vserver 1.9.5.x5
[linux-2.6.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * You should have received a copy of the GNU General Public License
21  * (for example /usr/src/linux/COPYING); if not, write to the Free
22  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/raid/raid1.h>
26
27 /*
28  * Number of guaranteed r1bios in case of extreme VM load:
29  */
30 #define NR_RAID1_BIOS 256
31
32 static mdk_personality_t raid1_personality;
33
34 static void unplug_slaves(mddev_t *mddev);
35
36
37 static void * r1bio_pool_alloc(int gfp_flags, void *data)
38 {
39         struct pool_info *pi = data;
40         r1bio_t *r1_bio;
41         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
42
43         /* allocate a r1bio with room for raid_disks entries in the bios array */
44         r1_bio = kmalloc(size, gfp_flags);
45         if (r1_bio)
46                 memset(r1_bio, 0, size);
47         else
48                 unplug_slaves(pi->mddev);
49
50         return r1_bio;
51 }
52
53 static void r1bio_pool_free(void *r1_bio, void *data)
54 {
55         kfree(r1_bio);
56 }
57
58 #define RESYNC_BLOCK_SIZE (64*1024)
59 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
60 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
61 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
62 #define RESYNC_WINDOW (2048*1024)
63
64 static void * r1buf_pool_alloc(int gfp_flags, void *data)
65 {
66         struct pool_info *pi = data;
67         struct page *page;
68         r1bio_t *r1_bio;
69         struct bio *bio;
70         int i, j;
71
72         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
73         if (!r1_bio) {
74                 unplug_slaves(pi->mddev);
75                 return NULL;
76         }
77
78         /*
79          * Allocate bios : 1 for reading, n-1 for writing
80          */
81         for (j = pi->raid_disks ; j-- ; ) {
82                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
83                 if (!bio)
84                         goto out_free_bio;
85                 r1_bio->bios[j] = bio;
86         }
87         /*
88          * Allocate RESYNC_PAGES data pages and attach them to
89          * the first bio;
90          */
91         bio = r1_bio->bios[0];
92         for (i = 0; i < RESYNC_PAGES; i++) {
93                 page = alloc_page(gfp_flags);
94                 if (unlikely(!page))
95                         goto out_free_pages;
96
97                 bio->bi_io_vec[i].bv_page = page;
98         }
99
100         r1_bio->master_bio = NULL;
101
102         return r1_bio;
103
104 out_free_pages:
105         for ( ; i > 0 ; i--)
106                 __free_page(bio->bi_io_vec[i-1].bv_page);
107 out_free_bio:
108         while ( ++j < pi->raid_disks )
109                 bio_put(r1_bio->bios[j]);
110         r1bio_pool_free(r1_bio, data);
111         return NULL;
112 }
113
114 static void r1buf_pool_free(void *__r1_bio, void *data)
115 {
116         struct pool_info *pi = data;
117         int i;
118         r1bio_t *r1bio = __r1_bio;
119         struct bio *bio = r1bio->bios[0];
120
121         for (i = 0; i < RESYNC_PAGES; i++) {
122                 __free_page(bio->bi_io_vec[i].bv_page);
123                 bio->bi_io_vec[i].bv_page = NULL;
124         }
125         for (i=0 ; i < pi->raid_disks; i++)
126                 bio_put(r1bio->bios[i]);
127
128         r1bio_pool_free(r1bio, data);
129 }
130
131 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
132 {
133         int i;
134
135         for (i = 0; i < conf->raid_disks; i++) {
136                 struct bio **bio = r1_bio->bios + i;
137                 if (*bio)
138                         bio_put(*bio);
139                 *bio = NULL;
140         }
141 }
142
143 static inline void free_r1bio(r1bio_t *r1_bio)
144 {
145         unsigned long flags;
146
147         conf_t *conf = mddev_to_conf(r1_bio->mddev);
148
149         /*
150          * Wake up any possible resync thread that waits for the device
151          * to go idle.
152          */
153         spin_lock_irqsave(&conf->resync_lock, flags);
154         if (!--conf->nr_pending) {
155                 wake_up(&conf->wait_idle);
156                 wake_up(&conf->wait_resume);
157         }
158         spin_unlock_irqrestore(&conf->resync_lock, flags);
159
160         put_all_bios(conf, r1_bio);
161         mempool_free(r1_bio, conf->r1bio_pool);
162 }
163
164 static inline void put_buf(r1bio_t *r1_bio)
165 {
166         conf_t *conf = mddev_to_conf(r1_bio->mddev);
167         unsigned long flags;
168
169         mempool_free(r1_bio, conf->r1buf_pool);
170
171         spin_lock_irqsave(&conf->resync_lock, flags);
172         if (!conf->barrier)
173                 BUG();
174         --conf->barrier;
175         wake_up(&conf->wait_resume);
176         wake_up(&conf->wait_idle);
177
178         if (!--conf->nr_pending) {
179                 wake_up(&conf->wait_idle);
180                 wake_up(&conf->wait_resume);
181         }
182         spin_unlock_irqrestore(&conf->resync_lock, flags);
183 }
184
185 static void reschedule_retry(r1bio_t *r1_bio)
186 {
187         unsigned long flags;
188         mddev_t *mddev = r1_bio->mddev;
189         conf_t *conf = mddev_to_conf(mddev);
190
191         spin_lock_irqsave(&conf->device_lock, flags);
192         list_add(&r1_bio->retry_list, &conf->retry_list);
193         spin_unlock_irqrestore(&conf->device_lock, flags);
194
195         md_wakeup_thread(mddev->thread);
196 }
197
198 /*
199  * raid_end_bio_io() is called when we have finished servicing a mirrored
200  * operation and are ready to return a success/failure code to the buffer
201  * cache layer.
