fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / drivers / net / chelsio / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, write to the Free Software Foundation, Inc.,   *
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17  *                                                                           *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21  *                                                                           *
22  * http://www.chelsio.com                                                    *
23  *                                                                           *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25  * All rights reserved.                                                      *
26  *                                                                           *
27  * Maintainers: maintainers@chelsio.com                                      *
28  *                                                                           *
29  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30  *          Tina Yang               <tainay@chelsio.com>                     *
31  *          Felix Marti             <felix@chelsio.com>                      *
32  *          Scott Bardone           <sbardone@chelsio.com>                   *
33  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34  *          Frank DiMambro          <frank@chelsio.com>                      *
35  *                                                                           *
36  * History:                                                                  *
37  *                                                                           *
38  ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N              2
66 #define SGE_FREELQ_N            2
67 #define SGE_CMDQ0_E_N           1024
68 #define SGE_CMDQ1_E_N           128
69 #define SGE_FREEL_SIZE          4096
70 #define SGE_JUMBO_FREEL_SIZE    512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N           1024
73 #define SGE_INTRTIMER_NRES      1000
74 #define SGE_RX_COPY_THRES       256
75 #define SGE_RX_SM_BUF_SIZE      1536
76 #define SGE_TX_DESC_MAX_PLEN    16384
77
78 # define SGE_RX_DROP_THRES 2
79
80 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81
82 /*
83  * Period of the TX buffer reclaim timer.  This timer does not need to run
84  * frequently as TX buffers are usually reclaimed by new TX packets.
85  */
86 #define TX_RECLAIM_PERIOD (HZ / 4)
87
88 #ifndef NET_IP_ALIGN
89 # define NET_IP_ALIGN 2
90 #endif
91
92 #define M_CMD_LEN       0x7fffffff
93 #define V_CMD_LEN(v)    (v)
94 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
95 #define V_CMD_GEN1(v)   ((v) << 31)
96 #define V_CMD_GEN2(v)   (v)
97 #define F_CMD_DATAVALID (1 << 1)
98 #define F_CMD_SOP       (1 << 2)
99 #define V_CMD_EOP(v)    ((v) << 3)
100
101 /*
102  * Command queue, receive buffer list, and response queue descriptors.
103  */
104 #if defined(__BIG_ENDIAN_BITFIELD)
105 struct cmdQ_e {
106         u32 addr_lo;
107         u32 len_gen;
108         u32 flags;
109         u32 addr_hi;
110 };
111
112 struct freelQ_e {
113         u32 addr_lo;
114         u32 len_gen;
115         u32 gen2;
116         u32 addr_hi;
117 };
118
119 struct respQ_e {
120         u32 Qsleeping           : 4;
121         u32 Cmdq1CreditReturn   : 5;
122         u32 Cmdq1DmaComplete    : 5;
123         u32 Cmdq0CreditReturn   : 5;
124         u32 Cmdq0DmaComplete    : 5;
125         u32 FreelistQid         : 2;
126         u32 CreditValid         : 1;
127         u32 DataValid           : 1;
128         u32 Offload             : 1;
129         u32 Eop                 : 1;
130         u32 Sop                 : 1;
131         u32 GenerationBit       : 1;
132         u32 BufferLength;
133 };
134 #elif defined(__LITTLE_ENDIAN_BITFIELD)
135 struct cmdQ_e {
136         u32 len_gen;
137         u32 addr_lo;
138         u32 addr_hi;
139         u32 flags;
140 };
141
142 struct freelQ_e {
143         u32 len_gen;
144         u32 addr_lo;
145         u32 addr_hi;
146         u32 gen2;
147 };
148
149 struct respQ_e {
150         u32 BufferLength;
151         u32 GenerationBit       : 1;
152         u32 Sop                 : 1;
153         u32 Eop                 : 1;
154         u32 Offload             : 1;
155         u32 DataValid           : 1;
156         u32 CreditValid         : 1;
157         u32 FreelistQid         : 2;
158         u32 Cmdq0DmaComplete    : 5;
159         u32 Cmdq0CreditReturn   : 5;
160         u32 Cmdq1DmaComplete    : 5;
161         u32 Cmdq1CreditReturn   : 5;
162         u32 Qsleeping           : 4;
163 } ;
164 #endif
165
166 /*
167  * SW Context Command and Freelist Queue Descriptors
168  */
169 struct cmdQ_ce {
170         struct sk_buff *skb;
171         DECLARE_PCI_UNMAP_ADDR(dma_addr);
172         DECLARE_PCI_UNMAP_LEN(dma_len);
173 };
174
175 struct freelQ_ce {
176         struct sk_buff *skb;
177         DECLARE_PCI_UNMAP_ADDR(dma_addr);
178         DECLARE_PCI_UNMAP_LEN(dma_len);
179 };
180
181 /*
182  * SW command, freelist and response rings
183  */
184 struct cmdQ {
185         unsigned long   status;         /* HW DMA fetch status */
186         unsigned int    in_use;         /* # of in-use command descriptors */
