This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page. 
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targetted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering 
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.  
67  */
68
69 #include <linux/config.h>
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95
96 #include <net/checksum.h>
97
98 #include <asm/atomic.h>
99 #include <asm/system.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
103
104 #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106 #define CAS_NCPUS            num_online_cpus()
107
108 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define USE_NAPI
110 #define cas_skb_release(x)  netif_receive_skb(x)
111 #else
112 #define cas_skb_release(x)  netif_rx(x)
113 #endif
114
115 /* select which firmware to use */
116 #define USE_HP_WORKAROUND     
117 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
118 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
119
120 #include "cassini.h"
121
122 #define USE_TX_COMPWB      /* use completion writeback registers */
123 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
124 #define USE_RX_BLANK       /* hw interrupt mitigation */
125 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
126
127 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
128  * also, we need to make cp->lock finer-grained.
129  */
130 #undef  USE_PCI_INTB
131 #undef  USE_PCI_INTC
132 #undef  USE_PCI_INTD
133 #undef  USE_QOS
134
135 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
136
137 /* rx processing options */
138 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
139 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
140 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
141 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
142 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
143
144 #define DRV_MODULE_NAME         "cassini"
145 #define PFX DRV_MODULE_NAME     ": "
146 #define DRV_MODULE_VERSION      "1.4"
147 #define DRV_MODULE_RELDATE      "1 July 2004"
148
149 #define CAS_DEF_MSG_ENABLE        \
150         (NETIF_MSG_DRV          | \
151          NETIF_MSG_PROBE        | \
152          NETIF_MSG_LINK         | \
153          NETIF_MSG_TIMER        | \
154          NETIF_MSG_IFDOWN       | \
155          NETIF_MSG_IFUP         | \
156          NETIF_MSG_RX_ERR       | \
157          NETIF_MSG_TX_ERR)
158
159 /* length of time before we decide the hardware is borked,
160  * and dev->tx_timeout() should be called to fix the problem
161  */
162 #define CAS_TX_TIMEOUT                  (HZ)
163 #define CAS_LINK_TIMEOUT                (22*HZ/10)
164 #define CAS_LINK_FAST_TIMEOUT           (1)
165
166 /* timeout values for state changing. these specify the number
167  * of 10us delays to be used before giving up.
168  */
169 #define STOP_TRIES_PHY 1000
170 #define STOP_TRIES     5000
171
172 /* specify a minimum frame size to deal with some fifo issues 
173  * max mtu == 2 * page size - ethernet header - 64 - swivel =
174  *            2 * page_size - 0x50
175  */
176 #define CAS_MIN_FRAME                   97
177 #define CAS_1000MB_MIN_FRAME            255
178 #define CAS_MIN_MTU                     60
179 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
180
181 #if 1
182 /*
183  * Eliminate these and use separate atomic counters for each, to
184  * avoid a race condition.
185  */
186 #else
187 #define CAS_RESET_MTU                   1
188 #define CAS_RESET_ALL                   2
189 #define CAS_RESET_SPARE                 3
190 #endif
191
192 static char version[] __devinitdata =
193         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194
195 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
196 static int link_mode;
197
198 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
199 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
200 MODULE_LICENSE("GPL");
201 module_param(cassini_debug, int, 0);
202 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
203 module_param(link_mode, int, 0);
204 MODULE_PARM_DESC(link_mode, "default link mode");
205
206 /*
207  * Work around for a PCS bug in which the link goes down due to the chip
208  * being confused and never showing a link status of "up."
209  */
210 #define DEFAULT_LINKDOWN_TIMEOUT 5
211 /* 
212  * Value in seconds, for user input.
213  */
214 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
215 module_param(linkdown_timeout, int, 0);
216 MODULE_PARM_DESC(linkdown_timeout,
217 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
218
219 /*
220  * value in 'ticks' (units used by jiffies). Set when we init the
221  * module because 'HZ' in actually a function call on some flavors of
222  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223  */
224 static int link_transition_timeout;
225
226
227
228 static u16 link_modes[] __devinitdata = {
229         BMCR_ANENABLE,                   /* 0 : autoneg */
230         0,                               /* 1 : 10bt half duplex */
231         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
232         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
233         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
234         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
235 };
236
237 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
238         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
239           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
241           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
242         { 0, }
243 };
244
245 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246
247 static void cas_set_link_modes(struct cas *cp);
248
249 static inline void cas_lock_tx(struct cas *cp)
250 {
251         int i;
252
253         for (i = 0; i < N_TX_RINGS; i++)  
254                 spin_lock(&cp->tx_lock[i]);
255 }
256
257 static inline void cas_lock_all(struct cas *cp)
258 {
259         spin_lock_irq(&cp->lock);
260         cas_lock_tx(cp);
261 }
262
263 /* WTZ: QA was finding deadlock problems with the previous
264  * versions after long test runs with multiple cards per machine.
265  * See if replacing cas_lock_all with safer versions helps. The
266  * symptoms QA is reporting match those we'd expect if interrupts
267  * aren't being properly restored, and we fixed a previous deadlock
268  * with similar symptoms by using save/restore versions in other
269  * places.
270  */
271 #define cas_lock_all_save(cp, flags) \
272 do { \
273         struct cas *xxxcp = (cp); \
274         spin_lock_irqsave(&xxxcp->lock, flags); \
275         cas_lock_tx(xxxcp); \
276 } while (0)
277
278 static inline void cas_unlock_tx(struct cas *cp)
279 {
280         int i;
281
282         for (i = N_TX_RINGS; i > 0; i--)  
283                 spin_unlock(&cp->tx_lock[i - 1]);  
284 }
285
286 static inline void cas_unlock_all(struct cas *cp)
287 {
288         cas_unlock_tx(cp);
289         spin_unlock_irq(&cp->lock);
290 }
291
292 #define cas_unlock_all_restore(cp, flags) \
293 do { \
294         struct cas *xxxcp = (cp); \
295         cas_unlock_tx(xxxcp); \
296         spin_unlock_irqrestore(&xxxcp->lock, flags); \
297 } while (0)
298
299 static void cas_disable_irq(struct cas *cp, const int ring)
300 {
301         /* Make sure we won't get any more interrupts */
302         if (ring == 0) {
303                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
304                 return;
305         }
306
307         /* disable completion interrupts and selectively mask */
308         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
309                 switch (ring) {
310 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
311 #ifdef USE_PCI_INTB
312                 case 1:
313 #endif
314 #ifdef USE_PCI_INTC
315                 case 2:
316 #endif
317 #ifdef USE_PCI_INTD
318                 case 3:
319 #endif
320                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 
321                                cp->regs + REG_PLUS_INTRN_MASK(ring));
322                         break;
323 #endif
324                 default:
325                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
326                                REG_PLUS_INTRN_MASK(ring));
327                         break;
328                 }
329         }
330 }
331
332 static inline void cas_mask_intr(struct cas *cp)
333 {
334         int i;
335
336         for (i = 0; i < N_RX_COMP_RINGS; i++)
337                 cas_disable_irq(cp, i);
338 }
339
340 static inline void cas_buffer_init(cas_page_t *cp)
341 {
342         struct page *page = cp->buffer;
343         atomic_set((atomic_t *)&page->lru.next, 1);
344 }
345
346 static inline int cas_buffer_count(cas_page_t *cp)
347 {
348         struct page *page = cp->buffer;
349         return atomic_read((atomic_t *)&page->lru.next);
350 }
351
352 static inline void cas_buffer_inc(cas_page_t *cp)
353 {
354         struct page *page = cp->buffer;
355         atomic_inc((atomic_t *)&page->lru.next);
356 }
357
358 static inline void cas_buffer_dec(cas_page_t *cp)
359 {
360         struct page *page = cp->buffer;
361         atomic_dec((atomic_t *)&page->lru.next);
362 }
363
364 static void cas_enable_irq(struct cas *cp, const int ring)
365 {
366         if (ring == 0) { /* all but TX_DONE */
367                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
368                 return;
369         }
370
371         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
372                 switch (ring) {
373 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
374 #ifdef USE_PCI_INTB
375                 case 1:
376 #endif
377 #ifdef USE_PCI_INTC
378                 case 2:
379 #endif
380 #ifdef USE_PCI_INTD
381                 case 3:
382 #endif
383                         writel(INTRN_MASK_RX_EN, cp->regs +
384                                REG_PLUS_INTRN_MASK(ring));
385                         break;
386 #endif
387                 default:
388                         break;
389                 }
390         }
391 }
392
393 static inline void cas_unmask_intr(struct cas *cp)
394 {
395         int i;
396
397         for (i = 0; i < N_RX_COMP_RINGS; i++)
398                 cas_enable_irq(cp, i);
399 }
400
401 static inline void cas_entropy_gather(struct cas *cp)
402 {
403 #ifdef USE_ENTROPY_DEV
404         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
405                 return;
406
407         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
408                             readl(cp->regs + REG_ENTROPY_IV),
409                             sizeof(uint64_t)*8);
410 #endif
411 }
412
413 static inline void cas_entropy_reset(struct cas *cp)
414 {
415 #ifdef USE_ENTROPY_DEV
416         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
417                 return;
418
419         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 
420                cp->regs + REG_BIM_LOCAL_DEV_EN);
421         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
422         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
423
424         /* if we read back 0x0, we don't have an entropy device */
425         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
426                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
427 #endif
428 }
429
430 /* access to the phy. the following assumes that we've initialized the MIF to 
431  * be in frame rather than bit-bang mode
432  */
433 static u16 cas_phy_read(struct cas *cp, int reg)
434 {
435         u32 cmd;
436         int limit = STOP_TRIES_PHY;
437
438         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
439         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
440         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
441         cmd |= MIF_FRAME_TURN_AROUND_MSB;
442         writel(cmd, cp->regs + REG_MIF_FRAME);
443         
444         /* poll for completion */
445         while (limit-- > 0) {
446                 udelay(10);
447                 cmd = readl(cp->regs + REG_MIF_FRAME);
448                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
449                         return (cmd & MIF_FRAME_DATA_MASK);
450         }
451         return 0xFFFF; /* -1 */
452 }
453
454 static int cas_phy_write(struct cas *cp, int reg, u16 val)
455 {
456         int limit = STOP_TRIES_PHY;
457         u32 cmd;
458
459         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
460         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
461         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
462         cmd |= MIF_FRAME_TURN_AROUND_MSB;
463         cmd |= val & MIF_FRAME_DATA_MASK;
464         writel(cmd, cp->regs + REG_MIF_FRAME);
465         
466         /* poll for completion */
467         while (limit-- > 0) {
468                 udelay(10);
469                 cmd = readl(cp->regs + REG_MIF_FRAME);
470                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
471                         return 0;
472         }
473         return -1;
474 }
475
476 static void cas_phy_powerup(struct cas *cp)
477 {
478         u16 ctl = cas_phy_read(cp, MII_BMCR);   
479
480         if ((ctl & BMCR_PDOWN) == 0)
481                 return;
482         ctl &= ~BMCR_PDOWN;
483         cas_phy_write(cp, MII_BMCR, ctl);
484 }
485
486 static void cas_phy_powerdown(struct cas *cp)
487 {
488         u16 ctl = cas_phy_read(cp, MII_BMCR);   
489
490         if (ctl & BMCR_PDOWN)
491                 return;
492         ctl |= BMCR_PDOWN;
493         cas_phy_write(cp, MII_BMCR, ctl);
494 }
495
496 /* cp->lock held. note: the last put_page will free the buffer */
497 static int cas_page_free(struct cas *cp, cas_page_t *page)
498 {
499         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 
500                        PCI_DMA_FROMDEVICE);
501         cas_buffer_dec(page);
502         __free_pages(page->buffer, cp->page_order);
503         kfree(page);
504         return 0;
505 }
506
507 #ifdef RX_COUNT_BUFFERS
508 #define RX_USED_ADD(x, y)       ((x)->used += (y))
509 #define RX_USED_SET(x, y)       ((x)->used  = (y))
510 #else
511 #define RX_USED_ADD(x, y) 
512 #define RX_USED_SET(x, y)
513 #endif
514
515 /* local page allocation routines for the receive buffers. jumbo pages
516  * require at least 8K contiguous and 8K aligned buffers.
517  */
518 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
519 {
520         cas_page_t *page;
521
522         page = kmalloc(sizeof(cas_page_t), flags);
523         if (!page)
524                 return NULL;
525
526         INIT_LIST_HEAD(&page->list);
527         RX_USED_SET(page, 0);
528         page->buffer = alloc_pages(flags, cp->page_order);
529         if (!page->buffer)
530                 goto page_err;
531         cas_buffer_init(page);
532         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
533                                       cp->page_size, PCI_DMA_FROMDEVICE);
534         return page;
535
536 page_err:
537         kfree(page);
538         return NULL;
539 }
540
541 /* initialize spare pool of rx buffers, but allocate during the open */
542 static void cas_spare_init(struct cas *cp)
543 {
544         spin_lock(&cp->rx_inuse_lock);
545         INIT_LIST_HEAD(&cp->rx_inuse_list);
546         spin_unlock(&cp->rx_inuse_lock);
547
548         spin_lock(&cp->rx_spare_lock);
549         INIT_LIST_HEAD(&cp->rx_spare_list);
550         cp->rx_spares_needed = RX_SPARE_COUNT;
551         spin_unlock(&cp->rx_spare_lock);
552 }
553
554 /* used on close. free all the spare buffers. */
555 static void cas_spare_free(struct cas *cp)
556 {
557         struct list_head list, *elem, *tmp;
558
559         /* free spare buffers */
560         INIT_LIST_HEAD(&list);
561         spin_lock(&cp->rx_spare_lock);
562         list_splice(&cp->rx_spare_list, &list);
563         INIT_LIST_HEAD(&cp->rx_spare_list);
564         spin_unlock(&cp->rx_spare_lock);
565         list_for_each_safe(elem, tmp, &list) {
566                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
567         }
568
569         INIT_LIST_HEAD(&list);
570 #if 1
571         /*
572          * Looks like Adrian had protected this with a different
573          * lock than used everywhere else to manipulate this list.
574          */
575         spin_lock(&cp->rx_inuse_lock);
576         list_splice(&cp->rx_inuse_list, &list);
577         INIT_LIST_HEAD(&cp->rx_inuse_list);
578         spin_unlock(&cp->rx_inuse_lock);
579 #else
580         spin_lock(&cp->rx_spare_lock);
581         list_splice(&cp->rx_inuse_list, &list);
582         INIT_LIST_HEAD(&cp->rx_inuse_list);
583         spin_unlock(&cp->rx_spare_lock);
584 #endif
585         list_for_each_safe(elem, tmp, &list) {
586                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
587         }
588 }
589
590 /* replenish spares if needed */
591 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
592 {
593         struct list_head list, *elem, *tmp;
594         int needed, i;
595
596         /* check inuse list. if we don't need any more free buffers,
597          * just free it
598          */
599
600         /* make a local copy of the list */
601         INIT_LIST_HEAD(&list);
602         spin_lock(&cp->rx_inuse_lock);
603         list_splice(&cp->rx_inuse_list, &list);
604         INIT_LIST_HEAD(&cp->rx_inuse_list);
605         spin_unlock(&cp->rx_inuse_lock);
606         
607         list_for_each_safe(elem, tmp, &list) {
608                 cas_page_t *page = list_entry(elem, cas_page_t, list);
609
610                 if (cas_buffer_count(page) > 1)
611                         continue;
612
613                 list_del(elem);
614                 spin_lock(&cp->rx_spare_lock);
615                 if (cp->rx_spares_needed > 0) {
616                         list_add(elem, &cp->rx_spare_list);
617                         cp->rx_spares_needed--;
618                         spin_unlock(&cp->rx_spare_lock);
619                 } else {
620                         spin_unlock(&cp->rx_spare_lock);
621                         cas_page_free(cp, page);
622                 }
623         }
624
625         /* put any inuse buffers back on the list */
626         if (!list_empty(&list)) {
627                 spin_lock(&cp->rx_inuse_lock);
628                 list_splice(&list, &cp->rx_inuse_list);
629                 spin_unlock(&cp->rx_inuse_lock);
630         }
631         
632         spin_lock(&cp->rx_spare_lock);
633         needed = cp->rx_spares_needed;
634         spin_unlock(&cp->rx_spare_lock);
635         if (!needed)
636                 return;
637
638         /* we still need spares, so try to allocate some */
639         INIT_LIST_HEAD(&list);
640         i = 0;
641         while (i < needed) {
642                 cas_page_t *spare = cas_page_alloc(cp, flags);
643                 if (!spare) 
644                         break;
645                 list_add(&spare->list, &list);
646                 i++;
647         }
648
649         spin_lock(&cp->rx_spare_lock);
650         list_splice(&list, &cp->rx_spare_list);
651         cp->rx_spares_needed -= i;
652         spin_unlock(&cp->rx_spare_lock);
653 }
654
655 /* pull a page from the list. */
656 static cas_page_t *cas_page_dequeue(struct cas *cp)
657 {
658         struct list_head *entry;
659         int recover;
660
661         spin_lock(&cp->rx_spare_lock);
662         if (list_empty(&cp->rx_spare_list)) {
663                 /* try to do a quick recovery */
664                 spin_unlock(&cp->rx_spare_lock);
665                 cas_spare_recover(cp, GFP_ATOMIC);
666                 spin_lock(&cp->rx_spare_lock);
667                 if (list_empty(&cp->rx_spare_list)) {
668                         if (netif_msg_rx_err(cp))
669                                 printk(KERN_ERR "%s: no spare buffers "
670                                        "available.\n", cp->dev->name);
671                         spin_unlock(&cp->rx_spare_lock);
672                         return NULL;
673                 }
674         }
675
676         entry = cp->rx_spare_list.next;
677         list_del(entry);
678         recover = ++cp->rx_spares_needed;
679         spin_unlock(&cp->rx_spare_lock);
680
681         /* trigger the timer to do the recovery */
682         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
683 #if 1
684                 atomic_inc(&cp->reset_task_pending);
685                 atomic_inc(&cp->reset_task_pending_spare);
686                 schedule_work(&cp->reset_task);
687 #else
688                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
689                 schedule_work(&cp->reset_task);
690 #endif
691         }
692         return list_entry(entry, cas_page_t, list);
693 }
694
695
696 static void cas_mif_poll(struct cas *cp, const int enable)
697 {
698         u32 cfg;
699         
700         cfg  = readl(cp->regs + REG_MIF_CFG); 
701         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
702
703         if (cp->phy_type & CAS_PHY_MII_MDIO1)
704                 cfg |= MIF_CFG_PHY_SELECT; 
705
706         /* poll and interrupt on link status change. */
707         if (enable) {
708                 cfg |= MIF_CFG_POLL_EN;
709                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
710                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
711         }
712         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 
713                cp->regs + REG_MIF_MASK); 
714         writel(cfg, cp->regs + REG_MIF_CFG);
715 }
716
717 /* Must be invoked under cp->lock */
718 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
719 {
720         u16 ctl;
721 #if 1
722         int lcntl;
723         int changed = 0;
724         int oldstate = cp->lstate;
725         int link_was_not_down = !(oldstate == link_down);
726 #endif
727         /* Setup link parameters */
728         if (!ep)
729                 goto start_aneg;
730         lcntl = cp->link_cntl;
731         if (ep->autoneg == AUTONEG_ENABLE)
732                 cp->link_cntl = BMCR_ANENABLE;
733         else {
734                 cp->link_cntl = 0;
735                 if (ep->speed == SPEED_100)
736                         cp->link_cntl |= BMCR_SPEED100;
737                 else if (ep->speed == SPEED_1000)
738                         cp->link_cntl |= CAS_BMCR_SPEED1000;
739                 if (ep->duplex == DUPLEX_FULL)
740                         cp->link_cntl |= BMCR_FULLDPLX;
741         }
742 #if 1
743         changed = (lcntl != cp->link_cntl);
744 #endif
745 start_aneg:
746         if (cp->lstate == link_up) {
747                 printk(KERN_INFO "%s: PCS link down.\n",
748                        cp->dev->name);
749         } else {
750                 if (changed) {
751                         printk(KERN_INFO "%s: link configuration changed\n",
752                                cp->dev->name);
753                 }
754         }
755         cp->lstate = link_down;
756         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
757         if (!cp->hw_running)
758                 return;
759 #if 1
760         /*
761          * WTZ: If the old state was link_up, we turn off the carrier
762          * to replicate everything we do elsewhere on a link-down
763          * event when we were already in a link-up state..  