202  */
203 static void raid_end_bio_io(r1bio_t *r1_bio)
204 {
205         struct bio *bio = r1_bio->master_bio;
206
207         bio_endio(bio, bio->bi_size,
208                 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
209         free_r1bio(r1_bio);
210 }
211
212 /*
213  * Update disk head position estimator based on IRQ completion info.
214  */
215 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
216 {
217         conf_t *conf = mddev_to_conf(r1_bio->mddev);
218
219         conf->mirrors[disk].head_position =
220                 r1_bio->sector + (r1_bio->sectors);
221 }
222
223 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
224 {
225         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
226         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
227         int mirror;
228         conf_t *conf = mddev_to_conf(r1_bio->mddev);
229
230         if (bio->bi_size)
231                 return 1;
232         
233         mirror = r1_bio->read_disk;
234         /*
235          * this branch is our 'one mirror IO has finished' event handler:
236          */
237         if (!uptodate)
238                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
239         else
240                 /*
241                  * Set R1BIO_Uptodate in our master bio, so that
242                  * we will return a good error code for to the higher
243                  * levels even if IO on some other mirrored buffer fails.
244                  *
245                  * The 'master' represents the composite IO operation to
246                  * user-side. So if something waits for IO, then it will
247                  * wait for the 'master' bio.
248                  */
249                 set_bit(R1BIO_Uptodate, &r1_bio->state);
250
251         update_head_pos(mirror, r1_bio);
252
253         /*
254          * we have only one bio on the read side
255          */
256         if (uptodate)
257                 raid_end_bio_io(r1_bio);
258         else {
259                 /*
260                  * oops, read error:
261                  */
262                 char b[BDEVNAME_SIZE];
263                 if (printk_ratelimit())
264                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
265                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
266                 reschedule_retry(r1_bio);
267         }
268
269         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
270         return 0;
271 }
272
273 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
274 {
275         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
276         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
277         int mirror;
278         conf_t *conf = mddev_to_conf(r1_bio->mddev);
279
280         if (bio->bi_size)
281                 return 1;
282
283         for (mirror = 0; mirror < conf->raid_disks; mirror++)
284                 if (r1_bio->bios[mirror] == bio)
285                         break;
286
287         /*
288          * this branch is our 'one mirror IO has finished' event handler:
289          */
290         if (!uptodate)
291                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
292         else
293                 /*
294                  * Set R1BIO_Uptodate in our master bio, so that
295                  * we will return a good error code for to the higher
296                  * levels even if IO on some other mirrored buffer fails.
297                  *
298                  * The 'master' represents the composite IO operation to
299                  * user-side. So if something waits for IO, then it will
300                  * wait for the 'master' bio.
301                  */
302                 set_bit(R1BIO_Uptodate, &r1_bio->state);
303
304         update_head_pos(mirror, r1_bio);
305
306         /*
307          *
308          * Let's see if all mirrored write operations have finished
309          * already.
310          */
311         if (atomic_dec_and_test(&r1_bio->remaining)) {
312                 md_write_end(r1_bio->mddev);
313                 raid_end_bio_io(r1_bio);
314         }
315
316         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
317         return 0;
318 }
319
320
321 /*
322  * This routine returns the disk from which the requested read should
323  * be done. There is a per-array 'next expected sequential IO' sector
324  * number - if this matches on the next IO then we use the last disk.
325  * There is also a per-disk 'last know head position' sector that is
326  * maintained from IRQ contexts, both the normal and the resync IO
327  * completion handlers update this position correctly. If there is no
328  * perfect sequential match then we pick the disk whose head is closest.
329  *
330  * If there are 2 mirrors in the same 2 devices, performance degrades
331  * because position is mirror, not device based.
332  *
333  * The rdev for the device selected will have nr_pending incremented.
334  */
335 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
336 {
337         const unsigned long this_sector = r1_bio->sector;
338         int new_disk = conf->last_used, disk = new_disk;
339         const int sectors = r1_bio->sectors;
340         sector_t new_distance, current_distance;
341
342         rcu_read_lock();
343         /*
344          * Check if it if we can balance. We can balance on the whole
345          * device if no resync is going on, or below the resync window.
346          * We take the first readable disk when above the resync window.