187         unsigned int    size;           /* # of descriptors */
188         unsigned int    processed;      /* total # of descs HW has processed */
189         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
190         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
191         u16             pidx;           /* producer index (SW) */
192         u16             cidx;           /* consumer index (HW) */
193         u8              genbit;         /* current generation (=valid) bit */
194         u8              sop;            /* is next entry start of packet? */
195         struct cmdQ_e  *entries;        /* HW command descriptor Q */
196         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
197         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
198         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
199 };
200
201 struct freelQ {
202         unsigned int    credits;        /* # of available RX buffers */
203         unsigned int    size;           /* free list capacity */
204         u16             pidx;           /* producer index (SW) */
205         u16             cidx;           /* consumer index (HW) */
206         u16             rx_buffer_size; /* Buffer size on this free list */
207         u16             dma_offset;     /* DMA offset to align IP headers */
208         u16             recycleq_idx;   /* skb recycle q to use */
209         u8              genbit;         /* current generation (=valid) bit */
210         struct freelQ_e *entries;       /* HW freelist descriptor Q */
211         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
212         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
213 };
214
215 struct respQ {
216         unsigned int    credits;        /* credits to be returned to SGE */
217         unsigned int    size;           /* # of response Q descriptors */
218         u16             cidx;           /* consumer index (SW) */
219         u8              genbit;         /* current generation(=valid) bit */
220         struct respQ_e *entries;        /* HW response descriptor Q */
221         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
222 };
223
224 /* Bit flags for cmdQ.status */
225 enum {
226         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
227         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
228 };
229
230 /* T204 TX SW scheduler */
231
232 /* Per T204 TX port */
233 struct sched_port {
234         unsigned int    avail;          /* available bits - quota */
235         unsigned int    drain_bits_per_1024ns; /* drain rate */
236         unsigned int    speed;          /* drain rate, mbps */
237         unsigned int    mtu;            /* mtu size */
238         struct sk_buff_head skbq;       /* pending skbs */
239 };
240
241 /* Per T204 device */
242 struct sched {
243         ktime_t         last_updated;   /* last time quotas were computed */
244         unsigned int    max_avail;      /* max bits to be sent to any port */
245         unsigned int    port;           /* port index (round robin ports) */
246         unsigned int    num;            /* num skbs in per port queues */
247         struct sched_port p[MAX_NPORTS];
248         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
249 };
250 static void restart_sched(unsigned long);
251
252
253 /*
254  * Main SGE data structure
255  *
256  * Interrupts are handled by a single CPU and it is likely that on a MP system
257  * the application is migrated to another CPU. In that scenario, we try to
258  * seperate the RX(in irq context) and TX state in order to decrease memory
259  * contention.
260  */
261 struct sge {
262         struct adapter *adapter;        /* adapter backpointer */
263         struct net_device *netdev;      /* netdevice backpointer */
264         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
265         struct respQ    respQ;          /* response Q */
266         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
267         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
268         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
269         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
270         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
271         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
272         struct timer_list espibug_timer;
273         unsigned long   espibug_timeout;
274         struct sk_buff  *espibug_skb[MAX_NPORTS];
275         u32             sge_control;    /* shadow value of sge control reg */
276         struct sge_intr_counts stats;
277         struct sge_port_stats *port_stats[MAX_NPORTS];
278         struct sched    *tx_sched;
279         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
280 };
281
282 /*
283  * stop tasklet and free all pending skb's
284  */
285 static void tx_sched_stop(struct sge *sge)
286 {
287         struct sched *s = sge->tx_sched;
288         int i;
289
290         tasklet_kill(&s->sched_tsk);
291
292         for (i = 0; i < MAX_NPORTS; i++)
293                 __skb_queue_purge(&s->p[s->port].skbq);
294 }
295
296 /*
297  * t1_sched_update_parms() is called when the MTU or link speed changes. It
298  * re-computes scheduler parameters to scope with the change.
