This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / drivers / media / dvb / frontends / tda80xx.c
1 /*
2  * tda80xx.c
3  *
4  * Philips TDA8044 / TDA8083 QPSK demodulator driver
5  *
6  * Copyright (C) 2001 Felix Domke <tmbinc@elitedvb.net>
7  * Copyright (C) 2002-2004 Andreas Oberritter <obi@linuxtv.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23
24 #include <linux/config.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/threads.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <asm/div64.h>
35
36 #include "dvb_frontend.h"
37 #include "tda80xx.h"
38
39 enum {
40         ID_TDA8044 = 0x04,
41         ID_TDA8083 = 0x05,
42 };
43
44
45 struct tda80xx_state {
46
47         struct i2c_adapter* i2c;
48
49         struct dvb_frontend_ops ops;
50
51         /* configuration settings */
52         const struct tda80xx_config* config;
53
54         struct dvb_frontend frontend;
55
56         u32 clk;
57         int afc_loop;
58         struct work_struct worklet;
59         fe_code_rate_t code_rate;
60         fe_spectral_inversion_t spectral_inversion;
61         fe_status_t status;
62         u8 id;
63 };
64
65 static int debug = 1;
66 #define dprintk if (debug) printk
67
68 static u8 tda8044_inittab_pre[] = {
69         0x02, 0x00, 0x6f, 0xb5, 0x86, 0x22, 0x00, 0xea,
70         0x30, 0x42, 0x98, 0x68, 0x70, 0x42, 0x99, 0x58,
71         0x95, 0x10, 0xf5, 0xe7, 0x93, 0x0b, 0x15, 0x68,
72         0x9a, 0x90, 0x61, 0x80, 0x00, 0xe0, 0x40, 0x00,
73         0x0f, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
74         0x00, 0x00
75 };
76
77 static u8 tda8044_inittab_post[] = {
78         0x04, 0x00, 0x6f, 0xb5, 0x86, 0x22, 0x00, 0xea,
79         0x30, 0x42, 0x98, 0x68, 0x70, 0x42, 0x99, 0x50,
80         0x95, 0x10, 0xf5, 0xe7, 0x93, 0x0b, 0x15, 0x68,
81         0x9a, 0x90, 0x61, 0x80, 0x00, 0xe0, 0x40, 0x6c,
82         0x0f, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
83         0x00, 0x00
84 };
85
86 static u8 tda8083_inittab[] = {
87         0x04, 0x00, 0x4a, 0x79, 0x04, 0x00, 0xff, 0xea,
88         0x48, 0x42, 0x79, 0x60, 0x70, 0x52, 0x9a, 0x10,
89         0x0e, 0x10, 0xf2, 0xa7, 0x93, 0x0b, 0x05, 0xc8,
90         0x9d, 0x00, 0x42, 0x80, 0x00, 0x60, 0x40, 0x00,
91         0x00, 0x75, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x00,
92         0x00, 0x00, 0x00, 0x00
93 };
94
95 static __inline__ u32 tda80xx_div(u32 a, u32 b)
96 {
97         return (a + (b / 2)) / b;
98 }
99
100 static __inline__ u32 tda80xx_gcd(u32 a, u32 b)
101 {
102         u32 r;
103
104         while ((r = a % b)) {
105                 a = b;
106                 b = r;
107         }
108
109         return b;
110 }
111
112 static int tda80xx_read(struct tda80xx_state* state, u8 reg, u8 *buf, u8 len)
113 {
114         int ret;
115         struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
116                           { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = buf, .len = len } };
117
118         ret = i2c_transfer(state->i2c, msg, 2);
119
120         if (ret != 2)
121                 dprintk("%s: readreg error (reg %02x, ret == %i)\n",
122                                 __FUNCTION__, reg, ret);
123
124         mdelay(10);
125
126         return (ret == 2) ? 0 : -EREMOTEIO;
127 }
128
129 static int tda80xx_write(struct tda80xx_state* state, u8 reg, const u8 *buf, u8 len)
130 {
131         int ret;
132         u8 wbuf[len + 1];
133         struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = wbuf, .len = len + 1 };
134
135         wbuf[0] = reg;
136         memcpy(&wbuf[1], buf, len);
137
138         ret = i2c_transfer(state->i2c, &msg, 1);
139
140         if (ret != 1)
141                 dprintk("%s: i2c xfer error (ret == %i)\n", __FUNCTION__, ret);
142
143         mdelay(10);
144
145         return (ret == 1) ? 0 : -EREMOTEIO;
146 }
147
