vserver 1.9.3
[linux-2.6.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * You should have received a copy of the GNU General Public License
21  * (for example /usr/src/linux/COPYING); if not, write to the Free
22  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/raid/raid1.h>
26
27 /*
28  * Number of guaranteed r1bios in case of extreme VM load:
29  */
30 #define NR_RAID1_BIOS 256
31
32 static mdk_personality_t raid1_personality;
33 static spinlock_t retry_list_lock = SPIN_LOCK_UNLOCKED;
34 static LIST_HEAD(retry_list_head);
35
36 static void unplug_slaves(mddev_t *mddev);
37
38
39 static void * r1bio_pool_alloc(int gfp_flags, void *data)
40 {
41         struct pool_info *pi = data;
42         r1bio_t *r1_bio;
43         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
44
45         /* allocate a r1bio with room for raid_disks entries in the bios array */
46         r1_bio = kmalloc(size, gfp_flags);
47         if (r1_bio)
48                 memset(r1_bio, 0, size);
49         else
50                 unplug_slaves(pi->mddev);
51
52         return r1_bio;
53 }
54
55 static void r1bio_pool_free(void *r1_bio, void *data)
56 {
57         kfree(r1_bio);
58 }
59
60 #define RESYNC_BLOCK_SIZE (64*1024)
61 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
62 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
63 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
64 #define RESYNC_WINDOW (2048*1024)
65
66 static void * r1buf_pool_alloc(int gfp_flags, void *data)
67 {
68         struct pool_info *pi = data;
69         struct page *page;
70         r1bio_t *r1_bio;
71         struct bio *bio;
72         int i, j;
73
74         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
75         if (!r1_bio) {
76                 unplug_slaves(pi->mddev);
77                 return NULL;
78         }
79
80         /*
81          * Allocate bios : 1 for reading, n-1 for writing
82          */
83         for (j = pi->raid_disks ; j-- ; ) {
84                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
85                 if (!bio)
86                         goto out_free_bio;
87                 r1_bio->bios[j] = bio;
88         }
89         /*
90          * Allocate RESYNC_PAGES data pages and attach them to
91          * the first bio;
92          */
93         bio = r1_bio->bios[0];
94         for (i = 0; i < RESYNC_PAGES; i++) {
95                 page = alloc_page(gfp_flags);
96                 if (unlikely(!page))
97                         goto out_free_pages;
98
99                 bio->bi_io_vec[i].bv_page = page;
100         }
101
102         r1_bio->master_bio = NULL;
103
104         return r1_bio;
105
106 out_free_pages:
107         for ( ; i > 0 ; i--)
108                 __free_page(bio->bi_io_vec[i-1].bv_page);
109 out_free_bio:
110         while ( ++j < pi->raid_disks )
111                 bio_put(r1_bio->bios[j]);
112         r1bio_pool_free(r1_bio, data);
113         return NULL;
114 }
115
116 static void r1buf_pool_free(void *__r1_bio, void *data)
117 {
118         struct pool_info *pi = data;
119         int i;
120         r1bio_t *r1bio = __r1_bio;
121         struct bio *bio = r1bio->bios[0];
122
123         for (i = 0; i < RESYNC_PAGES; i++) {
124                 __free_page(bio->bi_io_vec[i].bv_page);
125                 bio->bi_io_vec[i].bv_page = NULL;
126         }
127         for (i=0 ; i < pi->raid_disks; i++)
128                 bio_put(r1bio->bios[i]);
129
130         r1bio_pool_free(r1bio, data);
131 }
132
133 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
134 {
135         int i;
136
137         for (i = 0; i < conf->raid_disks; i++) {
138                 struct bio **bio = r1_bio->bios + i;
139                 if (*bio)
140                         bio_put(*bio);
141                 *bio = NULL;
142         }
143 }
144
145 static inline void free_r1bio(r1bio_t *r1_bio)
146 {
147         unsigned long flags;
148
149         conf_t *conf = mddev_to_conf(r1_bio->mddev);
150
151         /*
152          * Wake up any possible resync thread that waits for the device
153          * to go idle.
154          */
155         spin_lock_irqsave(&conf->resync_lock, flags);
156         if (!--conf->nr_pending) {
157                 wake_up(&conf->wait_idle);
158                 wake_up(&conf->wait_resume);
159         }
160         spin_unlock_irqrestore(&conf->resync_lock, flags);
161
162         put_all_bios(conf, r1_bio);
163         mempool_free(r1_bio, conf->r1bio_pool);
164 }
165
166 static inline void put_buf(r1bio_t *r1_bio)
167 {
168         conf_t *conf = mddev_to_conf(r1_bio->mddev);
169         unsigned long flags;
170
171         mempool_free(r1_bio, conf->r1buf_pool);
172
173         spin_lock_irqsave(&conf->resync_lock, flags);
174         if (!conf->barrier)
175                 BUG();
176         --conf->barrier;
177         wake_up(&conf->wait_resume);
178         wake_up(&conf->wait_idle);
179
180         if (!--conf->nr_pending) {
181                 wake_up(&conf->wait_idle);
182                 wake_up(&conf->wait_resume);
183         }
184         spin_unlock_irqrestore(&conf->resync_lock, flags);
185 }
186
187 static void reschedule_retry(r1bio_t *r1_bio)
188 {
189         unsigned long flags;
190         mddev_t *mddev = r1_bio->mddev;
191
192         spin_lock_irqsave(&retry_list_lock, flags);
193         list_add(&r1_bio->retry_list, &retry_list_head);
194         spin_unlock_irqrestore(&retry_list_lock, flags);
195
196         md_wakeup_thread(mddev->thread);
197 }
198
199 /*
200  * raid_end_bio_io() is called when we have finished servicing a mirrored
201  * operation and are ready to return a success/failure code to the buffer
202  * cache layer.
