faulty) {
230                         struct block_device *bdev = rdev->bdev;
231                         request_queue_t *r_queue = bdev_get_queue(bdev);
232
233                         if (!r_queue->issue_flush_fn) {
234                                 ret = -EOPNOTSUPP;
235                                 break;
236                         }
237
238                         ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, error_sector);
239                         if (ret)
240                                 break;
241                 }
242         }
243         return ret;
244 }
245
246 /*
247  * Careful, this can execute in IRQ contexts as well!
248  */
249 static void multipath_error (mddev_t *mddev, mdk_rdev_t *rdev)
250 {
251         multipath_conf_t *conf = mddev_to_conf(mddev);
252
253         if (conf->working_disks <= 1) {
254                 /*
255                  * Uh oh, we can do nothing if this is our last path, but
256                  * first check if this is a queued request for a device
257                  * which has just failed.
258                  */
259                 printk(KERN_ALERT 
260                         "multipath: only one IO path left and IO error.\n");
261                 /* leave it active... it's all we have */
262         } else {
263                 /*
264                  * Mark disk as unusable
265                  */
266                 if (!rdev->faulty) {
267                         char b[BDEVNAME_SIZE];
268                         rdev->in_sync = 0;
269                         rdev->faulty = 1;
270                         mddev->sb_dirty = 1;
271                         conf->working_disks--;
272                         printk(KERN_ALERT "multipath: IO failure on %s,"
273                                 " disabling IO path. \n Operation continuing"
274                                 " on %d IO paths.\n",
275                                 bdevname (rdev->bdev,b),
276                                 conf->working_disks);
277                 }
278         }
279 }
280
281 static void print_multipath_conf (multipath_conf_t *conf)
282 {
283         int i;
284         struct multipath_info *tmp;
285
286         printk("MULTIPATH conf printout:\n");
287         if (!conf) {
288                 printk("(conf==NULL)\n");
289                 return;
290         }
291         printk(" --- wd:%d rd:%d\n", conf->working_disks,
292                          conf->raid_disks);
293
294         for (i = 0; i < conf->raid_disks; i++) {
295                 char b[BDEVNAME_SIZE];
296                 tmp = conf->multipaths + i;
297                 if (tmp->rdev)
298                         printk(" disk%d, o:%d, dev:%s\n",
299                                 i,!tmp->rdev->faulty,
300                                bdevname(tmp->rdev->bdev,b));
301         }
302 }
303
304
305 static int multipath_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
306 {
307         multipath_conf_t *conf = mddev->private;
308         int found = 0;
309         int path;
310         struct multipath_info *p;
311
312         print_multipath_conf(conf);
313         spin_lock_irq(&conf->device_lock);
314         for (path=0; path<mddev->raid_disks; path++) 
315                 if ((p=conf->multipaths+path)->rdev == NULL) {
316                         p->rdev = rdev;
317                         blk_queue_stack_limits(mddev->queue,
318                                                rdev->bdev->bd_disk->queue);
319
320                 /* as we don't honour merge_bvec_fn, we must never risk
321                  * violating it, so limit ->max_sector to one PAGE, as
322                  * a one page request is never in violation.
323                  * (Note: it is very unlikely that a device with
324                  * merge_bvec_fn will be involved in multipath.)
325                  */
326                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
327                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
328                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
329
330                         conf->working_disks++;
331                         rdev->raid_disk = path;
332                         rdev->in_sync = 1;
333                         found = 1;
334                 }
335         spin_unlock_irq(&conf->device_lock);
336
337         print_multipath_conf(conf);
338         return found;
339 }
340
341 static int multipath_remove_disk(mddev_t *mddev, int number)
342 {
343         multipath_conf_t *conf = mddev->private;
344         int err = 1;
345         struct multipath_info *p = conf->multipaths + number;
346
347         print_multipath_conf(conf);
348         spin_lock_irq(&conf->device_lock);
349
350         if (p->rdev) {
351                 if (p->rdev->in_sync ||
352                     atomic_read(&p->rdev->nr_pending)) {
353                         printk(KERN_ERR "hot-remove-disk, slot %d is identified"                                " but is still operational!\n", number);
354                         err = -EBUSY;
355                         goto abort;
356                 }
357                 p->rdev = NULL;
358                 err = 0;
359         }
360         if (err)
361                 MD_BUG();
362 abort:
363         spin_unlock_irq(&conf->device_lock);
364
365         print_multipath_conf(conf);
366         return err;
367 }
368
369
370
371 /*
372  * This is a kernel thread which:
373  *
374  *      1.      Retries failed read operations on working multipaths.