148 static __inline__ u8 tda80xx_readreg(struct tda80xx_state* state, u8 reg)
149 {
150         u8 val;
151
152         tda80xx_read(state, reg, &val, 1);
153
154         return val;
155 }
156
157 static __inline__ int tda80xx_writereg(struct tda80xx_state* state, u8 reg, u8 data)
158 {
159         return tda80xx_write(state, reg, &data, 1);
160 }
161
162 static int tda80xx_set_parameters(struct tda80xx_state* state,
163                                   fe_spectral_inversion_t inversion,
164                                   u32 symbol_rate,
165                                   fe_code_rate_t fec_inner)
166 {
167         u8 buf[15];
168         u64 ratio;
169         u32 clk;
170         u32 k;
171         u32 sr = symbol_rate;
172         u32 gcd;
173         u8 scd;
174
175         if (symbol_rate > (state->clk * 3) / 16)
176                 scd = 0;
177         else if (symbol_rate > (state->clk * 3) / 32)
178                 scd = 1;
179         else if (symbol_rate > (state->clk * 3) / 64)
180                 scd = 2;
181         else
182                 scd = 3;
183
184         clk = scd ? (state->clk / (scd * 2)) : state->clk;
185
186         /*
187          * Viterbi decoder:
188          * Differential decoding off
189          * Spectral inversion unknown
190          * QPSK modulation
191          */
192         if (inversion == INVERSION_ON)
193                 buf[0] = 0x60;
194         else if (inversion == INVERSION_OFF)
195                 buf[0] = 0x20;
196         else
197                 buf[0] = 0x00;
198
199         /*
200          * CLK ratio:
201          * system clock frequency is up to 64 or 96 MHz
202          *
203          * formula:
204          * r = k * clk / symbol_rate
205          *
206          * k:   2^21 for caa 0..3,
207          *      2^20 for caa 4..5,
208          *      2^19 for caa 6..7
209          */
210         if (symbol_rate <= (clk * 3) / 32)
211                 k = (1 << 19);
212         else if (symbol_rate <= (clk * 3) / 16)
213                 k = (1 << 20);
214         else
215                 k = (1 << 21);
216
217         gcd = tda80xx_gcd(clk, sr);
218         clk /= gcd;
219         sr /= gcd;
220
221         gcd = tda80xx_gcd(k, sr);
222         k /= gcd;
223         sr /= gcd;
224
225         ratio = (u64)k * (u64)clk;
226         do_div(ratio, sr);
227
228         buf[1] = ratio >> 16;
229         buf[2] = ratio >> 8;
230         buf[3] = ratio;
231
232         /* nyquist filter roll-off factor 35% */
233         buf[4] = 0x20;
234
235         clk = scd ? (state->clk / (scd * 2)) : state->clk;
236
237         /* Anti Alias Filter */
238         if (symbol_rate < (clk * 3) / 64)
239                 printk("tda80xx: unsupported symbol rate: %u\n", symbol_rate);
240         else if (symbol_rate <= clk / 16)
241                 buf[4] |= 0x07;
242         else if (symbol_rate <= (clk * 3) / 32)
243                 buf[4] |= 0x06;
244         else if (symbol_rate <= clk / 8)
245                 buf[4] |= 0x05;
246         else if (symbol_rate <= (clk * 3) / 16)
247                 buf[4] |= 0x04;
248         else if (symbol_rate <= clk / 4)
249                 buf[4] |= 0x03;
250         else if (symbol_rate <= (clk * 3) / 8)
251                 buf[4] |= 0x02;
252         else if (symbol_rate <= clk / 2)
253                 buf[4] |= 0x01;
254         else
255                 buf[4] |= 0x00;
256
257         /* Sigma Delta converter */
258         buf[5] = 0x00;
259
260         /* FEC: Possible puncturing rates */
261         if (fec_inner == FEC_NONE)
262                 buf[6] = 0x00;
263         else if ((fec_inner >= FEC_1_2) && (fec_inner <= FEC_8_9))
264                 buf[6] = (1 << (8 - fec_inner));
265         else if (fec_inner == FEC_AUTO)
266                 buf[6] = 0xff;
267         else
268                 return -EINVAL;
269