299  */
300 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
301                                    unsigned int mtu, unsigned int speed)
302 {
303         struct sched *s = sge->tx_sched;
304         struct sched_port *p = &s->p[port];
305         unsigned int max_avail_segs;
306
307         pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
308         if (speed)
309                 p->speed = speed;
310         if (mtu)
311                 p->mtu = mtu;
312
313         if (speed || mtu) {
314                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
315                 do_div(drain, (p->mtu + 50) * 1000);
316                 p->drain_bits_per_1024ns = (unsigned int) drain;
317
318                 if (p->speed < 1000)
319                         p->drain_bits_per_1024ns =
320                                 90 * p->drain_bits_per_1024ns / 100;
321         }
322
323         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
324                 p->drain_bits_per_1024ns -= 16;
325                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
326                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
327         } else {
328                 s->max_avail = 16384;
329                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
330         }
331
332         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
333                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
334                  p->speed, s->max_avail, max_avail_segs,
335                  p->drain_bits_per_1024ns);
336
337         return max_avail_segs * (p->mtu - 40);
338 }
339
340 /*
341  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
342  * data that can be pushed per port.
343  */
344 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
345 {
346         struct sched *s = sge->tx_sched;
347         unsigned int i;
348
349         s->max_avail = val;
350         for (i = 0; i < MAX_NPORTS; i++)
351                 t1_sched_update_parms(sge, i, 0, 0);
352 }
353
354 /*
355  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
356  * is draining.
357  */
358 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
359                                          unsigned int val)
360 {
361         struct sched *s = sge->tx_sched;
362         struct sched_port *p = &s->p[port];
363         p->drain_bits_per_1024ns = val * 1024 / 1000;
364         t1_sched_update_parms(sge, port, 0, 0);
365 }
366
367
368 /*
369  * get_clock() implements a ns clock (see ktime_get)
370  */
371 static inline ktime_t get_clock(void)
372 {
373         struct timespec ts;
374
375         ktime_get_ts(&ts);
376         return timespec_to_ktime(ts);
377 }
378
379 /*
380  * tx_sched_init() allocates resources and does basic initialization.
381  */
382 static int tx_sched_init(struct sge *sge)
383 {
384         struct sched *s;
385         int i;
386
387         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
388         if (!s)
389                 return -ENOMEM;
390
391         pr_debug("tx_sched_init\n");
392         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
393         sge->tx_sched = s;
394
395         for (i = 0; i < MAX_NPORTS; i++) {
396                 skb_queue_head_init(&s->p[i].skbq);
397                 t1_sched_update_parms(sge, i, 1500, 1000);
398         }
399
400         return 0;
401 }
402
403 /*
404  * sched_update_avail() computes the delta since the last time it was called
405  * and updates the per port quota (number of bits that can be sent to the any
406  * port).
407  */
408 static inline int sched_update_avail(struct sge *sge)
409 {
410         struct sched *s = sge->tx_sched;
411         ktime_t now = get_clock();
412         unsigned int i;
413         long long delta_time_ns;
414
415         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
416
417         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
418         if (delta_time_ns < 15000)
419                 return 0;
420
421         for (i = 0; i < MAX_NPORTS; i++) {
422                 struct sched_port *p = &s->p[i];
423                 unsigned int delta_avail;
424
425                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
426                 p->avail = min(p->avail + delta_avail, s->max_avail);
427         }
428
429         s->last_updated = now;
430
431         return 1;
432 }
433
434 /*
435  * sched_skb() is called from two different places. In the tx path, any
436  * packet generating load on an output port will call sched_skb()
437  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
438  * context (skb == NULL).
439  * The scheduler only returns a skb (which will then be sent) if the
440  * length of the skb is <= the current quota of the output port.
441  */
442 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
443                                 unsigned int credits)
444 {
445         struct sched *s = sge->tx_sched;
446         struct sk_buff_head *skbq;
447         unsigned int i, len, update = 1;
448
449         pr_debug("sched_skb %p\n", skb);
450         if (!skb) {
451                 if (!s->num)
452                         return NULL;
453         } else {
454                 skbq = &s->p[skb->dev->if_port].skbq;
455                 __skb_queue_tail(skbq, skb);
456                 s->num++;
457                 skb = NULL;
458         }
459
460         if (credits < MAX_SKB_FRAGS + 1)
461                 goto out;
462
463  again:
464         for (i = 0; i < MAX_NPORTS; i++) {
465                 s->port = ++s->port & (MAX_NPORTS - 1);
466                 skbq = &s->p[s->port].skbq;
467
468                 skb = skb_peek(skbq);
469
470                 if (!skb)
471                         continue;
472
473                 len = skb->len;
474                 if (len <= s->p[s->port].avail) {
475                         s->p[s->port].avail -= len;
476                         s->num--;
477                         __skb_unlink(skb, skbq);
478                         goto out;
479                 }
480                 skb = NULL;
481         }
482
483         if (update-- && sched_update_avail(sge))
484                 goto again;
485
486  out:
487         /* If there are more pending skbs, we use the hardware to schedule us
488          * again.