764          */
765         if (oldstate == link_up)
766                 netif_carrier_off(cp->dev);
767         if (changed  && link_was_not_down) {
768                 /*
769                  * WTZ: This branch will simply schedule a full reset after
770                  * we explicitly changed link modes in an ioctl. See if this
771                  * fixes the link-problems we were having for forced mode. 
772                  */
773                 atomic_inc(&cp->reset_task_pending);
774                 atomic_inc(&cp->reset_task_pending_all);
775                 schedule_work(&cp->reset_task);
776                 cp->timer_ticks = 0;
777                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
778                 return;
779         }
780 #endif
781         if (cp->phy_type & CAS_PHY_SERDES) {
782                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
783
784                 if (cp->link_cntl & BMCR_ANENABLE) {
785                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
786                         cp->lstate = link_aneg;
787                 } else {
788                         if (cp->link_cntl & BMCR_FULLDPLX)
789                                 val |= PCS_MII_CTRL_DUPLEX;
790                         val &= ~PCS_MII_AUTONEG_EN;
791                         cp->lstate = link_force_ok;
792                 }
793                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
794                 writel(val, cp->regs + REG_PCS_MII_CTRL);
795
796         } else {
797                 cas_mif_poll(cp, 0);
798                 ctl = cas_phy_read(cp, MII_BMCR);
799                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 
800                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
801                 ctl |= cp->link_cntl;
802                 if (ctl & BMCR_ANENABLE) {
803                         ctl |= BMCR_ANRESTART;
804                         cp->lstate = link_aneg;
805                 } else {
806                         cp->lstate = link_force_ok;
807                 }
808                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
809                 cas_phy_write(cp, MII_BMCR, ctl);
810                 cas_mif_poll(cp, 1);
811         }
812
813         cp->timer_ticks = 0;
814         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
815 }
816
817 /* Must be invoked under cp->lock. */
818 static int cas_reset_mii_phy(struct cas *cp)
819 {
820         int limit = STOP_TRIES_PHY;
821         u16 val;
822         
823         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
824         udelay(100);
825         while (limit--) {
826                 val = cas_phy_read(cp, MII_BMCR);
827                 if ((val & BMCR_RESET) == 0)
828                         break;
829                 udelay(10);
830         }
831         return (limit <= 0);
832 }
833
834 static void cas_saturn_firmware_load(struct cas *cp)
835 {
836         cas_saturn_patch_t *patch = cas_saturn_patch;
837
838         cas_phy_powerdown(cp);
839
840         /* expanded memory access mode */
841         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
842
843         /* pointer configuration for new firmware */
844         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
845         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
846         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
847         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
848         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
849         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
850         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
851         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
852
853         /* download new firmware */
854         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
855         cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
856         while (patch->addr) {
857                 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
858                 patch++;
859         }
860
861         /* enable firmware */
862         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
863         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
864 }
865
866
867 /* phy initialization */
868 static void cas_phy_init(struct cas *cp)
869 {
870         u16 val;
871
872         /* if we're in MII/GMII mode, set up phy */
873         if (CAS_PHY_MII(cp->phy_type)) {
874                 writel(PCS_DATAPATH_MODE_MII,
875                        cp->regs + REG_PCS_DATAPATH_MODE);
876
877                 cas_mif_poll(cp, 0);
878                 cas_reset_mii_phy(cp); /* take out of isolate mode */
879
880                 if (PHY_LUCENT_B0 == cp->phy_id) {
881                         /* workaround link up/down issue with lucent */
882                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
883                         cas_phy_write(cp, MII_BMCR, 0x00f1);
884                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
885
886                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
887                         /* workarounds for broadcom phy */
888                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
889                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
890                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
891                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
892                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
893                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
894                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
895                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
896                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
897                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
898                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
899
900                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
901                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
902                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
903                         if (val & 0x0080) {
904                                 /* link workaround */
905                                 cas_phy_write(cp, BROADCOM_MII_REG4, 
906                                               val & ~0x0080);
907                         }
908                         
909                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
910                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 
911                                SATURN_PCFG_FSI : 0x0, 
912                                cp->regs + REG_SATURN_PCFG);
913
914                         /* load firmware to address 10Mbps auto-negotiation
915                          * issue. NOTE: this will need to be changed if the 
916                          * default firmware gets fixed.
917                          */
918                         if (PHY_NS_DP83065 == cp->phy_id) {
919                                 cas_saturn_firmware_load(cp);
920                         }
921                         cas_phy_powerup(cp);
922                 }
923
924                 /* advertise capabilities */
925                 val = cas_phy_read(cp, MII_BMCR);
926                 val &= ~BMCR_ANENABLE;
927                 cas_phy_write(cp, MII_BMCR, val);
928                 udelay(10);
929
930                 cas_phy_write(cp, MII_ADVERTISE,
931                               cas_phy_read(cp, MII_ADVERTISE) |
932                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
933                                ADVERTISE_100HALF | ADVERTISE_100FULL |
934                                CAS_ADVERTISE_PAUSE | 
935                                CAS_ADVERTISE_ASYM_PAUSE));
936                 
937                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
938                         /* make sure that we don't advertise half
939                          * duplex to avoid a chip issue
940                          */
941                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
942                         val &= ~CAS_ADVERTISE_1000HALF;
943                         val |= CAS_ADVERTISE_1000FULL;
944                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
945                 }
946
947         } else {
948                 /* reset pcs for serdes */
949                 u32 val;
950                 int limit;
951
952                 writel(PCS_DATAPATH_MODE_SERDES,
953                        cp->regs + REG_PCS_DATAPATH_MODE);
954
955                 /* enable serdes pins on saturn */
956                 if (cp->cas_flags & CAS_FLAG_SATURN)
957                         writel(0, cp->regs + REG_SATURN_PCFG);
958
959                 /* Reset PCS unit. */
960                 val = readl(cp->regs + REG_PCS_MII_CTRL);
961                 val |= PCS_MII_RESET;
962                 writel(val, cp->regs + REG_PCS_MII_CTRL);
963
964                 limit = STOP_TRIES;
965                 while (limit-- > 0) {
966                         udelay(10);
967                         if ((readl(cp->regs + REG_PCS_MII_CTRL) & 
968                              PCS_MII_RESET) == 0)
969                                 break;
970                 }
971                 if (limit <= 0)
972                         printk(KERN_WARNING "%s: PCS reset bit would not "
973                                "clear [%08x].\n", cp->dev->name,
974                                readl(cp->regs + REG_PCS_STATE_MACHINE));
975
976                 /* Make sure PCS is disabled while changing advertisement
977                  * configuration.
978                  */
979                 writel(0x0, cp->regs + REG_PCS_CFG);
980
981                 /* Advertise all capabilities except half-duplex. */
982                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
983                 val &= ~PCS_MII_ADVERT_HD;
984                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 
985                         PCS_MII_ADVERT_ASYM_PAUSE);
986                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
987
988                 /* enable PCS */
989                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
990
991                 /* pcs workaround: enable sync detect */
992                 writel(PCS_SERDES_CTRL_SYNCD_EN,
993                        cp->regs + REG_PCS_SERDES_CTRL);
994         }
995 }
996
997
998 static int cas_pcs_link_check(struct cas *cp)
999 {
1000         u32 stat, state_machine;
1001         int retval = 0;
1002
1003         /* The link status bit latches on zero, so you must
1004          * read it twice in such a case to see a transition
1005          * to the link being up.
1006          */
1007         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1008         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1009                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1010
1011         /* The remote-fault indication is only valid
1012          * when autoneg has completed.
1013          */
1014         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1015                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1016             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1017                 if (netif_msg_link(cp))
1018                         printk(KERN_INFO "%s: PCS RemoteFault\n", 
1019                                cp->dev->name);
1020         }
1021
1022         /* work around link detection issue by querying the PCS state
1023          * machine directly.
1024          */
1025         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1026         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1027                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1028         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1029                 stat |= PCS_MII_STATUS_LINK_STATUS;
1030         }
1031
1032         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1033                 if (cp->lstate != link_up) {
1034                         if (cp->opened) {
1035                                 cp->lstate = link_up;
1036                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1037                                 
1038                                 cas_set_link_modes(cp);
1039                                 netif_carrier_on(cp->dev);
1040                         }
1041                 }
1042         } else if (cp->lstate == link_up) {
1043                 cp->lstate = link_down;
1044                 if (link_transition_timeout != 0 &&
1045                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1046                     !cp->link_transition_jiffies_valid) {
1047                         /*
1048                          * force a reset, as a workaround for the 
1049                          * link-failure problem. May want to move this to a 
1050                          * point a bit earlier in the sequence. If we had
1051                          * generated a reset a short time ago, we'll wait for
1052                          * the link timer to check the status until a
1053                          * timer expires (link_transistion_jiffies_valid is
1054                          * true when the timer is running.)  Instead of using
1055                          * a system timer, we just do a check whenever the
1056                          * link timer is running - this clears the flag after
1057                          * a suitable delay.
1058                          */
1059                         retval = 1;
1060                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1061                         cp->link_transition_jiffies = jiffies;
1062                         cp->link_transition_jiffies_valid = 1;
1063                 } else {
1064                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1065                 }
1066                 netif_carrier_off(cp->dev);
1067                 if (cp->opened && netif_msg_link(cp)) {
1068                         printk(KERN_INFO "%s: PCS link down.\n",
1069                                cp->dev->name);
1070                 }
1071
1072                 /* Cassini only: if you force a mode, there can be
1073                  * sync problems on link down. to fix that, the following
1074                  * things need to be checked:
1075                  * 1) read serialink state register
1076                  * 2) read pcs status register to verify link down.
1077                  * 3) if link down and serial link == 0x03, then you need
1078                  *    to global reset the chip.
1079                  */
1080                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1081                         /* should check to see if we're in a forced mode */
1082                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1083                         if (stat == 0x03)
1084                                 return 1;
1085                 }
1086         } else if (cp->lstate == link_down) {
1087                 if (link_transition_timeout != 0 &&
1088                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1089                     !cp->link_transition_jiffies_valid) {
1090                         /* force a reset, as a workaround for the
1091                          * link-failure problem.  May want to move
1092                          * this to a point a bit earlier in the
1093                          * sequence.
1094                          */
1095                         retval = 1;
1096                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1097                         cp->link_transition_jiffies = jiffies;
1098                         cp->link_transition_jiffies_valid = 1;
1099                 } else {
1100                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1101                 }
1102         }
1103
1104         return retval;
1105 }
1106
1107 static int cas_pcs_interrupt(struct net_device *dev, 
1108                              struct cas *cp, u32 status)
1109 {
1110         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111
1112         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 
1113                 return 0;
1114         return cas_pcs_link_check(cp);
1115 }
1116
1117 static int cas_txmac_interrupt(struct net_device *dev, 
1118                                struct cas *cp, u32 status)
1119 {
1120         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121
1122         if (!txmac_stat)
1123                 return 0;
1124
1125         if (netif_msg_intr(cp))
1126                 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1127                         cp->dev->name, txmac_stat);
1128
1129         /* Defer timer expiration is quite normal,
1130          * don't even log the event.
1131          */
1132         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1133             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1134                 return 0;
1135
1136         spin_lock(&cp->stat_lock[0]);
1137         if (txmac_stat & MAC_TX_UNDERRUN) {
1138                 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1139                        dev->name);
1140                 cp->net_stats[0].tx_fifo_errors++;
1141         }
1142
1143         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144                 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1145                        dev->name);
1146                 cp->net_stats[0].tx_errors++;
1147         }
1148
1149         /* The rest are all cases of one of the 16-bit TX
1150          * counters expiring.
1151          */
1152         if (txmac_stat & MAC_TX_COLL_NORMAL)
1153                 cp->net_stats[0].collisions += 0x10000;
1154
1155         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1157                 cp->net_stats[0].collisions += 0x10000;
1158         }
1159
1160         if (txmac_stat & MAC_TX_COLL_LATE) {
1161                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162                 cp->net_stats[0].collisions += 0x10000;
1163         }
1164         spin_unlock(&cp->stat_lock[0]);
1165
1166         /* We do not keep track of MAC_TX_COLL_FIRST and
1167          * MAC_TX_PEAK_ATTEMPTS events.
1168          */
1169         return 0;
1170 }
1171
1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 
1173 {
1174         cas_hp_inst_t *inst;
1175         u32 val;
1176         int i;
1177
1178         i = 0;
1179         while ((inst = firmware) && inst->note) {
1180                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181
1182                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185
1186                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1193                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194
1195                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1199                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1200                 ++firmware;
1201                 ++i;
1202         }
1203 }
1204
1205 static void cas_init_rx_dma(struct cas *cp)
1206 {
1207         u64 desc_dma = cp->block_dvma; 
1208         u32 val;
1209         int i, size;
1210
1211         /* rx free descriptors */
1212         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 
1213         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215         if ((N_RX_DESC_RINGS > 1) &&
1216             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1217                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218         writel(val, cp->regs + REG_RX_CFG);
1219
1220         val = (unsigned long) cp->init_rxds[0] - 
1221                 (unsigned long) cp->init_block;
1222         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225
1226         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227                 /* rx desc 2 is for IPSEC packets. however, 
1228                  * we don't it that for that purpose.
1229                  */
1230                 val = (unsigned long) cp->init_rxds[1] - 
1231                         (unsigned long) cp->init_block;
1232                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233                 writel((desc_dma + val) & 0xffffffff, cp->regs + 
1234                        REG_PLUS_RX_DB1_LOW);
1235                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 
1236                        REG_PLUS_RX_KICK1);
1237         }
1238         
1239         /* rx completion registers */
1240         val = (unsigned long) cp->init_rxcs[0] - 
1241                 (unsigned long) cp->init_block;
1242         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244
1245         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246                 /* rx comp 2-4 */
1247                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248                         val = (unsigned long) cp->init_rxcs[i] - 
1249                                 (unsigned long) cp->init_block;
1250                         writel((desc_dma + val) >> 32, cp->regs + 
1251                                REG_PLUS_RX_CBN_HI(i));
1252                         writel((desc_dma + val) & 0xffffffff, cp->regs + 
1253                                REG_PLUS_RX_CBN_LOW(i));
1254                 }
1255         }
1256
1257         /* read selective clear regs to prevent spurious interrupts
1258          * on reset because complete == kick.
1259          * selective clear set up to prevent interrupts on resets
1260          */
1261         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1262         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1263         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1265                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266
1267                 /* 2 is different from 3 and 4 */
1268                 if (N_RX_COMP_RINGS > 1)
1269                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 
1270                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271
1272                 for (i = 2; i < N_RX_COMP_RINGS; i++) 
1273                         writel(INTR_RX_DONE_ALT, 
1274                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275         }
1276
1277         /* set up pause thresholds */
1278         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1279                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1280         val |= CAS_BASE(RX_PAUSE_THRESH_ON, 
1281                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1282         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283         
1284         /* zero out dma reassembly buffers */
1285         for (i = 0; i < 64; i++) {
1286                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290         }
1291
1292         /* make sure address register is 0 for normal operation */
1293         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295
1296         /* interrupt mitigation */
1297 #ifdef USE_RX_BLANK
1298         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300         writel(val, cp->regs + REG_RX_BLANK);
1301 #else
1302         writel(0x0, cp->regs + REG_RX_BLANK);
1303 #endif
1304
1305         /* interrupt generation as a function of low water marks for
1306          * free desc and completion entries. these are used to trigger
1307          * housekeeping for rx descs. we don't use the free interrupt
1308          * as it's not very useful
1309          */
1310         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312         writel(val, cp->regs + REG_RX_AE_THRESH);
1313         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316         }
1317
1318         /* Random early detect registers. useful for congestion avoidance.
1319          * this should be tunable.
1320          */
1321         writel(0x0, cp->regs + REG_RX_RED);
1322         
1323         /* receive page sizes. default == 2K (0x800) */
1324         val = 0;
1325         if (cp->page_size == 0x1000)
1326                 val = 0x1;
1327         else if (cp->page_size == 0x2000)
1328                 val = 0x2;
1329         else if (cp->page_size == 0x4000)
1330                 val = 0x3;
1331         
1332         /* round mtu + offset. constrain to page size. */
1333         size = cp->dev->mtu + 64;
1334         if (size > cp->page_size)
1335                 size = cp->page_size;
1336
1337         if (size <= 0x400)
1338                 i = 0x0;
1339         else if (size <= 0x800)
1340                 i = 0x1;
1341         else if (size <= 0x1000)
1342                 i = 0x2;
1343         else
1344                 i = 0x3;
1345
1346         cp->mtu_stride = 1 << (i + 10);
1347         val  = CAS_BASE(RX_PAGE_SIZE, val);
1348         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 
1349         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352         
1353         /* enable the header parser if desired */
1354         if (CAS_HP_FIRMWARE == cas_prog_null)
1355                 return;
1356
1357         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1358         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1359         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360         writel(val, cp->regs + REG_HP_CFG);
1361 }
1362
1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 {
1365         memset(rxc, 0, sizeof(*rxc));
1366         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 
1367 }
1368
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370  * flipping is protected by the fact that the chip will not
1371  * hand back the same page index while it's being processed.
1372  */
1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 {
1375         cas_page_t *page = cp->rx_pages[1][index];
1376         cas_page_t *new;
1377
1378         if (cas_buffer_count(page) == 1)
1379                 return page;
1380
1381         new = cas_page_dequeue(cp);
1382         if (new) {
1383                 spin_lock(&cp->rx_inuse_lock);
1384                 list_add(&page->list, &cp->rx_inuse_list);
1385                 spin_unlock(&cp->rx_inuse_lock);
1386         }
1387         return new;
1388 }
1389                                    
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 
1392                                  const int index)
1393 {
1394         cas_page_t **page0 = cp->rx_pages[0];
1395         cas_page_t **page1 = cp->rx_pages[1];
1396
1397         /* swap if buffer is in use */
1398         if (cas_buffer_count(page0[index]) > 1) {
1399                 cas_page_t *new = cas_page_spare(cp, index);
1400                 if (new) {
1401                         page1[index] = page0[index];
1402                         page0[index] = new;
1403                 }
1404         } 
1405         RX_USED_SET(page0[index], 0);
1406         return page0[index];
1407 }
1408
1409 static void cas_clean_rxds(struct cas *cp)
1410 {
1411         /* only clean ring 0 as ring 1 is used for spare buffers */
1412         struct cas_rx_desc *rxd = cp->init_rxds[0];
1413         int i, size;
1414
1415         /* release all rx flows */
1416         for (i = 0; i < N_RX_FLOWS; i++) {
1417                 struct sk_buff *skb;
1418                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419                         cas_skb_release(skb);
1420                 }
1421         }
1422
1423         /* initialize descriptors */
1424         size = RX_DESC_RINGN_SIZE(0);
1425         for (i = 0; i < size; i++) {
1426                 cas_page_t *page = cas_page_swap(cp, 0, i);
1427                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 
1429                                             CAS_BASE(RX_INDEX_RING, 0));
1430         }
1431
1432         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4; 
1433         cp->rx_last[0] = 0;
1434         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435 }
1436
1437 static void cas_clean_rxcs(struct cas *cp)
1438 {
1439         int i, j;
1440
1441         /* take ownership of rx comp descriptors */
1442         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447                         cas_rxc_init(rxc + j);
1448                 }
1449         }
1450 }
1451
1452 #if 0
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454  * so we do the following.
1455  *
1456  * If any part of the reset goes wrong, we return 1 and that causes the
1457  * whole chip to be reset.