203  */
204 static void raid_end_bio_io(r1bio_t *r1_bio)
205 {
206         struct bio *bio = r1_bio->master_bio;
207
208         bio_endio(bio, bio->bi_size,
209                 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
210         free_r1bio(r1_bio);
211 }
212
213 /*
214  * Update disk head position estimator based on IRQ completion info.
215  */
216 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
217 {
218         conf_t *conf = mddev_to_conf(r1_bio->mddev);
219
220         conf->mirrors[disk].head_position =
221                 r1_bio->sector + (r1_bio->sectors);
222 }
223
224 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
225 {
226         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
227         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
228         int mirror;
229         conf_t *conf = mddev_to_conf(r1_bio->mddev);
230
231         if (bio->bi_size)
232                 return 1;
233         
234         mirror = r1_bio->read_disk;
235         /*
236          * this branch is our 'one mirror IO has finished' event handler:
237          */
238         if (!uptodate)
239                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
240         else
241                 /*
242                  * Set R1BIO_Uptodate in our master bio, so that
243                  * we will return a good error code for to the higher
244                  * levels even if IO on some other mirrored buffer fails.
245                  *
246                  * The 'master' represents the composite IO operation to
247                  * user-side. So if something waits for IO, then it will
248                  * wait for the 'master' bio.
249                  */
250                 set_bit(R1BIO_Uptodate, &r1_bio->state);
251
252         update_head_pos(mirror, r1_bio);
253
254         /*
255          * we have only one bio on the read side
256          */
257         if (uptodate)
258                 raid_end_bio_io(r1_bio);
259         else {
260                 /*
261                  * oops, read error:
262                  */
263                 char b[BDEVNAME_SIZE];
264                 if (printk_ratelimit())
265                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
266                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
267                 reschedule_retry(r1_bio);
268         }
269
270         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
271         return 0;
272 }
273
274 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
275 {
276         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
277         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
278         int mirror;
279         conf_t *conf = mddev_to_conf(r1_bio->mddev);
280
281         if (bio->bi_size)
282                 return 1;
283
284         for (mirror = 0; mirror < conf->raid_disks; mirror++)
285                 if (r1_bio->bios[mirror] == bio)
286                         break;
287
288         /*
289          * this branch is our 'one mirror IO has finished' event handler:
290          */
291         if (!uptodate)
292                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
293         else
294                 /*
295                  * Set R1BIO_Uptodate in our master bio, so that
296                  * we will return a good error code for to the higher
297                  * levels even if IO on some other mirrored buffer fails.
298                  *
299                  * The 'master' represents the composite IO operation to
300                  * user-side. So if something waits for IO, then it will
301                  * wait for the 'master' bio.
302                  */
303                 set_bit(R1BIO_Uptodate, &r1_bio->state);
304
305         update_head_pos(mirror, r1_bio);
306
307         /*
308          *
309          * Let's see if all mirrored write operations have finished
310          * already.
311          */
312         if (atomic_dec_and_test(&r1_bio->remaining)) {
313                 md_write_end(r1_bio->mddev);
314                 raid_end_bio_io(r1_bio);
315         }
316
317         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
318         return 0;
319 }
320
321
322 /*
323  * This routine returns the disk from which the requested read should
324  * be done. There is a per-array 'next expected sequential IO' sector
325  * number - if this matches on the next IO then we use the last disk.
326  * There is also a per-disk 'last know head position' sector that is
327  * maintained from IRQ contexts, both the normal and the resync IO
328  * completion handlers update this position correctly. If there is no
329  * perfect sequential match then we pick the disk whose head is closest.
330  *
331  * If there are 2 mirrors in the same 2 devices, performance degrades
332  * because position is mirror, not device based.
333  *
334  * The rdev for the device selected will have nr_pending incremented.
335  */
336 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
337 {
338         const unsigned long this_sector = r1_bio->sector;
339         int new_disk = conf->last_used, disk = new_disk;
340         const int sectors = r1_bio->sectors;
341         sector_t new_distance, current_distance;
342
343         spin_lock_irq(&conf->device_lock);
344         /*
345          * Check if it if we can balance. We can balance on the whole
346          * device if no resync is going on, or below the resync window.
347          * We take the first readable disk when above the resync window.
