Merge to Fedora kernel-2.6.18-1.2224_FC5 patched with stable patch-2.6.18.1-vs2.0...
[linux-2.6.git] / drivers / media / dvb / frontends / tda1004x.c
1   /*
2      Driver for Philips tda1004xh OFDM Demodulator
3
4      (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
15      GNU General Public License for more details.
16
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21    */
22 /*
23  * This driver needs external firmware. Please use the commands
24  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26  * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27  * or /lib/firmware (depending on configuration of firmware hotplug).
28  */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/device.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39
40 #include "dvb_frontend.h"
41 #include "tda1004x.h"
42
43 enum tda1004x_demod {
44         TDA1004X_DEMOD_TDA10045,
45         TDA1004X_DEMOD_TDA10046,
46 };
47
48 struct tda1004x_state {
49         struct i2c_adapter* i2c;
50         const struct tda1004x_config* config;
51         struct dvb_frontend frontend;
52
53         /* private demod data */
54         enum tda1004x_demod demod_type;
55 };
56
57 static int debug;
58 #define dprintk(args...) \
59         do { \
60                 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
61         } while (0)
62
63 #define TDA1004X_CHIPID          0x00
64 #define TDA1004X_AUTO            0x01
65 #define TDA1004X_IN_CONF1        0x02
66 #define TDA1004X_IN_CONF2        0x03
67 #define TDA1004X_OUT_CONF1       0x04
68 #define TDA1004X_OUT_CONF2       0x05
69 #define TDA1004X_STATUS_CD       0x06
70 #define TDA1004X_CONFC4          0x07
71 #define TDA1004X_DSSPARE2        0x0C
72 #define TDA10045H_CODE_IN        0x0D
73 #define TDA10045H_FWPAGE         0x0E
74 #define TDA1004X_SCAN_CPT        0x10
75 #define TDA1004X_DSP_CMD         0x11
76 #define TDA1004X_DSP_ARG         0x12
77 #define TDA1004X_DSP_DATA1       0x13
78 #define TDA1004X_DSP_DATA2       0x14
79 #define TDA1004X_CONFADC1        0x15
80 #define TDA1004X_CONFC1          0x16
81 #define TDA10045H_S_AGC          0x1a
82 #define TDA10046H_AGC_TUN_LEVEL  0x1a
83 #define TDA1004X_SNR             0x1c
84 #define TDA1004X_CONF_TS1        0x1e
85 #define TDA1004X_CONF_TS2        0x1f
86 #define TDA1004X_CBER_RESET      0x20
87 #define TDA1004X_CBER_MSB        0x21
88 #define TDA1004X_CBER_LSB        0x22
89 #define TDA1004X_CVBER_LUT       0x23
90 #define TDA1004X_VBER_MSB        0x24
91 #define TDA1004X_VBER_MID        0x25
92 #define TDA1004X_VBER_LSB        0x26
93 #define TDA1004X_UNCOR           0x27
94
95 #define TDA10045H_CONFPLL_P      0x2D
96 #define TDA10045H_CONFPLL_M_MSB  0x2E
97 #define TDA10045H_CONFPLL_M_LSB  0x2F
98 #define TDA10045H_CONFPLL_N      0x30
99
100 #define TDA10046H_CONFPLL1       0x2D
101 #define TDA10046H_CONFPLL2       0x2F
102 #define TDA10046H_CONFPLL3       0x30
103 #define TDA10046H_TIME_WREF1     0x31
104 #define TDA10046H_TIME_WREF2     0x32
105 #define TDA10046H_TIME_WREF3     0x33
106 #define TDA10046H_TIME_WREF4     0x34
107 #define TDA10046H_TIME_WREF5     0x35
108
109 #define TDA10045H_UNSURW_MSB     0x31
110 #define TDA10045H_UNSURW_LSB     0x32
111 #define TDA10045H_WREF_MSB       0x33
112 #define TDA10045H_WREF_MID       0x34
113 #define TDA10045H_WREF_LSB       0x35
114 #define TDA10045H_MUXOUT         0x36
115 #define TDA1004X_CONFADC2        0x37
116
117 #define TDA10045H_IOFFSET        0x38
118
119 #define TDA10046H_CONF_TRISTATE1 0x3B
120 #define TDA10046H_CONF_TRISTATE2 0x3C
121 #define TDA10046H_CONF_POLARITY  0x3D
122 #define TDA10046H_FREQ_OFFSET    0x3E
123 #define TDA10046H_GPIO_OUT_SEL   0x41
124 #define TDA10046H_GPIO_SELECT    0x42
125 #define TDA10046H_AGC_CONF       0x43
126 #define TDA10046H_AGC_THR        0x44
127 #define TDA10046H_AGC_RENORM     0x45
128 #define TDA10046H_AGC_GAINS      0x46
129 #define TDA10046H_AGC_TUN_MIN    0x47
130 #define TDA10046H_AGC_TUN_MAX    0x48
131 #define TDA10046H_AGC_IF_MIN     0x49
132 #define TDA10046H_AGC_IF_MAX     0x4A
133
134 #define TDA10046H_FREQ_PHY2_MSB  0x4D
135 #define TDA10046H_FREQ_PHY2_LSB  0x4E
136
137 #define TDA10046H_CVBER_CTRL     0x4F
138 #define TDA10046H_AGC_IF_LEVEL   0x52
139 #define TDA10046H_CODE_CPT       0x57
140 #define TDA10046H_CODE_IN        0x58
141
142
143 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
144 {
145         int ret;
146         u8 buf[] = { reg, data };
147         struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
148
149         dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
150
151         msg.addr = state->config->demod_address;
152         ret = i2c_transfer(state->i2c, &msg, 1);
153
154         if (ret != 1)
155                 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
156                         __FUNCTION__, reg, data, ret);
157
158         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
159                 reg, data, ret);
160         return (ret != 1) ? -1 : 0;
161 }
162
163 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
164 {
165         int ret;
166         u8 b0[] = { reg };
167         u8 b1[] = { 0 };
168         struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
169                                 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
170
171         dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
172
173         msg[0].addr = state->config->demod_address;
174         msg[1].addr = state->config->demod_address;
175         ret = i2c_transfer(state->i2c, msg, 2);
176
177         if (ret != 2) {
178                 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
179                         ret);
180                 return -1;
181         }
182
183         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
184                 reg, b1[0], ret);
185         return b1[0];
186 }
187
188 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
189 {
190         int val;
191         dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
192                 mask, data);
193
194         // read a byte and check
195         val = tda1004x_read_byte(state, reg);
196         if (val < 0)
197                 return val;
198