1458  */
1459 static int cas_rxmac_reset(struct cas *cp)
1460 {
1461         struct net_device *dev = cp->dev;
1462         int limit;
1463         u32 val;
1464
1465         /* First, reset MAC RX. */
1466         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1467         for (limit = 0; limit < STOP_TRIES; limit++) {
1468                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469                         break;
1470                 udelay(10);
1471         }
1472         if (limit == STOP_TRIES) {
1473                 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1474                        "chip.\n", dev->name);
1475                 return 1;
1476         }
1477
1478         /* Second, disable RX DMA. */
1479         writel(0, cp->regs + REG_RX_CFG);
1480         for (limit = 0; limit < STOP_TRIES; limit++) {
1481                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1482                         break;
1483                 udelay(10);
1484         }
1485         if (limit == STOP_TRIES) {
1486                 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1487                        "chip.\n", dev->name);
1488                 return 1;
1489         }
1490
1491         mdelay(5);
1492
1493         /* Execute RX reset command. */
1494         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1495         for (limit = 0; limit < STOP_TRIES; limit++) {
1496                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1497                         break;
1498                 udelay(10);
1499         }
1500         if (limit == STOP_TRIES) {
1501                 printk(KERN_ERR "%s: RX reset command will not execute, "
1502                        "resetting whole chip.\n", dev->name);
1503                 return 1;
1504         }
1505
1506         /* reset driver rx state */
1507         cas_clean_rxds(cp);
1508         cas_clean_rxcs(cp);
1509
1510         /* Now, reprogram the rest of RX unit. */
1511         cas_init_rx_dma(cp);
1512
1513         /* re-enable */
1514         val = readl(cp->regs + REG_RX_CFG);
1515         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1516         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1517         val = readl(cp->regs + REG_MAC_RX_CFG);
1518         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1519         return 0;
1520 }
1521 #endif
1522
1523 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1524                                u32 status)
1525 {
1526         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1527
1528         if (!stat)
1529                 return 0;
1530
1531         if (netif_msg_intr(cp))
1532                 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1533                         cp->dev->name, stat);
1534
1535         /* these are all rollovers */
1536         spin_lock(&cp->stat_lock[0]);
1537         if (stat & MAC_RX_ALIGN_ERR) 
1538                 cp->net_stats[0].rx_frame_errors += 0x10000;
1539
1540         if (stat & MAC_RX_CRC_ERR)
1541                 cp->net_stats[0].rx_crc_errors += 0x10000;
1542
1543         if (stat & MAC_RX_LEN_ERR)
1544                 cp->net_stats[0].rx_length_errors += 0x10000;
1545
1546         if (stat & MAC_RX_OVERFLOW) {
1547                 cp->net_stats[0].rx_over_errors++;
1548                 cp->net_stats[0].rx_fifo_errors++;
1549         }
1550
1551         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1552          * events.
1553          */
1554         spin_unlock(&cp->stat_lock[0]);
1555         return 0;
1556 }
1557
1558 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1559                              u32 status)
1560 {
1561         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1562
1563         if (!stat)
1564                 return 0;
1565
1566         if (netif_msg_intr(cp))
1567                 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1568                         cp->dev->name, stat);
1569
1570         /* This interrupt is just for pause frame and pause
1571          * tracking.  It is useful for diagnostics and debug
1572          * but probably by default we will mask these events.
1573          */
1574         if (stat & MAC_CTRL_PAUSE_STATE)
1575                 cp->pause_entered++;
1576
1577         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1578                 cp->pause_last_time_recvd = (stat >> 16);
1579
1580         return 0;
1581 }
1582
1583         
1584 /* Must be invoked under cp->lock. */
1585 static inline int cas_mdio_link_not_up(struct cas *cp)
1586 {
1587         u16 val;
1588         
1589         switch (cp->lstate) {
1590         case link_force_ret:
1591                 if (netif_msg_link(cp))
1592                         printk(KERN_INFO "%s: Autoneg failed again, keeping"
1593                                 " forced mode\n", cp->dev->name);
1594                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1595                 cp->timer_ticks = 5;
1596                 cp->lstate = link_force_ok;
1597                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1598                 break;
1599                 
1600         case link_aneg:
1601                 val = cas_phy_read(cp, MII_BMCR);
1602
1603                 /* Try forced modes. we try things in the following order:
1604                  * 1000 full -> 100 full/half -> 10 half
1605                  */
1606                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1607                 val |= BMCR_FULLDPLX;
1608                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 
1609                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1610                 cas_phy_write(cp, MII_BMCR, val);
1611                 cp->timer_ticks = 5;
1612                 cp->lstate = link_force_try;
1613                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1614                 break;
1615
1616         case link_force_try:
1617                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1618                 val = cas_phy_read(cp, MII_BMCR);
1619                 cp->timer_ticks = 5;
1620                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1621                         val &= ~CAS_BMCR_SPEED1000;
1622                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1623                         cas_phy_write(cp, MII_BMCR, val);
1624                         break;
1625                 }
1626
1627                 if (val & BMCR_SPEED100) {
1628                         if (val & BMCR_FULLDPLX) /* fd failed */
1629                                 val &= ~BMCR_FULLDPLX;
1630                         else { /* 100Mbps failed */
1631                                 val &= ~BMCR_SPEED100;
1632                         }
1633                         cas_phy_write(cp, MII_BMCR, val);
1634                         break;
1635                 }
1636         default:
1637                 break;
1638         }
1639         return 0;
1640 }
1641
1642
1643 /* must be invoked with cp->lock held */
1644 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1645 {
1646         int restart;
1647
1648         if (bmsr & BMSR_LSTATUS) {
1649                 /* Ok, here we got a link. If we had it due to a forced
1650                  * fallback, and we were configured for autoneg, we 
1651                  * retry a short autoneg pass. If you know your hub is
1652                  * broken, use ethtool ;)
1653                  */
1654                 if ((cp->lstate == link_force_try) && 
1655                     (cp->link_cntl & BMCR_ANENABLE)) {
1656                         cp->lstate = link_force_ret;
1657                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1658                         cas_mif_poll(cp, 0);
1659                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1660                         cp->timer_ticks = 5;
1661                         if (cp->opened && netif_msg_link(cp))
1662                                 printk(KERN_INFO "%s: Got link after fallback, retrying"
1663                                        " autoneg once...\n", cp->dev->name);
1664                         cas_phy_write(cp, MII_BMCR,
1665                                       cp->link_fcntl | BMCR_ANENABLE |
1666                                       BMCR_ANRESTART);
1667                         cas_mif_poll(cp, 1);
1668
1669                 } else if (cp->lstate != link_up) {
1670                         cp->lstate = link_up;
1671                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1672
1673                         if (cp->opened) {
1674                                 cas_set_link_modes(cp);
1675                                 netif_carrier_on(cp->dev);
1676                         }
1677                 }
1678                 return 0;
1679         }
1680
1681         /* link not up. if the link was previously up, we restart the
1682          * whole process
1683          */
1684         restart = 0;
1685         if (cp->lstate == link_up) {
1686                 cp->lstate = link_down;
1687                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1688
1689                 netif_carrier_off(cp->dev);
1690                 if (cp->opened && netif_msg_link(cp))
1691                         printk(KERN_INFO "%s: Link down\n",
1692                                cp->dev->name);
1693                 restart = 1;
1694                 
1695         } else if (++cp->timer_ticks > 10)
1696                 cas_mdio_link_not_up(cp);
1697                 
1698         return restart;
1699 }
1700
1701 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1702                              u32 status)
1703 {
1704         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1705         u16 bmsr;
1706
1707         /* check for a link change */
1708         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1709                 return 0;
1710
1711         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1712         return cas_mii_link_check(cp, bmsr);
1713 }
1714
1715 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1716                              u32 status)
1717 {
1718         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1719
1720         if (!stat)
1721                 return 0;
1722
1723         printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1724                readl(cp->regs + REG_BIM_DIAG));
1725
1726         /* cassini+ has this reserved */
1727         if ((stat & PCI_ERR_BADACK) &&
1728             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1729                 printk("<No ACK64# during ABS64 cycle> ");
1730
1731         if (stat & PCI_ERR_DTRTO)
1732                 printk("<Delayed transaction timeout> ");
1733         if (stat & PCI_ERR_OTHER)
1734                 printk("<other> ");
1735         if (stat & PCI_ERR_BIM_DMA_WRITE)
1736                 printk("<BIM DMA 0 write req> ");
1737         if (stat & PCI_ERR_BIM_DMA_READ)
1738                 printk("<BIM DMA 0 read req> ");
1739         printk("\n");
1740
1741         if (stat & PCI_ERR_OTHER) {
1742                 u16 cfg;
1743
1744                 /* Interrogate PCI config space for the
1745                  * true cause.
1746                  */
1747                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1748                 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1749                        dev->name, cfg);
1750                 if (cfg & PCI_STATUS_PARITY)
1751                         printk(KERN_ERR "%s: PCI parity error detected.\n",
1752                                dev->name);
1753                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1754                         printk(KERN_ERR "%s: PCI target abort.\n",
1755                                dev->name);
1756                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1757                         printk(KERN_ERR "%s: PCI master acks target abort.\n",
1758                                dev->name);
1759                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1760                         printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1761                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1762                         printk(KERN_ERR "%s: PCI system error SERR#.\n",
1763                                dev->name);
1764                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1765                         printk(KERN_ERR "%s: PCI parity error.\n",
1766                                dev->name);
1767
1768                 /* Write the error bits back to clear them. */
1769                 cfg &= (PCI_STATUS_PARITY |
1770                         PCI_STATUS_SIG_TARGET_ABORT |
1771                         PCI_STATUS_REC_TARGET_ABORT |
1772                         PCI_STATUS_REC_MASTER_ABORT |
1773                         PCI_STATUS_SIG_SYSTEM_ERROR |
1774                         PCI_STATUS_DETECTED_PARITY);
1775                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1776         }
1777
1778         /* For all PCI errors, we should reset the chip. */
1779         return 1;
1780 }
1781
1782 /* All non-normal interrupt conditions get serviced here.
1783  * Returns non-zero if we should just exit the interrupt
1784  * handler right now (ie. if we reset the card which invalidates
1785  * all of the other original irq status bits).
1786  */
1787 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1788                             u32 status)
1789 {
1790         if (status & INTR_RX_TAG_ERROR) {
1791                 /* corrupt RX tag framing */
1792                 if (netif_msg_rx_err(cp))
1793                         printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1794                                 cp->dev->name);
1795                 spin_lock(&cp->stat_lock[0]);
1796                 cp->net_stats[0].rx_errors++;
1797                 spin_unlock(&cp->stat_lock[0]);
1798                 goto do_reset;
1799         }
1800
1801         if (status & INTR_RX_LEN_MISMATCH) {
1802                 /* length mismatch. */
1803                 if (netif_msg_rx_err(cp))
1804                         printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1805                                 cp->dev->name);
1806                 spin_lock(&cp->stat_lock[0]);
1807                 cp->net_stats[0].rx_errors++;
1808                 spin_unlock(&cp->stat_lock[0]);
1809                 goto do_reset;
1810         }
1811
1812         if (status & INTR_PCS_STATUS) {
1813                 if (cas_pcs_interrupt(dev, cp, status))
1814                         goto do_reset;
1815         }
1816
1817         if (status & INTR_TX_MAC_STATUS) {
1818                 if (cas_txmac_interrupt(dev, cp, status))
1819                         goto do_reset;
1820         }
1821
1822         if (status & INTR_RX_MAC_STATUS) {
1823                 if (cas_rxmac_interrupt(dev, cp, status))
1824                         goto do_reset;
1825         }
1826
1827         if (status & INTR_MAC_CTRL_STATUS) {
1828                 if (cas_mac_interrupt(dev, cp, status))
1829                         goto do_reset;
1830         }
1831
1832         if (status & INTR_MIF_STATUS) {
1833                 if (cas_mif_interrupt(dev, cp, status))
1834                         goto do_reset;
1835         }
1836
1837         if (status & INTR_PCI_ERROR_STATUS) {
1838                 if (cas_pci_interrupt(dev, cp, status))
1839                         goto do_reset;
1840         }
1841         return 0;
1842
1843 do_reset:
1844 #if 1
1845         atomic_inc(&cp->reset_task_pending);
1846         atomic_inc(&cp->reset_task_pending_all);
1847         printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1848                dev->name, status);
1849         schedule_work(&cp->reset_task);
1850 #else
1851         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1852         printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1853         schedule_work(&cp->reset_task);
1854 #endif
1855         return 1;
1856 }
1857
1858 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1859  *       determining whether to do a netif_stop/wakeup
1860  */
1861 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1862 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1863 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1864                                   const int len)
1865 {
1866         unsigned long off = addr + len;
1867
1868         if (CAS_TABORT(cp) == 1)
1869                 return 0;
1870         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1871                 return 0;
1872         return TX_TARGET_ABORT_LEN;
1873 }
1874
1875 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1876 {
1877         struct cas_tx_desc *txds;
1878         struct sk_buff **skbs;
1879         struct net_device *dev = cp->dev;
1880         int entry, count;
1881
1882         spin_lock(&cp->tx_lock[ring]);
1883         txds = cp->init_txds[ring];
1884         skbs = cp->tx_skbs[ring];
1885         entry = cp->tx_old[ring];
1886
1887         count = TX_BUFF_COUNT(ring, entry, limit);
1888         while (entry != limit) {
1889                 struct sk_buff *skb = skbs[entry];
1890                 dma_addr_t daddr;
1891                 u32 dlen;
1892                 int frag;
1893
1894                 if (!skb) {
1895                         /* this should never occur */
1896                         entry = TX_DESC_NEXT(ring, entry);
1897                         continue;
1898                 }
1899
1900                 /* however, we might get only a partial skb release. */
1901                 count -= skb_shinfo(skb)->nr_frags +
1902                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1903                 if (count < 0)
1904                         break;
1905
1906                 if (netif_msg_tx_done(cp))
1907                         printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1908                                cp->dev->name, ring, entry);
1909
1910                 skbs[entry] = NULL;
1911                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1912                 
1913                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1914                         struct cas_tx_desc *txd = txds + entry;
1915
1916                         daddr = le64_to_cpu(txd->buffer);
1917                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1918                                        le64_to_cpu(txd->control));
1919                         pci_unmap_page(cp->pdev, daddr, dlen,
1920                                        PCI_DMA_TODEVICE);
1921                         entry = TX_DESC_NEXT(ring, entry);
1922
1923                         /* tiny buffer may follow */
1924                         if (cp->tx_tiny_use[ring][entry].used) {
1925                                 cp->tx_tiny_use[ring][entry].used = 0;
1926                                 entry = TX_DESC_NEXT(ring, entry);
1927                         } 
1928                 }
1929
1930                 spin_lock(&cp->stat_lock[ring]);
1931                 cp->net_stats[ring].tx_packets++;
1932                 cp->net_stats[ring].tx_bytes += skb->len;
1933                 spin_unlock(&cp->stat_lock[ring]);
1934                 dev_kfree_skb_irq(skb);
1935         }
1936         cp->tx_old[ring] = entry;
1937
1938         /* this is wrong for multiple tx rings. the net device needs
1939          * multiple queues for this to do the right thing.  we wait
1940          * for 2*packets to be available when using tiny buffers
1941          */
1942         if (netif_queue_stopped(dev) &&
1943             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1944                 netif_wake_queue(dev);
1945         spin_unlock(&cp->tx_lock[ring]);
1946 }
1947
1948 static void cas_tx(struct net_device *dev, struct cas *cp,
1949                    u32 status)
1950 {
1951         int limit, ring;
1952 #ifdef USE_TX_COMPWB
1953         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1954 #endif
1955         if (netif_msg_intr(cp))
1956                 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1957                         cp->dev->name, status, (unsigned long long)compwb);
1958         /* process all the rings */
1959         for (ring = 0; ring < N_TX_RINGS; ring++) {
1960 #ifdef USE_TX_COMPWB
1961                 /* use the completion writeback registers */
1962                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1963                         CAS_VAL(TX_COMPWB_LSB, compwb);
1964                 compwb = TX_COMPWB_NEXT(compwb);
1965 #else
1966                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1967 #endif
1968                 if (cp->tx_old[ring] != limit) 
1969                         cas_tx_ringN(cp, ring, limit);
1970         }
1971 }
1972
1973
1974 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 
1975                               int entry, const u64 *words, 
1976                               struct sk_buff **skbref)
1977 {
1978         int dlen, hlen, len, i, alloclen;
1979         int off, swivel = RX_SWIVEL_OFF_VAL;
1980         struct cas_page *page;
1981         struct sk_buff *skb;
1982         void *addr, *crcaddr;
1983         char *p; 
1984
1985         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1986         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1987         len  = hlen + dlen;
1988
1989         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 
1990                 alloclen = len;
1991         else 
1992                 alloclen = max(hlen, RX_COPY_MIN);
1993
1994         skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1995         if (skb == NULL) 
1996                 return -1;
1997
1998         *skbref = skb;
1999         skb->dev = cp->dev;
2000         skb_reserve(skb, swivel);
2001
2002         p = skb->data;
2003         addr = crcaddr = NULL;
2004         if (hlen) { /* always copy header pages */
2005                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2006                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2007                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 
2008                         swivel;
2009
2010                 i = hlen;
2011                 if (!dlen) /* attach FCS */
2012                         i += cp->crc_size;
2013                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2014                                     PCI_DMA_FROMDEVICE);
2015                 addr = cas_page_map(page->buffer);
2016                 memcpy(p, addr + off, i);
2017                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2018                                     PCI_DMA_FROMDEVICE);
2019                 cas_page_unmap(addr);
2020                 RX_USED_ADD(page, 0x100);
2021                 p += hlen;
2022                 swivel = 0;
2023         } 
2024
2025
2026         if (alloclen < (hlen + dlen)) {
2027                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2028
2029                 /* normal or jumbo packets. we use frags */
2030                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2031                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2032                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2033
2034                 hlen = min(cp->page_size - off, dlen);
2035                 if (hlen < 0) {
2036                         if (netif_msg_rx_err(cp)) {
2037                                 printk(KERN_DEBUG "%s: rx page overflow: "
2038                                        "%d\n", cp->dev->name, hlen);
2039                         }
2040                         dev_kfree_skb_irq(skb);
2041                         return -1;
2042                 }
2043                 i = hlen;
2044                 if (i == dlen)  /* attach FCS */
2045                         i += cp->crc_size;
2046                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2047                                     PCI_DMA_FROMDEVICE);
2048
2049                 /* make sure we always copy a header */
2050                 swivel = 0;
2051                 if (p == (char *) skb->data) { /* not split */
2052                         addr = cas_page_map(page->buffer);
2053                         memcpy(p, addr + off, RX_COPY_MIN);
2054                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2055                                         PCI_DMA_FROMDEVICE);
2056                         cas_page_unmap(addr);
2057                         off += RX_COPY_MIN;
2058                         swivel = RX_COPY_MIN;
2059                         RX_USED_ADD(page, cp->mtu_stride);
2060                 } else {
2061                         RX_USED_ADD(page, hlen);
2062                 }
2063                 skb_put(skb, alloclen);
2064
2065                 skb_shinfo(skb)->nr_frags++;
2066                 skb->data_len += hlen - swivel;
2067                 skb->len      += hlen - swivel;
2068
2069                 get_page(page->buffer);
2070                 cas_buffer_inc(page);
2071                 frag->page = page->buffer;
2072                 frag->page_offset = off;
2073                 frag->size = hlen - swivel;
2074                 
2075                 /* any more data? */
2076                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2077                         hlen = dlen;
2078                         off = 0;
2079
2080                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2081                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2082                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 
2083                                             hlen + cp->crc_size, 
2084                                             PCI_DMA_FROMDEVICE);
2085                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2086                                             hlen + cp->crc_size,
2087                                             PCI_DMA_FROMDEVICE);
2088
2089                         skb_shinfo(skb)->nr_frags++;
2090                         skb->data_len += hlen;
2091                         skb->len      += hlen; 
2092                         frag++;
2093
2094                         get_page(page->buffer);
2095                         cas_buffer_inc(page);
2096                         frag->page = page->buffer;
2097                         frag->page_offset = 0;
2098                         frag->size = hlen;
2099                         RX_USED_ADD(page, hlen + cp->crc_size);
2100                 }
2101
2102                 if (cp->crc_size) {
2103                         addr = cas_page_map(page->buffer);
2104                         crcaddr  = addr + off + hlen;
2105                 }
2106
2107         } else {
2108                 /* copying packet */
2109                 if (!dlen)
2110                         goto end_copy_pkt;
2111
2112                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2113                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2114                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2115                 hlen = min(cp->page_size - off, dlen);
2116                 if (hlen < 0) {
2117                         if (netif_msg_rx_err(cp)) {
2118                                 printk(KERN_DEBUG "%s: rx page overflow: "
2119                                        "%d\n", cp->dev->name, hlen);
2120                         }
2121                         dev_kfree_skb_irq(skb);
2122                         return -1;
2123                 }
2124                 i = hlen;
2125                 if (i == dlen) /* attach FCS */
2126                         i += cp->crc_size;
2127                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2128                                     PCI_DMA_FROMDEVICE);
2129                 addr = cas_page_map(page->buffer);
2130                 memcpy(p, addr + off, i);
2131                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2132                                     PCI_DMA_FROMDEVICE);
2133                 cas_page_unmap(addr);
2134                 if (p == (char *) skb->data) /* not split */
2135                         RX_USED_ADD(page, cp->mtu_stride);
2136                 else
2137                         RX_USED_ADD(page, i);
2138         
2139                 /* any more data? */
2140                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2141                         p += hlen;
2142                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2143                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2144                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 
2145                                             dlen + cp->crc_size, 
2146                                             PCI_DMA_FROMDEVICE);
2147                         addr = cas_page_map(page->buffer);
2148                         memcpy(p, addr, dlen + cp->crc_size);
2149                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2150                                             dlen + cp->crc_size,
2151                                             PCI_DMA_FROMDEVICE);
2152                         cas_page_unmap(addr);
2153                         RX_USED_ADD(page, dlen + cp->crc_size); 
2154                 }
2155 end_copy_pkt:
2156                 if (cp->crc_size) {
2157                         addr    = NULL;
2158                         crcaddr = skb->data + alloclen;
2159                 }
2160                 skb_put(skb, alloclen);
2161         }
2162
2163         i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2164         if (cp->crc_size) {
2165                 /* checksum includes FCS. strip it out. */
2166                 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2167                 if (addr)
2168                         cas_page_unmap(addr);
2169         }
2170         skb->csum = ntohs(i ^ 0xffff);
2171         skb->ip_summed = CHECKSUM_HW;
2172         skb->protocol = eth_type_trans(skb, cp->dev);
2173         return len;
2174 }
2175
2176
2177 /* we can handle up to 64 rx flows at a time. we do the same thing
2178  * as nonreassm except that we batch up the buffers. 