270         /* carrier lock detector threshold value */
271         buf[7] = 0x30;
272         /* AFC1: proportional part settings */
273         buf[8] = 0x42;
274         /* AFC1: integral part settings */
275         buf[9] = 0x98;
276         /* PD: Leaky integrator SCPC mode */
277         buf[10] = 0x28;
278         /* AFC2, AFC1 controls */
279         buf[11] = 0x30;
280         /* PD: proportional part settings */
281         buf[12] = 0x42;
282         /* PD: integral part settings */
283         buf[13] = 0x99;
284         /* AGC */
285         buf[14] = 0x50 | scd;
286
287         printk("symbol_rate=%u clk=%u\n", symbol_rate, clk);
288
289         return tda80xx_write(state, 0x01, buf, sizeof(buf));
290 }
291
292 static int tda80xx_set_clk(struct tda80xx_state* state)
293 {
294         u8 buf[2];
295
296         /* CLK proportional part */
297         buf[0] = (0x06 << 5) | 0x08;    /* CMP[2:0], CSP[4:0] */
298         /* CLK integral part */
299         buf[1] = (0x04 << 5) | 0x1a;    /* CMI[2:0], CSI[4:0] */
300
301         return tda80xx_write(state, 0x17, buf, sizeof(buf));
302 }
303
304 #if 0
305 static int tda80xx_set_scpc_freq_offset(struct tda80xx_state* state)
306 {
307         /* a constant value is nonsense here imho */
308         return tda80xx_writereg(state, 0x22, 0xf9);
309 }
310 #endif
311
312 static int tda80xx_close_loop(struct tda80xx_state* state)
313 {
314         u8 buf[2];
315
316         /* PD: Loop closed, LD: lock detect enable, SCPC: Sweep mode - AFC1 loop closed */
317         buf[0] = 0x68;
318         /* AFC1: Loop closed, CAR Feedback: 8192 */
319         buf[1] = 0x70;
320
321         return tda80xx_write(state, 0x0b, buf, sizeof(buf));
322 }
323
324 static irqreturn_t tda80xx_irq(int irq, void *priv, struct pt_regs *pt)
325 {
326         schedule_work(priv);
327
328         return IRQ_HANDLED;
329 }
330
331 static void tda80xx_read_status_int(struct tda80xx_state* state)
332 {
333         u8 val;
334
335         static const fe_spectral_inversion_t inv_tab[] = {
336                 INVERSION_OFF, INVERSION_ON
337         };
338
339         static const fe_code_rate_t fec_tab[] = {
340                 FEC_8_9, FEC_1_2, FEC_2_3, FEC_3_4,
341                 FEC_4_5, FEC_5_6, FEC_6_7, FEC_7_8,
342         };
343
344         val = tda80xx_readreg(state, 0x02);
345
346         state->status = 0;
347
348         if (val & 0x01) /* demodulator lock */
349                 state->status |= FE_HAS_SIGNAL;
350         if (val & 0x02) /* clock recovery lock */
351                 state->status |= FE_HAS_CARRIER;
352         if (val & 0x04) /* viterbi lock */
353                 state->status |= FE_HAS_VITERBI;
354         if (val & 0x08) /* deinterleaver lock (packet sync) */
355                 state->status |= FE_HAS_SYNC;
356         if (val & 0x10) /* derandomizer lock (frame sync) */
357                 state->status |= FE_HAS_LOCK;
358         if (val & 0x20) /* frontend can not lock */
359                 state->status |= FE_TIMEDOUT;
360
361         if ((state->status & (FE_HAS_CARRIER)) && (state->afc_loop)) {
362                 printk("tda80xx: closing loop\n");
363                 tda80xx_close_loop(state);
364                 state->afc_loop = 0;
365         }
366
367         if (state->status & (FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK)) {
368                 val = tda80xx_readreg(state, 0x0e);
369                 state->code_rate = fec_tab[val & 0x07];
370                 if (state->status & (FE_HAS_SYNC | FE_HAS_LOCK))
371                         state->spectral_inversion = inv_tab[(val >> 7) & 0x01];
372                 else
373                         state->spectral_inversion = INVERSION_AUTO;
374         }
375         else {
376                 state->code_rate = FEC_AUTO;
377         }
378 }
379
380 static void tda80xx_worklet(void *priv)