347          */
348         if (conf->mddev->recovery_cp < MaxSector &&
349             (this_sector + sectors >= conf->next_resync)) {
350                 /* Choose the first operation device, for consistancy */
351                 new_disk = 0;
352
353                 while (!conf->mirrors[new_disk].rdev ||
354                        !conf->mirrors[new_disk].rdev->in_sync) {
355                         new_disk++;
356                         if (new_disk == conf->raid_disks) {
357                                 new_disk = -1;
358                                 break;
359                         }
360                 }
361                 goto rb_out;
362         }
363
364
365         /* make sure the disk is operational */
366         while (!conf->mirrors[new_disk].rdev ||
367                !conf->mirrors[new_disk].rdev->in_sync) {
368                 if (new_disk <= 0)
369                         new_disk = conf->raid_disks;
370                 new_disk--;
371                 if (new_disk == disk) {
372                         new_disk = -1;
373                         goto rb_out;
374                 }
375         }
376         disk = new_disk;
377         /* now disk == new_disk == starting point for search */
378
379         /*
380          * Don't change to another disk for sequential reads:
381          */
382         if (conf->next_seq_sect == this_sector)
383                 goto rb_out;
384         if (this_sector == conf->mirrors[new_disk].head_position)
385                 goto rb_out;
386
387         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
388
389         /* Find the disk whose head is closest */
390
391         do {
392                 if (disk <= 0)
393                         disk = conf->raid_disks;
394                 disk--;
395
396                 if (!conf->mirrors[disk].rdev ||
397                     !conf->mirrors[disk].rdev->in_sync)
398                         continue;
399
400                 if (!atomic_read(&conf->mirrors[disk].rdev->nr_pending)) {
401                         new_disk = disk;
402                         break;
403                 }
404                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
405                 if (new_distance < current_distance) {
406                         current_distance = new_distance;
407                         new_disk = disk;
408                 }
409         } while (disk != conf->last_used);
410
411 rb_out:
412
413
414         if (new_disk >= 0) {
415                 conf->next_seq_sect = this_sector + sectors;
416                 conf->last_used = new_disk;
417                 atomic_inc(&conf->mirrors[new_disk].rdev->nr_pending);
418         }
419         rcu_read_unlock();
420
421         return new_disk;
422 }
423
424 static void unplug_slaves(mddev_t *mddev)
425 {
426         conf_t *conf = mddev_to_conf(mddev);
427         int i;
428
429         rcu_read_lock();
430         for (i=0; i<mddev->raid_disks; i++) {
431                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
432                 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
433                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
434
435                         atomic_inc(&rdev->nr_pending);
436                         rcu_read_unlock();
437
438                         if (r_queue->unplug_fn)
439                                 r_queue->unplug_fn(r_queue);
440
441                         rdev_dec_pending(rdev, mddev);
442                         rcu_read_lock();
443                 }
444         }
445         rcu_read_unlock();
446 }
447
448 static void raid1_unplug(request_queue_t *q)
449 {
450         unplug_slaves(q->queuedata);
451 }
452
453 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
454                              sector_t *error_sector)
455 {
456         mddev_t *mddev = q->queuedata;
457         conf_t *conf = mddev_to_conf(mddev);
458         int i, ret = 0;
459
460         rcu_read_lock();
461         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
462                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
463                 if (rdev && !rdev->faulty) {
464                         struct block_device *bdev = rdev->bdev;
465                         request_queue_t *r_queue = bdev_get_queue(bdev);
466
467                         if (!r_queue->issue_flush_fn)
468                                 ret = -EOPNOTSUPP;
469                         else {
470                                 atomic_inc(&rdev->nr_pending);
471                                 rcu_read_unlock();
472                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
473                                                               error_sector);
474                                 rdev_dec_pending(rdev, mddev);
475                                 rcu_read_lock();
476                         }
477                 }
478         }
479         rcu_read_unlock();
480         return ret;
481 }
482
483 /*
484  * Throttle resync depth, so that we can both get proper overlapping of
485  * requests, but are still able to handle normal requests quickly.
486  */
487 #define RESYNC_DEPTH 32
488
489 static void device_barrier(conf_t *conf, sector_t sect)
490 {
491         spin_lock_irq(&conf->resync_lock);
492         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
493                             conf->resync_lock, unplug_slaves(conf->mddev));
494         
495         if (!conf->barrier++) {
496                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
497                                     conf->resync_lock, unplug_slaves(conf->mddev));
498                 if (conf->nr_pending)
499                         BUG();
500         }
501         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
502                             conf->resync_lock, unplug_slaves(conf->mddev));
503         conf->next_resync = sect;
504         spin_unlock_irq(&conf->resync_lock);
505 }
506
507 static int make_request(request_queue_t *q, struct bio * bio)
508 {
509         mddev_t *mddev = q->queuedata;
510         conf_t *conf = mddev_to_conf(mddev);
511         mirror_info_t *mirror;
512         r1bio_t *r1_bio;
513         struct bio *read_bio;
514         int i, disks;
515
516         /*
517          * Register the new request and wait if the reconstruction
518          * thread has put up a bar for new requests.
519          * Continue immediately if no resync is active currently.
520          */
521         spin_lock_irq(&conf->resync_lock);
522         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
523         conf->nr_pending++;
524         spin_unlock_irq(&conf->resync_lock);
525
526         if (bio_data_dir(bio)==WRITE) {
527                 disk_stat_inc(mddev->gendisk, writes);
528                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
529         } else {
530                 disk_stat_inc(mddev->gendisk, reads);
531                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
532         }
533
534         /*
535          * make_request() can abort the operation when READA is being
536          * used and no empty request is available.