2179  * NOTE: we currently just treat each flow as a bunch of packets that
2180  *       we pass up. a better way would be to coalesce the packets
2181  *       into a jumbo packet. to do that, we need to do the following:
2182  *       1) the first packet will have a clean split between header and
2183  *          data. save both.
2184  *       2) each time the next flow packet comes in, extend the
2185  *          data length and merge the checksums.
2186  *       3) on flow release, fix up the header.
2187  *       4) make sure the higher layer doesn't care.
2188  * because packets get coalesced, we shouldn't run into fragment count 
2189  * issues.
2190  */
2191 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2192                                    struct sk_buff *skb)
2193 {
2194         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2195         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2196         
2197         /* this is protected at a higher layer, so no need to 
2198          * do any additional locking here. stick the buffer
2199          * at the end.
2200          */
2201         __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2202         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2203                 while ((skb = __skb_dequeue(flow))) {
2204                         cas_skb_release(skb);
2205                 }
2206         }
2207 }
2208
2209 /* put rx descriptor back on ring. if a buffer is in use by a higher
2210  * layer, this will need to put in a replacement.
2211  */
2212 static void cas_post_page(struct cas *cp, const int ring, const int index)
2213 {
2214         cas_page_t *new;
2215         int entry;
2216
2217         entry = cp->rx_old[ring];
2218
2219         new = cas_page_swap(cp, ring, index);
2220         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2221         cp->init_rxds[ring][entry].index  =
2222                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 
2223                             CAS_BASE(RX_INDEX_RING, ring));
2224
2225         entry = RX_DESC_ENTRY(ring, entry + 1);
2226         cp->rx_old[ring] = entry;
2227         
2228         if (entry % 4)
2229                 return;
2230
2231         if (ring == 0)
2232                 writel(entry, cp->regs + REG_RX_KICK);
2233         else if ((N_RX_DESC_RINGS > 1) &&
2234                  (cp->cas_flags & CAS_FLAG_REG_PLUS)) 
2235                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2236 }
2237
2238
2239 /* only when things are bad */
2240 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2241 {
2242         unsigned int entry, last, count, released;
2243         int cluster;
2244         cas_page_t **page = cp->rx_pages[ring];
2245
2246         entry = cp->rx_old[ring];
2247
2248         if (netif_msg_intr(cp))
2249                 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2250                        cp->dev->name, ring, entry);
2251
2252         cluster = -1;
2253         count = entry & 0x3; 
2254         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2255         released = 0;
2256         while (entry != last) {
2257                 /* make a new buffer if it's still in use */
2258                 if (cas_buffer_count(page[entry]) > 1) {
2259                         cas_page_t *new = cas_page_dequeue(cp);
2260                         if (!new) {
2261                                 /* let the timer know that we need to 
2262                                  * do this again
2263                                  */
2264                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2265                                 if (!timer_pending(&cp->link_timer))
2266                                         mod_timer(&cp->link_timer, jiffies + 
2267                                                   CAS_LINK_FAST_TIMEOUT);
2268                                 cp->rx_old[ring]  = entry;
2269                                 cp->rx_last[ring] = num ? num - released : 0;
2270                                 return -ENOMEM;
2271                         }
2272                         spin_lock(&cp->rx_inuse_lock);
2273                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2274                         spin_unlock(&cp->rx_inuse_lock);
2275                         cp->init_rxds[ring][entry].buffer = 
2276                                 cpu_to_le64(new->dma_addr);
2277                         page[entry] = new;
2278                         
2279                 }
2280
2281                 if (++count == 4) {
2282                         cluster = entry;
2283                         count = 0;
2284                 }
2285                 released++;
2286                 entry = RX_DESC_ENTRY(ring, entry + 1);
2287         }
2288         cp->rx_old[ring] = entry;
2289
2290         if (cluster < 0) 
2291                 return 0;
2292
2293         if (ring == 0)
2294                 writel(cluster, cp->regs + REG_RX_KICK);
2295         else if ((N_RX_DESC_RINGS > 1) &&
2296                  (cp->cas_flags & CAS_FLAG_REG_PLUS)) 
2297                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2298         return 0;
2299 }
2300
2301
2302 /* process a completion ring. packets are set up in three basic ways:
2303  * small packets: should be copied header + data in single buffer.
2304  * large packets: header and data in a single buffer.
2305  * split packets: header in a separate buffer from data. 
2306  *                data may be in multiple pages. data may be > 256
2307  *                bytes but in a single page. 
2308  *
2309  * NOTE: RX page posting is done in this routine as well. while there's
2310  *       the capability of using multiple RX completion rings, it isn't
2311  *       really worthwhile due to the fact that the page posting will
2312  *       force serialization on the single descriptor ring. 
2313  */
2314 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2315 {
2316         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2317         int entry, drops;
2318         int npackets = 0;
2319
2320         if (netif_msg_intr(cp))
2321                 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2322                        cp->dev->name, ring,
2323                        readl(cp->regs + REG_RX_COMP_HEAD), 
2324                        cp->rx_new[ring]);
2325
2326         entry = cp->rx_new[ring];
2327         drops = 0;
2328         while (1) {
2329                 struct cas_rx_comp *rxc = rxcs + entry;
2330                 struct sk_buff *skb;
2331                 int type, len;
2332                 u64 words[4];
2333                 int i, dring;
2334
2335                 words[0] = le64_to_cpu(rxc->word1);
2336                 words[1] = le64_to_cpu(rxc->word2);
2337                 words[2] = le64_to_cpu(rxc->word3);
2338                 words[3] = le64_to_cpu(rxc->word4);
2339
2340                 /* don't touch if still owned by hw */
2341                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2342                 if (type == 0)
2343                         break;
2344
2345                 /* hw hasn't cleared the zero bit yet */
2346                 if (words[3] & RX_COMP4_ZERO) {
2347                         break;
2348                 }
2349
2350                 /* get info on the packet */
2351                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2352                         spin_lock(&cp->stat_lock[ring]);
2353                         cp->net_stats[ring].rx_errors++;
2354                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2355                                 cp->net_stats[ring].rx_length_errors++;
2356                         if (words[3] & RX_COMP4_BAD)
2357                                 cp->net_stats[ring].rx_crc_errors++;
2358                         spin_unlock(&cp->stat_lock[ring]);
2359
2360                         /* We'll just return it to Cassini. */
2361                 drop_it:
2362                         spin_lock(&cp->stat_lock[ring]);
2363                         ++cp->net_stats[ring].rx_dropped;
2364                         spin_unlock(&cp->stat_lock[ring]);
2365                         goto next;
2366                 }
2367
2368                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2369                 if (len < 0) {
2370                         ++drops;
2371                         goto drop_it;
2372                 }
2373
2374                 /* see if it's a flow re-assembly or not. the driver
2375                  * itself handles release back up.
2376                  */
2377                 if (RX_DONT_BATCH || (type == 0x2)) {
2378                         /* non-reassm: these always get released */
2379                         cas_skb_release(skb); 
2380                 } else {
2381                         cas_rx_flow_pkt(cp, words, skb);
2382                 }
2383
2384                 spin_lock(&cp->stat_lock[ring]);
2385                 cp->net_stats[ring].rx_packets++;
2386                 cp->net_stats[ring].rx_bytes += len;
2387                 spin_unlock(&cp->stat_lock[ring]);
2388                 cp->dev->last_rx = jiffies;
2389
2390         next:
2391                 npackets++;
2392
2393                 /* should it be released? */
2394                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2395                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2396                         dring = CAS_VAL(RX_INDEX_RING, i);
2397                         i = CAS_VAL(RX_INDEX_NUM, i);
2398                         cas_post_page(cp, dring, i);
2399                 }
2400                 
2401                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2402                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2403                         dring = CAS_VAL(RX_INDEX_RING, i);
2404                         i = CAS_VAL(RX_INDEX_NUM, i);
2405                         cas_post_page(cp, dring, i);
2406                 }
2407
2408                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2409                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2410                         dring = CAS_VAL(RX_INDEX_RING, i);
2411                         i = CAS_VAL(RX_INDEX_NUM, i);
2412                         cas_post_page(cp, dring, i);
2413                 }
2414
2415                 /* skip to the next entry */
2416                 entry = RX_COMP_ENTRY(ring, entry + 1 + 
2417                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2418 #ifdef USE_NAPI
2419                 if (budget && (npackets >= budget))
2420                         break;
2421 #endif
2422         }
2423         cp->rx_new[ring] = entry;
2424
2425         if (drops)
2426                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2427                        cp->dev->name);
2428         return npackets;
2429 }
2430
2431
2432 /* put completion entries back on the ring */
2433 static void cas_post_rxcs_ringN(struct net_device *dev,
2434                                 struct cas *cp, int ring)
2435 {
2436         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2437         int last, entry;
2438
2439         last = cp->rx_cur[ring];
2440         entry = cp->rx_new[ring]; 
2441         if (netif_msg_intr(cp))
2442                 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2443                        dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2444                        entry);
2445         
2446         /* zero and re-mark descriptors */
2447         while (last != entry) {
2448                 cas_rxc_init(rxc + last);
2449                 last = RX_COMP_ENTRY(ring, last + 1);
2450         }
2451         cp->rx_cur[ring] = last;
2452
2453         if (ring == 0)
2454                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2455         else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 
2456                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2457 }
2458
2459
2460
2461 /* cassini can use all four PCI interrupts for the completion ring. 
2462  * rings 3 and 4 are identical
2463  */
2464 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2465 static inline void cas_handle_irqN(struct net_device *dev, 
2466                                    struct cas *cp, const u32 status,
2467                                    const int ring)
2468 {
2469         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 
2470                 cas_post_rxcs_ringN(dev, cp, ring);
2471 }
2472
2473 static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs)
2474 {
2475         struct net_device *dev = dev_id;
2476         struct cas *cp = netdev_priv(dev);
2477         unsigned long flags;
2478         int ring;
2479         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2480
2481         /* check for shared irq */
2482         if (status == 0)
2483                 return IRQ_NONE;
2484
2485         ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2486         spin_lock_irqsave(&cp->lock, flags);
2487         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2488 #ifdef USE_NAPI
2489                 cas_mask_intr(cp);
2490                 netif_rx_schedule(dev);
2491 #else
2492                 cas_rx_ringN(cp, ring, 0);
2493 #endif
2494                 status &= ~INTR_RX_DONE_ALT;
2495         }
2496
2497         if (status)
2498                 cas_handle_irqN(dev, cp, status, ring);
2499         spin_unlock_irqrestore(&cp->lock, flags);
2500         return IRQ_HANDLED;
2501 }
2502 #endif
2503
2504 #ifdef USE_PCI_INTB
2505 /* everything but rx packets */
2506 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2507 {
2508         if (status & INTR_RX_BUF_UNAVAIL_1) {
2509                 /* Frame arrived, no free RX buffers available. 
2510                  * NOTE: we can get this on a link transition. */
2511                 cas_post_rxds_ringN(cp, 1, 0);
2512                 spin_lock(&cp->stat_lock[1]);
2513                 cp->net_stats[1].rx_dropped++;
2514                 spin_unlock(&cp->stat_lock[1]);
2515         }
2516
2517         if (status & INTR_RX_BUF_AE_1) 
2518                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 
2519                                     RX_AE_FREEN_VAL(1));
2520
2521         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2522                 cas_post_rxcs_ringN(cp, 1);
2523 }
2524
2525 /* ring 2 handles a few more events than 3 and 4 */
2526 static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs)
2527 {
2528         struct net_device *dev = dev_id;
2529         struct cas *cp = netdev_priv(dev);
2530         unsigned long flags;
2531         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2532
2533         /* check for shared interrupt */
2534         if (status == 0)
2535                 return IRQ_NONE;
2536
2537         spin_lock_irqsave(&cp->lock, flags);
2538         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2539 #ifdef USE_NAPI
2540                 cas_mask_intr(cp);
2541                 netif_rx_schedule(dev);
2542 #else
2543                 cas_rx_ringN(cp, 1, 0);
2544 #endif
2545                 status &= ~INTR_RX_DONE_ALT;
2546         }
2547         if (status)
2548                 cas_handle_irq1(cp, status);
2549         spin_unlock_irqrestore(&cp->lock, flags);
2550         return IRQ_HANDLED;
2551 }
2552 #endif
2553
2554 static inline void cas_handle_irq(struct net_device *dev,
2555                                   struct cas *cp, const u32 status)
2556 {
2557         /* housekeeping interrupts */
2558         if (status & INTR_ERROR_MASK)
2559                 cas_abnormal_irq(dev, cp, status);
2560
2561         if (status & INTR_RX_BUF_UNAVAIL) {
2562                 /* Frame arrived, no free RX buffers available. 
2563                  * NOTE: we can get this on a link transition.