348          */
349         if (conf->mddev->recovery_cp < MaxSector &&
350             (this_sector + sectors >= conf->next_resync)) {
351                 /* Choose the first operation device, for consistancy */
352                 new_disk = 0;
353
354                 while (!conf->mirrors[new_disk].rdev ||
355                        !conf->mirrors[new_disk].rdev->in_sync) {
356                         new_disk++;
357                         if (new_disk == conf->raid_disks) {
358                                 new_disk = -1;
359                                 break;
360                         }
361                 }
362                 goto rb_out;
363         }
364
365
366         /* make sure the disk is operational */
367         while (!conf->mirrors[new_disk].rdev ||
368                !conf->mirrors[new_disk].rdev->in_sync) {
369                 if (new_disk <= 0)
370                         new_disk = conf->raid_disks;
371                 new_disk--;
372                 if (new_disk == disk) {
373                         new_disk = -1;
374                         goto rb_out;
375                 }
376         }
377         disk = new_disk;
378         /* now disk == new_disk == starting point for search */
379
380         /*
381          * Don't change to another disk for sequential reads:
382          */
383         if (conf->next_seq_sect == this_sector)
384                 goto rb_out;
385         if (this_sector == conf->mirrors[new_disk].head_position)
386                 goto rb_out;
387
388         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
389
390         /* Find the disk whose head is closest */
391
392         do {
393                 if (disk <= 0)
394                         disk = conf->raid_disks;
395                 disk--;
396
397                 if (!conf->mirrors[disk].rdev ||
398                     !conf->mirrors[disk].rdev->in_sync)
399                         continue;
400
401                 if (!atomic_read(&conf->mirrors[disk].rdev->nr_pending)) {
402                         new_disk = disk;
403                         break;
404                 }
405                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
406                 if (new_distance < current_distance) {
407                         current_distance = new_distance;
408                         new_disk = disk;
409                 }
410         } while (disk != conf->last_used);
411
412 rb_out:
413
414
415         if (new_disk >= 0) {
416                 conf->next_seq_sect = this_sector + sectors;
417                 conf->last_used = new_disk;
418                 atomic_inc(&conf->mirrors[new_disk].rdev->nr_pending);
419         }
420         spin_unlock_irq(&conf->device_lock);
421
422         return new_disk;
423 }
424
425 static void unplug_slaves(mddev_t *mddev)
426 {
427         conf_t *conf = mddev_to_conf(mddev);
428         int i;
429         unsigned long flags;
430
431         spin_lock_irqsave(&conf->device_lock, flags);
432         for (i=0; i<mddev->raid_disks; i++) {
433                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
434                 if (rdev && atomic_read(&rdev->nr_pending)) {
435                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
436
437                         atomic_inc(&rdev->nr_pending);
438                         spin_unlock_irqrestore(&conf->device_lock, flags);
439
440                         if (r_queue->unplug_fn)
441                                 r_queue->unplug_fn(r_queue);
442
443                         spin_lock_irqsave(&conf->device_lock, flags);
444                         atomic_dec(&rdev->nr_pending);
445                 }
446         }
447         spin_unlock_irqrestore(&conf->device_lock, flags);
448 }
449 static void raid1_unplug(request_queue_t *q)
450 {
451         unplug_slaves(q->queuedata);
452 }
453
454 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
455                              sector_t *error_sector)
456 {
457         mddev_t *mddev = q->queuedata;
458         conf_t *conf = mddev_to_conf(mddev);
459         unsigned long flags;
460         int i, ret = 0;
461
462         spin_lock_irqsave(&conf->device_lock, flags);
463         for (i=0; i<mddev->raid_disks; i++) {
464                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
465                 if (rdev && !rdev->faulty) {
466                         struct block_device *bdev = rdev->bdev;
467                         request_queue_t *r_queue = bdev_get_queue(bdev);
468
469                         if (r_queue->issue_flush_fn) {
470                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, error_sector);
471                                 if (ret)
472                                         break;
473                         }
474                 }
475         }
476         spin_unlock_irqrestore(&conf->device_lock, flags);
477         return ret;
478 }
479
480 /*
481  * Throttle resync depth, so that we can both get proper overlapping of
482  * requests, but are still able to handle normal requests quickly.
483  */
484 #define RESYNC_DEPTH 32
485
486 static void device_barrier(conf_t *conf, sector_t sect)
487 {
488         spin_lock_irq(&conf->resync_lock);
489         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
490                             conf->resync_lock, unplug_slaves(conf->mddev));
491         
492         if (!conf->barrier++) {
493                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
494                                     conf->resync_lock, unplug_slaves(conf->mddev));
495                 if (conf->nr_pending)
496                         BUG();
497         }
498         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
499                             conf->resync_lock, unplug_slaves(conf->mddev));
500         conf->next_resync = sect;
501         spin_unlock_irq(&conf->resync_lock);
502 }
503
504 static int make_request(request_queue_t *q, struct bio * bio)
505 {
506         mddev_t *mddev = q->queuedata;
507         conf_t *conf = mddev_to_conf(mddev);
508         mirror_info_t *mirror;
509         r1bio_t *r1_bio;
510         struct bio *read_bio;
511         int i, disks;
512
513         /*
514          * Register the new request and wait if the reconstruction
515          * thread has put up a bar for new requests.
516          * Continue immediately if no resync is active currently.
517          */
518         spin_lock_irq(&conf->resync_lock);
519         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
520         conf->nr_pending++;
521         spin_unlock_irq(&conf->resync_lock);
522
523         if (bio_data_dir(bio)==WRITE) {
524                 disk_stat_inc(mddev->gendisk, writes);
525                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
526         } else {
527                 disk_stat_inc(mddev->gendisk, reads);
528                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
529         }
530
531         /*
532          * make_request() can abort the operation when READA is being
533          * used and no empty request is available.