489          */
490         if (s->num && !skb) {
491                 struct cmdQ *q = &sge->cmdQ[0];
492                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
493                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
494                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
495                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
496                 }
497         }
498         pr_debug("sched_skb ret %p\n", skb);
499
500         return skb;
501 }
502
503 /*
504  * PIO to indicate that memory mapped Q contains valid descriptor(s).
505  */
506 static inline void doorbell_pio(struct adapter *adapter, u32 val)
507 {
508         wmb();
509         writel(val, adapter->regs + A_SG_DOORBELL);
510 }
511
512 /*
513  * Frees all RX buffers on the freelist Q. The caller must make sure that
514  * the SGE is turned off before calling this function.
515  */
516 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
517 {
518         unsigned int cidx = q->cidx;
519
520         while (q->credits--) {
521                 struct freelQ_ce *ce = &q->centries[cidx];
522
523                 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
524                                  pci_unmap_len(ce, dma_len),
525                                  PCI_DMA_FROMDEVICE);
526                 dev_kfree_skb(ce->skb);
527                 ce->skb = NULL;
528                 if (++cidx == q->size)
529                         cidx = 0;
530         }
531 }
532
533 /*
534  * Free RX free list and response queue resources.
535  */
536 static void free_rx_resources(struct sge *sge)
537 {
538         struct pci_dev *pdev = sge->adapter->pdev;
539         unsigned int size, i;
540
541         if (sge->respQ.entries) {
542                 size = sizeof(struct respQ_e) * sge->respQ.size;
543                 pci_free_consistent(pdev, size, sge->respQ.entries,
544                                     sge->respQ.dma_addr);
545         }
546
547         for (i = 0; i < SGE_FREELQ_N; i++) {
548                 struct freelQ *q = &sge->freelQ[i];
549
550                 if (q->centries) {
551                         free_freelQ_buffers(pdev, q);
552                         kfree(q->centries);
553                 }
554                 if (q->entries) {
555                         size = sizeof(struct freelQ_e) * q->size;
556                         pci_free_consistent(pdev, size, q->entries,
557                                             q->dma_addr);
558                 }
559         }
560 }
561
562 /*
563  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
564  * response queue.
565  */
566 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
567 {
568         struct pci_dev *pdev = sge->adapter->pdev;
569         unsigned int size, i;
570
571         for (i = 0; i < SGE_FREELQ_N; i++) {
572                 struct freelQ *q = &sge->freelQ[i];
573
574                 q->genbit = 1;
575                 q->size = p->freelQ_size[i];
576                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
577                 size = sizeof(struct freelQ_e) * q->size;
578                 q->entries = (struct freelQ_e *)
579                               pci_alloc_consistent(pdev, size, &q->dma_addr);
580                 if (!q->entries)
581                         goto err_no_mem;
582                 memset(q->entries, 0, size);
583                 size = sizeof(struct freelQ_ce) * q->size;
584                 q->centries = kzalloc(size, GFP_KERNEL);
585                 if (!q->centries)
586                         goto err_no_mem;
587         }
588
589         /*
590          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
591          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
592          * including all the sk_buff overhead.
593          *
594          * Note: For T2 FL0 and FL1 are reversed.
595          */
596         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
597                 sizeof(struct cpl_rx_data) +
598                 sge->freelQ[!sge->jumbo_fl].dma_offset;
599
600                 size = (16 * 1024) -
601                     SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
602
603         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
604
605         /*
606          * Setup which skb recycle Q should be used when recycling buffers from
607          * each free list.
608          */
609         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
610         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
611
612         sge->respQ.genbit = 1;
613         sge->respQ.size = SGE_RESPQ_E_N;
614         sge->respQ.credits = 0;
615         size = sizeof(struct respQ_e) * sge->respQ.size;
616         sge->respQ.entries = (struct respQ_e *)
617                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
618         if (!sge->respQ.entries)
619                 goto err_no_mem;
620         memset(sge->respQ.entries, 0, size);
621         return 0;
622
623 err_no_mem:
624         free_rx_resources(sge);
625         return -ENOMEM;
626 }
627
628 /*
629  * Reclaims n TX descriptors and frees the buffers associated with them.