537          *
538          */
539         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
540
541         r1_bio->master_bio = bio;
542         r1_bio->sectors = bio->bi_size >> 9;
543
544         r1_bio->mddev = mddev;
545         r1_bio->sector = bio->bi_sector;
546
547         r1_bio->state = 0;
548
549         if (bio_data_dir(bio) == READ) {
550                 /*
551                  * read balancing logic:
552                  */
553                 int rdisk = read_balance(conf, r1_bio);
554
555                 if (rdisk < 0) {
556                         /* couldn't find anywhere to read from */
557                         raid_end_bio_io(r1_bio);
558                         return 0;
559                 }
560                 mirror = conf->mirrors + rdisk;
561
562                 r1_bio->read_disk = rdisk;
563
564                 read_bio = bio_clone(bio, GFP_NOIO);
565
566                 r1_bio->bios[rdisk] = read_bio;
567
568                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
569                 read_bio->bi_bdev = mirror->rdev->bdev;
570                 read_bio->bi_end_io = raid1_end_read_request;
571                 read_bio->bi_rw = READ;
572                 read_bio->bi_private = r1_bio;
573
574                 generic_make_request(read_bio);
575                 return 0;
576         }
577
578         /*
579          * WRITE:
580          */
581         /* first select target devices under spinlock and
582          * inc refcount on their rdev.  Record them by setting
583          * bios[x] to bio
584          */
585         disks = conf->raid_disks;
586         rcu_read_lock();
587         for (i = 0;  i < disks; i++) {
588                 if (conf->mirrors[i].rdev &&
589                     !conf->mirrors[i].rdev->faulty) {
590                         atomic_inc(&conf->mirrors[i].rdev->nr_pending);
591                         r1_bio->bios[i] = bio;
592                 } else
593                         r1_bio->bios[i] = NULL;
594         }
595         rcu_read_unlock();
596
597         atomic_set(&r1_bio->remaining, 1);
598         md_write_start(mddev);
599         for (i = 0; i < disks; i++) {
600                 struct bio *mbio;
601                 if (!r1_bio->bios[i])
602                         continue;
603
604                 mbio = bio_clone(bio, GFP_NOIO);
605                 r1_bio->bios[i] = mbio;
606
607                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
608                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
609                 mbio->bi_end_io = raid1_end_write_request;
610                 mbio->bi_rw = WRITE;
611                 mbio->bi_private = r1_bio;
612
613                 atomic_inc(&r1_bio->remaining);
614                 generic_make_request(mbio);
615         }
616
617         if (atomic_dec_and_test(&r1_bio->remaining)) {
618                 md_write_end(mddev);
619                 raid_end_bio_io(r1_bio);
620         }
621
622         return 0;
623 }
624
625 static void status(struct seq_file *seq, mddev_t *mddev)
626 {
627         conf_t *conf = mddev_to_conf(mddev);
628         int i;
629
630         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
631                                                 conf->working_disks);
632         for (i = 0; i < conf->raid_disks; i++)
633                 seq_printf(seq, "%s",
634                               conf->mirrors[i].rdev &&
635                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
636         seq_printf(seq, "]");
637 }
638
639
640 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
641 {
642         char b[BDEVNAME_SIZE];
643         conf_t *conf = mddev_to_conf(mddev);
644
645         /*
646          * If it is not operational, then we have already marked it as dead
647          * else if it is the last working disks, ignore the error, let the
648          * next level up know.
649          * else mark the drive as failed
650          */
651         if (rdev->in_sync
652             && conf->working_disks == 1)
653                 /*
654                  * Don't fail the drive, act as though we were just a
655                  * normal single drive
656                  */
657                 return;
658         if (rdev->in_sync) {
659                 mddev->degraded++;
660                 conf->working_disks--;
661                 /*
662                  * if recovery is running, make sure it aborts.
663                  */
664                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
665         }
666         rdev->in_sync = 0;
667         rdev->faulty = 1;
668         mddev->sb_dirty = 1;
669         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
670                 "       Operation continuing on %d devices\n",
671                 bdevname(rdev->bdev,b), conf->working_disks);
672 }
673
674 static void print_conf(conf_t *conf)
675 {
676         int i;
677         mirror_info_t *tmp;
678
679         printk("RAID1 conf printout:\n");
680         if (!conf) {
681                 printk("(!conf)\n");
682                 return;
683         }
684         printk(" --- wd:%d rd:%d\n", conf->working_disks,
685                 conf->raid_disks);
686
687         for (i = 0; i < conf->raid_disks; i++) {
688                 char b[BDEVNAME_SIZE];
689                 tmp = conf->mirrors + i;
690                 if (tmp->rdev)
691                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
692                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
693                                 bdevname(tmp->rdev->bdev,b));
694         }
695 }
696
697 static void close_sync(conf_t *conf)
698 {
699         spin_lock_irq(&conf->resync_lock);
700         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
701                             conf->resync_lock,  unplug_slaves(conf->mddev));
702         spin_unlock_irq(&conf->resync_lock);
703
704         if (conf->barrier) BUG();
705         if (waitqueue_active(&conf->wait_idle)) BUG();
706
707         mempool_destroy(conf->r1buf_pool);
708         conf->r1buf_pool = NULL;
709 }
710
711 static int raid1_spare_active(mddev_t *mddev)
712 {
713         int i;
714         conf_t *conf = mddev->private;
715         mirror_info_t *tmp;
716
717         /*
718          * Find all failed disks within the RAID1 configuration 
719          * and mark them readable
720          */
721         for (i = 0; i < conf->raid_disks; i++) {
722                 tmp = conf->mirrors + i;
723                 if (tmp->rdev 
724                     && !tmp->rdev->faulty
725                     && !tmp->rdev->in_sync) {
726                         conf->working_disks++;
727                         mddev->degraded--;
728                         tmp->rdev->in_sync = 1;
729                 }
730         }
731
732         print_conf(conf);
733         return 0;
734 }
735
736
737 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
738 {
739         conf_t *conf = mddev->private;
740         int found = 0;
741         int mirror;
742         mirror_info_t *p;
743
744         for (mirror=0; mirror < mddev->raid_disks; mirror++)
745                 if ( !(p=conf->mirrors+mirror)->rdev) {
746
747                         blk_queue_stack_limits(mddev->queue,
748                                                rdev->bdev->bd_disk->queue);
749                         /* as we don't honour merge_bvec_fn, we must never risk
750                          * violating it, so limit ->max_sector to one PAGE, as
751                          * a one page request is never in violation.