375  *      2.      Updates the raid superblock when problems encounter.
376  *      3.      Performs writes following reads for array syncronising.
377  */
378
379 static void multipathd (mddev_t *mddev)
380 {
381         struct multipath_bh *mp_bh;
382         struct bio *bio;
383         unsigned long flags;
384         multipath_conf_t *conf = mddev_to_conf(mddev);
385
386         md_check_recovery(mddev);
387         for (;;) {
388                 char b[BDEVNAME_SIZE];
389                 spin_lock_irqsave(&retry_list_lock, flags);
390                 mp_bh = multipath_retry_list;
391                 if (!mp_bh)
392                         break;
393                 multipath_retry_list = mp_bh->next_mp;
394                 spin_unlock_irqrestore(&retry_list_lock, flags);
395
396                 mddev = mp_bh->mddev;
397                 bio = &mp_bh->bio;
398                 bio->bi_sector = mp_bh->master_bio->bi_sector;
399                 
400                 if ((mp_bh->path = multipath_map (conf))<0) {
401                         printk(KERN_ALERT "multipath: %s: unrecoverable IO read"
402                                 " error for block %llu\n",
403                                 bdevname(bio->bi_bdev,b),
404                                 (unsigned long long)bio->bi_sector);
405                         multipath_end_bh_io(mp_bh, -EIO);
406                 } else {
407                         printk(KERN_ERR "multipath: %s: redirecting sector %llu"
408                                 " to another IO path\n",
409                                 bdevname(bio->bi_bdev,b),
410                                 (unsigned long long)bio->bi_sector);
411                         *bio = *(mp_bh->master_bio);
412                         bio->bi_bdev = conf->multipaths[mp_bh->path].rdev->bdev;
413                         bio->bi_rw |= (1 << BIO_RW_FAILFAST);
414                         bio->bi_end_io = multipath_end_request;
415                         bio->bi_private = mp_bh;
416                         generic_make_request(bio);
417                 }
418         }
419         spin_unlock_irqrestore(&retry_list_lock, flags);
420 }
421
422 static int multipath_run (mddev_t *mddev)
423 {
424         multipath_conf_t *conf;
425         int disk_idx;
426         struct multipath_info *disk;
427         mdk_rdev_t *rdev;
428         struct list_head *tmp;
429
430         if (mddev->level != LEVEL_MULTIPATH) {
431                 printk("multipath: %s: raid level not set to multipath IO (%d)\n",
432                        mdname(mddev), mddev->level);
433                 goto out;
434         }
435         /*
436          * copy the already verified devices into our private MULTIPATH
437          * bookkeeping area. [whatever we allocate in multipath_run(),
438          * should be freed in multipath_stop()]
439          */
440
441         conf = kmalloc(sizeof(multipath_conf_t), GFP_KERNEL);
442         mddev->private = conf;
443         if (!conf) {
444                 printk(KERN_ERR 
445                         "multipath: couldn't allocate memory for %s\n",
446                         mdname(mddev));
447                 goto out;
448         }
449         memset(conf, 0, sizeof(*conf));
450
451         conf->multipaths = kmalloc(sizeof(struct multipath_info)*mddev->raid_disks,
452                                    GFP_KERNEL);
453         if (!conf->multipaths) {
454                 printk(KERN_ERR 
455                         "multipath: couldn't allocate memory for %s\n",
456                         mdname(mddev));
457                 goto out_free_conf;
458         }
459         memset(conf->multipaths, 0, sizeof(struct multipath_info)*mddev->raid_disks);
460
461         mddev->queue->unplug_fn = multipath_unplug;
462
463         mddev->queue->issue_flush_fn = multipath_issue_flush;
464
465         conf->working_disks = 0;
466         ITERATE_RDEV(mddev,rdev,tmp) {
467                 disk_idx = rdev->raid_disk;
468                 if (disk_idx < 0 ||