630  */
631 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
632 {
633         struct cmdQ_ce *ce;
634         struct pci_dev *pdev = sge->adapter->pdev;
635         unsigned int cidx = q->cidx;
636
637         q->in_use -= n;
638         ce = &q->centries[cidx];
639         while (n--) {
640                 if (q->sop) {
641                         if (likely(pci_unmap_len(ce, dma_len))) {
642                                 pci_unmap_single(pdev,
643                                                  pci_unmap_addr(ce, dma_addr),
644                                                  pci_unmap_len(ce, dma_len),
645                                                  PCI_DMA_TODEVICE);
646                                 q->sop = 0;
647                         }
648                 } else {
649                         if (likely(pci_unmap_len(ce, dma_len))) {
650                                 pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
651                                                pci_unmap_len(ce, dma_len),
652                                                PCI_DMA_TODEVICE);
653                         }
654                 }
655                 if (ce->skb) {
656                         dev_kfree_skb_any(ce->skb);
657                         q->sop = 1;
658                 }
659                 ce++;
660                 if (++cidx == q->size) {
661                         cidx = 0;
662                         ce = q->centries;
663                 }
664         }
665         q->cidx = cidx;
666 }
667
668 /*
669  * Free TX resources.
670  *
671  * Assumes that SGE is stopped and all interrupts are disabled.
672  */
673 static void free_tx_resources(struct sge *sge)
674 {
675         struct pci_dev *pdev = sge->adapter->pdev;
676         unsigned int size, i;
677
678         for (i = 0; i < SGE_CMDQ_N; i++) {
679                 struct cmdQ *q = &sge->cmdQ[i];
680
681                 if (q->centries) {
682                         if (q->in_use)
683                                 free_cmdQ_buffers(sge, q, q->in_use);
684                         kfree(q->centries);
685                 }
686                 if (q->entries) {
687                         size = sizeof(struct cmdQ_e) * q->size;
688                         pci_free_consistent(pdev, size, q->entries,
689                                             q->dma_addr);
690                 }
691         }
692 }
693
694 /*
695  * Allocates basic TX resources, consisting of memory mapped command Qs.
696  */
697 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
698 {
699         struct pci_dev *pdev = sge->adapter->pdev;
700         unsigned int size, i;
701
702         for (i = 0; i < SGE_CMDQ_N; i++) {
703                 struct cmdQ *q = &sge->cmdQ[i];
704
705                 q->genbit = 1;
706                 q->sop = 1;
707                 q->size = p->cmdQ_size[i];
708                 q->in_use = 0;
709                 q->status = 0;
710                 q->processed = q->cleaned = 0;
711                 q->stop_thres = 0;
712                 spin_lock_init(&q->lock);
713                 size = sizeof(struct cmdQ_e) * q->size;
714                 q->entries = (struct cmdQ_e *)
715                               pci_alloc_consistent(pdev, size, &q->dma_addr);
716                 if (!q->entries)
717                         goto err_no_mem;
718                 memset(q->entries, 0, size);
719                 size = sizeof(struct cmdQ_ce) * q->size;
720                 q->centries = kzalloc(size, GFP_KERNEL);
721                 if (!q->centries)
722                         goto err_no_mem;
723         }
724
725         /*
726          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
727          * only.  For queue 0 set the stop threshold so we can handle one more
728          * packet from each port, plus reserve an additional 24 entries for
729          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
730          * space for Ethernet packets.
731          */
732         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
733                 (MAX_SKB_FRAGS + 1);
734         return 0;
735
736 err_no_mem:
737         free_tx_resources(sge);
738         return -ENOMEM;
739 }
740
741 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
742                                      u32 size, int base_reg_lo,
743                                      int base_reg_hi, int size_reg)
744 {
745         writel((u32)addr, adapter->regs + base_reg_lo);
746         writel(addr >> 32, adapter->regs + base_reg_hi);
747         writel(size, adapter->regs + size_reg);
748 }
749
750 /*
751  * Enable/disable VLAN acceleration.
752  */
753 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
754 {
755         struct sge *sge = adapter->sge;
756
757         sge->sge_control &= ~F_VLAN_XTRACT;
758         if (on_off)
759                 sge->sge_control |= F_VLAN_XTRACT;
760         if (adapter->open_device_map) {
761                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
762                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
763         }
764 }
765
766 /*
767  * Programs the various SGE registers. However, the engine is not yet enabled,
768  * but sge->sge_control is setup and ready to go.