752                          */
753                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
754                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
755                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
756
757                         p->head_position = 0;
758                         rdev->raid_disk = mirror;
759                         found = 1;
760                         p->rdev = rdev;
761                         break;
762                 }
763
764         print_conf(conf);
765         return found;
766 }
767
768 static int raid1_remove_disk(mddev_t *mddev, int number)
769 {
770         conf_t *conf = mddev->private;
771         int err = 0;
772         mdk_rdev_t *rdev;
773         mirror_info_t *p = conf->mirrors+ number;
774
775         print_conf(conf);
776         rdev = p->rdev;
777         if (rdev) {
778                 if (rdev->in_sync ||
779                     atomic_read(&rdev->nr_pending)) {
780                         err = -EBUSY;
781                         goto abort;
782                 }
783                 p->rdev = NULL;
784                 synchronize_kernel();
785                 if (atomic_read(&rdev->nr_pending)) {
786                         /* lost the race, try later */
787                         err = -EBUSY;
788                         p->rdev = rdev;
789                 }
790         }
791 abort:
792
793         print_conf(conf);
794         return err;
795 }
796
797
798 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
799 {
800         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
801         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
802         conf_t *conf = mddev_to_conf(r1_bio->mddev);
803
804         if (bio->bi_size)
805                 return 1;
806
807         if (r1_bio->bios[r1_bio->read_disk] != bio)
808                 BUG();
809         update_head_pos(r1_bio->read_disk, r1_bio);
810         /*
811          * we have read a block, now it needs to be re-written,
812          * or re-read if the read failed.
813          * We don't do much here, just schedule handling by raid1d
814          */
815         if (!uptodate)
816                 md_error(r1_bio->mddev,
817                          conf->mirrors[r1_bio->read_disk].rdev);
818         else
819                 set_bit(R1BIO_Uptodate, &r1_bio->state);
820         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
821         reschedule_retry(r1_bio);
822         return 0;
823 }
824
825 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
826 {
827         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
828         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
829         mddev_t *mddev = r1_bio->mddev;
830         conf_t *conf = mddev_to_conf(mddev);
831         int i;
832         int mirror=0;
833
834         if (bio->bi_size)
835                 return 1;
836
837         for (i = 0; i < conf->raid_disks; i++)
838                 if (r1_bio->bios[i] == bio) {
839                         mirror = i;
840                         break;
841                 }
842         if (!uptodate)
843                 md_error(mddev, conf->mirrors[mirror].rdev);
844         update_head_pos(mirror, r1_bio);
845
846         if (atomic_dec_and_test(&r1_bio->remaining)) {
847                 md_done_sync(mddev, r1_bio->sectors, uptodate);
848                 put_buf(r1_bio);
849         }
850         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
851         return 0;
852 }
853
854 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
855 {
856         conf_t *conf = mddev_to_conf(mddev);
857         int i;
858         int disks = conf->raid_disks;
859         struct bio *bio, *wbio;
860
861         bio = r1_bio->bios[r1_bio->read_disk];
862
863         /*
864          * schedule writes
865          */
866         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
867                 /*
868                  * There is no point trying a read-for-reconstruct as
869                  * reconstruct is about to be aborted
870                  */
871                 char b[BDEVNAME_SIZE];
872                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
873                         " for block %llu\n",
874                         bdevname(bio->bi_bdev,b), 
875                         (unsigned long long)r1_bio->sector);
876                 md_done_sync(mddev, r1_bio->sectors, 0);
877                 put_buf(r1_bio);
878                 return;
879         }
880
881         atomic_set(&r1_bio->remaining, 1);
882         for (i = 0; i < disks ; i++) {
883                 wbio = r1_bio->bios[i];
884                 if (wbio->bi_end_io != end_sync_write)
885                         continue;
886
887                 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
888                 atomic_inc(&r1_bio->remaining);
889                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
890                 generic_make_request(wbio);
891         }
892
893         if (atomic_dec_and_test(&r1_bio->remaining)) {
894                 md_done_sync(mddev, r1_bio->sectors, 1);
895                 put_buf(r1_bio);
896         }
897 }
898
899 /*
900  * This is a kernel thread which:
901  *
902  *      1.      Retries failed read operations on working mirrors.
903  *      2.      Updates the raid superblock when problems encounter.
904  *      3.      Performs writes following reads for array syncronising.