199         // mask if off
200         val = val & ~mask;
201         val |= data & 0xff;
202
203         // write it out again
204         return tda1004x_write_byteI(state, reg, val);
205 }
206
207 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
208 {
209         int i;
210         int result;
211
212         dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
213
214         result = 0;
215         for (i = 0; i < len; i++) {
216                 result = tda1004x_write_byteI(state, reg + i, buf[i]);
217                 if (result != 0)
218                         break;
219         }
220
221         return result;
222 }
223
224 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
225 {
226         int result;
227         dprintk("%s\n", __FUNCTION__);
228
229         result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
230         msleep(20);
231         return result;
232 }
233
234 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
235 {
236         dprintk("%s\n", __FUNCTION__);
237
238         return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
239 }
240
241 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
242                                    fe_bandwidth_t bandwidth)
243 {
244         static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
245         static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
246         static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
247
248         switch (bandwidth) {
249         case BANDWIDTH_6_MHZ:
250                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
251                 break;
252
253         case BANDWIDTH_7_MHZ:
254                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
255                 break;
256
257         case BANDWIDTH_8_MHZ:
258                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
259                 break;
260
261         default:
262                 return -EINVAL;
263         }
264
265         tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
266
267         return 0;
268 }
269
270 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
271                                    fe_bandwidth_t bandwidth)
272 {
273         static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
274         static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
275         static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
276
277         static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
278         static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
279         static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
280         int tda10046_clk53m;
281
282         if ((state->config->if_freq == TDA10046_FREQ_045) ||
283             (state->config->if_freq == TDA10046_FREQ_052))
284                 tda10046_clk53m = 0;
285         else
286                 tda10046_clk53m = 1;
287         switch (bandwidth) {
288         case BANDWIDTH_6_MHZ:
289                 if (tda10046_clk53m)
290                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
291                                                   sizeof(bandwidth_6mhz_53M));
292                 else
293                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
294                                                   sizeof(bandwidth_6mhz_48M));
295                 if (state->config->if_freq == TDA10046_FREQ_045) {
296                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
297                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
298                 }
299                 break;
300
301         case BANDWIDTH_7_MHZ:
302                 if (tda10046_clk53m)
303                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
304                                                   sizeof(bandwidth_7mhz_53M));
305                 else
306                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
307                                                   sizeof(bandwidth_7mhz_48M));
308                 if (state->config->if_freq == TDA10046_FREQ_045) {
309                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
310                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
311                 }
312                 break;
313
314         case BANDWIDTH_8_MHZ:
315                 if (tda10046_clk53m)
316                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
317                                                   sizeof(bandwidth_8mhz_53M));
318                 else
319                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
320                                                   sizeof(bandwidth_8mhz_48M));
321                 if (state->config->if_freq == TDA10046_FREQ_045) {
322                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
323                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
324                 }
325                 break;
326
327         default:
328                 return -EINVAL;
329         }
330
331         return 0;
332 }
333
334 static int tda1004x_do_upload(struct tda1004x_state *state,
335                               unsigned char *mem, unsigned int len,
336                               u8 dspCodeCounterReg, u8 dspCodeInReg)
337 {
338         u8 buf[65];
339         struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
340         int tx_size;
341         int pos = 0;
342
343         /* clear code counter */
344         tda1004x_write_byteI(state, dspCodeCounterReg, 0);
345         fw_msg.addr = state->config->demod_address;
346
347         buf[0] = dspCodeInReg;
348         while (pos != len) {
349                 // work out how much to send this time
350                 tx_size = len - pos;
351                 if (tx_size > 0x10)
352                         tx_size = 0x10;
353
354                 // send the chunk
355                 memcpy(buf + 1, mem + pos, tx_size);
356                 fw_msg.len = tx_size + 1;
357                 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
358                         printk(KERN_ERR "tda1004x: Error during firmware upload\n");
359                         return -EIO;
360                 }