769  */
770 static void configure_sge(struct sge *sge, struct sge_params *p)
771 {
772         struct adapter *ap = sge->adapter;
773         
774         writel(0, ap->regs + A_SG_CONTROL);
775         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
776                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
777         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
778                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
779         setup_ring_params(ap, sge->freelQ[0].dma_addr,
780                           sge->freelQ[0].size, A_SG_FL0BASELWR,
781                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
782         setup_ring_params(ap, sge->freelQ[1].dma_addr,
783                           sge->freelQ[1].size, A_SG_FL1BASELWR,
784                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
785
786         /* The threshold comparison uses <. */
787         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
788
789         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
790                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
791         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
792
793         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
794                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
795                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
796                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
797
798 #if defined(__BIG_ENDIAN_BITFIELD)
799         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
800 #endif
801
802         /* Initialize no-resource timer */
803         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
804
805         t1_sge_set_coalesce_params(sge, p);
806 }
807
808 /*
809  * Return the payload capacity of the jumbo free-list buffers.
810  */
811 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
812 {
813         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
814                 sge->freelQ[sge->jumbo_fl].dma_offset -
815                 sizeof(struct cpl_rx_data);
816 }
817
818 /*
819  * Frees all SGE related resources and the sge structure itself
820  */
821 void t1_sge_destroy(struct sge *sge)
822 {
823         int i;
824
825         for_each_port(sge->adapter, i)
826                 free_percpu(sge->port_stats[i]);
827
828         kfree(sge->tx_sched);
829         free_tx_resources(sge);
830         free_rx_resources(sge);
831         kfree(sge);
832 }
833
834 /*
835  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
836  * context Q) until the Q is full or alloc_skb fails.
837  *
838  * It is possible that the generation bits already match, indicating that the
839  * buffer is already valid and nothing needs to be done. This happens when we
840  * copied a received buffer into a new sk_buff during the interrupt processing.
841  *
842  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
843  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
844  * aligned.
845  */
846 static void refill_free_list(struct sge *sge, struct freelQ *q)
847 {
848         struct pci_dev *pdev = sge->adapter->pdev;
849         struct freelQ_ce *ce = &q->centries[q->pidx];
850         struct freelQ_e *e = &q->entries[q->pidx];
851         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
852
853
854         while (q->credits < q->size) {
855                 struct sk_buff *skb;
856                 dma_addr_t mapping;
857
858                 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
859                 if (!skb)
860                         break;
861
862                 skb_reserve(skb, q->dma_offset);
863                 mapping = pci_map_single(pdev, skb->data, dma_len,
864                                          PCI_DMA_FROMDEVICE);
865                 ce->skb = skb;
866                 pci_unmap_addr_set(ce, dma_addr, mapping);
867                 pci_unmap_len_set(ce, dma_len, dma_len);
868                 e->addr_lo = (u32)mapping;
869                 e->addr_hi = (u64)mapping >> 32;
870                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
871                 wmb();
872                 e->gen2 = V_CMD_GEN2(q->genbit);
873
874                 e++;
875                 ce++;
876                 if (++q->pidx == q->size) {
877                         q->pidx = 0;
878                         q->genbit ^= 1;
879                         ce = q->centries;
880                         e = q->entries;
881                 }
882                 q->credits++;
883         }
884
885 }
886
887 /*
888  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
889  * of both rings, we go into 'few interrupt mode' in order to give the system
890  * time to free up resources.
891  */
892 static void freelQs_empty(struct sge *sge)
893 {
894         struct adapter *adapter = sge->adapter;
895         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
896         u32 irqholdoff_reg;
897
898         refill_free_list(sge, &sge->freelQ[0]);
899         refill_free_list(sge, &sge->freelQ[1]);
900
901         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
902             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
903                 irq_reg |= F_FL_EXHAUSTED;
904                 irqholdoff_reg = sge->fixed_intrtimer;
905         } else {
906                 /* Clear the F_FL_EXHAUSTED interrupts for now */
907                 irq_reg &= ~F_FL_EXHAUSTED;
908                 irqholdoff_reg = sge->intrtimer_nres;
909         }
910         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
911         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
912
913         /* We reenable the Qs to force a freelist GTS interrupt later */
914         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
915 }
916
917 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
918 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
919 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
920                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
921
922 /*
923  * Disable SGE Interrupts
924  */
925 void t1_sge_intr_disable(struct sge *sge)
926 {
927         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
928
929         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
930         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
931 }
932
933 /*
934  * Enable SGE interrupts.
935  */
936 void t1_sge_intr_enable(struct sge *sge)
937 {
938         u32 en = SGE_INT_ENABLE;
939         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
940
941         if (sge->adapter->flags & TSO_CAPABLE)
942                 en &= ~F_PACKET_TOO_BIG;
943         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
944         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
945 }
946
947 /*
948  * Clear SGE interrupts.