534          *
535          */
536         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
537
538         r1_bio->master_bio = bio;
539         r1_bio->sectors = bio->bi_size >> 9;
540
541         r1_bio->mddev = mddev;
542         r1_bio->sector = bio->bi_sector;
543
544         r1_bio->state = 0;
545
546         if (bio_data_dir(bio) == READ) {
547                 /*
548                  * read balancing logic:
549                  */
550                 int rdisk = read_balance(conf, r1_bio);
551
552                 if (rdisk < 0) {
553                         /* couldn't find anywhere to read from */
554                         raid_end_bio_io(r1_bio);
555                         return 0;
556                 }
557                 mirror = conf->mirrors + rdisk;
558
559                 r1_bio->read_disk = rdisk;
560
561                 read_bio = bio_clone(bio, GFP_NOIO);
562
563                 r1_bio->bios[rdisk] = read_bio;
564
565                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
566                 read_bio->bi_bdev = mirror->rdev->bdev;
567                 read_bio->bi_end_io = raid1_end_read_request;
568                 read_bio->bi_rw = READ;
569                 read_bio->bi_private = r1_bio;
570
571                 generic_make_request(read_bio);
572                 return 0;
573         }
574
575         /*
576          * WRITE:
577          */
578         /* first select target devices under spinlock and
579          * inc refcount on their rdev.  Record them by setting
580          * bios[x] to bio
581          */
582         disks = conf->raid_disks;
583         spin_lock_irq(&conf->device_lock);
584         for (i = 0;  i < disks; i++) {
585                 if (conf->mirrors[i].rdev &&
586                     !conf->mirrors[i].rdev->faulty) {
587                         atomic_inc(&conf->mirrors[i].rdev->nr_pending);
588                         r1_bio->bios[i] = bio;
589                 } else
590                         r1_bio->bios[i] = NULL;
591         }
592         spin_unlock_irq(&conf->device_lock);
593
594         atomic_set(&r1_bio->remaining, 1);
595         md_write_start(mddev);
596         for (i = 0; i < disks; i++) {
597                 struct bio *mbio;
598                 if (!r1_bio->bios[i])
599                         continue;
600
601                 mbio = bio_clone(bio, GFP_NOIO);
602                 r1_bio->bios[i] = mbio;
603
604                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
605                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
606                 mbio->bi_end_io = raid1_end_write_request;
607                 mbio->bi_rw = WRITE;
608                 mbio->bi_private = r1_bio;
609
610                 atomic_inc(&r1_bio->remaining);
611                 generic_make_request(mbio);
612         }
613
614         if (atomic_dec_and_test(&r1_bio->remaining)) {
615                 md_write_end(mddev);
616                 raid_end_bio_io(r1_bio);
617         }
618
619         return 0;
620 }
621
622 static void status(struct seq_file *seq, mddev_t *mddev)
623 {
624         conf_t *conf = mddev_to_conf(mddev);
625         int i;
626
627         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
628                                                 conf->working_disks);
629         for (i = 0; i < conf->raid_disks; i++)
630                 seq_printf(seq, "%s",
631                               conf->mirrors[i].rdev &&
632                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
633         seq_printf(seq, "]");
634 }
635
636
637 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
638 {
639         char b[BDEVNAME_SIZE];
640         conf_t *conf = mddev_to_conf(mddev);
641
642         /*
643          * If it is not operational, then we have already marked it as dead
644          * else if it is the last working disks, ignore the error, let the
645          * next level up know.
646          * else mark the drive as failed
647          */
648         if (rdev->in_sync
649             && conf->working_disks == 1)
650                 /*
651                  * Don't fail the drive, act as though we were just a
652                  * normal single drive
653                  */
654                 return;
655         if (rdev->in_sync) {
656                 mddev->degraded++;
657                 conf->working_disks--;
658                 /*
659                  * if recovery is running, make sure it aborts.
660                  */
661                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
662         }
663         rdev->in_sync = 0;
664         rdev->faulty = 1;
665         mddev->sb_dirty = 1;
666         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
667                 "       Operation continuing on %d devices\n",
668                 bdevname(rdev->bdev,b), conf->working_disks);
669 }
670
671 static void print_conf(conf_t *conf)
672 {
673         int i;
674         mirror_info_t *tmp;
675
676         printk("RAID1 conf printout:\n");
677         if (!conf) {
678                 printk("(!conf)\n");
679                 return;
680         }
681         printk(" --- wd:%d rd:%d\n", conf->working_disks,
682                 conf->raid_disks);
683
684         for (i = 0; i < conf->raid_disks; i++) {
685                 char b[BDEVNAME_SIZE];
686                 tmp = conf->mirrors + i;
687                 if (tmp->rdev)
688                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
689                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
690                                 bdevname(tmp->rdev->bdev,b));
691         }
692 }
693
694 static void close_sync(conf_t *conf)
695 {
696         spin_lock_irq(&conf->resync_lock);
697         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
698                             conf->resync_lock,  unplug_slaves(conf->mddev));
699         spin_unlock_irq(&conf->resync_lock);
700
701         if (conf->barrier) BUG();
702         if (waitqueue_active(&conf->wait_idle)) BUG();
703
704         mempool_destroy(conf->r1buf_pool);
705         conf->r1buf_pool = NULL;
706 }
707
708 static int raid1_spare_active(mddev_t *mddev)
709 {
710         int i;
711         conf_t *conf = mddev->private;
712         mirror_info_t *tmp;
713
714         spin_lock_irq(&conf->device_lock);
715         /*
716          * Find all failed disks within the RAID1 configuration 
717          * and mark them readable
718          */
719         for (i = 0; i < conf->raid_disks; i++) {
720                 tmp = conf->mirrors + i;
721                 if (tmp->rdev 
722                     && !tmp->rdev->faulty
723                     && !tmp->rdev->in_sync) {
724                         conf->working_disks++;
725                         mddev->degraded--;
726                         tmp->rdev->in_sync = 1;
727                 }
728         }
729         spin_unlock_irq(&conf->device_lock);
730
731         print_conf(conf);
732         return 0;
733 }
734
735
736 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
737 {
738         conf_t *conf = mddev->private;
739         int found = 0;
740         int mirror;
741         mirror_info_t *p;
742
743         spin_lock_irq(&conf->device_lock);
744         for (mirror=0; mirror < mddev->raid_disks; mirror++)
745                 if ( !(p=conf->mirrors+mirror)->rdev) {
746                         p->rdev = rdev;
747
748                         blk_queue_stack_limits(mddev->queue,
749                                                rdev->bdev->bd_disk->queue);
750                         /* as we don't honour merge_bvec_fn, we must never risk
751                          * violating it, so limit ->max_sector to one PAGE, as
752                          * a one page request is never in violation.