361                 pos += tx_size;
362
363                 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
364         }
365         // give the DSP a chance to settle 03/10/05 Hac
366         msleep(100);
367
368         return 0;
369 }
370
371 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
372 {
373         u8 data1, data2;
374         unsigned long timeout;
375
376         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
377                 timeout = jiffies + 2 * HZ;
378                 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
379                         if (time_after(jiffies, timeout)) {
380                                 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
381                                 break;
382                         }
383                         msleep(1);
384                 }
385         } else
386                 msleep(100);
387
388         // check upload was OK
389         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
390         tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
391
392         data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
393         data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
394         if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
395                 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
396                 return -EIO;
397         }
398         printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
399         return 0;
400 }
401
402 static int tda10045_fwupload(struct dvb_frontend* fe)
403 {
404         struct tda1004x_state* state = fe->demodulator_priv;
405         int ret;
406         const struct firmware *fw;
407
408         /* don't re-upload unless necessary */
409         if (tda1004x_check_upload_ok(state) == 0)
410                 return 0;
411
412         /* request the firmware, this will block until someone uploads it */
413         printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
414         ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
415         if (ret) {
416                 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
417                 return ret;
418         }
419
420         /* reset chip */
421         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
422         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
423         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
424         msleep(10);
425
426         /* set parameters */
427         tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
428
429         ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
430         release_firmware(fw);
431         if (ret)
432                 return ret;
433         printk(KERN_INFO "tda1004x: firmware upload complete\n");
434
435         /* wait for DSP to initialise */
436         /* DSPREADY doesn't seem to work on the TDA10045H */
437         msleep(100);
438
439         return tda1004x_check_upload_ok(state);
440 }
441
442 static void tda10046_init_plls(struct dvb_frontend* fe)
443 {
444         struct tda1004x_state* state = fe->demodulator_priv;
445         int tda10046_clk53m;
446
447         if ((state->config->if_freq == TDA10046_FREQ_045) ||
448             (state->config->if_freq == TDA10046_FREQ_052))
449                 tda10046_clk53m = 0;
450         else
451                 tda10046_clk53m = 1;
452
453         tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
454         if(tda10046_clk53m) {
455                 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
456                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
457         } else {
458                 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
459                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
460         }
461         if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
462                 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
463                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
464         } else {
465                 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
466                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
467         }
468         if(tda10046_clk53m)
469                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
470         else
471                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
472         /* Note clock frequency is handled implicitly */
473         switch (state->config->if_freq) {
474         case TDA10046_FREQ_045:
475                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
476                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
477                 break;
478         case TDA10046_FREQ_052:
479                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
480                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
481                 break;
482         case TDA10046_FREQ_3617:
483                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
484                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
485                 break;
486         case TDA10046_FREQ_3613:
487                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
488                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
489                 break;
490         }
491         tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
492         /* let the PLLs settle */
493         msleep(120);
494 }
495
496 static int tda10046_fwupload(struct dvb_frontend* fe)
497 {
498         struct tda1004x_state* state = fe->demodulator_priv;
499         int ret;
500         const struct firmware *fw;
501
502         /* reset + wake up chip */
503         if (state->config->xtal_freq == TDA10046_XTAL_4M) {
504                 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
505         } else {
506                 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __FUNCTION__);
507                 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0x80);
508         }
509         tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
510         /* let the clocks recover from sleep */
511         msleep(5);
512