2564                  */
2565                 cas_post_rxds_ringN(cp, 0, 0);
2566                 spin_lock(&cp->stat_lock[0]);
2567                 cp->net_stats[0].rx_dropped++;
2568                 spin_unlock(&cp->stat_lock[0]);
2569         } else if (status & INTR_RX_BUF_AE) {
2570                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2571                                     RX_AE_FREEN_VAL(0));
2572         }
2573
2574         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2575                 cas_post_rxcs_ringN(dev, cp, 0);
2576 }
2577
2578 static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2579 {
2580         struct net_device *dev = dev_id;
2581         struct cas *cp = netdev_priv(dev);
2582         unsigned long flags;
2583         u32 status = readl(cp->regs + REG_INTR_STATUS);
2584
2585         if (status == 0)
2586                 return IRQ_NONE;
2587
2588         spin_lock_irqsave(&cp->lock, flags);
2589         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2590                 cas_tx(dev, cp, status);
2591                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2592         }
2593
2594         if (status & INTR_RX_DONE) {
2595 #ifdef USE_NAPI
2596                 cas_mask_intr(cp);
2597                 netif_rx_schedule(dev);
2598 #else
2599                 cas_rx_ringN(cp, 0, 0);
2600 #endif
2601                 status &= ~INTR_RX_DONE;
2602         }
2603
2604         if (status)
2605                 cas_handle_irq(dev, cp, status);
2606         spin_unlock_irqrestore(&cp->lock, flags);
2607         return IRQ_HANDLED;
2608 }
2609
2610
2611 #ifdef USE_NAPI
2612 static int cas_poll(struct net_device *dev, int *budget)
2613 {
2614         struct cas *cp = netdev_priv(dev);
2615         int i, enable_intr, todo, credits;
2616         u32 status = readl(cp->regs + REG_INTR_STATUS);
2617         unsigned long flags;
2618
2619         spin_lock_irqsave(&cp->lock, flags);
2620         cas_tx(dev, cp, status);
2621         spin_unlock_irqrestore(&cp->lock, flags);
2622
2623         /* NAPI rx packets. we spread the credits across all of the
2624          * rxc rings
2625          */
2626         todo = min(*budget, dev->quota);
2627
2628         /* to make sure we're fair with the work we loop through each
2629          * ring N_RX_COMP_RING times with a request of 
2630          * todo / N_RX_COMP_RINGS
2631          */
2632         enable_intr = 1;
2633         credits = 0;
2634         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2635                 int j;
2636                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2637                         credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2638                         if (credits >= todo) {
2639                                 enable_intr = 0;
2640                                 goto rx_comp;
2641                         }
2642                 }
2643         }
2644
2645 rx_comp:
2646         *budget    -= credits;
2647         dev->quota -= credits;
2648
2649         /* final rx completion */
2650         spin_lock_irqsave(&cp->lock, flags);
2651         if (status)
2652                 cas_handle_irq(dev, cp, status);
2653
2654 #ifdef USE_PCI_INTB
2655         if (N_RX_COMP_RINGS > 1) {
2656                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2657                 if (status)
2658                         cas_handle_irq1(dev, cp, status);
2659         }
2660 #endif
2661
2662 #ifdef USE_PCI_INTC
2663         if (N_RX_COMP_RINGS > 2) {
2664                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2665                 if (status)
2666                         cas_handle_irqN(dev, cp, status, 2);
2667         }
2668 #endif
2669
2670 #ifdef USE_PCI_INTD
2671         if (N_RX_COMP_RINGS > 3) {
2672                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2673                 if (status)
2674                         cas_handle_irqN(dev, cp, status, 3);
2675         }
2676 #endif
2677         spin_unlock_irqrestore(&cp->lock, flags);
2678         if (enable_intr) {
2679                 netif_rx_complete(dev);
2680                 cas_unmask_intr(cp);
2681                 return 0;
2682         }
2683         return 1;
2684 }
2685 #endif
2686
2687 #ifdef CONFIG_NET_POLL_CONTROLLER
2688 static void cas_netpoll(struct net_device *dev)
2689 {
2690         struct cas *cp = netdev_priv(dev);
2691
2692         cas_disable_irq(cp, 0);
2693         cas_interrupt(cp->pdev->irq, dev, NULL);
2694         cas_enable_irq(cp, 0);
2695
2696 #ifdef USE_PCI_INTB
2697         if (N_RX_COMP_RINGS > 1) {
2698                 /* cas_interrupt1(); */
2699         }
2700 #endif
2701 #ifdef USE_PCI_INTC
2702         if (N_RX_COMP_RINGS > 2) {
2703                 /* cas_interruptN(); */
2704         }
2705 #endif
2706 #ifdef USE_PCI_INTD
2707         if (N_RX_COMP_RINGS > 3) {
2708                 /* cas_interruptN(); */
2709         }
2710 #endif
2711 }
2712 #endif
2713
2714 static void cas_tx_timeout(struct net_device *dev)
2715 {
2716         struct cas *cp = netdev_priv(dev);
2717
2718         printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2719         if (!cp->hw_running) {
2720                 printk("%s: hrm.. hw not running!\n", dev->name);
2721                 return;
2722         }
2723
2724         printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2725                dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2726
2727         printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2728                dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2729
2730         printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2731                "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2732                dev->name,
2733                readl(cp->regs + REG_TX_CFG),
2734                readl(cp->regs + REG_MAC_TX_STATUS),
2735                readl(cp->regs + REG_MAC_TX_CFG),
2736                readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2737                readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2738                readl(cp->regs + REG_TX_FIFO_READ_PTR),
2739                readl(cp->regs + REG_TX_SM_1),
2740                readl(cp->regs + REG_TX_SM_2));
2741
2742         printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2743                dev->name,
2744                readl(cp->regs + REG_RX_CFG),
2745                readl(cp->regs + REG_MAC_RX_STATUS),
2746                readl(cp->regs + REG_MAC_RX_CFG));
2747
2748         printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2749                dev->name,
2750                readl(cp->regs + REG_HP_STATE_MACHINE),
2751                readl(cp->regs + REG_HP_STATUS0),
2752                readl(cp->regs + REG_HP_STATUS1),
2753                readl(cp->regs + REG_HP_STATUS2));
2754
2755 #if 1
2756         atomic_inc(&cp->reset_task_pending);
2757         atomic_inc(&cp->reset_task_pending_all);
2758         schedule_work(&cp->reset_task);
2759 #else
2760         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2761         schedule_work(&cp->reset_task);
2762 #endif
2763 }
2764
2765 static inline int cas_intme(int ring, int entry)
2766 {
2767         /* Algorithm: IRQ every 1/2 of descriptors. */
2768         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2769                 return 1;
2770         return 0;
2771 }
2772
2773
2774 static void cas_write_txd(struct cas *cp, int ring, int entry,
2775                           dma_addr_t mapping, int len, u64 ctrl, int last)
2776 {
2777         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2778
2779         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2780         if (cas_intme(ring, entry))
2781                 ctrl |= TX_DESC_INTME;
2782         if (last)
2783                 ctrl |= TX_DESC_EOF;
2784         txd->control = cpu_to_le64(ctrl);
2785         txd->buffer = cpu_to_le64(mapping);
2786 }
2787
2788 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 
2789                                 const int entry)
2790 {
2791         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2792 }
2793
2794 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 
2795                                      const int entry, const int tentry)
2796 {
2797         cp->tx_tiny_use[ring][tentry].nbufs++;
2798         cp->tx_tiny_use[ring][entry].used = 1;
2799         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2800 }
2801
2802 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 
2803                                     struct sk_buff *skb)
2804 {
2805         struct net_device *dev = cp->dev;
2806         int entry, nr_frags, frag, tabort, tentry;
2807         dma_addr_t mapping;
2808         unsigned long flags;
2809         u64 ctrl;
2810         u32 len;
2811
2812         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2813
2814         /* This is a hard error, log it. */
2815         if (TX_BUFFS_AVAIL(cp, ring) <= 
2816             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2817                 netif_stop_queue(dev);
2818                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2819                 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2820                        "queue awake!\n", dev->name);
2821                 return 1;
2822         }
2823
2824         ctrl = 0;
2825         if (skb->ip_summed == CHECKSUM_HW) {
2826                 u64 csum_start_off, csum_stuff_off;
2827
2828                 csum_start_off = (u64) (skb->h.raw - skb->data);
2829                 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
2830
2831                 ctrl =  TX_DESC_CSUM_EN | 
2832                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2833                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2834         }
2835
2836         entry = cp->tx_new[ring];
2837         cp->tx_skbs[ring][entry] = skb;
2838
2839         nr_frags = skb_shinfo(skb)->nr_frags;
2840         len = skb_headlen(skb);
2841         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2842                                offset_in_page(skb->data), len,
2843                                PCI_DMA_TODEVICE);
2844
2845         tentry = entry;
2846         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2847         if (unlikely(tabort)) {
2848                 /* NOTE: len is always >  tabort */
2849                 cas_write_txd(cp, ring, entry, mapping, len - tabort, 
2850                               ctrl | TX_DESC_SOF, 0);
2851                 entry = TX_DESC_NEXT(ring, entry);
2852
2853                 memcpy(tx_tiny_buf(cp, ring, entry), skb->data + 
2854                        len - tabort, tabort);
2855                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2856                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2857                               (nr_frags == 0));
2858         } else {
2859                 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 
2860                               TX_DESC_SOF, (nr_frags == 0));
2861         }
2862         entry = TX_DESC_NEXT(ring, entry);
2863
2864         for (frag = 0; frag < nr_frags; frag++) {
2865                 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2866
2867                 len = fragp->size;
2868                 mapping = pci_map_page(cp->pdev, fragp->page,
2869                                        fragp->page_offset, len,
2870                                        PCI_DMA_TODEVICE);
2871
2872                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2873                 if (unlikely(tabort)) {
2874                         void *addr;
2875
2876                         /* NOTE: len is always > tabort */
2877                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2878                                       ctrl, 0);
2879                         entry = TX_DESC_NEXT(ring, entry);
2880                         
2881                         addr = cas_page_map(fragp->page);
2882                         memcpy(tx_tiny_buf(cp, ring, entry),
2883                                addr + fragp->page_offset + len - tabort, 
2884                                tabort);
2885                         cas_page_unmap(addr);
2886                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2887                         len     = tabort;
2888                 }
2889
2890                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2891                               (frag + 1 == nr_frags));
2892                 entry = TX_DESC_NEXT(ring, entry);
2893         }
2894
2895         cp->tx_new[ring] = entry;
2896         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2897                 netif_stop_queue(dev);
2898
2899         if (netif_msg_tx_queued(cp))
2900                 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2901                        "avail %d\n",
2902                        dev->name, ring, entry, skb->len, 
2903                        TX_BUFFS_AVAIL(cp, ring));
2904         writel(entry, cp->regs + REG_TX_KICKN(ring));
2905         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2906         return 0;
2907
2908
2909 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2910 {
2911         struct cas *cp = netdev_priv(dev);
2912
2913         /* this is only used as a load-balancing hint, so it doesn't
2914          * need to be SMP safe
2915          */
2916         static int ring; 
2917
2918         skb = skb_padto(skb, cp->min_frame_size);
2919         if (!skb)
2920                 return 0;
2921
2922         /* XXX: we need some higher-level QoS hooks to steer packets to
2923          *      individual queues.
2924          */
2925         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2926                 return 1;
2927         dev->trans_start = jiffies;
2928         return 0;
2929 }
2930
2931 static void cas_init_tx_dma(struct cas *cp)
2932 {
2933         u64 desc_dma = cp->block_dvma;
2934         unsigned long off;
2935         u32 val;
2936         int i;
2937
2938         /* set up tx completion writeback registers. must be 8-byte aligned */
2939 #ifdef USE_TX_COMPWB
2940         off = offsetof(struct cas_init_block, tx_compwb);
2941         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2942         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2943 #endif
2944
2945         /* enable completion writebacks, enable paced mode,
2946          * disable read pipe, and disable pre-interrupt compwbs
2947          */
2948         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 
2949                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2950                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 
2951                 TX_CFG_INTR_COMPWB_DIS;
2952
2953         /* write out tx ring info and tx desc bases */
2954         for (i = 0; i < MAX_TX_RINGS; i++) {
2955                 off = (unsigned long) cp->init_txds[i] - 
2956                         (unsigned long) cp->init_block;
2957
2958                 val |= CAS_TX_RINGN_BASE(i);
2959                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2960                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2961                        REG_TX_DBN_LOW(i));
2962                 /* don't zero out the kick register here as the system
2963                  * will wedge
2964                  */
2965         }
2966         writel(val, cp->regs + REG_TX_CFG);
2967
2968         /* program max burst sizes. these numbers should be different
2969          * if doing QoS.
2970          */
2971 #ifdef USE_QOS
2972         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2973         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2974         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2975         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2976 #else
2977         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2978         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2979         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2980         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2981 #endif
2982 }
2983
2984 /* Must be invoked under cp->lock. */
2985 static inline void cas_init_dma(struct cas *cp)
2986 {
2987         cas_init_tx_dma(cp);
2988         cas_init_rx_dma(cp);
2989 }
2990
2991 /* Must be invoked under cp->lock. */
2992 static u32 cas_setup_multicast(struct cas *cp)
2993 {
2994         u32 rxcfg = 0;
2995         int i;
2996         
2997         if (cp->dev->flags & IFF_PROMISC) {
2998                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2999
3000         } else if (cp->dev->flags & IFF_ALLMULTI) {
3001                 for (i=0; i < 16; i++)
3002                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3003                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3004
3005         } else {
3006                 u16 hash_table[16];
3007                 u32 crc;
3008                 struct dev_mc_list *dmi = cp->dev->mc_list;
3009                 int i;
3010
3011                 /* use the alternate mac address registers for the
3012                  * first 15 multicast addresses
3013                  */
3014                 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3015                         if (!dmi) {
3016                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3017                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3018                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3019                                 continue;
3020                         }
3021                         writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], 
3022                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
3023                         writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], 
3024                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
3025                         writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], 
3026                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
3027                         dmi = dmi->next;
3028                 }
3029
3030                 /* use hw hash table for the next series of 
3031                  * multicast addresses
3032                  */
3033                 memset(hash_table, 0, sizeof(hash_table));
3034                 while (dmi) {
3035                         crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3036                         crc >>= 24;
3037                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3038                         dmi = dmi->next;
3039                 }
3040                 for (i=0; i < 16; i++)
3041                         writel(hash_table[i], cp->regs + 
3042                                REG_MAC_HASH_TABLEN(i));
3043                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3044         }
3045
3046         return rxcfg;
3047 }
3048
3049 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3050 static void cas_clear_mac_err(struct cas *cp)
3051 {
3052         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3053         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3054         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3055         writel(0, cp->regs + REG_MAC_COLL_LATE);
3056         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3057         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3058         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3059         writel(0, cp->regs + REG_MAC_LEN_ERR);
3060         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3061         writel(0, cp->regs + REG_MAC_FCS_ERR);
3062         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3063 }
3064
3065
3066 static void cas_mac_reset(struct cas *cp)
3067 {
3068         int i;
3069
3070         /* do both TX and RX reset */
3071         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3072         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3073
3074         /* wait for TX */
3075         i = STOP_TRIES;
3076         while (i-- > 0) {
3077                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3078                         break;
3079                 udelay(10);
3080         }
3081
3082         /* wait for RX */
3083         i = STOP_TRIES;
3084         while (i-- > 0) {
3085                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3086                         break;
3087                 udelay(10);
3088         }
3089
3090         if (readl(cp->regs + REG_MAC_TX_RESET) |
3091             readl(cp->regs + REG_MAC_RX_RESET))
3092                 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3093                        cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3094                        readl(cp->regs + REG_MAC_RX_RESET),
3095                        readl(cp->regs + REG_MAC_STATE_MACHINE));
3096 }
3097
3098
3099 /* Must be invoked under cp->lock. */
3100 static void cas_init_mac(struct cas *cp)
3101 {
3102         unsigned char *e = &cp->dev->dev_addr[0];
3103         int i;
3104 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3105         u32 rxcfg;
3106 #endif
3107         cas_mac_reset(cp);
3108
3109         /* setup core arbitration weight register */
3110         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3111
3112         /* XXX Use pci_dma_burst_advice() */
3113 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3114         /* set the infinite burst register for chips that don't have
3115          * pci issues.
3116          */
3117         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3118                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3119 #endif
3120
3121         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3122
3123         writel(0x00, cp->regs + REG_MAC_IPG0);
3124         writel(0x08, cp->regs + REG_MAC_IPG1);
3125         writel(0x04, cp->regs + REG_MAC_IPG2);
3126         
3127         /* change later for 802.3z */
3128         writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 
3129
3130         /* min frame + FCS */
3131         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3132
3133         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3134          * specify the maximum frame size to prevent RX tag errors on 
3135          * oversized frames.
3136          */
3137         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3138                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 
3139                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 
3140                cp->regs + REG_MAC_FRAMESIZE_MAX);
3141
3142         /* NOTE: crc_size is used as a surrogate for half-duplex. 
3143          * workaround saturn half-duplex issue by increasing preamble
3144          * size to 65 bytes.
3145          */
3146         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3147                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3148         else
3149                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3150         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3151         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3152         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3153
3154         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3155
3156         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3157         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3158         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3159         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3160         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3161
3162         /* setup mac address in perfect filter array */
3163         for (i = 0; i < 45; i++)
3164                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3165
3166         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3167         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3168         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3169
3170         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3171         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3172         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3173
3174 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3175         cp->mac_rx_cfg = cas_setup_multicast(cp);
3176 #else
3177         /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3178          * a writel does not seem to be necessary because Cassini
3179          * seems to preserve the configuration when we do the reset.
3180          * If the chip is in trouble, though, it is not clear if we
3181          * can really count on this behavior. cas_set_multicast uses
3182          * spin_lock_irqsave, but we are called only in cas_init_hw and
3183          * cas_init_hw is protected by cas_lock_all, which calls
3184          * spin_lock_irq (so it doesn't need to save the flags, and
3185          * we should be OK for the writel, as that is the only 
3186          * difference).
3187          */
3188         cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3189         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3190 #endif
3191         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3192         cas_clear_mac_err(cp);
3193         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3194
3195         /* Setup MAC interrupts.  We want to get all of the interesting
3196          * counter expiration events, but we do not want to hear about
3197          * normal rx/tx as the DMA engine tells us that.
3198          */
3199         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3200         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3201
3202         /* Don't enable even the PAUSE interrupts for now, we
3203          * make no use of those events other than to record them.
3204          */
3205         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3206 }
3207
3208 /* Must be invoked under cp->lock. */
3209 static void cas_init_pause_thresholds(struct cas *cp)
3210 {
3211         /* Calculate pause thresholds.  Setting the OFF threshold to the
3212          * full RX fifo size effectively disables PAUSE generation
3213          */
3214         if (cp->rx_fifo_size <= (2 * 1024)) {
3215                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3216         } else {
3217                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3218                 if (max_frame * 3 > cp->rx_fifo_size) {
3219                         cp->rx_pause_off = 7104;
3220                         cp->rx_pause_on  = 960;
3221                 } else {
3222                         int off = (cp->rx_fifo_size - (max_frame * 2));
3223                         int on = off - max_frame;
3224                         cp->rx_pause_off = off;
3225                         cp->rx_pause_on = on;
3226                 }
3227         }
3228 }
3229
3230 static int cas_vpd_match(const void __iomem *p, const char *str)
3231 {
3232         int len = strlen(str) + 1;
3233         int i;
3234         
3235         for (i = 0; i < len; i++) {
3236                 if (readb(p + i) != str[i])
3237                         return 0;
3238         }
3239         return 1;
3240 }
3241
3242
3243 /* get the mac address by reading the vpd information in the rom.
3244  * also get the phy type and determine if there's an entropy generator.
3245  * NOTE: this is a bit convoluted for the following reasons:
3246  *  1) vpd info has order-dependent mac addresses for multinic cards
3247  *  2) the only way to determine the nic order is to use the slot
3248  *     number.
3249  *  3) fiber cards don't have bridges, so their slot numbers don't
3250  *     mean anything.
3251  *  4) we don't actually know we have a fiber card until after 
3252  *     the mac addresses are parsed.
3253  */
3254 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3255                             const int offset)
3256 {
3257         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3258         void __iomem *base, *kstart;
3259         int i, len;
3260         int found = 0;
3261 #define VPD_FOUND_MAC        0x01
3262 #define VPD_FOUND_PHY        0x02
3263
3264         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3265         int mac_off  = 0;
3266
3267         /* give us access to the PROM */
3268         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3269                cp->regs + REG_BIM_LOCAL_DEV_EN);
3270
3271         /* check for an expansion rom */
3272         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3273                 goto use_random_mac_addr;
3274
3275         /* search for beginning of vpd */
3276         base = NULL;
3277         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3278                 /* check for PCIR */
3279                 if ((readb(p + i + 0) == 0x50) &&
3280                     (readb(p + i + 1) == 0x43) &&
3281                     (readb(p + i + 2) == 0x49) &&
3282                     (readb(p + i + 3) == 0x52)) {
3283                         base = p + (readb(p + i + 8) | 
3284                                     (readb(p + i + 9) << 8));
3285                         break;
3286                 }               
3287         }
3288
3289         if (!base || (readb(base) != 0x82))
3290                 goto use_random_mac_addr;
3291         
3292         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3293         while (i < EXPANSION_ROM_SIZE) {
3294                 if (readb(base + i) != 0x90) /* no vpd found */
3295                         goto use_random_mac_addr;
3296
3297                 /* found a vpd field */
3298                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3299
3300                 /* extract keywords */
3301                 kstart = base + i + 3;
3302                 p = kstart;
3303                 while ((p - kstart) < len) {
3304                         int klen = readb(p + 2);
3305                         int j;
3306                         char type;
3307
3308                         p += 3;
3309                         
3310                         /* look for the following things:
3311                          * -- correct length == 29
3312                          * 3 (type) + 2 (size) + 
3313                          * 18 (strlen("local-mac-address") + 1) + 
3314                          * 6 (mac addr) 
3315                          * -- VPD Instance 'I'
3316                          * -- VPD Type Bytes 'B'
3317                          * -- VPD data length == 6
3318                          * -- property string == local-mac-address
3319                          * 
3320                          * -- correct length == 24
3321                          * 3 (type) + 2 (size) + 
3322                          * 12 (strlen("entropy-dev") + 1) + 
3323                          * 7 (strlen("vms110") + 1)
3324                          * -- VPD Instance 'I'
3325                          * -- VPD Type String 'B'
3326                          * -- VPD data length == 7
3327                          * -- property string == entropy-dev
3328                          *
3329                          * -- correct length == 18
3330                          * 3 (type) + 2 (size) + 
3331                          * 9 (strlen("phy-type") + 1) + 
3332                          * 4 (strlen("pcs") + 1)
3333                          * -- VPD Instance 'I'
3334                          * -- VPD Type String 'S'
3335                          * -- VPD data length == 4
3336                          * -- property string == phy-type
3337                          * 
3338                          * -- correct length == 23
3339                          * 3 (type) + 2 (size) + 
3340                          * 14 (strlen("phy-interface") + 1) + 
3341                          * 4 (strlen("pcs") + 1)
3342                          * -- VPD Instance 'I'
3343                          * -- VPD Type String 'S'
3344                          * -- VPD data length == 4
3345                          * -- property string == phy-interface
3346                          */
3347                         if (readb(p) != 'I')
3348                                 goto next;
3349
3350                         /* finally, check string and length */
3351                         type = readb(p + 3);
3352                         if (type == 'B') {
3353                                 if ((klen == 29) && readb(p + 4) == 6 &&
3354                                     cas_vpd_match(p + 5, 
3355                                                   "local-mac-address")) {
3356                                         if (mac_off++ > offset) 
3357                                                 goto next;
3358
3359                                         /* set mac address */
3360                                         for (j = 0; j < 6; j++) 
3361                                                 dev_addr[j] = 
3362                                                         readb(p + 23 + j);
3363                                         goto found_mac;
3364                                 }
3365                         }
3366
3367                         if (type != 'S')
3368                                 goto next;
3369
3370 #ifdef USE_ENTROPY_DEV
3371                         if ((klen == 24) && 
3372                             cas_vpd_match(p + 5, "entropy-dev") &&
3373                             cas_vpd_match(p + 17, "vms110")) {
3374                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3375                                 goto next;
3376                         }
3377 #endif
3378
3379                         if (found & VPD_FOUND_PHY)
3380                                 goto next;
3381
3382                         if ((klen == 18) && readb(p + 4) == 4 &&
3383                             cas_vpd_match(p + 5, "phy-type")) {
3384                                 if (cas_vpd_match(p + 14, "pcs")) {
3385                                         phy_type = CAS_PHY_SERDES;
3386                                         goto found_phy;
3387                                 }
3388                         }
3389                         
3390                         if ((klen == 23) && readb(p + 4) == 4 &&
3391                             cas_vpd_match(p + 5, "phy-interface")) {
3392                                 if (cas_vpd_match(p + 19, "pcs")) {
3393                                         phy_type = CAS_PHY_SERDES;
3394                                         goto found_phy;
3395                                 }
3396                         }
3397 found_mac:
3398                         found |= VPD_FOUND_MAC;
3399                         goto next;
3400
3401 found_phy:
3402                         found |= VPD_FOUND_PHY;
3403
3404 next:
3405                         p += klen;
3406                 }
3407                 i += len + 3;
3408         }
3409
3410 use_random_mac_addr:
3411         if (found & VPD_FOUND_MAC)
3412                 goto done;
3413
3414         /* Sun MAC prefix then 3 random bytes. */
3415         printk(PFX "MAC address not found in ROM VPD\n");
3416         dev_addr[0] = 0x08;
3417         dev_addr[1] = 0x00;
3418         dev_addr[2] = 0x20;
3419         get_random_bytes(dev_addr + 3, 3);
3420
3421 done:
3422         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3423         return phy_type;
3424 }
3425
3426 /* check pci invariants */
3427 static void cas_check_pci_invariants(struct cas *cp)
3428 {
3429         struct pci_dev *pdev = cp->pdev;
3430         u8 rev;
3431
3432         cp->cas_flags = 0;
3433         pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3434         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3435             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3436                 if (rev >= CAS_ID_REVPLUS)
3437                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3438                 if (rev < CAS_ID_REVPLUS02u)
3439                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3440
3441                 /* Original Cassini supports HW CSUM, but it's not
3442                  * enabled by default as it can trigger TX hangs.