949  */
950 void t1_sge_intr_clear(struct sge *sge)
951 {
952         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
953         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
954 }
955
956 /*
957  * SGE 'Error' interrupt handler
958  */
959 int t1_sge_intr_error_handler(struct sge *sge)
960 {
961         struct adapter *adapter = sge->adapter;
962         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
963
964         if (adapter->flags & TSO_CAPABLE)
965                 cause &= ~F_PACKET_TOO_BIG;
966         if (cause & F_RESPQ_EXHAUSTED)
967                 sge->stats.respQ_empty++;
968         if (cause & F_RESPQ_OVERFLOW) {
969                 sge->stats.respQ_overflow++;
970                 CH_ALERT("%s: SGE response queue overflow\n",
971                          adapter->name);
972         }
973         if (cause & F_FL_EXHAUSTED) {
974                 sge->stats.freelistQ_empty++;
975                 freelQs_empty(sge);
976         }
977         if (cause & F_PACKET_TOO_BIG) {
978                 sge->stats.pkt_too_big++;
979                 CH_ALERT("%s: SGE max packet size exceeded\n",
980                          adapter->name);
981         }
982         if (cause & F_PACKET_MISMATCH) {
983                 sge->stats.pkt_mismatch++;
984                 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
985         }
986         if (cause & SGE_INT_FATAL)
987                 t1_fatal_err(adapter);
988
989         writel(cause, adapter->regs + A_SG_INT_CAUSE);
990         return 0;
991 }
992
993 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
994 {
995         return &sge->stats;
996 }
997
998 void t1_sge_get_port_stats(const struct sge *sge, int port,
999                            struct sge_port_stats *ss)
1000 {
1001         int cpu;
1002
1003         memset(ss, 0, sizeof(*ss));
1004         for_each_possible_cpu(cpu) {
1005                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
1006
1007                 ss->rx_packets += st->rx_packets;
1008                 ss->rx_cso_good += st->rx_cso_good;
1009                 ss->tx_packets += st->tx_packets;
1010                 ss->tx_cso += st->tx_cso;
1011                 ss->tx_tso += st->tx_tso;
1012                 ss->vlan_xtract += st->vlan_xtract;
1013                 ss->vlan_insert += st->vlan_insert;
1014         }
1015 }
1016
1017 /**
1018  *      recycle_fl_buf - recycle a free list buffer
1019  *      @fl: the free list
1020  *      @idx: index of buffer to recycle
1021  *
1022  *      Recycles the specified buffer on the given free list by adding it at
1023  *      the next available slot on the list.
1024  */
1025 static void recycle_fl_buf(struct freelQ *fl, int idx)
1026 {
1027         struct freelQ_e *from = &fl->entries[idx];
1028         struct freelQ_e *to = &fl->entries[fl->pidx];
1029
1030         fl->centries[fl->pidx] = fl->centries[idx];
1031         to->addr_lo = from->addr_lo;
1032         to->addr_hi = from->addr_hi;
1033         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1034         wmb();
1035         to->gen2 = V_CMD_GEN2(fl->genbit);
1036         fl->credits++;
1037
1038         if (++fl->pidx == fl->size) {
1039                 fl->pidx = 0;
1040                 fl->genbit ^= 1;
1041         }
1042 }
1043
1044 /**
1045  *      get_packet - return the next ingress packet buffer
1046  *      @pdev: the PCI device that received the packet
1047  *      @fl: the SGE free list holding the packet
1048  *      @len: the actual packet length, excluding any SGE padding
1049  *      @dma_pad: padding at beginning of buffer left by SGE DMA
1050  *      @skb_pad: padding to be used if the packet is copied
1051  *      @copy_thres: length threshold under which a packet should be copied
1052  *      @drop_thres: # of remaining buffers before we start dropping packets
1053  *
1054  *      Get the next packet from a free list and complete setup of the
1055  *      sk_buff.  If the packet is small we make a copy and recycle the
1056  *      original buffer, otherwise we use the original buffer itself.  If a
1057  *      positive drop threshold is supplied packets are dropped and their
1058  *      buffers recycled if (a) the number of remaining buffers is under the
1059  *      threshold and the packet is too big to copy, or (b) the packet should
1060  *      be copied but there is no memory for the copy.