513         /* The PLLs need to be reprogrammed after sleep */
514         tda10046_init_plls(fe);
515
516         /* don't re-upload unless necessary */
517         if (tda1004x_check_upload_ok(state) == 0)
518                 return 0;
519
520         if (state->config->request_firmware != NULL) {
521                 /* request the firmware, this will block until someone uploads it */
522                 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
523                 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
524                 if (ret) {
525                         printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
526                         return ret;
527                 }
528                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
529                 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
530                 release_firmware(fw);
531                 if (ret)
532                         return ret;
533         } else {
534                 /* boot from firmware eeprom */
535                 printk(KERN_INFO "tda1004x: booting from eeprom\n");
536                 tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
537                 msleep(300);
538         }
539         return tda1004x_check_upload_ok(state);
540 }
541
542 static int tda1004x_encode_fec(int fec)
543 {
544         // convert known FEC values
545         switch (fec) {
546         case FEC_1_2:
547                 return 0;
548         case FEC_2_3:
549                 return 1;
550         case FEC_3_4:
551                 return 2;
552         case FEC_5_6:
553                 return 3;
554         case FEC_7_8:
555                 return 4;
556         }
557
558         // unsupported
559         return -EINVAL;
560 }
561
562 static int tda1004x_decode_fec(int tdafec)
563 {
564         // convert known FEC values
565         switch (tdafec) {
566         case 0:
567                 return FEC_1_2;
568         case 1:
569                 return FEC_2_3;
570         case 2:
571                 return FEC_3_4;
572         case 3:
573                 return FEC_5_6;
574         case 4:
575                 return FEC_7_8;
576         }
577
578         // unsupported
579         return -1;
580 }
581
582 int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
583 {
584         struct tda1004x_state* state = fe->demodulator_priv;
585
586         return tda1004x_write_byteI(state, reg, data);
587 }
588
589 static int tda10045_init(struct dvb_frontend* fe)
590 {
591         struct tda1004x_state* state = fe->demodulator_priv;
592
593         dprintk("%s\n", __FUNCTION__);
594
595         if (tda10045_fwupload(fe)) {
596                 printk("tda1004x: firmware upload failed\n");
597                 return -EIO;
598         }
599
600         tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
601
602         // tda setup
603         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
604         tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
605         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
606         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
607         tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
608         tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
609         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
610         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
611         tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
612         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
613         tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
614
615         tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
616
617         return 0;
618 }
619
620 static int tda10046_init(struct dvb_frontend* fe)
621 {
622         struct tda1004x_state* state = fe->demodulator_priv;
623         dprintk("%s\n", __FUNCTION__);
624
625         if (tda10046_fwupload(fe)) {
626                 printk("tda1004x: firmware upload failed\n");
627                         return -EIO;
628         }
629
630         // tda setup
631         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
632         tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87);    // 100 ppm crystal, select HP stream
633         tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88);      // enable pulse killer
634
635         switch (state->config->agc_config) {
636         case TDA10046_AGC_DEFAULT:
637                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
638                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
639                 break;
640         case TDA10046_AGC_IFO_AUTO_NEG:
641                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
642                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
643                 break;
644         case TDA10046_AGC_IFO_AUTO_POS:
645                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
646                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities
647                 break;
648         case TDA10046_AGC_TDA827X:
649                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
650                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
651                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
652                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x6a); // set AGC polarities
653                 break;
654         case TDA10046_AGC_TDA827X_GPL:
655                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
656                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
657                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
658                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
659                 break;
660         }
661         tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
662         tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
663         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0);    // }
664         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
665         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0);     // }
666         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff);  // }