3443                  */
3444                 if (rev < CAS_ID_REV2)
3445                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3446         } else {
3447                 /* Only sun has original cassini chips.  */
3448                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3449
3450                 /* We use a flag because the same phy might be externally
3451                  * connected.
3452                  */
3453                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3454                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3455                         cp->cas_flags |= CAS_FLAG_SATURN;
3456         }
3457 }
3458
3459
3460 static int cas_check_invariants(struct cas *cp)
3461 {
3462         struct pci_dev *pdev = cp->pdev;
3463         u32 cfg;
3464         int i;
3465
3466         /* get page size for rx buffers. */
3467         cp->page_order = 0; 
3468 #ifdef USE_PAGE_ORDER
3469         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3470                 /* see if we can allocate larger pages */
3471                 struct page *page = alloc_pages(GFP_ATOMIC, 
3472                                                 CAS_JUMBO_PAGE_SHIFT - 
3473                                                 PAGE_SHIFT);
3474                 if (page) {
3475                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3476                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3477                 } else {
3478                         printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3479                 }
3480         }
3481 #endif
3482         cp->page_size = (PAGE_SIZE << cp->page_order);
3483
3484         /* Fetch the FIFO configurations. */
3485         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3486         cp->rx_fifo_size = RX_FIFO_SIZE;
3487
3488         /* finish phy determination. MDIO1 takes precedence over MDIO0 if 
3489          * they're both connected.
3490          */
3491         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 
3492                                         PCI_SLOT(pdev->devfn));
3493         if (cp->phy_type & CAS_PHY_SERDES) {
3494                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3495                 return 0; /* no more checking needed */
3496         } 
3497
3498         /* MII */
3499         cfg = readl(cp->regs + REG_MIF_CFG);
3500         if (cfg & MIF_CFG_MDIO_1) {
3501                 cp->phy_type = CAS_PHY_MII_MDIO1;
3502         } else if (cfg & MIF_CFG_MDIO_0) {
3503                 cp->phy_type = CAS_PHY_MII_MDIO0;
3504         }
3505
3506         cas_mif_poll(cp, 0);
3507         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3508
3509         for (i = 0; i < 32; i++) {
3510                 u32 phy_id;
3511                 int j;
3512
3513                 for (j = 0; j < 3; j++) {
3514                         cp->phy_addr = i;
3515                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3516                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3517                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3518                                 cp->phy_id = phy_id;
3519                                 goto done;
3520                         }
3521                 }
3522         }
3523         printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3524                readl(cp->regs + REG_MIF_STATE_MACHINE));
3525         return -1;
3526
3527 done:
3528         /* see if we can do gigabit */
3529         cfg = cas_phy_read(cp, MII_BMSR);
3530         if ((cfg & CAS_BMSR_1000_EXTEND) && 
3531             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3532                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3533         return 0;
3534 }
3535
3536 /* Must be invoked under cp->lock. */
3537 static inline void cas_start_dma(struct cas *cp)
3538 {
3539         int i;
3540         u32 val;
3541         int txfailed = 0;
3542         
3543         /* enable dma */
3544         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3545         writel(val, cp->regs + REG_TX_CFG);
3546         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3547         writel(val, cp->regs + REG_RX_CFG);
3548
3549         /* enable the mac */
3550         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3551         writel(val, cp->regs + REG_MAC_TX_CFG);
3552         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3553         writel(val, cp->regs + REG_MAC_RX_CFG);
3554
3555         i = STOP_TRIES;
3556         while (i-- > 0) {
3557                 val = readl(cp->regs + REG_MAC_TX_CFG);
3558                 if ((val & MAC_TX_CFG_EN))
3559                         break;
3560                 udelay(10);
3561         }
3562         if (i < 0) txfailed = 1;
3563         i = STOP_TRIES;
3564         while (i-- > 0) {
3565                 val = readl(cp->regs + REG_MAC_RX_CFG);
3566                 if ((val & MAC_RX_CFG_EN)) {
3567                         if (txfailed) {
3568                           printk(KERN_ERR 
3569                                  "%s: enabling mac failed [tx:%08x:%08x].\n", 
3570                                  cp->dev->name,
3571                                  readl(cp->regs + REG_MIF_STATE_MACHINE),
3572                                  readl(cp->regs + REG_MAC_STATE_MACHINE));
3573                         }
3574                         goto enable_rx_done;
3575                 }
3576                 udelay(10);
3577         }
3578         printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", 
3579                cp->dev->name,
3580                (txfailed? "tx,rx":"rx"),
3581                readl(cp->regs + REG_MIF_STATE_MACHINE),
3582                readl(cp->regs + REG_MAC_STATE_MACHINE));
3583
3584 enable_rx_done:
3585         cas_unmask_intr(cp); /* enable interrupts */
3586         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3587         writel(0, cp->regs + REG_RX_COMP_TAIL);
3588
3589         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3590                 if (N_RX_DESC_RINGS > 1) 
3591                         writel(RX_DESC_RINGN_SIZE(1) - 4, 
3592                                cp->regs + REG_PLUS_RX_KICK1);
3593
3594                 for (i = 1; i < N_RX_COMP_RINGS; i++) 
3595                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3596         }
3597 }
3598
3599 /* Must be invoked under cp->lock. */
3600 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3601                                    int *pause)
3602 {
3603         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3604         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3605         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3606         if (val & PCS_MII_LPA_ASYM_PAUSE)
3607                 *pause |= 0x10;
3608         *spd = 1000;
3609 }
3610
3611 /* Must be invoked under cp->lock. */
3612 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3613                                    int *pause)
3614 {
3615         u32 val;
3616
3617         *fd = 0;
3618         *spd = 10;
3619         *pause = 0;
3620         
3621         /* use GMII registers */
3622         val = cas_phy_read(cp, MII_LPA);
3623         if (val & CAS_LPA_PAUSE)
3624                 *pause = 0x01;
3625
3626         if (val & CAS_LPA_ASYM_PAUSE)
3627                 *pause |= 0x10;
3628
3629         if (val & LPA_DUPLEX)
3630                 *fd = 1;
3631         if (val & LPA_100)
3632                 *spd = 100;
3633
3634         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3635                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3636                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3637                         *spd = 1000;
3638                 if (val & CAS_LPA_1000FULL)
3639                         *fd = 1;
3640         }
3641 }
3642
3643 /* A link-up condition has occurred, initialize and enable the
3644  * rest of the chip.
3645  *
3646  * Must be invoked under cp->lock.
3647  */
3648 static void cas_set_link_modes(struct cas *cp)
3649 {
3650         u32 val;
3651         int full_duplex, speed, pause;
3652
3653         full_duplex = 0;
3654         speed = 10;
3655         pause = 0;
3656
3657         if (CAS_PHY_MII(cp->phy_type)) {
3658                 cas_mif_poll(cp, 0);
3659                 val = cas_phy_read(cp, MII_BMCR);
3660                 if (val & BMCR_ANENABLE) {
3661                         cas_read_mii_link_mode(cp, &full_duplex, &speed, 
3662                                                &pause);
3663                 } else {
3664                         if (val & BMCR_FULLDPLX)
3665                                 full_duplex = 1;
3666
3667                         if (val & BMCR_SPEED100)
3668                                 speed = 100;
3669                         else if (val & CAS_BMCR_SPEED1000)
3670                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3671                                         1000 : 100;
3672                 }
3673                 cas_mif_poll(cp, 1);
3674
3675         } else {
3676                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3677                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3678                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3679                         if (val & PCS_MII_CTRL_DUPLEX)
3680                                 full_duplex = 1;
3681                 }
3682         }
3683
3684         if (netif_msg_link(cp))
3685                 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3686                        cp->dev->name, speed, (full_duplex ? "full" : "half"));
3687
3688         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3689         if (CAS_PHY_MII(cp->phy_type)) {
3690                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3691                 if (!full_duplex)
3692                         val |= MAC_XIF_DISABLE_ECHO;
3693         }
3694         if (full_duplex) 
3695                 val |= MAC_XIF_FDPLX_LED;
3696         if (speed == 1000)
3697                 val |= MAC_XIF_GMII_MODE;
3698         writel(val, cp->regs + REG_MAC_XIF_CFG);
3699
3700         /* deal with carrier and collision detect. */
3701         val = MAC_TX_CFG_IPG_EN;
3702         if (full_duplex) {
3703                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3704                 val |= MAC_TX_CFG_IGNORE_COLL;
3705         } else {
3706 #ifndef USE_CSMA_CD_PROTO
3707                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3708                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3709 #endif
3710         }
3711         /* val now set up for REG_MAC_TX_CFG */
3712
3713         /* If gigabit and half-duplex, enable carrier extension
3714          * mode.  increase slot time to 512 bytes as well. 
3715          * else, disable it and make sure slot time is 64 bytes.
3716          * also activate checksum bug workaround
3717          */
3718         if ((speed == 1000) && !full_duplex) {
3719                 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 
3720                        cp->regs + REG_MAC_TX_CFG);
3721
3722                 val = readl(cp->regs + REG_MAC_RX_CFG);
3723                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3724                 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 
3725                        cp->regs + REG_MAC_RX_CFG);
3726
3727                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3728
3729                 cp->crc_size = 4;
3730                 /* minimum size gigabit frame at half duplex */
3731                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3732
3733         } else {
3734                 writel(val, cp->regs + REG_MAC_TX_CFG);
3735
3736                 /* checksum bug workaround. don't strip FCS when in 
3737                  * half-duplex mode
3738                  */
3739                 val = readl(cp->regs + REG_MAC_RX_CFG);
3740                 if (full_duplex) {
3741                         val |= MAC_RX_CFG_STRIP_FCS;
3742                         cp->crc_size = 0;
3743                         cp->min_frame_size = CAS_MIN_MTU;
3744                 } else {
3745                         val &= ~MAC_RX_CFG_STRIP_FCS;
3746                         cp->crc_size = 4;
3747                         cp->min_frame_size = CAS_MIN_FRAME;
3748                 }
3749                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 
3750                        cp->regs + REG_MAC_RX_CFG);
3751                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3752         }
3753
3754         if (netif_msg_link(cp)) {
3755                 if (pause & 0x01) {
3756                         printk(KERN_INFO "%s: Pause is enabled "
3757                                "(rxfifo: %d off: %d on: %d)\n",
3758                                cp->dev->name,
3759                                cp->rx_fifo_size,
3760                                cp->rx_pause_off,
3761                                cp->rx_pause_on);
3762                 } else if (pause & 0x10) {
3763                         printk(KERN_INFO "%s: TX pause enabled\n",
3764                                cp->dev->name);
3765                 } else {
3766                         printk(KERN_INFO "%s: Pause is disabled\n",
3767                                cp->dev->name);
3768                 }
3769         }
3770
3771         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3772         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3773         if (pause) { /* symmetric or asymmetric pause */
3774                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3775                 if (pause & 0x01) { /* symmetric pause */
3776                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3777                 } 
3778         }
3779         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3780         cas_start_dma(cp);
3781 }
3782
3783 /* Must be invoked under cp->lock. */
3784 static void cas_init_hw(struct cas *cp, int restart_link)
3785 {
3786         if (restart_link)
3787                 cas_phy_init(cp);
3788
3789         cas_init_pause_thresholds(cp);
3790         cas_init_mac(cp);
3791         cas_init_dma(cp);
3792
3793         if (restart_link) {
3794                 /* Default aneg parameters */
3795                 cp->timer_ticks = 0;
3796                 cas_begin_auto_negotiation(cp, NULL);
3797         } else if (cp->lstate == link_up) {
3798                 cas_set_link_modes(cp);
3799                 netif_carrier_on(cp->dev);
3800         }
3801 }
3802
3803 /* Must be invoked under cp->lock. on earlier cassini boards,
3804  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3805  * let it settle out, and then restore pci state.
3806  */
3807 static void cas_hard_reset(struct cas *cp)
3808 {
3809         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 
3810         udelay(20);
3811         pci_restore_state(cp->pdev);
3812 }
3813
3814
3815 static void cas_global_reset(struct cas *cp, int blkflag)
3816 {
3817         int limit;
3818
3819         /* issue a global reset. don't use RSTOUT. */
3820         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3821                 /* For PCS, when the blkflag is set, we should set the
3822                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3823                  * the last autonegotiation from being cleared.  We'll
3824                  * need some special handling if the chip is set into a
3825                  * loopback mode.
3826                  */
3827                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 
3828                        cp->regs + REG_SW_RESET);
3829         } else {
3830                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3831         }
3832
3833         /* need to wait at least 3ms before polling register */
3834         mdelay(3);
3835
3836         limit = STOP_TRIES;
3837         while (limit-- > 0) {
3838                 u32 val = readl(cp->regs + REG_SW_RESET);
3839                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3840                         goto done;
3841                 udelay(10);
3842         }
3843         printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3844
3845 done:
3846         /* enable various BIM interrupts */
3847         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 
3848                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3849
3850         /* clear out pci error status mask for handled errors.
3851          * we don't deal with DMA counter overflows as they happen
3852          * all the time.
3853          */
3854         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 
3855                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 
3856                                PCI_ERR_BIM_DMA_READ), cp->regs + 
3857                REG_PCI_ERR_STATUS_MASK);
3858
3859         /* set up for MII by default to address mac rx reset timeout
3860          * issue
3861          */
3862         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3863 }
3864
3865 static void cas_reset(struct cas *cp, int blkflag)
3866 {
3867         u32 val;
3868
3869         cas_mask_intr(cp);
3870         cas_global_reset(cp, blkflag);
3871         cas_mac_reset(cp);
3872         cas_entropy_reset(cp);
3873
3874         /* disable dma engines. */
3875         val = readl(cp->regs + REG_TX_CFG);
3876         val &= ~TX_CFG_DMA_EN;
3877         writel(val, cp->regs + REG_TX_CFG);
3878
3879         val = readl(cp->regs + REG_RX_CFG);
3880         val &= ~RX_CFG_DMA_EN;
3881         writel(val, cp->regs + REG_RX_CFG);
3882
3883         /* program header parser */
3884         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3885             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3886                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3887         } else {
3888                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3889         }
3890
3891         /* clear out error registers */
3892         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3893         cas_clear_mac_err(cp);
3894         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3895 }
3896
3897 /* Shut down the chip, must be called with pm_mutex held.  */
3898 static void cas_shutdown(struct cas *cp)
3899 {
3900         unsigned long flags;
3901
3902         /* Make us not-running to avoid timers respawning */
3903         cp->hw_running = 0;
3904
3905         del_timer_sync(&cp->link_timer);
3906
3907         /* Stop the reset task */
3908 #if 0
3909         while (atomic_read(&cp->reset_task_pending_mtu) ||
3910                atomic_read(&cp->reset_task_pending_spare) ||
3911                atomic_read(&cp->reset_task_pending_all))
3912                 schedule();
3913
3914 #else
3915         while (atomic_read(&cp->reset_task_pending))
3916                 schedule();
3917 #endif  
3918         /* Actually stop the chip */
3919         cas_lock_all_save(cp, flags);
3920         cas_reset(cp, 0);
3921         if (cp->cas_flags & CAS_FLAG_SATURN)
3922                 cas_phy_powerdown(cp);
3923         cas_unlock_all_restore(cp, flags);
3924 }
3925
3926 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3927 {
3928         struct cas *cp = netdev_priv(dev);
3929
3930         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3931                 return -EINVAL;
3932
3933         dev->mtu = new_mtu;
3934         if (!netif_running(dev) || !netif_device_present(dev))
3935                 return 0;
3936
3937         /* let the reset task handle it */
3938 #if 1
3939         atomic_inc(&cp->reset_task_pending);
3940         if ((cp->phy_type & CAS_PHY_SERDES)) {
3941                 atomic_inc(&cp->reset_task_pending_all);
3942         } else {
3943                 atomic_inc(&cp->reset_task_pending_mtu);
3944         }
3945         schedule_work(&cp->reset_task);
3946 #else
3947         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 
3948                    CAS_RESET_ALL : CAS_RESET_MTU);
3949         printk(KERN_ERR "reset called in cas_change_mtu\n");
3950         schedule_work(&cp->reset_task);
3951 #endif
3952
3953         flush_scheduled_work();
3954         return 0;
3955 }
3956
3957 static void cas_clean_txd(struct cas *cp, int ring)
3958 {
3959         struct cas_tx_desc *txd = cp->init_txds[ring];
3960         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3961         u64 daddr, dlen;
3962         int i, size;
3963
3964         size = TX_DESC_RINGN_SIZE(ring);
3965         for (i = 0; i < size; i++) {
3966                 int frag;
3967
3968                 if (skbs[i] == NULL)
3969                         continue;
3970
3971                 skb = skbs[i];
3972                 skbs[i] = NULL;
3973
3974                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3975                         int ent = i & (size - 1);
3976
3977                         /* first buffer is never a tiny buffer and so
3978                          * needs to be unmapped.
3979                          */
3980                         daddr = le64_to_cpu(txd[ent].buffer);
3981                         dlen  =  CAS_VAL(TX_DESC_BUFLEN, 
3982                                          le64_to_cpu(txd[ent].control));
3983                         pci_unmap_page(cp->pdev, daddr, dlen,
3984                                        PCI_DMA_TODEVICE);
3985
3986                         if (frag != skb_shinfo(skb)->nr_frags) {
3987                                 i++;
3988
3989                                 /* next buffer might by a tiny buffer.
3990                                  * skip past it.
3991                                  */
3992                                 ent = i & (size - 1);
3993                                 if (cp->tx_tiny_use[ring][ent].used)
3994                                         i++;
3995                         }
3996                 }
3997                 dev_kfree_skb_any(skb);
3998         }
3999
4000         /* zero out tiny buf usage */
4001         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4002 }
4003
4004 /* freed on close */
4005 static inline void cas_free_rx_desc(struct cas *cp, int ring)
4006 {
4007         cas_page_t **page = cp->rx_pages[ring];
4008         int i, size;
4009
4010         size = RX_DESC_RINGN_SIZE(ring);
4011         for (i = 0; i < size; i++) {
4012                 if (page[i]) {
4013                         cas_page_free(cp, page[i]);
4014                         page[i] = NULL;
4015                 }
4016         }
4017 }
4018
4019 static void cas_free_rxds(struct cas *cp)
4020 {
4021         int i;
4022
4023         for (i = 0; i < N_RX_DESC_RINGS; i++)
4024                 cas_free_rx_desc(cp, i);
4025 }
4026
4027 /* Must be invoked under cp->lock. */
4028 static void cas_clean_rings(struct cas *cp)
4029 {
4030         int i;
4031
4032         /* need to clean all tx rings */
4033         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4034         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4035         for (i = 0; i < N_TX_RINGS; i++)
4036                 cas_clean_txd(cp, i);
4037
4038         /* zero out init block */
4039         memset(cp->init_block, 0, sizeof(struct cas_init_block));
4040         cas_clean_rxds(cp);
4041         cas_clean_rxcs(cp);
4042 }
4043
4044 /* allocated on open */
4045 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4046 {
4047         cas_page_t **page = cp->rx_pages[ring];
4048         int size, i = 0;
4049
4050         size = RX_DESC_RINGN_SIZE(ring);
4051         for (i = 0; i < size; i++) {
4052                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 
4053                         return -1;
4054         }
4055         return 0;
4056 }
4057
4058 static int cas_alloc_rxds(struct cas *cp)
4059 {
4060         int i;
4061
4062         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4063                 if (cas_alloc_rx_desc(cp, i) < 0) {
4064                         cas_free_rxds(cp);
4065                         return -1;
4066                 }
4067         }
4068         return 0;
4069 }
4070
4071 static void cas_reset_task(void *data)
4072 {
4073         struct cas *cp = (struct cas *) data;
4074 #if 0
4075         int pending = atomic_read(&cp->reset_task_pending);
4076 #else
4077         int pending_all = atomic_read(&cp->reset_task_pending_all);
4078         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4079         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4080
4081         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4082                 /* We can have more tasks scheduled than actually
4083                  * needed.