905  */
906
907 static void raid1d(mddev_t *mddev)
908 {
909         r1bio_t *r1_bio;
910         struct bio *bio;
911         unsigned long flags;
912         conf_t *conf = mddev_to_conf(mddev);
913         struct list_head *head = &conf->retry_list;
914         int unplug=0;
915         mdk_rdev_t *rdev;
916
917         md_check_recovery(mddev);
918         md_handle_safemode(mddev);
919         
920         for (;;) {
921                 char b[BDEVNAME_SIZE];
922                 spin_lock_irqsave(&conf->device_lock, flags);
923                 if (list_empty(head))
924                         break;
925                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
926                 list_del(head->prev);
927                 spin_unlock_irqrestore(&conf->device_lock, flags);
928
929                 mddev = r1_bio->mddev;
930                 conf = mddev_to_conf(mddev);
931                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
932                         sync_request_write(mddev, r1_bio);
933                         unplug = 1;
934                 } else {
935                         int disk;
936                         bio = r1_bio->bios[r1_bio->read_disk];
937                         if ((disk=read_balance(conf, r1_bio)) == -1) {
938                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
939                                        " read error for block %llu\n",
940                                        bdevname(bio->bi_bdev,b),
941                                        (unsigned long long)r1_bio->sector);
942                                 raid_end_bio_io(r1_bio);
943                         } else {
944                                 r1_bio->bios[r1_bio->read_disk] = NULL;
945                                 r1_bio->read_disk = disk;
946                                 bio_put(bio);
947                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
948                                 r1_bio->bios[r1_bio->read_disk] = bio;
949                                 rdev = conf->mirrors[disk].rdev;
950                                 if (printk_ratelimit())
951                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
952                                                " another mirror\n",
953                                                bdevname(rdev->bdev,b),
954                                                (unsigned long long)r1_bio->sector);
955                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
956                                 bio->bi_bdev = rdev->bdev;
957                                 bio->bi_end_io = raid1_end_read_request;
958                                 bio->bi_rw = READ;
959                                 bio->bi_private = r1_bio;
960                                 unplug = 1;
961                                 generic_make_request(bio);
962                         }
963                 }
964         }
965         spin_unlock_irqrestore(&conf->device_lock, flags);
966         if (unplug)
967                 unplug_slaves(mddev);
968 }
969
970
971 static int init_resync(conf_t *conf)
972 {
973         int buffs;
974
975         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
976         if (conf->r1buf_pool)
977                 BUG();
978         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
979                                           conf->poolinfo);
980         if (!conf->r1buf_pool)
981                 return -ENOMEM;
982         conf->next_resync = 0;
983         return 0;
984 }
985
986 /*
987  * perform a "sync" on one "block"
988  *
989  * We need to make sure that no normal I/O request - particularly write
990  * requests - conflict with active sync requests.
991  *
992  * This is achieved by tracking pending requests and a 'barrier' concept
993  * that can be installed to exclude normal IO requests.
994  */
995
996 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster)
997 {
998         conf_t *conf = mddev_to_conf(mddev);
999         mirror_info_t *mirror;
1000         r1bio_t *r1_bio;
1001         struct bio *bio;
1002         sector_t max_sector, nr_sectors;
1003         int disk;
1004         int i;
1005         int write_targets = 0;
1006
1007         if (!conf->r1buf_pool)
1008                 if (init_resync(conf))
1009                         return -ENOMEM;
1010
1011         max_sector = mddev->size << 1;
1012         if (sector_nr >= max_sector) {
1013                 close_sync(conf);
1014                 return 0;
1015         }
1016
1017         /*
1018          * If there is non-resync activity waiting for us then
1019          * put in a delay to throttle resync.
1020          */
1021         if (!go_faster && waitqueue_active(&conf->wait_resume))
1022                 msleep_interruptible(1000);
1023         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1024
1025         /*
1026          * If reconstructing, and >1 working disc,
1027          * could dedicate one to rebuild and others to
1028          * service read requests ..
1029          */
1030         disk = conf->last_used;
1031         /* make sure disk is operational */
1032
1033         while (conf->mirrors[disk].rdev == NULL ||
1034                !conf->mirrors[disk].rdev->in_sync) {
1035                 if (disk <= 0)
1036                         disk = conf->raid_disks;
1037                 disk--;
1038                 if (disk == conf->last_used)
1039                         break;
1040         }
1041         conf->last_used = disk;
1042         atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1043
1044
1045         mirror = conf->mirrors + disk;
1046
1047         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1048
1049         spin_lock_irq(&conf->resync_lock);
1050         conf->nr_pending++;
1051         spin_unlock_irq(&conf->resync_lock);
1052
1053         r1_bio->mddev = mddev;
1054         r1_bio->sector = sector_nr;
1055         set_bit(R1BIO_IsSync, &r1_bio->state);
1056         r1_bio->read_disk = disk;
1057
1058         for (i=0; i < conf->raid_disks; i++) {
1059                 bio = r1_bio->bios[i];
1060
1061                 /* take from bio_init */
1062                 bio->bi_next = NULL;
1063                 bio->bi_flags |= 1 << BIO_UPTODATE;
1064                 bio->bi_rw = 0;
1065                 bio->bi_vcnt = 0;
1066                 bio->bi_idx = 0;
1067                 bio->bi_phys_segments = 0;
1068                 bio->bi_hw_segments = 0;
1069                 bio->bi_size = 0;
1070                 bio->bi_end_io = NULL;
1071                 bio->bi_private = NULL;
1072
1073                 if (i == disk) {
1074                         bio->bi_rw = READ;
1075                         bio->bi_end_io = end_sync_read;
1076                 } else if (conf->mirrors[i].rdev &&
1077                            !conf->mirrors[i].rdev->faulty &&
1078                            (!conf->mirrors[i].rdev->in_sync ||