667         tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
668         tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
669         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
670         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
671         // tda1004x_write_mask(state, 0x50, 0x80, 0x80);         // handle out of guard echoes
672         tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
673
674         return 0;
675 }
676
677 static int tda1004x_set_fe(struct dvb_frontend* fe,
678                            struct dvb_frontend_parameters *fe_params)
679 {
680         struct tda1004x_state* state = fe->demodulator_priv;
681         int tmp;
682         int inversion;
683
684         dprintk("%s\n", __FUNCTION__);
685
686         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
687                 // setup auto offset
688                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
689                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
690                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
691
692                 // disable agc_conf[2]
693                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
694         }
695
696         // set frequency
697         if (fe->ops.tuner_ops.set_params) {
698                 fe->ops.tuner_ops.set_params(fe, fe_params);
699                 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
700         }
701
702         // Hardcoded to use auto as much as possible on the TDA10045 as it
703         // is very unreliable if AUTO mode is _not_ used.
704         if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
705                 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
706                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
707                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
708         }
709
710         // Set standard params.. or put them to auto
711         if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
712                 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
713                 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
714                 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
715                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1);        // enable auto
716                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
717                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
718                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
719         } else {
720                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0);        // disable auto
721
722                 // set HP FEC
723                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
724                 if (tmp < 0)
725                         return tmp;
726                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
727
728                 // set LP FEC
729                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
730                 if (tmp < 0)
731                         return tmp;
732                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
733
734                 // set constellation
735                 switch (fe_params->u.ofdm.constellation) {
736                 case QPSK:
737                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
738                         break;
739
740                 case QAM_16:
741                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
742                         break;
743
744                 case QAM_64:
745                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
746                         break;
747
748                 default:
749                         return -EINVAL;
750                 }
751
752                 // set hierarchy
753                 switch (fe_params->u.ofdm.hierarchy_information) {
754                 case HIERARCHY_NONE:
755                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
756                         break;
757
758                 case HIERARCHY_1:
759                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
760                         break;
761
762                 case HIERARCHY_2:
763                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
764                         break;
765
766                 case HIERARCHY_4:
767                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
768                         break;
769
770                 default:
771                         return -EINVAL;
772                 }
773         }
774
775         // set bandwidth
776         switch (state->demod_type) {
777         case TDA1004X_DEMOD_TDA10045:
778                 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
779                 break;
780
781         case TDA1004X_DEMOD_TDA10046:
782                 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
783                 break;
784         }
785
786         // set inversion
787         inversion = fe_params->inversion;
788         if (state->config->invert)
789                 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
790         switch (inversion) {
791         case INVERSION_OFF:
792                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
793                 break;
794
795         case INVERSION_ON:
796                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
797                 break;
798
799         default:
800                 return -EINVAL;
801         }
802
803         // set guard interval
804         switch (fe_params->u.ofdm.guard_interval) {
805         case GUARD_INTERVAL_1_32:
806                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
807                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
808                 break;
809
810         case GUARD_INTERVAL_1_16:
811                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
812                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
813                 break;
814
815         case GUARD_INTERVAL_1_8:
816                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