469                     disk_idx >= mddev->raid_disks)
470                         continue;
471
472                 disk = conf->multipaths + disk_idx;
473                 disk->rdev = rdev;
474
475                 blk_queue_stack_limits(mddev->queue,
476                                        rdev->bdev->bd_disk->queue);
477                 /* as we don't honour merge_bvec_fn, we must never risk
478                  * violating it, not that we ever expect a device with
479                  * a merge_bvec_fn to be involved in multipath */
480                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
481                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
482                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
483
484                 if (!rdev->faulty) 
485                         conf->working_disks++;
486         }
487
488         conf->raid_disks = mddev->raid_disks;
489         mddev->sb_dirty = 1;
490         conf->mddev = mddev;
491         conf->device_lock = SPIN_LOCK_UNLOCKED;
492
493         if (!conf->working_disks) {
494                 printk(KERN_ERR "multipath: no operational IO paths for %s\n",
495                         mdname(mddev));
496                 goto out_free_conf;
497         }
498         mddev->degraded = conf->raid_disks = conf->working_disks;
499
500         conf->pool = mempool_create(NR_RESERVED_BUFS,
501                                     mp_pool_alloc, mp_pool_free,
502                                     NULL);
503         if (conf->pool == NULL) {
504                 printk(KERN_ERR 
505                         "multipath: couldn't allocate memory for %s\n",
506                         mdname(mddev));
507                 goto out_free_conf;
508         }
509
510         {
511                 mddev->thread = md_register_thread(multipathd, mddev, "%s_multipath");
512                 if (!mddev->thread) {
513                         printk(KERN_ERR "multipath: couldn't allocate thread"
514                                 " for %s\n", mdname(mddev));
515                         goto out_free_conf;
516                 }
517         }
518
519         printk(KERN_INFO 
520                 "multipath: array %s active with %d out of %d IO paths\n",
521                 mdname(mddev), conf->working_disks, mddev->raid_disks);
522         /*
523          * Ok, everything is just fine now
524          */
525         mddev->array_size = mddev->size;
526         return 0;
527
528 out_free_conf:
529         if (conf->pool)
530                 mempool_destroy(conf->pool);
531         if (conf->multipaths)
532                 kfree(conf->multipaths);
533         kfree(conf);
534         mddev->private = NULL;
535 out:
536         return -EIO;
537 }
538
539
540 static int multipath_stop (mddev_t *mddev)
541 {
542         multipath_conf_t *conf = mddev_to_conf(mddev);
543
544         md_unregister_thread(mddev->thread);
545         mddev->thread = NULL;
546         mempool_destroy(conf->pool);
547         kfree(conf->multipaths);
548         kfree(conf);
549         mddev->private = NULL;
550         return 0;
551 }
552
553 static mdk_personality_t multipath_personality=
554 {
555         .name           = "multipath",
556         .owner          = THIS_MODULE,
557         .make_request   = multipath_make_request,
558         .run            = multipath_run,
559         .stop           = multipath_stop,
560         .status         = multipath_status,
561         .error_handler  = multipath_error,
562         .hot_add_disk   = multipath_add_disk,
563         .hot_remove_disk= multipath_remove_disk,
564 };
565
566 static int __init multipath_init (void)
567 {
568         return register_md_personality (MULTIPATH, &multipath_personality);
569 }
570
571 static void __exit multipath_exit (void)
572 {
573         unregister_md_personality (MULTIPATH);
574 }
575
576 module_init(multipath_init);
577 module_exit(multipath_exit);
578 MODULE_LICENSE("GPL");
579 MODULE_ALIAS("md-personality-7"); /* MULTIPATH */