1079                             sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) {
1080                         bio->bi_rw = WRITE;
1081                         bio->bi_end_io = end_sync_write;
1082                         write_targets ++;
1083                 } else
1084                         continue;
1085                 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1086                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1087                 bio->bi_private = r1_bio;
1088         }
1089         if (write_targets == 0) {
1090                 /* There is nowhere to write, so all non-sync
1091                  * drives must be failed - so we are finished
1092                  */
1093                 int rv = max_sector - sector_nr;
1094                 md_done_sync(mddev, rv, 1);
1095                 put_buf(r1_bio);
1096                 rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1097                 return rv;
1098         }
1099
1100         nr_sectors = 0;
1101         do {
1102                 struct page *page;
1103                 int len = PAGE_SIZE;
1104                 if (sector_nr + (len>>9) > max_sector)
1105                         len = (max_sector - sector_nr) << 9;
1106                 if (len == 0)
1107                         break;
1108                 for (i=0 ; i < conf->raid_disks; i++) {
1109                         bio = r1_bio->bios[i];
1110                         if (bio->bi_end_io) {
1111                                 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1112                                 if (bio_add_page(bio, page, len, 0) == 0) {
1113                                         /* stop here */
1114                                         r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1115                                         while (i > 0) {
1116                                                 i--;
1117                                                 bio = r1_bio->bios[i];
1118                                                 if (bio->bi_end_io==NULL) continue;
1119                                                 /* remove last page from this bio */
1120                                                 bio->bi_vcnt--;
1121                                                 bio->bi_size -= len;
1122                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1123                                         }
1124                                         goto bio_full;
1125                                 }
1126                         }
1127                 }
1128                 nr_sectors += len>>9;
1129                 sector_nr += len>>9;
1130         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1131  bio_full:
1132         bio = r1_bio->bios[disk];
1133         r1_bio->sectors = nr_sectors;
1134
1135         md_sync_acct(mirror->rdev->bdev, nr_sectors);
1136
1137         generic_make_request(bio);
1138
1139         return nr_sectors;
1140 }
1141
1142 static int run(mddev_t *mddev)
1143 {
1144         conf_t *conf;
1145         int i, j, disk_idx;
1146         mirror_info_t *disk;
1147         mdk_rdev_t *rdev;
1148         struct list_head *tmp;
1149
1150         if (mddev->level != 1) {
1151                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1152                        mdname(mddev), mddev->level);
1153                 goto out;
1154         }
1155         /*
1156          * copy the already verified devices into our private RAID1
1157          * bookkeeping area. [whatever we allocate in run(),
1158          * should be freed in stop()]
1159          */
1160         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1161         mddev->private = conf;
1162         if (!conf)
1163                 goto out_no_mem;
1164
1165         memset(conf, 0, sizeof(*conf));
1166         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 
1167                                  GFP_KERNEL);
1168         if (!conf->mirrors)
1169                 goto out_no_mem;
1170
1171         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1172
1173         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1174         if (!conf->poolinfo)
1175                 goto out_no_mem;
1176         conf->poolinfo->mddev = mddev;
1177         conf->poolinfo->raid_disks = mddev->raid_disks;
1178         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1179                                           r1bio_pool_free,
1180                                           conf->poolinfo);
1181         if (!conf->r1bio_pool)
1182                 goto out_no_mem;
1183
1184         mddev->queue->unplug_fn = raid1_unplug;
1185
1186         mddev->queue->issue_flush_fn = raid1_issue_flush;
1187
1188         ITERATE_RDEV(mddev, rdev, tmp) {
1189                 disk_idx = rdev->raid_disk;
1190                 if (disk_idx >= mddev->raid_disks
1191                     || disk_idx < 0)
1192                         continue;
1193                 disk = conf->mirrors + disk_idx;
1194
1195                 disk->rdev = rdev;
1196
1197                 blk_queue_stack_limits(mddev->queue,
1198                                        rdev->bdev->bd_disk->queue);
1199                 /* as we don't honour merge_bvec_fn, we must never risk
1200                  * violating it, so limit ->max_sector to one PAGE, as
1201                  * a one page request is never in violation.
1202                  */
1203                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1204                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1205                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1206
1207                 disk->head_position = 0;
1208                 if (!rdev->faulty && rdev->in_sync)
1209                         conf->working_disks++;
1210         }
1211         conf->raid_disks = mddev->raid_disks;
1212         conf->mddev = mddev;
1213         spin_lock_init(&conf->device_lock);
1214         INIT_LIST_HEAD(&conf->retry_list);
1215         if (conf->working_disks == 1)
1216                 mddev->recovery_cp = MaxSector;
1217
1218         spin_lock_init(&conf->resync_lock);
1219         init_waitqueue_head(&conf->wait_idle);
1220         init_waitqueue_head(&conf->wait_resume);
1221
1222         if (!conf->working_disks) {
1223                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1224                         mdname(mddev));
1225                 goto out_free_conf;
1226         }
1227
1228         mddev->degraded = 0;
1229         for (i = 0; i < conf->raid_disks; i++) {
1230
1231                 disk = conf->mirrors + i;
1232
1233                 if (!disk->rdev) {
1234                         disk->head_position = 0;
1235                         mddev->degraded++;
1236                 }
1237         }
1238
1239         /*
1240          * find the first working one and use it as a starting point
1241          * to read balancing.