381 {
382         struct tda80xx_state *state = priv;
383
384         tda80xx_writereg(state, 0x00, 0x04);
385         enable_irq(state->config->irq);
386
387         tda80xx_read_status_int(state);
388 }
389
390 static void tda80xx_wait_diseqc_fifo(struct tda80xx_state* state)
391 {
392         size_t i;
393
394         for (i = 0; i < 100; i++) {
395                 if (tda80xx_readreg(state, 0x02) & 0x80)
396                         break;
397                 msleep(10);
398         }
399 }
400
401 static int tda8044_init(struct dvb_frontend* fe)
402 {
403         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
404         int ret;
405
406         /*
407          * this function is a mess...
408          */
409
410         if ((ret = tda80xx_write(state, 0x00, tda8044_inittab_pre, sizeof(tda8044_inittab_pre))))
411                 return ret;
412
413         tda80xx_writereg(state, 0x0f, 0x50);
414 #if 1
415         tda80xx_writereg(state, 0x20, 0x8F);            /* FIXME */
416         tda80xx_writereg(state, 0x20, state->config->volt18setting);    /* FIXME */
417         //tda80xx_writereg(state, 0x00, 0x04);
418         tda80xx_writereg(state, 0x00, 0x0C);
419 #endif
420         //tda80xx_writereg(state, 0x00, 0x08); /* Reset AFC1 loop filter */
421
422         tda80xx_write(state, 0x00, tda8044_inittab_post, sizeof(tda8044_inittab_post));
423
424         if (state->config->pll_init) {
425                 tda80xx_writereg(state, 0x1c, 0x80);
426                 state->config->pll_init(fe);
427                 tda80xx_writereg(state, 0x1c, 0x00);
428         }
429
430         return 0;
431 }
432
433 static int tda8083_init(struct dvb_frontend* fe)
434 {
435         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
436
437         tda80xx_write(state, 0x00, tda8083_inittab, sizeof(tda8083_inittab));
438
439         if (state->config->pll_init) {
440                 tda80xx_writereg(state, 0x1c, 0x80);
441                 state->config->pll_init(fe);
442                 tda80xx_writereg(state, 0x1c, 0x00);
443         }
444
445         return 0;
446 }
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463 static int tda80xx_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
464 {
465         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
466
467         switch (voltage) {
468         case SEC_VOLTAGE_13:
469                 return tda80xx_writereg(state, 0x20, state->config->volt13setting);
470         case SEC_VOLTAGE_18:
471                 return tda80xx_writereg(state, 0x20, state->config->volt18setting);
472         case SEC_VOLTAGE_OFF:
473                 return tda80xx_writereg(state, 0x20, 0);
474         default:
475                 return -EINVAL;
476         }
477 }
478
479 static int tda80xx_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
480 {
481         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
482
483         switch (tone) {
484         case SEC_TONE_OFF:
485                 return tda80xx_writereg(state, 0x29, 0x00);
486         case SEC_TONE_ON:
487                 return tda80xx_writereg(state, 0x29, 0x80);
488         default:
489                 return -EINVAL;
490         }
491 }
492
493 static int tda80xx_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
494 {
495         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
496
497         if (cmd->msg_len > 6)
498                 return -EINVAL;
499
500         tda80xx_writereg(state, 0x29, 0x08 | (cmd->msg_len - 3));
501         tda80xx_write(state, 0x23, cmd->msg, cmd->msg_len);
502         tda80xx_writereg(state, 0x29, 0x0c | (cmd->msg_len - 3));
503         tda80xx_wait_diseqc_fifo(state);
504
505         return 0;
506 }
507
508 static int tda80xx_send_diseqc_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t cmd)
509 {
510         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