753                          */
754                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
755                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
756                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
757
758                         p->head_position = 0;
759                         rdev->raid_disk = mirror;
760                         found = 1;
761                         break;
762                 }
763         spin_unlock_irq(&conf->device_lock);
764
765         print_conf(conf);
766         return found;
767 }
768
769 static int raid1_remove_disk(mddev_t *mddev, int number)
770 {
771         conf_t *conf = mddev->private;
772         int err = 1;
773         mirror_info_t *p = conf->mirrors+ number;
774
775         print_conf(conf);
776         spin_lock_irq(&conf->device_lock);
777         if (p->rdev) {
778                 if (p->rdev->in_sync ||
779                     atomic_read(&p->rdev->nr_pending)) {
780                         err = -EBUSY;
781                         goto abort;
782                 }
783                 p->rdev = NULL;
784                 err = 0;
785         }
786         if (err)
787                 MD_BUG();
788 abort:
789         spin_unlock_irq(&conf->device_lock);
790
791         print_conf(conf);
792         return err;
793 }
794
795
796 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
797 {
798         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
799         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
800         conf_t *conf = mddev_to_conf(r1_bio->mddev);
801
802         if (bio->bi_size)
803                 return 1;
804
805         if (r1_bio->bios[r1_bio->read_disk] != bio)
806                 BUG();
807         update_head_pos(r1_bio->read_disk, r1_bio);
808         /*
809          * we have read a block, now it needs to be re-written,
810          * or re-read if the read failed.
811          * We don't do much here, just schedule handling by raid1d
812          */
813         if (!uptodate)
814                 md_error(r1_bio->mddev,
815                          conf->mirrors[r1_bio->read_disk].rdev);
816         else
817                 set_bit(R1BIO_Uptodate, &r1_bio->state);
818         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
819         reschedule_retry(r1_bio);
820         return 0;
821 }
822
823 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
824 {
825         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
826         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
827         mddev_t *mddev = r1_bio->mddev;
828         conf_t *conf = mddev_to_conf(mddev);
829         int i;
830         int mirror=0;
831
832         if (bio->bi_size)
833                 return 1;
834
835         for (i = 0; i < conf->raid_disks; i++)
836                 if (r1_bio->bios[i] == bio) {
837                         mirror = i;
838                         break;
839                 }
840         if (!uptodate)
841                 md_error(mddev, conf->mirrors[mirror].rdev);
842         update_head_pos(mirror, r1_bio);
843
844         if (atomic_dec_and_test(&r1_bio->remaining)) {
845                 md_done_sync(mddev, r1_bio->sectors, uptodate);
846                 put_buf(r1_bio);
847         }
848         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
849         return 0;
850 }
851
852 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
853 {
854         conf_t *conf = mddev_to_conf(mddev);
855         int i;
856         int disks = conf->raid_disks;
857         struct bio *bio, *wbio;
858
859         bio = r1_bio->bios[r1_bio->read_disk];
860
861         /*
862          * schedule writes
863          */
864         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
865                 /*
866                  * There is no point trying a read-for-reconstruct as
867                  * reconstruct is about to be aborted
868                  */
869                 char b[BDEVNAME_SIZE];
870                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
871                         " for block %llu\n",
872                         bdevname(bio->bi_bdev,b), 
873                         (unsigned long long)r1_bio->sector);
874                 md_done_sync(mddev, r1_bio->sectors, 0);
875                 put_buf(r1_bio);
876                 return;
877         }
878
879         atomic_set(&r1_bio->remaining, 1);
880         for (i = 0; i < disks ; i++) {
881                 wbio = r1_bio->bios[i];
882                 if (wbio->bi_end_io != end_sync_write)
883                         continue;
884
885                 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
886                 atomic_inc(&r1_bio->remaining);
887                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
888                 generic_make_request(wbio);
889         }
890
891         if (atomic_dec_and_test(&r1_bio->remaining)) {
892                 md_done_sync(mddev, r1_bio->sectors, 1);
893                 put_buf(r1_bio);
894         }
895 }
896
897 /*
898  * This is a kernel thread which:
899  *
900  *      1.      Retries failed read operations on working mirrors.
901  *      2.      Updates the raid superblock when problems encounter.
902  *      3.      Performs writes following reads for array syncronising.