1242          */
1243         for (j = 0; j < conf->raid_disks &&
1244                      (!conf->mirrors[j].rdev ||
1245                       !conf->mirrors[j].rdev->in_sync) ; j++)
1246                 /* nothing */;
1247         conf->last_used = j;
1248
1249
1250
1251         {
1252                 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1253                 if (!mddev->thread) {
1254                         printk(KERN_ERR 
1255                                 "raid1: couldn't allocate thread for %s\n", 
1256                                 mdname(mddev));
1257                         goto out_free_conf;
1258                 }
1259         }
1260         printk(KERN_INFO 
1261                 "raid1: raid set %s active with %d out of %d mirrors\n",
1262                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1263                 mddev->raid_disks);
1264         /*
1265          * Ok, everything is just fine now
1266          */
1267         mddev->array_size = mddev->size;
1268
1269         return 0;
1270
1271 out_no_mem:
1272         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1273                mdname(mddev));
1274
1275 out_free_conf:
1276         if (conf) {
1277                 if (conf->r1bio_pool)
1278                         mempool_destroy(conf->r1bio_pool);
1279                 if (conf->mirrors)
1280                         kfree(conf->mirrors);
1281                 if (conf->poolinfo)
1282                         kfree(conf->poolinfo);
1283                 kfree(conf);
1284                 mddev->private = NULL;
1285         }
1286 out:
1287         return -EIO;
1288 }
1289
1290 static int stop(mddev_t *mddev)
1291 {
1292         conf_t *conf = mddev_to_conf(mddev);
1293
1294         md_unregister_thread(mddev->thread);
1295         mddev->thread = NULL;
1296         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1297         if (conf->r1bio_pool)
1298                 mempool_destroy(conf->r1bio_pool);
1299         if (conf->mirrors)
1300                 kfree(conf->mirrors);
1301         if (conf->poolinfo)
1302                 kfree(conf->poolinfo);
1303         kfree(conf);
1304         mddev->private = NULL;
1305         return 0;
1306 }
1307
1308 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1309 {
1310         /* no resync is happening, and there is enough space
1311          * on all devices, so we can resize.
1312          * We need to make sure resync covers any new space.
1313          * If the array is shrinking we should possibly wait until
1314          * any io in the removed space completes, but it hardly seems
1315          * worth it.
1316          */
1317         mddev->array_size = sectors>>1;
1318         set_capacity(mddev->gendisk, mddev->array_size << 1);
1319         mddev->changed = 1;
1320         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1321                 mddev->recovery_cp = mddev->size << 1;
1322                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1323         }
1324         mddev->size = mddev->array_size;
1325         return 0;
1326 }
1327
1328 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1329 {
1330         /* We need to:
1331          * 1/ resize the r1bio_pool
1332          * 2/ resize conf->mirrors
1333          *
1334          * We allocate a new r1bio_pool if we can.
1335          * Then raise a device barrier and wait until all IO stops.
1336          * Then resize conf->mirrors and swap in the new r1bio pool.
1337          */
1338         mempool_t *newpool, *oldpool;
1339         struct pool_info *newpoolinfo;
1340         mirror_info_t *newmirrors;
1341         conf_t *conf = mddev_to_conf(mddev);
1342
1343         int d;
1344
1345         for (d= raid_disks; d < conf->raid_disks; d++)
1346                 if (conf->mirrors[d].rdev)
1347                         return -EBUSY;
1348
1349         newpoolinfo = kmalloc(sizeof(newpoolinfo), GFP_KERNEL);
1350         if (!newpoolinfo)
1351                 return -ENOMEM;
1352         newpoolinfo->mddev = mddev;
1353         newpoolinfo->raid_disks = raid_disks;
1354
1355         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1356                                  r1bio_pool_free, newpoolinfo);
1357         if (!newpool) {
1358                 kfree(newpoolinfo);
1359                 return -ENOMEM;
1360         }
1361         newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1362         if (!newmirrors) {
1363                 kfree(newpoolinfo);
1364                 mempool_destroy(newpool);
1365                 return -ENOMEM;
1366         }
1367         memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1368
1369         spin_lock_irq(&conf->resync_lock);
1370         conf->barrier++;
1371         wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1372                             conf->resync_lock, unplug_slaves(mddev));
1373         spin_unlock_irq(&conf->resync_lock);
1374
1375         /* ok, everything is stopped */
1376         oldpool = conf->r1bio_pool;
1377         conf->r1bio_pool = newpool;
1378         for (d=0; d < raid_disks && d < conf->raid_disks; d++)
1379                 newmirrors[d] = conf->mirrors[d];
1380         kfree(conf->mirrors);
1381         conf->mirrors = newmirrors;
1382         kfree(conf->poolinfo);
1383         conf->poolinfo = newpoolinfo;
1384
1385         mddev->degraded += (raid_disks - conf->raid_disks);
1386         conf->raid_disks = mddev->raid_disks = raid_disks;
1387
1388         spin_lock_irq(&conf->resync_lock);
1389         conf->barrier--;
1390         spin_unlock_irq(&conf->resync_lock);
1391         wake_up(&conf->wait_resume);
1392         wake_up(&conf->wait_idle);
1393
1394
1395         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1396         md_wakeup_thread(mddev->thread);
1397
1398         mempool_destroy(oldpool);
1399         return 0;
1400 }
1401
1402
1403 static mdk_personality_t raid1_personality =
1404 {
1405         .name           = "raid1",
1406         .owner          = THIS_MODULE,
1407         .make_request   = make_request,
1408         .run            = run,
1409         .stop           = stop,
1410         .status         = status,
1411         .error_handler  = error,
1412         .hot_add_disk   = raid1_add_disk,
1413         .hot_remove_disk= raid1_remove_disk,
1414         .spare_active   = raid1_spare_active,
1415         .sync_request   = sync_request,
1416         .resize         = raid1_resize,
1417         .reshape        = raid1_reshape,
1418 };
1419
1420 static int __init raid_init(void)
1421 {
1422         return register_md_personality(RAID1, &raid1_personality);
1423 }
1424
1425 static void raid_exit(void)
1426 {
1427         unregister_md_personality(RAID1);
1428 }
1429
1430 module_init(raid_init);
1431 module_exit(raid_exit);
1432 MODULE_LICENSE("GPL");
1433 MODULE_ALIAS("md-personality-3"); /* RAID1 */