817                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
818                 break;
819
820         case GUARD_INTERVAL_1_4:
821                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
822                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
823                 break;
824
825         case GUARD_INTERVAL_AUTO:
826                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
827                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
828                 break;
829
830         default:
831                 return -EINVAL;
832         }
833
834         // set transmission mode
835         switch (fe_params->u.ofdm.transmission_mode) {
836         case TRANSMISSION_MODE_2K:
837                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
838                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
839                 break;
840
841         case TRANSMISSION_MODE_8K:
842                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
843                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
844                 break;
845
846         case TRANSMISSION_MODE_AUTO:
847                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
848                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
849                 break;
850
851         default:
852                 return -EINVAL;
853         }
854
855         // start the lock
856         switch (state->demod_type) {
857         case TDA1004X_DEMOD_TDA10045:
858                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
859                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
860                 break;
861
862         case TDA1004X_DEMOD_TDA10046:
863                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
864                 msleep(1);
865                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
866                 break;
867         }
868
869         msleep(10);
870
871         return 0;
872 }
873
874 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
875 {
876         struct tda1004x_state* state = fe->demodulator_priv;
877
878         dprintk("%s\n", __FUNCTION__);
879
880         // inversion status
881         fe_params->inversion = INVERSION_OFF;
882         if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
883                 fe_params->inversion = INVERSION_ON;
884         if (state->config->invert)
885                 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
886
887         // bandwidth
888         switch (state->demod_type) {
889         case TDA1004X_DEMOD_TDA10045:
890                 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
891                 case 0x14:
892                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
893                         break;
894                 case 0xdb:
895                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
896                         break;
897                 case 0x4f:
898                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
899                         break;
900                 }
901                 break;
902         case TDA1004X_DEMOD_TDA10046:
903                 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
904                 case 0x5c:
905                 case 0x54:
906                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
907                         break;
908                 case 0x6a:
909                 case 0x60:
910                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
911                         break;
912                 case 0x7b:
913                 case 0x70:
914                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
915                         break;
916                 }
917                 break;
918         }
919
920         // FEC
921         fe_params->u.ofdm.code_rate_HP =
922             tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
923         fe_params->u.ofdm.code_rate_LP =
924             tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
925
926         // constellation
927         switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
928         case 0:
929                 fe_params->u.ofdm.constellation = QPSK;
930                 break;
931         case 1:
932                 fe_params->u.ofdm.constellation = QAM_16;
933                 break;
934         case 2:
935                 fe_params->u.ofdm.constellation = QAM_64;
936                 break;
937         }
938
939         // transmission mode
940         fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
941         if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
942                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
943
944         // guard interval
945         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
946         case 0:
947                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
948                 break;
949         case 1:
950                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
951                 break;
952         case 2:
953                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
954                 break;
955         case 3:
956                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
957                 break;
958         }
959
960         // hierarchy
961         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
962         case 0:
963                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
964                 break;
965         case 1:
966                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
967                 break;
968         case 2:
969                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
970                 break;
971         case 3:
972                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
973                 break;
974         }
975
976         return 0;
977 }
978
979 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
980 {
981         struct tda1004x_state* state = fe->demodulator_priv;
982         int status;
983         int cber;