511
512         switch (cmd) {
513         case SEC_MINI_A:
514                 tda80xx_writereg(state, 0x29, 0x14);
515                 break;
516         case SEC_MINI_B:
517                 tda80xx_writereg(state, 0x29, 0x1c);
518                 break;
519         default:
520                 return -EINVAL;
521         }
522
523         tda80xx_wait_diseqc_fifo(state);
524
525         return 0;
526 }
527
528 static int tda80xx_sleep(struct dvb_frontend* fe)
529 {
530         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
531
532         tda80xx_writereg(state, 0x00, 0x02);    /* enter standby */
533
534         return 0;
535 }
536
537 static int tda80xx_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
538 {
539         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
540
541         tda80xx_writereg(state, 0x1c, 0x80);
542         state->config->pll_set(fe, p);
543         tda80xx_writereg(state, 0x1c, 0x00);
544
545         tda80xx_set_parameters(state, p->inversion, p->u.qpsk.symbol_rate, p->u.qpsk.fec_inner);
546         tda80xx_set_clk(state);
547         //tda80xx_set_scpc_freq_offset(state);
548         state->afc_loop = 1;
549
550         return 0;
551 }
552
553 static int tda80xx_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
554 {
555         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
556
557         if (!state->config->irq)
558                 tda80xx_read_status_int(state);
559
560         p->inversion = state->spectral_inversion;
561         p->u.qpsk.fec_inner = state->code_rate;
562
563         return 0;
564 }
565
566 static int tda80xx_read_status(struct dvb_frontend* fe, fe_status_t* status)
567 {
568         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
569
570         if (!state->config->irq)
571                 tda80xx_read_status_int(state);
572         *status = state->status;
573
574         return 0;
575 }
576
577 static int tda80xx_read_ber(struct dvb_frontend* fe, u32* ber)
578 {
579         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
580         int ret;
581         u8 buf[3];
582
583         if ((ret = tda80xx_read(state, 0x0b, buf, sizeof(buf))))
584                 return ret;
585
586         *ber = ((buf[0] & 0x1f) << 16) | (buf[1] << 8) | buf[2];
587
588         return 0;
589 }
590
591 static int tda80xx_read_signal_strength(struct dvb_frontend* fe, u16* strength)
592 {
593         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
594
595         u8 gain = ~tda80xx_readreg(state, 0x01);
596         *strength = (gain << 8) | gain;
597
598         return 0;
599 }
600
601 static int tda80xx_read_snr(struct dvb_frontend* fe, u16* snr)
602 {
603         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
604
605         u8 quality = tda80xx_readreg(state, 0x08);
606         *snr = (quality << 8) | quality;
607
608         return 0;
609 }
610
611 static int tda80xx_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
612 {
613         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
614
615         *ucblocks = tda80xx_readreg(state, 0x0f);
616         if (*ucblocks == 0xff)
617                 *ucblocks = 0xffffffff;
618
619         return 0;
620 }
621
622 static int tda80xx_init(struct dvb_frontend* fe)
623 {
624         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
625
626         switch(state->id) {
627         case ID_TDA8044:
628                 return tda8044_init(fe);
629
630         case ID_TDA8083:
631                 return tda8083_init(fe);
632         }
633         return 0;
634 }
635
636 static void tda80xx_release(struct dvb_frontend* fe)
637 {
638         struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
639
640         if (state->config->irq)
641                 free_irq(state->config->irq, &state->worklet);
642
643         kfree(state);