4084                  */
4085                 atomic_dec(&cp->reset_task_pending);
4086                 return;
4087         }
4088 #endif
4089         /* The link went down, we reset the ring, but keep
4090          * DMA stopped. Use this function for reset
4091          * on error as well.
4092          */
4093         if (cp->hw_running) {
4094                 unsigned long flags;
4095
4096                 /* Make sure we don't get interrupts or tx packets */
4097                 netif_device_detach(cp->dev);
4098                 cas_lock_all_save(cp, flags);
4099
4100                 if (cp->opened) {
4101                         /* We call cas_spare_recover when we call cas_open.
4102                          * but we do not initialize the lists cas_spare_recover
4103                          * uses until cas_open is called.
4104                          */
4105                         cas_spare_recover(cp, GFP_ATOMIC);
4106                 }
4107 #if 1
4108                 /* test => only pending_spare set */
4109                 if (!pending_all && !pending_mtu)
4110                         goto done;
4111 #else
4112                 if (pending == CAS_RESET_SPARE)
4113                         goto done;
4114 #endif
4115                 /* when pending == CAS_RESET_ALL, the following
4116                  * call to cas_init_hw will restart auto negotiation.
4117                  * Setting the second argument of cas_reset to
4118                  * !(pending == CAS_RESET_ALL) will set this argument
4119                  * to 1 (avoiding reinitializing the PHY for the normal 
4120                  * PCS case) when auto negotiation is not restarted.
4121                  */
4122 #if 1
4123                 cas_reset(cp, !(pending_all > 0));
4124                 if (cp->opened)
4125                         cas_clean_rings(cp);
4126                 cas_init_hw(cp, (pending_all > 0));
4127 #else
4128                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4129                 if (cp->opened)
4130                         cas_clean_rings(cp);
4131                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4132 #endif
4133
4134 done:
4135                 cas_unlock_all_restore(cp, flags);
4136                 netif_device_attach(cp->dev);
4137         }
4138 #if 1
4139         atomic_sub(pending_all, &cp->reset_task_pending_all);
4140         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4141         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4142         atomic_dec(&cp->reset_task_pending);
4143 #else
4144         atomic_set(&cp->reset_task_pending, 0);
4145 #endif
4146 }
4147
4148 static void cas_link_timer(unsigned long data)
4149 {
4150         struct cas *cp = (struct cas *) data;
4151         int mask, pending = 0, reset = 0;
4152         unsigned long flags;
4153
4154         if (link_transition_timeout != 0 &&
4155             cp->link_transition_jiffies_valid &&
4156             ((jiffies - cp->link_transition_jiffies) > 
4157               (link_transition_timeout))) {
4158                 /* One-second counter so link-down workaround doesn't 
4159                  * cause resets to occur so fast as to fool the switch
4160                  * into thinking the link is down.
4161                  */
4162                 cp->link_transition_jiffies_valid = 0;
4163         }
4164
4165         if (!cp->hw_running)
4166                 return;
4167
4168         spin_lock_irqsave(&cp->lock, flags);
4169         cas_lock_tx(cp);
4170         cas_entropy_gather(cp);
4171
4172         /* If the link task is still pending, we just
4173          * reschedule the link timer
4174          */
4175 #if 1
4176         if (atomic_read(&cp->reset_task_pending_all) ||
4177             atomic_read(&cp->reset_task_pending_spare) ||
4178             atomic_read(&cp->reset_task_pending_mtu)) 
4179                 goto done;
4180 #else
4181         if (atomic_read(&cp->reset_task_pending)) 
4182                 goto done;
4183 #endif
4184
4185         /* check for rx cleaning */
4186         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4187                 int i, rmask;
4188
4189                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4190                         rmask = CAS_FLAG_RXD_POST(i);
4191                         if ((mask & rmask) == 0)
4192                                 continue;
4193
4194                         /* post_rxds will do a mod_timer */
4195                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4196                                 pending = 1;
4197                                 continue;
4198                         }
4199                         cp->cas_flags &= ~rmask;
4200                 }
4201         }
4202
4203         if (CAS_PHY_MII(cp->phy_type)) {
4204                 u16 bmsr;
4205                 cas_mif_poll(cp, 0);
4206                 bmsr = cas_phy_read(cp, MII_BMSR);
4207                 /* WTZ: Solaris driver reads this twice, but that
4208                  * may be due to the PCS case and the use of a
4209                  * common implementation. Read it twice here to be
4210                  * safe.
4211                  */
4212                 bmsr = cas_phy_read(cp, MII_BMSR);
4213                 cas_mif_poll(cp, 1);
4214                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4215                 reset = cas_mii_link_check(cp, bmsr);
4216         } else {
4217                 reset = cas_pcs_link_check(cp);
4218         }
4219
4220         if (reset)
4221                 goto done;
4222
4223         /* check for tx state machine confusion */
4224         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4225                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4226                 u32 wptr, rptr;
4227                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4228
4229                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4230                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4231                         if (netif_msg_tx_err(cp))
4232                                 printk(KERN_DEBUG "%s: tx err: "
4233                                        "MAC_STATE[%08x]\n",
4234                                        cp->dev->name, val);
4235                         reset = 1;
4236                         goto done;
4237                 }
4238
4239                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4240                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4241                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4242                 if ((val == 0) && (wptr != rptr)) {
4243                         if (netif_msg_tx_err(cp))
4244                                 printk(KERN_DEBUG "%s: tx err: "
4245                                        "TX_FIFO[%08x:%08x:%08x]\n",
4246                                        cp->dev->name, val, wptr, rptr);
4247                         reset = 1;
4248                 }
4249
4250                 if (reset)
4251                         cas_hard_reset(cp);
4252         }
4253
4254 done:
4255         if (reset) {
4256 #if 1
4257                 atomic_inc(&cp->reset_task_pending);
4258                 atomic_inc(&cp->reset_task_pending_all);
4259                 schedule_work(&cp->reset_task);
4260 #else
4261                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4262                 printk(KERN_ERR "reset called in cas_link_timer\n");
4263                 schedule_work(&cp->reset_task);
4264 #endif
4265         }
4266
4267         if (!pending)
4268                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4269         cas_unlock_tx(cp);
4270         spin_unlock_irqrestore(&cp->lock, flags);
4271 }
4272
4273 /* tiny buffers are used to avoid target abort issues with 
4274  * older cassini's
4275  */
4276 static void cas_tx_tiny_free(struct cas *cp)
4277 {
4278         struct pci_dev *pdev = cp->pdev;
4279         int i;
4280
4281         for (i = 0; i < N_TX_RINGS; i++) {
4282                 if (!cp->tx_tiny_bufs[i])
4283                         continue;
4284
4285                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 
4286                                     cp->tx_tiny_bufs[i],
4287                                     cp->tx_tiny_dvma[i]);
4288                 cp->tx_tiny_bufs[i] = NULL;
4289         }
4290 }
4291
4292 static int cas_tx_tiny_alloc(struct cas *cp)
4293 {
4294         struct pci_dev *pdev = cp->pdev;
4295         int i;
4296
4297         for (i = 0; i < N_TX_RINGS; i++) {
4298                 cp->tx_tiny_bufs[i] = 
4299                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4300                                              &cp->tx_tiny_dvma[i]);
4301                 if (!cp->tx_tiny_bufs[i]) {
4302                         cas_tx_tiny_free(cp);
4303                         return -1;
4304                 }
4305         }
4306         return 0;
4307 }
4308
4309
4310 static int cas_open(struct net_device *dev)
4311 {
4312         struct cas *cp = netdev_priv(dev);
4313         int hw_was_up, err;
4314         unsigned long flags;
4315
4316         mutex_lock(&cp->pm_mutex);
4317
4318         hw_was_up = cp->hw_running;
4319
4320         /* The power-management mutex protects the hw_running
4321          * etc. state so it is safe to do this bit without cp->lock
4322          */
4323         if (!cp->hw_running) {
4324                 /* Reset the chip */
4325                 cas_lock_all_save(cp, flags);
4326                 /* We set the second arg to cas_reset to zero
4327                  * because cas_init_hw below will have its second 
4328                  * argument set to non-zero, which will force
4329                  * autonegotiation to start.
4330                  */
4331                 cas_reset(cp, 0);
4332                 cp->hw_running = 1;
4333                 cas_unlock_all_restore(cp, flags);
4334         }
4335
4336         if (cas_tx_tiny_alloc(cp) < 0)
4337                 return -ENOMEM;
4338
4339         /* alloc rx descriptors */
4340         err = -ENOMEM;
4341         if (cas_alloc_rxds(cp) < 0)
4342                 goto err_tx_tiny;
4343         
4344         /* allocate spares */
4345         cas_spare_init(cp);
4346         cas_spare_recover(cp, GFP_KERNEL);
4347
4348         /* We can now request the interrupt as we know it's masked
4349          * on the controller. cassini+ has up to 4 interrupts
4350          * that can be used, but you need to do explicit pci interrupt 
4351          * mapping to expose them
4352          */
4353         if (request_irq(cp->pdev->irq, cas_interrupt,
4354                         SA_SHIRQ, dev->name, (void *) dev)) {
4355                 printk(KERN_ERR "%s: failed to request irq !\n", 
4356                        cp->dev->name);
4357                 err = -EAGAIN;
4358                 goto err_spare;
4359         }
4360
4361         /* init hw */
4362         cas_lock_all_save(cp, flags);
4363         cas_clean_rings(cp);
4364         cas_init_hw(cp, !hw_was_up);
4365         cp->opened = 1;
4366         cas_unlock_all_restore(cp, flags);
4367
4368         netif_start_queue(dev);
4369         mutex_unlock(&cp->pm_mutex);
4370         return 0;
4371
4372 err_spare:
4373         cas_spare_free(cp);
4374         cas_free_rxds(cp);
4375 err_tx_tiny:
4376         cas_tx_tiny_free(cp);
4377         mutex_unlock(&cp->pm_mutex);
4378         return err;
4379 }
4380
4381 static int cas_close(struct net_device *dev)
4382 {
4383         unsigned long flags;
4384         struct cas *cp = netdev_priv(dev);
4385
4386         /* Make sure we don't get distracted by suspend/resume */
4387         mutex_lock(&cp->pm_mutex);
4388
4389         netif_stop_queue(dev);
4390
4391         /* Stop traffic, mark us closed */
4392         cas_lock_all_save(cp, flags);
4393         cp->opened = 0; 
4394         cas_reset(cp, 0);
4395         cas_phy_init(cp); 
4396         cas_begin_auto_negotiation(cp, NULL);
4397         cas_clean_rings(cp);
4398         cas_unlock_all_restore(cp, flags);
4399
4400         free_irq(cp->pdev->irq, (void *) dev);
4401         cas_spare_free(cp);
4402         cas_free_rxds(cp);
4403         cas_tx_tiny_free(cp);
4404         mutex_unlock(&cp->pm_mutex);
4405         return 0;
4406 }
4407
4408 static struct {
4409         const char name[ETH_GSTRING_LEN];
4410 } ethtool_cassini_statnames[] = {
4411         {"collisions"},
4412         {"rx_bytes"},
4413         {"rx_crc_errors"},
4414         {"rx_dropped"},
4415         {"rx_errors"},
4416         {"rx_fifo_errors"},
4417         {"rx_frame_errors"},
4418         {"rx_length_errors"},
4419         {"rx_over_errors"},
4420         {"rx_packets"},
4421         {"tx_aborted_errors"},
4422         {"tx_bytes"},
4423         {"tx_dropped"},
4424         {"tx_errors"},
4425         {"tx_fifo_errors"},
4426         {"tx_packets"}
4427 };
4428 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4429
4430 static struct {
4431         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4432 } ethtool_register_table[] = {
4433         {-MII_BMSR},
4434         {-MII_BMCR},
4435         {REG_CAWR},
4436         {REG_INF_BURST},
4437         {REG_BIM_CFG},
4438         {REG_RX_CFG},
4439         {REG_HP_CFG},
4440         {REG_MAC_TX_CFG},
4441         {REG_MAC_RX_CFG},
4442         {REG_MAC_CTRL_CFG},
4443         {REG_MAC_XIF_CFG},
4444         {REG_MIF_CFG},
4445         {REG_PCS_CFG},
4446         {REG_SATURN_PCFG},
4447         {REG_PCS_MII_STATUS},
4448         {REG_PCS_STATE_MACHINE},
4449         {REG_MAC_COLL_EXCESS},
4450         {REG_MAC_COLL_LATE}
4451 };
4452 #define CAS_REG_LEN     (sizeof(ethtool_register_table)/sizeof(int))
4453 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4454
4455 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4456 {
4457         u8 *p;
4458         int i;
4459         unsigned long flags;
4460
4461         spin_lock_irqsave(&cp->lock, flags);
4462         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4463                 u16 hval;
4464                 u32 val;
4465                 if (ethtool_register_table[i].offsets < 0) {
4466                         hval = cas_phy_read(cp,
4467                                     -ethtool_register_table[i].offsets);
4468                         val = hval;
4469                 } else {
4470                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4471                 }
4472                 memcpy(p, (u8 *)&val, sizeof(u32));
4473         }
4474         spin_unlock_irqrestore(&cp->lock, flags);
4475 }
4476
4477 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4478 {
4479         struct cas *cp = netdev_priv(dev);
4480         struct net_device_stats *stats = cp->net_stats;
4481         unsigned long flags;
4482         int i;
4483         unsigned long tmp;
4484
4485         /* we collate all of the stats into net_stats[N_TX_RING] */
4486         if (!cp->hw_running)
4487                 return stats + N_TX_RINGS;
4488         
4489         /* collect outstanding stats */
4490         /* WTZ: the Cassini spec gives these as 16 bit counters but
4491          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4492          * in case the chip somehow puts any garbage in the other bits.
4493          * Also, counter usage didn't seem to mach what Adrian did
4494          * in the parts of the code that set these quantities. Made
4495          * that consistent.
4496          */
4497         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4498         stats[N_TX_RINGS].rx_crc_errors += 
4499           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4500         stats[N_TX_RINGS].rx_frame_errors += 
4501                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4502         stats[N_TX_RINGS].rx_length_errors += 
4503                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4504 #if 1
4505         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4506                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4507         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4508         stats[N_TX_RINGS].collisions +=
4509           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4510 #else
4511         stats[N_TX_RINGS].tx_aborted_errors += 
4512                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4513         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4514                 readl(cp->regs + REG_MAC_COLL_LATE);
4515 #endif
4516         cas_clear_mac_err(cp);
4517
4518         /* saved bits that are unique to ring 0 */
4519         spin_lock(&cp->stat_lock[0]);
4520         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4521         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4522         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4523         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4524         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4525         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4526         spin_unlock(&cp->stat_lock[0]);
4527
4528         for (i = 0; i < N_TX_RINGS; i++) {
4529                 spin_lock(&cp->stat_lock[i]);
4530                 stats[N_TX_RINGS].rx_length_errors += 
4531                         stats[i].rx_length_errors;
4532                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4533                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4534                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4535                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4536                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4537                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4538                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4539                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4540                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4541                 memset(stats + i, 0, sizeof(struct net_device_stats));
4542                 spin_unlock(&cp->stat_lock[i]);
4543         }
4544         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4545         return stats + N_TX_RINGS;
4546 }
4547
4548
4549 static void cas_set_multicast(struct net_device *dev)
4550 {
4551         struct cas *cp = netdev_priv(dev);
4552         u32 rxcfg, rxcfg_new;
4553         unsigned long flags;
4554         int limit = STOP_TRIES;
4555         
4556         if (!cp->hw_running)
4557                 return;
4558                 
4559         spin_lock_irqsave(&cp->lock, flags);
4560         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4561
4562         /* disable RX MAC and wait for completion */
4563         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4564         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4565                 if (!limit--)
4566                         break;
4567                 udelay(10);
4568         }
4569
4570         /* disable hash filter and wait for completion */
4571         limit = STOP_TRIES;
4572         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4573         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4574         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4575                 if (!limit--)
4576                         break;
4577                 udelay(10);
4578         }
4579
4580         /* program hash filters */
4581         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4582         rxcfg |= rxcfg_new;
4583         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4584         spin_unlock_irqrestore(&cp->lock, flags);
4585 }
4586
4587 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4588 {
4589         struct cas *cp = netdev_priv(dev);
4590         strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4591         strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4592         info->fw_version[0] = '\0';
4593         strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4594         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4595                 cp->casreg_len : CAS_MAX_REGS;
4596         info->n_stats = CAS_NUM_STAT_KEYS;
4597 }
4598
4599 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4600 {
4601         struct cas *cp = netdev_priv(dev);
4602         u16 bmcr;
4603         int full_duplex, speed, pause;
4604         unsigned long flags;
4605         enum link_state linkstate = link_up;
4606
4607         cmd->advertising = 0;
4608         cmd->supported = SUPPORTED_Autoneg;
4609         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4610                 cmd->supported |= SUPPORTED_1000baseT_Full;
4611                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4612         }
4613
4614         /* Record PHY settings if HW is on. */
4615         spin_lock_irqsave(&cp->lock, flags);
4616         bmcr = 0;
4617         linkstate = cp->lstate;
4618         if (CAS_PHY_MII(cp->phy_type)) {
4619                 cmd->port = PORT_MII;
4620                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4621                         XCVR_INTERNAL : XCVR_EXTERNAL;
4622                 cmd->phy_address = cp->phy_addr;
4623                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4624                         ADVERTISED_10baseT_Half | 
4625                         ADVERTISED_10baseT_Full | 
4626                         ADVERTISED_100baseT_Half | 
4627                         ADVERTISED_100baseT_Full;
4628
4629                 cmd->supported |=
4630                         (SUPPORTED_10baseT_Half | 
4631                          SUPPORTED_10baseT_Full |
4632                          SUPPORTED_100baseT_Half | 
4633                          SUPPORTED_100baseT_Full |
4634                          SUPPORTED_TP | SUPPORTED_MII);
4635
4636                 if (cp->hw_running) {
4637                         cas_mif_poll(cp, 0);
4638                         bmcr = cas_phy_read(cp, MII_BMCR);
4639                         cas_read_mii_link_mode(cp, &full_duplex, 
4640                                                &speed, &pause);
4641                         cas_mif_poll(cp, 1);
4642                 }
4643
4644         } else {
4645                 cmd->port = PORT_FIBRE;
4646                 cmd->transceiver = XCVR_INTERNAL;
4647                 cmd->phy_address = 0;
4648                 cmd->supported   |= SUPPORTED_FIBRE;
4649                 cmd->advertising |= ADVERTISED_FIBRE;
4650
4651                 if (cp->hw_running) {
4652                         /* pcs uses the same bits as mii */ 
4653                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4654                         cas_read_pcs_link_mode(cp, &full_duplex, 
4655                                                &speed, &pause);
4656                 }
4657         }
4658         spin_unlock_irqrestore(&cp->lock, flags);
4659
4660         if (bmcr & BMCR_ANENABLE) {
4661                 cmd->advertising |= ADVERTISED_Autoneg;
4662                 cmd->autoneg = AUTONEG_ENABLE;
4663                 cmd->speed = ((speed == 10) ?
4664                               SPEED_10 :
4665                               ((speed == 1000) ?
4666                                SPEED_1000 : SPEED_100));
4667                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4668         } else {
4669                 cmd->autoneg = AUTONEG_DISABLE;
4670                 cmd->speed =
4671                         (bmcr & CAS_BMCR_SPEED1000) ?
4672                         SPEED_1000 : 
4673                         ((bmcr & BMCR_SPEED100) ? SPEED_100: 
4674                          SPEED_10);
4675                 cmd->duplex =
4676                         (bmcr & BMCR_FULLDPLX) ?
4677                         DUPLEX_FULL : DUPLEX_HALF;
4678         }
4679         if (linkstate != link_up) {
4680                 /* Force these to "unknown" if the link is not up and
4681                  * autonogotiation in enabled. We can set the link 
4682                  * speed to 0, but not cmd->duplex,
4683                  * because its legal values are 0 and 1.  Ethtool will
4684                  * print the value reported in parentheses after the
4685                  * word "Unknown" for unrecognized values.