984         int vber;
985
986         dprintk("%s\n", __FUNCTION__);
987
988         // read status
989         status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
990         if (status == -1)
991                 return -EIO;
992
993         // decode
994         *fe_status = 0;
995         if (status & 4)
996                 *fe_status |= FE_HAS_SIGNAL;
997         if (status & 2)
998                 *fe_status |= FE_HAS_CARRIER;
999         if (status & 8)
1000                 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1001
1002         // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1003         // is getting anything valid
1004         if (!(*fe_status & FE_HAS_VITERBI)) {
1005                 // read the CBER
1006                 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1007                 if (cber == -1)
1008                         return -EIO;
1009                 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1010                 if (status == -1)
1011                         return -EIO;
1012                 cber |= (status << 8);
1013                 // The address 0x20 should be read to cope with a TDA10046 bug
1014                 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1015
1016                 if (cber != 65535)
1017                         *fe_status |= FE_HAS_VITERBI;
1018         }
1019
1020         // if we DO have some valid VITERBI output, but don't already have SYNC
1021         // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1022         if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1023                 // read the VBER
1024                 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1025                 if (vber == -1)
1026                         return -EIO;
1027                 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1028                 if (status == -1)
1029                         return -EIO;
1030                 vber |= (status << 8);
1031                 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1032                 if (status == -1)
1033                         return -EIO;
1034                 vber |= (status & 0x0f) << 16;
1035                 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1036                 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1037
1038                 // if RS has passed some valid TS packets, then we must be
1039                 // getting some SYNC bytes
1040                 if (vber < 16632)
1041                         *fe_status |= FE_HAS_SYNC;
1042         }
1043
1044         // success
1045         dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
1046         return 0;
1047 }
1048
1049 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1050 {
1051         struct tda1004x_state* state = fe->demodulator_priv;
1052         int tmp;
1053         int reg = 0;
1054
1055         dprintk("%s\n", __FUNCTION__);
1056
1057         // determine the register to use
1058         switch (state->demod_type) {
1059         case TDA1004X_DEMOD_TDA10045:
1060                 reg = TDA10045H_S_AGC;
1061                 break;
1062
1063         case TDA1004X_DEMOD_TDA10046:
1064                 reg = TDA10046H_AGC_IF_LEVEL;
1065                 break;
1066         }
1067
1068         // read it
1069         tmp = tda1004x_read_byte(state, reg);
1070         if (tmp < 0)
1071                 return -EIO;
1072
1073         *signal = (tmp << 8) | tmp;
1074         dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1075         return 0;
1076 }
1077
1078 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1079 {
1080         struct tda1004x_state* state = fe->demodulator_priv;
1081         int tmp;
1082
1083         dprintk("%s\n", __FUNCTION__);
1084
1085         // read it
1086         tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1087         if (tmp < 0)
1088                 return -EIO;
1089         tmp = 255 - tmp;
1090
1091         *snr = ((tmp << 8) | tmp);
1092         dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1093         return 0;
1094 }
1095
1096 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1097 {
1098         struct tda1004x_state* state = fe->demodulator_priv;
1099         int tmp;
1100         int tmp2;
1101         int counter;
1102
1103         dprintk("%s\n", __FUNCTION__);
1104
1105         // read the UCBLOCKS and reset
1106         counter = 0;
1107         tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1108         if (tmp < 0)
1109                 return -EIO;
1110         tmp &= 0x7f;
1111         while (counter++ < 5) {
1112                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1113                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1114                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1115
1116                 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1117                 if (tmp2 < 0)
1118                         return -EIO;
1119                 tmp2 &= 0x7f;
1120                 if ((tmp2 < tmp) || (tmp2 == 0))
1121                         break;
1122         }
1123
1124         if (tmp != 0x7f)
1125                 *ucblocks = tmp;
1126         else
1127                 *ucblocks = 0xffffffff;
1128
1129         dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1130         return 0;
1131 }
1132
1133 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1134 {
1135         struct tda1004x_state* state = fe->demodulator_priv;
1136         int tmp;
1137
1138         dprintk("%s\n", __FUNCTION__);
1139
1140         // read it in
1141         tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1142         if (tmp < 0)
1143                 return -EIO;
1144         *ber = tmp << 1;
1145         tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1146         if (tmp < 0)
1147                 return -EIO;
1148         *ber |= (tmp << 9);
1149         // The address 0x20 should be read to cope with a TDA10046 bug
1150         tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1151
1152         dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1153         return 0;
1154 }
1155
1156 static int tda1004x_sleep(struct dvb_frontend* fe)