903  */
904
905 static void raid1d(mddev_t *mddev)
906 {
907         struct list_head *head = &retry_list_head;
908         r1bio_t *r1_bio;
909         struct bio *bio;
910         unsigned long flags;
911         conf_t *conf = mddev_to_conf(mddev);
912         int unplug=0;
913         mdk_rdev_t *rdev;
914
915         md_check_recovery(mddev);
916         md_handle_safemode(mddev);
917         
918         for (;;) {
919                 char b[BDEVNAME_SIZE];
920                 spin_lock_irqsave(&retry_list_lock, flags);
921                 if (list_empty(head))
922                         break;
923                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
924                 list_del(head->prev);
925                 spin_unlock_irqrestore(&retry_list_lock, flags);
926
927                 mddev = r1_bio->mddev;
928                 conf = mddev_to_conf(mddev);
929                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
930                         sync_request_write(mddev, r1_bio);
931                         unplug = 1;
932                 } else {
933                         int disk;
934                         bio = r1_bio->bios[r1_bio->read_disk];
935                         if ((disk=read_balance(conf, r1_bio)) == -1) {
936                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
937                                        " read error for block %llu\n",
938                                        bdevname(bio->bi_bdev,b),
939                                        (unsigned long long)r1_bio->sector);
940                                 raid_end_bio_io(r1_bio);
941                         } else {
942                                 r1_bio->bios[r1_bio->read_disk] = NULL;
943                                 r1_bio->read_disk = disk;
944                                 r1_bio->bios[r1_bio->read_disk] = bio;
945                                 rdev = conf->mirrors[disk].rdev;
946                                 if (printk_ratelimit())
947                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
948                                                " another mirror\n",
949                                                bdevname(rdev->bdev,b),
950                                                (unsigned long long)r1_bio->sector);
951                                 bio->bi_bdev = rdev->bdev;
952                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
953                                 bio->bi_rw = READ;
954                                 unplug = 1;
955                                 generic_make_request(bio);
956                         }
957                 }
958         }
959         spin_unlock_irqrestore(&retry_list_lock, flags);
960         if (unplug)
961                 unplug_slaves(mddev);
962 }
963
964
965 static int init_resync(conf_t *conf)
966 {
967         int buffs;
968
969         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
970         if (conf->r1buf_pool)
971                 BUG();
972         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
973                                           conf->poolinfo);
974         if (!conf->r1buf_pool)
975                 return -ENOMEM;
976         conf->next_resync = 0;
977         return 0;
978 }
979
980 /*
981  * perform a "sync" on one "block"
982  *
983  * We need to make sure that no normal I/O request - particularly write
984  * requests - conflict with active sync requests.
985  *
986  * This is achieved by tracking pending requests and a 'barrier' concept
987  * that can be installed to exclude normal IO requests.
988  */
989
990 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster)
991 {
992         conf_t *conf = mddev_to_conf(mddev);
993         mirror_info_t *mirror;
994         r1bio_t *r1_bio;
995         struct bio *bio;
996         sector_t max_sector, nr_sectors;
997         int disk;
998         int i;
999         int write_targets = 0;
1000
1001         if (!conf->r1buf_pool)
1002                 if (init_resync(conf))
1003                         return -ENOMEM;
1004
1005         max_sector = mddev->size << 1;
1006         if (sector_nr >= max_sector) {
1007                 close_sync(conf);
1008                 return 0;
1009         }
1010
1011         /*
1012          * If there is non-resync activity waiting for us then
1013          * put in a delay to throttle resync.
1014          */
1015         if (!go_faster && waitqueue_active(&conf->wait_resume))
1016                 schedule_timeout(HZ);
1017         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1018
1019         /*
1020          * If reconstructing, and >1 working disc,
1021          * could dedicate one to rebuild and others to
1022          * service read requests ..
1023          */
1024         disk = conf->last_used;
1025         /* make sure disk is operational */
1026         spin_lock_irq(&conf->device_lock);
1027         while (conf->mirrors[disk].rdev == NULL ||
1028                !conf->mirrors[disk].rdev->in_sync) {
1029                 if (disk <= 0)
1030                         disk = conf->raid_disks;
1031                 disk--;
1032                 if (disk == conf->last_used)
1033                         break;
1034         }
1035         conf->last_used = disk;
1036         atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1037         spin_unlock_irq(&conf->device_lock);
1038
1039         mirror = conf->mirrors + disk;
1040
1041         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1042
1043         spin_lock_irq(&conf->resync_lock);
1044         conf->nr_pending++;
1045         spin_unlock_irq(&conf->resync_lock);
1046
1047         r1_bio->mddev = mddev;
1048         r1_bio->sector = sector_nr;
1049         set_bit(R1BIO_IsSync, &r1_bio->state);
1050         r1_bio->read_disk = disk;
1051
1052         for (i=0; i < conf->raid_disks; i++) {
1053                 bio = r1_bio->bios[i];
1054
1055                 /* take from bio_init */
1056                 bio->bi_next = NULL;
1057                 bio->bi_flags |= 1 << BIO_UPTODATE;
1058                 bio->bi_rw = 0;
1059                 bio->bi_vcnt = 0;
1060                 bio->bi_idx = 0;
1061                 bio->bi_phys_segments = 0;
1062                 bio->bi_hw_segments = 0;
1063                 bio->bi_size = 0;
1064                 bio->bi_end_io = NULL;
1065                 bio->bi_private = NULL;
1066
1067                 if (i == disk) {
1068                         bio->bi_rw = READ;
1069                         bio->bi_end_io = end_sync_read;
1070                 } else if (conf->mirrors[i].rdev &&
1071                            !conf->mirrors[i].rdev->faulty &&
1072                            (!conf->mirrors[i].rdev->in_sync ||
1073                             sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) {