644 }
645
646 static struct dvb_frontend_ops tda80xx_ops;
647
648 struct dvb_frontend* tda80xx_attach(const struct tda80xx_config* config,
649                                     struct i2c_adapter* i2c)
650 {
651         struct tda80xx_state* state = NULL;
652         int ret;
653
654         /* allocate memory for the internal state */
655         state = (struct tda80xx_state*) kmalloc(sizeof(struct tda80xx_state), GFP_KERNEL);
656         if (state == NULL) goto error;
657
658         /* setup the state */
659         state->config = config;
660         state->i2c = i2c;
661         memcpy(&state->ops, &tda80xx_ops, sizeof(struct dvb_frontend_ops));
662         state->spectral_inversion = INVERSION_AUTO;
663         state->code_rate = FEC_AUTO;
664         state->status = 0;
665         state->afc_loop = 0;
666
667         /* check if the demod is there */
668         if (tda80xx_writereg(state, 0x89, 0x00) < 0) goto error;
669         state->id = tda80xx_readreg(state, 0x00);
670
671         switch (state->id) {
672         case ID_TDA8044:
673                 state->clk = 96000000;
674                 printk("tda80xx: Detected tda8044\n");
675                 break;
676
677         case ID_TDA8083:
678                 state->clk = 64000000;
679                 printk("tda80xx: Detected tda8083\n");
680                 break;
681
682         default:
683                 goto error;
684         }
685
686         /* setup IRQ */
687         if (state->config->irq) {
688                 INIT_WORK(&state->worklet, tda80xx_worklet, state);
689                 if ((ret = request_irq(state->config->irq, tda80xx_irq, SA_ONESHOT, "tda80xx", &state->worklet)) < 0) {
690                         printk(KERN_ERR "tda80xx: request_irq failed (%d)\n", ret);
691                         goto error;
692                 }
693         }
694
695         /* create dvb_frontend */
696         state->frontend.ops = &state->ops;
697         state->frontend.demodulator_priv = state;
698         return &state->frontend;
699
700 error:
701         if (state) kfree(state);
702         return NULL;
703 }
704
705 static struct dvb_frontend_ops tda80xx_ops = {
706
707         .info = {
708                 .name = "Philips TDA80xx DVB-S",
709                 .type = FE_QPSK,
710                 .frequency_min = 500000,
711                 .frequency_max = 2700000,
712                 .frequency_stepsize = 125,
713                 .symbol_rate_min = 4500000,
714                 .symbol_rate_max = 45000000,
715                 .caps = FE_CAN_INVERSION_AUTO |
716                         FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
717                         FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
718                         FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
719                         FE_CAN_QPSK |
720                         FE_CAN_MUTE_TS
721         },
722
723         .release = tda80xx_release,
724
725         .init = tda80xx_init,
726         .sleep = tda80xx_sleep,
727
728         .set_frontend = tda80xx_set_frontend,
729         .get_frontend = tda80xx_get_frontend,
730
731         .read_status = tda80xx_read_status,
732         .read_ber = tda80xx_read_ber,
733         .read_signal_strength = tda80xx_read_signal_strength,
734         .read_snr = tda80xx_read_snr,
735         .read_ucblocks = tda80xx_read_ucblocks,
736
737         .diseqc_send_master_cmd = tda80xx_send_diseqc_msg,
738         .diseqc_send_burst = tda80xx_send_diseqc_burst,
739         .set_tone = tda80xx_set_tone,
740         .set_voltage = tda80xx_set_voltage,
741 };
742
743 module_param(debug, int, 0644);
744
745 MODULE_DESCRIPTION("Philips TDA8044 / TDA8083 DVB-S Demodulator driver");
746 MODULE_AUTHOR("Felix Domke, Andreas Oberritter");
747 MODULE_LICENSE("GPL");
748
749 EXPORT_SYMBOL(tda80xx_attach);