1157 {
1158         struct tda1004x_state* state = fe->demodulator_priv;
1159
1160         switch (state->demod_type) {
1161         case TDA1004X_DEMOD_TDA10045:
1162                 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1163                 break;
1164
1165         case TDA1004X_DEMOD_TDA10046:
1166                 /* set outputs to tristate */
1167                 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1168                 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1169                 break;
1170         }
1171
1172         return 0;
1173 }
1174
1175 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1176 {
1177         struct tda1004x_state* state = fe->demodulator_priv;
1178
1179         if (enable) {
1180                 return tda1004x_enable_tuner_i2c(state);
1181         } else {
1182                 return tda1004x_disable_tuner_i2c(state);
1183         }
1184 }
1185
1186 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1187 {
1188         fesettings->min_delay_ms = 800;
1189         /* Drift compensation makes no sense for DVB-T */
1190         fesettings->step_size = 0;
1191         fesettings->max_drift = 0;
1192         return 0;
1193 }
1194
1195 static void tda1004x_release(struct dvb_frontend* fe)
1196 {
1197         struct tda1004x_state *state = fe->demodulator_priv;
1198         kfree(state);
1199 }
1200
1201 static struct dvb_frontend_ops tda10045_ops = {
1202         .info = {
1203                 .name = "Philips TDA10045H DVB-T",
1204                 .type = FE_OFDM,
1205                 .frequency_min = 51000000,
1206                 .frequency_max = 858000000,
1207                 .frequency_stepsize = 166667,
1208                 .caps =
1209                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1210                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1211                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1212                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1213         },
1214
1215         .release = tda1004x_release,
1216
1217         .init = tda10045_init,
1218         .sleep = tda1004x_sleep,
1219         .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1220
1221         .set_frontend = tda1004x_set_fe,
1222         .get_frontend = tda1004x_get_fe,
1223         .get_tune_settings = tda1004x_get_tune_settings,
1224
1225         .read_status = tda1004x_read_status,
1226         .read_ber = tda1004x_read_ber,
1227         .read_signal_strength = tda1004x_read_signal_strength,
1228         .read_snr = tda1004x_read_snr,
1229         .read_ucblocks = tda1004x_read_ucblocks,
1230 };
1231
1232 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1233                                      struct i2c_adapter* i2c)
1234 {
1235         struct tda1004x_state *state;
1236
1237         /* allocate memory for the internal state */
1238         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1239         if (!state)
1240                 return NULL;
1241
1242         /* setup the state */
1243         state->config = config;
1244         state->i2c = i2c;
1245         state->demod_type = TDA1004X_DEMOD_TDA10045;
1246
1247         /* check if the demod is there */
1248         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1249                 kfree(state);
1250                 return NULL;
1251         }
1252
1253         /* create dvb_frontend */
1254         memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1255         state->frontend.demodulator_priv = state;
1256         return &state->frontend;
1257 }
1258
1259 static struct dvb_frontend_ops tda10046_ops = {
1260         .info = {
1261                 .name = "Philips TDA10046H DVB-T",
1262                 .type = FE_OFDM,
1263                 .frequency_min = 51000000,
1264                 .frequency_max = 858000000,
1265                 .frequency_stepsize = 166667,
1266                 .caps =
1267                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1268                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1269                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1270                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1271         },
1272
1273         .release = tda1004x_release,
1274
1275         .init = tda10046_init,
1276         .sleep = tda1004x_sleep,
1277         .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1278
1279         .set_frontend = tda1004x_set_fe,
1280         .get_frontend = tda1004x_get_fe,
1281         .get_tune_settings = tda1004x_get_tune_settings,
1282
1283         .read_status = tda1004x_read_status,
1284         .read_ber = tda1004x_read_ber,
1285         .read_signal_strength = tda1004x_read_signal_strength,
1286         .read_snr = tda1004x_read_snr,
1287         .read_ucblocks = tda1004x_read_ucblocks,
1288 };
1289
1290 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1291                                      struct i2c_adapter* i2c)
1292 {
1293         struct tda1004x_state *state;
1294
1295         /* allocate memory for the internal state */
1296         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1297         if (!state)
1298                 return NULL;
1299
1300         /* setup the state */
1301         state->config = config;
1302         state->i2c = i2c;
1303         state->demod_type = TDA1004X_DEMOD_TDA10046;
1304
1305         /* check if the demod is there */
1306         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1307                 kfree(state);
1308                 return NULL;
1309         }
1310
1311         /* create dvb_frontend */
1312         memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1313         state->frontend.demodulator_priv = state;
1314         return &state->frontend;
1315 }
1316
1317 module_param(debug, int, 0644);
1318 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1319
1320 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1321 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1322 MODULE_LICENSE("GPL");
1323
1324 EXPORT_SYMBOL(tda10045_attach);
1325 EXPORT_SYMBOL(tda10046_attach);
1326 EXPORT_SYMBOL(tda1004x_write_byte);