1074                         bio->bi_rw = WRITE;
1075                         bio->bi_end_io = end_sync_write;
1076                         write_targets ++;
1077                 } else
1078                         continue;
1079                 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1080                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1081                 bio->bi_private = r1_bio;
1082         }
1083         if (write_targets == 0) {
1084                 /* There is nowhere to write, so all non-sync
1085                  * drives must be failed - so we are finished
1086                  */
1087                 int rv = max_sector - sector_nr;
1088                 md_done_sync(mddev, rv, 1);
1089                 put_buf(r1_bio);
1090                 atomic_dec(&conf->mirrors[disk].rdev->nr_pending);
1091                 return rv;
1092         }
1093
1094         nr_sectors = 0;
1095         do {
1096                 struct page *page;
1097                 int len = PAGE_SIZE;
1098                 if (sector_nr + (len>>9) > max_sector)
1099                         len = (max_sector - sector_nr) << 9;
1100                 if (len == 0)
1101                         break;
1102                 for (i=0 ; i < conf->raid_disks; i++) {
1103                         bio = r1_bio->bios[i];
1104                         if (bio->bi_end_io) {
1105                                 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1106                                 if (bio_add_page(bio, page, len, 0) == 0) {
1107                                         /* stop here */
1108                                         r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1109                                         while (i > 0) {
1110                                                 i--;
1111                                                 bio = r1_bio->bios[i];
1112                                                 if (bio->bi_end_io==NULL) continue;
1113                                                 /* remove last page from this bio */
1114                                                 bio->bi_vcnt--;
1115                                                 bio->bi_size -= len;
1116                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1117                                         }
1118                                         goto bio_full;
1119                                 }
1120                         }
1121                 }
1122                 nr_sectors += len>>9;
1123                 sector_nr += len>>9;
1124         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1125  bio_full:
1126         bio = r1_bio->bios[disk];
1127         r1_bio->sectors = nr_sectors;
1128
1129         md_sync_acct(mirror->rdev->bdev, nr_sectors);
1130
1131         generic_make_request(bio);
1132
1133         return nr_sectors;
1134 }
1135
1136 static int run(mddev_t *mddev)
1137 {
1138         conf_t *conf;
1139         int i, j, disk_idx;
1140         mirror_info_t *disk;
1141         mdk_rdev_t *rdev;
1142         struct list_head *tmp;
1143
1144         if (mddev->level != 1) {
1145                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1146                        mdname(mddev), mddev->level);
1147                 goto out;
1148         }
1149         /*
1150          * copy the already verified devices into our private RAID1
1151          * bookkeeping area. [whatever we allocate in run(),
1152          * should be freed in stop()]
1153          */
1154         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1155         mddev->private = conf;
1156         if (!conf)
1157                 goto out_no_mem;
1158
1159         memset(conf, 0, sizeof(*conf));
1160         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 
1161                                  GFP_KERNEL);
1162         if (!conf->mirrors)
1163                 goto out_no_mem;
1164
1165         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1166
1167         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1168         if (!conf->poolinfo)
1169                 goto out_no_mem;
1170         conf->poolinfo->mddev = mddev;
1171         conf->poolinfo->raid_disks = mddev->raid_disks;
1172         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1173                                           r1bio_pool_free,
1174                                           conf->poolinfo);
1175         if (!conf->r1bio_pool)
1176                 goto out_no_mem;
1177
1178         mddev->queue->unplug_fn = raid1_unplug;
1179
1180         mddev->queue->issue_flush_fn = raid1_issue_flush;
1181
1182         ITERATE_RDEV(mddev, rdev, tmp) {
1183                 disk_idx = rdev->raid_disk;
1184                 if (disk_idx >= mddev->raid_disks
1185                     || disk_idx < 0)
1186                         continue;
1187                 disk = conf->mirrors + disk_idx;
1188
1189                 disk->rdev = rdev;
1190
1191                 blk_queue_stack_limits(mddev->queue,
1192                                        rdev->bdev->bd_disk->queue);
1193                 /* as we don't honour merge_bvec_fn, we must never risk
1194                  * violating it, so limit ->max_sector to one PAGE, as
1195                  * a one page request is never in violation.
1196                  */
1197                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1198                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1199                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1200
1201                 disk->head_position = 0;
1202                 if (!rdev->faulty && rdev->in_sync)
1203                         conf->working_disks++;
1204         }
1205         conf->raid_disks = mddev->raid_disks;
1206         conf->mddev = mddev;
1207         conf->device_lock = SPIN_LOCK_UNLOCKED;
1208         if (conf->working_disks == 1)
1209                 mddev->recovery_cp = MaxSector;
1210
1211         conf->resync_lock = SPIN_LOCK_UNLOCKED;
1212         init_waitqueue_head(&conf->wait_idle);
1213         init_waitqueue_head(&conf->wait_resume);
1214
1215         if (!conf->working_disks) {
1216                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1217                         mdname(mddev));
1218                 goto out_free_conf;
1219         }
1220
1221         mddev->degraded = 0;
1222         for (i = 0; i < conf->raid_disks; i++) {
1223
1224                 disk = conf->mirrors + i;
1225
1226                 if (!disk->rdev) {
1227                         disk->head_position = 0;
1228                         mddev->degraded++;
1229                 }
1230         }
1231
1232         /*
1233          * find the first working one and use it as a starting point
1234          * to read balancing.