4686                  *
4687                  * If in forced mode, we report the speed and duplex
4688                  * settings that we configured.
4689                  */
4690                 if (cp->link_cntl & BMCR_ANENABLE) {
4691                         cmd->speed = 0;
4692                         cmd->duplex = 0xff;
4693                 } else {
4694                         cmd->speed = SPEED_10;
4695                         if (cp->link_cntl & BMCR_SPEED100) {
4696                                 cmd->speed = SPEED_100;
4697                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4698                                 cmd->speed = SPEED_1000;
4699                         }
4700                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4701                                 DUPLEX_FULL : DUPLEX_HALF;
4702                 }
4703         }
4704         return 0;
4705 }
4706
4707 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4708 {
4709         struct cas *cp = netdev_priv(dev);
4710         unsigned long flags;
4711
4712         /* Verify the settings we care about. */
4713         if (cmd->autoneg != AUTONEG_ENABLE &&
4714             cmd->autoneg != AUTONEG_DISABLE)
4715                 return -EINVAL;
4716
4717         if (cmd->autoneg == AUTONEG_DISABLE &&
4718             ((cmd->speed != SPEED_1000 &&
4719               cmd->speed != SPEED_100 &&
4720               cmd->speed != SPEED_10) ||
4721              (cmd->duplex != DUPLEX_HALF &&
4722               cmd->duplex != DUPLEX_FULL)))
4723                 return -EINVAL;
4724
4725         /* Apply settings and restart link process. */
4726         spin_lock_irqsave(&cp->lock, flags);
4727         cas_begin_auto_negotiation(cp, cmd);
4728         spin_unlock_irqrestore(&cp->lock, flags);
4729         return 0;
4730 }
4731
4732 static int cas_nway_reset(struct net_device *dev)
4733 {
4734         struct cas *cp = netdev_priv(dev);
4735         unsigned long flags;
4736
4737         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4738                 return -EINVAL;
4739
4740         /* Restart link process. */
4741         spin_lock_irqsave(&cp->lock, flags);
4742         cas_begin_auto_negotiation(cp, NULL);
4743         spin_unlock_irqrestore(&cp->lock, flags);
4744
4745         return 0;
4746 }
4747
4748 static u32 cas_get_link(struct net_device *dev)
4749 {
4750         struct cas *cp = netdev_priv(dev);
4751         return cp->lstate == link_up;
4752 }
4753
4754 static u32 cas_get_msglevel(struct net_device *dev)
4755 {
4756         struct cas *cp = netdev_priv(dev);
4757         return cp->msg_enable;
4758 }
4759
4760 static void cas_set_msglevel(struct net_device *dev, u32 value)
4761 {
4762         struct cas *cp = netdev_priv(dev);
4763         cp->msg_enable = value;
4764 }
4765
4766 static int cas_get_regs_len(struct net_device *dev)
4767 {
4768         struct cas *cp = netdev_priv(dev);
4769         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4770 }
4771
4772 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4773                              void *p)
4774 {
4775         struct cas *cp = netdev_priv(dev);
4776         regs->version = 0;
4777         /* cas_read_regs handles locks (cp->lock).  */
4778         cas_read_regs(cp, p, regs->len / sizeof(u32));
4779 }
4780
4781 static int cas_get_stats_count(struct net_device *dev)
4782 {
4783         return CAS_NUM_STAT_KEYS;
4784 }
4785
4786 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4787 {
4788          memcpy(data, &ethtool_cassini_statnames, 
4789                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4790 }
4791
4792 static void cas_get_ethtool_stats(struct net_device *dev,
4793                                       struct ethtool_stats *estats, u64 *data)
4794 {
4795         struct cas *cp = netdev_priv(dev);
4796         struct net_device_stats *stats = cas_get_stats(cp->dev);
4797         int i = 0;
4798         data[i++] = stats->collisions;
4799         data[i++] = stats->rx_bytes;
4800         data[i++] = stats->rx_crc_errors;
4801         data[i++] = stats->rx_dropped;
4802         data[i++] = stats->rx_errors;
4803         data[i++] = stats->rx_fifo_errors;
4804         data[i++] = stats->rx_frame_errors;
4805         data[i++] = stats->rx_length_errors;
4806         data[i++] = stats->rx_over_errors;
4807         data[i++] = stats->rx_packets;
4808         data[i++] = stats->tx_aborted_errors;
4809         data[i++] = stats->tx_bytes;
4810         data[i++] = stats->tx_dropped;
4811         data[i++] = stats->tx_errors;
4812         data[i++] = stats->tx_fifo_errors;
4813         data[i++] = stats->tx_packets;
4814         BUG_ON(i != CAS_NUM_STAT_KEYS);
4815 }
4816
4817 static struct ethtool_ops cas_ethtool_ops = {
4818         .get_drvinfo            = cas_get_drvinfo,
4819         .get_settings           = cas_get_settings,
4820         .set_settings           = cas_set_settings,
4821         .nway_reset             = cas_nway_reset,
4822         .get_link               = cas_get_link,
4823         .get_msglevel           = cas_get_msglevel,
4824         .set_msglevel           = cas_set_msglevel,
4825         .get_regs_len           = cas_get_regs_len,
4826         .get_regs               = cas_get_regs,
4827         .get_stats_count        = cas_get_stats_count,
4828         .get_strings            = cas_get_strings,
4829         .get_ethtool_stats      = cas_get_ethtool_stats,
4830 };
4831
4832 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4833 {
4834         struct cas *cp = netdev_priv(dev);
4835         struct mii_ioctl_data *data = if_mii(ifr);
4836         unsigned long flags;
4837         int rc = -EOPNOTSUPP;
4838         
4839         /* Hold the PM mutex while doing ioctl's or we may collide
4840          * with open/close and power management and oops.
4841          */
4842         mutex_lock(&cp->pm_mutex);
4843         switch (cmd) {
4844         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4845                 data->phy_id = cp->phy_addr;
4846                 /* Fallthrough... */
4847
4848         case SIOCGMIIREG:               /* Read MII PHY register. */
4849                 spin_lock_irqsave(&cp->lock, flags);
4850                 cas_mif_poll(cp, 0);
4851                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4852                 cas_mif_poll(cp, 1);
4853                 spin_unlock_irqrestore(&cp->lock, flags);
4854                 rc = 0;
4855                 break;
4856
4857         case SIOCSMIIREG:               /* Write MII PHY register. */
4858                 if (!capable(CAP_NET_ADMIN)) {
4859                         rc = -EPERM;
4860                         break;
4861                 }
4862                 spin_lock_irqsave(&cp->lock, flags);
4863                 cas_mif_poll(cp, 0);
4864                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4865                 cas_mif_poll(cp, 1);
4866                 spin_unlock_irqrestore(&cp->lock, flags);
4867                 break;
4868         default:
4869                 break;
4870         };
4871
4872         mutex_unlock(&cp->pm_mutex);
4873         return rc;
4874 }
4875
4876 static int __devinit cas_init_one(struct pci_dev *pdev,
4877                                   const struct pci_device_id *ent)
4878 {
4879         static int cas_version_printed = 0;
4880         unsigned long casreg_base, casreg_len;
4881         struct net_device *dev;
4882         struct cas *cp;
4883         int i, err, pci_using_dac;
4884         u16 pci_cmd;
4885         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4886
4887         if (cas_version_printed++ == 0)
4888                 printk(KERN_INFO "%s", version);
4889
4890         err = pci_enable_device(pdev);
4891         if (err) {
4892                 printk(KERN_ERR PFX "Cannot enable PCI device, "
4893                        "aborting.\n");
4894                 return err;
4895         }
4896
4897         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4898                 printk(KERN_ERR PFX "Cannot find proper PCI device "
4899                        "base address, aborting.\n");
4900                 err = -ENODEV;
4901                 goto err_out_disable_pdev;
4902         }
4903
4904         dev = alloc_etherdev(sizeof(*cp));
4905         if (!dev) {
4906                 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
4907                 err = -ENOMEM;
4908                 goto err_out_disable_pdev;
4909         }
4910         SET_MODULE_OWNER(dev);
4911         SET_NETDEV_DEV(dev, &pdev->dev);
4912
4913         err = pci_request_regions(pdev, dev->name);
4914         if (err) {
4915                 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
4916                        "aborting.\n");
4917                 goto err_out_free_netdev;
4918         }
4919         pci_set_master(pdev);
4920
4921         /* we must always turn on parity response or else parity
4922          * doesn't get generated properly. disable SERR/PERR as well.
4923          * in addition, we want to turn MWI on.
4924          */
4925         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4926         pci_cmd &= ~PCI_COMMAND_SERR;
4927         pci_cmd |= PCI_COMMAND_PARITY;
4928         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4929         pci_set_mwi(pdev);
4930         /*
4931          * On some architectures, the default cache line size set
4932          * by pci_set_mwi reduces perforamnce.  We have to increase
4933          * it for this case.  To start, we'll print some configuration
4934          * data.
4935          */
4936 #if 1
4937         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4938                              &orig_cacheline_size);
4939         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4940                 cas_cacheline_size = 
4941                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 
4942                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4943                 if (pci_write_config_byte(pdev, 
4944                                           PCI_CACHE_LINE_SIZE, 
4945                                           cas_cacheline_size)) {
4946                         printk(KERN_ERR PFX "Could not set PCI cache "
4947                                "line size\n");
4948                         goto err_write_cacheline;
4949                 }
4950         }
4951 #endif
4952
4953
4954         /* Configure DMA attributes. */
4955         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4956                 pci_using_dac = 1;
4957                 err = pci_set_consistent_dma_mask(pdev,
4958                                                   DMA_64BIT_MASK);
4959                 if (err < 0) {
4960                         printk(KERN_ERR PFX "Unable to obtain 64-bit DMA "
4961                                "for consistent allocations\n");
4962                         goto err_out_free_res;
4963                 }
4964
4965         } else {
4966                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4967                 if (err) {
4968                         printk(KERN_ERR PFX "No usable DMA configuration, "
4969                                "aborting.\n");
4970                         goto err_out_free_res;
4971                 }
4972                 pci_using_dac = 0;
4973         }
4974
4975         casreg_base = pci_resource_start(pdev, 0);
4976         casreg_len = pci_resource_len(pdev, 0);
4977
4978         cp = netdev_priv(dev);
4979         cp->pdev = pdev;
4980 #if 1
4981         /* A value of 0 indicates we never explicitly set it */
4982         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4983 #endif
4984         cp->dev = dev;
4985         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 
4986           cassini_debug;
4987
4988         cp->link_transition = LINK_TRANSITION_UNKNOWN;
4989         cp->link_transition_jiffies_valid = 0;
4990
4991         spin_lock_init(&cp->lock);
4992         spin_lock_init(&cp->rx_inuse_lock);
4993         spin_lock_init(&cp->rx_spare_lock);
4994         for (i = 0; i < N_TX_RINGS; i++) {
4995                 spin_lock_init(&cp->stat_lock[i]);
4996                 spin_lock_init(&cp->tx_lock[i]);
4997         }
4998         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4999         mutex_init(&cp->pm_mutex);
5000
5001         init_timer(&cp->link_timer);
5002         cp->link_timer.function = cas_link_timer;
5003         cp->link_timer.data = (unsigned long) cp;
5004
5005 #if 1
5006         /* Just in case the implementation of atomic operations
5007          * change so that an explicit initialization is necessary.
5008          */
5009         atomic_set(&cp->reset_task_pending, 0);
5010         atomic_set(&cp->reset_task_pending_all, 0);
5011         atomic_set(&cp->reset_task_pending_spare, 0);
5012         atomic_set(&cp->reset_task_pending_mtu, 0);
5013 #endif
5014         INIT_WORK(&cp->reset_task, cas_reset_task, cp);
5015
5016         /* Default link parameters */
5017         if (link_mode >= 0 && link_mode <= 6)
5018                 cp->link_cntl = link_modes[link_mode];
5019         else
5020                 cp->link_cntl = BMCR_ANENABLE;
5021         cp->lstate = link_down;
5022         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5023         netif_carrier_off(cp->dev);
5024         cp->timer_ticks = 0;
5025
5026         /* give us access to cassini registers */
5027         cp->regs = ioremap(casreg_base, casreg_len);
5028         if (cp->regs == 0UL) {
5029                 printk(KERN_ERR PFX "Cannot map device registers, "
5030                        "aborting.\n");
5031                 goto err_out_free_res;
5032         }
5033         cp->casreg_len = casreg_len;
5034
5035         pci_save_state(pdev);
5036         cas_check_pci_invariants(cp);
5037         cas_hard_reset(cp);
5038         cas_reset(cp, 0);
5039         if (cas_check_invariants(cp))
5040                 goto err_out_iounmap;
5041
5042         cp->init_block = (struct cas_init_block *)
5043                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5044                                      &cp->block_dvma);
5045         if (!cp->init_block) {
5046                 printk(KERN_ERR PFX "Cannot allocate init block, "
5047                        "aborting.\n");
5048                 goto err_out_iounmap;
5049         }
5050
5051         for (i = 0; i < N_TX_RINGS; i++) 
5052                 cp->init_txds[i] = cp->init_block->txds[i];
5053
5054         for (i = 0; i < N_RX_DESC_RINGS; i++) 
5055                 cp->init_rxds[i] = cp->init_block->rxds[i];
5056
5057         for (i = 0; i < N_RX_COMP_RINGS; i++) 
5058                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5059
5060         for (i = 0; i < N_RX_FLOWS; i++)
5061                 skb_queue_head_init(&cp->rx_flows[i]);
5062
5063         dev->open = cas_open;
5064         dev->stop = cas_close;
5065         dev->hard_start_xmit = cas_start_xmit;
5066         dev->get_stats = cas_get_stats;
5067         dev->set_multicast_list = cas_set_multicast;
5068         dev->do_ioctl = cas_ioctl;
5069         dev->ethtool_ops = &cas_ethtool_ops;
5070         dev->tx_timeout = cas_tx_timeout;
5071         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5072         dev->change_mtu = cas_change_mtu;
5073 #ifdef USE_NAPI
5074         dev->poll = cas_poll;
5075         dev->weight = 64;
5076 #endif
5077 #ifdef CONFIG_NET_POLL_CONTROLLER
5078         dev->poll_controller = cas_netpoll;
5079 #endif
5080         dev->irq = pdev->irq;
5081         dev->dma = 0;
5082
5083         /* Cassini features. */
5084         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5085                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5086
5087         if (pci_using_dac)
5088                 dev->features |= NETIF_F_HIGHDMA;
5089
5090         if (register_netdev(dev)) {
5091                 printk(KERN_ERR PFX "Cannot register net device, "
5092                        "aborting.\n");
5093                 goto err_out_free_consistent;
5094         }
5095
5096         i = readl(cp->regs + REG_BIM_CFG);
5097         printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5098                "Ethernet[%d] ",  dev->name, 
5099                (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 
5100                (i & BIM_CFG_32BIT) ? "32" : "64",
5101                (i & BIM_CFG_66MHZ) ? "66" : "33",
5102                (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); 
5103
5104         for (i = 0; i < 6; i++)
5105                 printk("%2.2x%c", dev->dev_addr[i],
5106                        i == 5 ? ' ' : ':');
5107         printk("\n");
5108
5109         pci_set_drvdata(pdev, dev);
5110         cp->hw_running = 1;
5111         cas_entropy_reset(cp);
5112         cas_phy_init(cp);
5113         cas_begin_auto_negotiation(cp, NULL);
5114         return 0;
5115
5116 err_out_free_consistent:
5117         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5118                             cp->init_block, cp->block_dvma);
5119
5120 err_out_iounmap:
5121         mutex_lock(&cp->pm_mutex);
5122         if (cp->hw_running)
5123                 cas_shutdown(cp);
5124         mutex_unlock(&cp->pm_mutex);
5125
5126         iounmap(cp->regs);
5127
5128
5129 err_out_free_res:
5130         pci_release_regions(pdev);
5131
5132 err_write_cacheline:
5133         /* Try to restore it in case the error occured after we
5134          * set it. 
5135          */
5136         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5137
5138 err_out_free_netdev:
5139         free_netdev(dev);
5140
5141 err_out_disable_pdev:
5142         pci_disable_device(pdev);
5143         pci_set_drvdata(pdev, NULL);
5144         return -ENODEV;
5145 }
5146
5147 static void __devexit cas_remove_one(struct pci_dev *pdev)
5148 {
5149         struct net_device *dev = pci_get_drvdata(pdev);
5150         struct cas *cp;
5151         if (!dev)
5152                 return;
5153
5154         cp = netdev_priv(dev);
5155         unregister_netdev(dev);
5156
5157         mutex_lock(&cp->pm_mutex);
5158         flush_scheduled_work();
5159         if (cp->hw_running)
5160                 cas_shutdown(cp);
5161         mutex_unlock(&cp->pm_mutex);
5162
5163 #if 1
5164         if (cp->orig_cacheline_size) {
5165                 /* Restore the cache line size if we had modified
5166                  * it.
5167                  */
5168                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 
5169                                       cp->orig_cacheline_size);
5170         }
5171 #endif
5172         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5173                             cp->init_block, cp->block_dvma);
5174         iounmap(cp->regs);
5175         free_netdev(dev);
5176         pci_release_regions(pdev);
5177         pci_disable_device(pdev);
5178         pci_set_drvdata(pdev, NULL);
5179 }
5180
5181 #ifdef CONFIG_PM
5182 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5183 {
5184         struct net_device *dev = pci_get_drvdata(pdev);
5185         struct cas *cp = netdev_priv(dev);
5186         unsigned long flags;
5187
5188         mutex_lock(&cp->pm_mutex);
5189         
5190         /* If the driver is opened, we stop the DMA */
5191         if (cp->opened) {
5192                 netif_device_detach(dev);
5193
5194                 cas_lock_all_save(cp, flags);
5195
5196                 /* We can set the second arg of cas_reset to 0
5197                  * because on resume, we'll call cas_init_hw with
5198                  * its second arg set so that autonegotiation is
5199                  * restarted.
5200                  */
5201                 cas_reset(cp, 0);
5202                 cas_clean_rings(cp);
5203                 cas_unlock_all_restore(cp, flags);
5204         }
5205
5206         if (cp->hw_running)
5207                 cas_shutdown(cp);
5208         mutex_unlock(&cp->pm_mutex);
5209
5210         return 0;
5211 }
5212
5213 static int cas_resume(struct pci_dev *pdev)
5214 {
5215         struct net_device *dev = pci_get_drvdata(pdev);
5216         struct cas *cp = netdev_priv(dev);
5217
5218         printk(KERN_INFO "%s: resuming\n", dev->name);
5219
5220         mutex_lock(&cp->pm_mutex);
5221         cas_hard_reset(cp);
5222         if (cp->opened) {
5223                 unsigned long flags;
5224                 cas_lock_all_save(cp, flags);
5225                 cas_reset(cp, 0);
5226                 cp->hw_running = 1;
5227                 cas_clean_rings(cp);
5228                 cas_init_hw(cp, 1);
5229                 cas_unlock_all_restore(cp, flags);
5230
5231                 netif_device_attach(dev);
5232         }
5233         mutex_unlock(&cp->pm_mutex);
5234         return 0;
5235 }
5236 #endif /* CONFIG_PM */
5237
5238 static struct pci_driver cas_driver = {
5239         .name           = DRV_MODULE_NAME,
5240         .id_table       = cas_pci_tbl,
5241         .probe          = cas_init_one,
5242         .remove         = __devexit_p(cas_remove_one),
5243 #ifdef CONFIG_PM
5244         .suspend        = cas_suspend,
5245         .resume         = cas_resume
5246 #endif
5247 };
5248
5249 static int __init cas_init(void)
5250 {
5251         if (linkdown_timeout > 0)
5252                 link_transition_timeout = linkdown_timeout * HZ;
5253         else
5254                 link_transition_timeout = 0;
5255
5256         return pci_module_init(&cas_driver);
5257 }
5258
5259 static void __exit cas_cleanup(void)
5260 {
5261         pci_unregister_driver(&cas_driver);
5262 }
5263
5264 module_init(cas_init);
5265 module_exit(cas_cleanup);