1235          */
1236         for (j = 0; j < conf->raid_disks &&
1237                      (!conf->mirrors[j].rdev ||
1238                       !conf->mirrors[j].rdev->in_sync) ; j++)
1239                 /* nothing */;
1240         conf->last_used = j;
1241
1242
1243
1244         {
1245                 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1246                 if (!mddev->thread) {
1247                         printk(KERN_ERR 
1248                                 "raid1: couldn't allocate thread for %s\n", 
1249                                 mdname(mddev));
1250                         goto out_free_conf;
1251                 }
1252         }
1253         printk(KERN_INFO 
1254                 "raid1: raid set %s active with %d out of %d mirrors\n",
1255                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1256                 mddev->raid_disks);
1257         /*
1258          * Ok, everything is just fine now
1259          */
1260         mddev->array_size = mddev->size;
1261
1262         return 0;
1263
1264 out_no_mem:
1265         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1266                mdname(mddev));
1267
1268 out_free_conf:
1269         if (conf) {
1270                 if (conf->r1bio_pool)
1271                         mempool_destroy(conf->r1bio_pool);
1272                 if (conf->mirrors)
1273                         kfree(conf->mirrors);
1274                 if (conf->poolinfo)
1275                         kfree(conf->poolinfo);
1276                 kfree(conf);
1277                 mddev->private = NULL;
1278         }
1279 out:
1280         return -EIO;
1281 }
1282
1283 static int stop(mddev_t *mddev)
1284 {
1285         conf_t *conf = mddev_to_conf(mddev);
1286
1287         md_unregister_thread(mddev->thread);
1288         mddev->thread = NULL;
1289         if (conf->r1bio_pool)
1290                 mempool_destroy(conf->r1bio_pool);
1291         if (conf->mirrors)
1292                 kfree(conf->mirrors);
1293         if (conf->poolinfo)
1294                 kfree(conf->poolinfo);
1295         kfree(conf);
1296         mddev->private = NULL;
1297         return 0;
1298 }
1299
1300 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1301 {
1302         /* no resync is happening, and there is enough space
1303          * on all devices, so we can resize.
1304          * We need to make sure resync covers any new space.
1305          * If the array is shrinking we should possibly wait until
1306          * any io in the removed space completes, but it hardly seems
1307          * worth it.
1308          */
1309         mddev->array_size = sectors>>1;
1310         set_capacity(mddev->gendisk, mddev->array_size << 1);
1311         mddev->changed = 1;
1312         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1313                 mddev->recovery_cp = mddev->size << 1;
1314                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1315         }
1316         mddev->size = mddev->array_size;
1317         return 0;
1318 }
1319
1320 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1321 {
1322         /* We need to:
1323          * 1/ resize the r1bio_pool
1324          * 2/ resize conf->mirrors
1325          *
1326          * We allocate a new r1bio_pool if we can.
1327          * Then raise a device barrier and wait until all IO stops.
1328          * Then resize conf->mirrors and swap in the new r1bio pool.
1329          */
1330         mempool_t *newpool, *oldpool;
1331         struct pool_info *newpoolinfo;
1332         mirror_info_t *newmirrors;
1333         conf_t *conf = mddev_to_conf(mddev);
1334
1335         int d;
1336
1337         for (d= raid_disks; d < conf->raid_disks; d++)
1338                 if (conf->mirrors[d].rdev)
1339                         return -EBUSY;
1340
1341         newpoolinfo = kmalloc(sizeof(newpoolinfo), GFP_KERNEL);
1342         if (!newpoolinfo)
1343                 return -ENOMEM;
1344         newpoolinfo->mddev = mddev;
1345         newpoolinfo->raid_disks = raid_disks;
1346
1347         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1348                                  r1bio_pool_free, newpoolinfo);
1349         if (!newpool) {
1350                 kfree(newpoolinfo);
1351                 return -ENOMEM;
1352         }
1353         newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1354         if (!newmirrors) {
1355                 kfree(newpoolinfo);
1356                 mempool_destroy(newpool);
1357                 return -ENOMEM;
1358         }
1359         memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1360
1361         spin_lock_irq(&conf->resync_lock);
1362         conf->barrier++;
1363         wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1364                             conf->resync_lock, unplug_slaves(mddev));
1365         spin_unlock_irq(&conf->resync_lock);
1366
1367         /* ok, everything is stopped */
1368         oldpool = conf->r1bio_pool;
1369         conf->r1bio_pool = newpool;
1370         for (d=0; d < raid_disks && d < conf->raid_disks; d++)
1371                 newmirrors[d] = conf->mirrors[d];
1372         kfree(conf->mirrors);
1373         conf->mirrors = newmirrors;
1374         kfree(conf->poolinfo);
1375         conf->poolinfo = newpoolinfo;
1376
1377         mddev->degraded += (raid_disks - conf->raid_disks);
1378         conf->raid_disks = mddev->raid_disks = raid_disks;
1379
1380         spin_lock_irq(&conf->resync_lock);
1381         conf->barrier--;
1382         spin_unlock_irq(&conf->resync_lock);
1383         wake_up(&conf->wait_resume);
1384         wake_up(&conf->wait_idle);
1385
1386
1387         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1388         md_wakeup_thread(mddev->thread);
1389
1390         mempool_destroy(oldpool);
1391         return 0;
1392 }
1393
1394
1395 static mdk_personality_t raid1_personality =
1396 {
1397         .name           = "raid1",
1398         .owner          = THIS_MODULE,
1399         .make_request   = make_request,
1400         .run            = run,
1401         .stop           = stop,
1402         .status         = status,
1403         .error_handler  = error,
1404         .hot_add_disk   = raid1_add_disk,
1405         .hot_remove_disk= raid1_remove_disk,
1406         .spare_active   = raid1_spare_active,
1407         .sync_request   = sync_request,
1408         .resize         = raid1_resize,
1409         .reshape        = raid1_reshape,
1410 };
1411
1412 static int __init raid_init(void)
1413 {
1414         return register_md_personality(RAID1, &raid1_personality);
1415 }
1416
1417 static void raid_exit(void)
1418 {
1419         unregister_md_personality(RAID1);
1420 }
1421
1422 module_init(raid_init);
1423 module_exit(raid_exit);
1424 MODULE_LICENSE("GPL");
1425 MODULE_ALIAS("md-personality-3"); /* RAID1 */