1061  */
1062 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1063                                          struct freelQ *fl, unsigned int len,
1064                                          int dma_pad, int skb_pad,
1065                                          unsigned int copy_thres,
1066                                          unsigned int drop_thres)
1067 {
1068         struct sk_buff *skb;
1069         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1070
1071         if (len < copy_thres) {
1072                 skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
1073                 if (likely(skb != NULL)) {
1074                         skb_reserve(skb, skb_pad);
1075                         skb_put(skb, len);
1076                         pci_dma_sync_single_for_cpu(pdev,
1077                                             pci_unmap_addr(ce, dma_addr),
1078                                             pci_unmap_len(ce, dma_len),
1079                                             PCI_DMA_FROMDEVICE);
1080                         memcpy(skb->data, ce->skb->data + dma_pad, len);
1081                         pci_dma_sync_single_for_device(pdev,
1082                                             pci_unmap_addr(ce, dma_addr),
1083                                             pci_unmap_len(ce, dma_len),
1084                                             PCI_DMA_FROMDEVICE);
1085                 } else if (!drop_thres)
1086                         goto use_orig_buf;
1087
1088                 recycle_fl_buf(fl, fl->cidx);
1089                 return skb;
1090         }
1091
1092         if (fl->credits < drop_thres) {
1093                 recycle_fl_buf(fl, fl->cidx);
1094                 return NULL;
1095         }
1096
1097 use_orig_buf:
1098         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1099                          pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1100         skb = ce->skb;
1101         skb_reserve(skb, dma_pad);
1102         skb_put(skb, len);
1103         return skb;
1104 }
1105
1106 /**
1107  *      unexpected_offload - handle an unexpected offload packet
1108  *      @adapter: the adapter
1109  *      @fl: the free list that received the packet
1110  *
1111  *      Called when we receive an unexpected offload packet (e.g., the TOE
1112  *      function is disabled or the card is a NIC).  Prints a message and
1113  *      recycles the buffer.
1114  */
1115 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1116 {
1117         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1118         struct sk_buff *skb = ce->skb;
1119
1120         pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1121                             pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1122         CH_ERR("%s: unexpected offload packet, cmd %u\n",
1123                adapter->name, *skb->data);
1124         recycle_fl_buf(fl, fl->cidx);
1125 }
1126
1127 /*
1128  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1129  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1130  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1131  * Note that the *_large_page_tx_descs stuff will be optimized out when
1132  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1133  *
1134  * compute_large_page_descs() computes how many additional descriptors are
1135  * required to break down the stack's request.
1136  */
1137 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1138 {
1139         unsigned int count = 0;
1140         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1141                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1142                 unsigned int i, len = skb->len - skb->data_len;
1143                 while (len > SGE_TX_DESC_MAX_PLEN) {
1144                         count++;
1145                         len -= SGE_TX_DESC_MAX_PLEN;
1146                 }
1147                 for (i = 0; nfrags--; i++) {
1148                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1149                         len = frag->size;
1150                         while (len > SGE_TX_DESC_MAX_PLEN) {
1151                                 count++;
1152                                 len -= SGE_TX_DESC_MAX_PLEN;
1153                         }
1154                 }
1155         }
1156         return count;
1157 }
1158
1159 /*
1160  * Write a cmdQ entry.
1161  *
1162  * Since this function writes the 'flags' field, it must not be used to
1163  * write the first cmdQ entry.
1164  */
1165 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1166                                  unsigned int len, unsigned int gen,
1167                                  unsigned int eop)
1168 {
1169         if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1170                 BUG();
1171         e->addr_lo = (u32)mapping;
1172         e->addr_hi = (u64)mapping >> 32;
1173         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1174         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1175 }
1176
1177 /*
1178  * See comment for previous function.
1179  *
1180  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1181  * *desc_len exceeds HW's capability.
1182  */
1183 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1184                                                      struct cmdQ_e **e,
1185                                                      struct cmdQ_ce **ce,
1186                                                      unsigned int *gen,
1187                                                      dma_addr_t *desc_mapping,
1188                                                      unsigned int *desc_len,
1189                                                      unsigned int nfrags,
1190                                                      struct cmdQ *q)
1191 {
1192         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1193                 struct cmdQ_e *e1 = *e;
1194                 struct cmdQ_ce *ce1 = *ce;
1195
1196                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1197                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1198                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1199                                       *gen, nfrags == 0 && *desc_len == 0);
1200                         ce1->skb = NULL;
1201                         pci_unmap_len_set(ce1, dma_len, 0);
1202                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1203                         if (*desc_len) {
1204                                 ce1++;
1205                                 e1++;
1206                                 if (++pidx == q->size) {
1207                                         pidx = 0;
1208                                         *gen ^= 1;
1209                                         ce1 = q->centries;
1210                                         e1 = q->entries;
1211                                 }
1212                         }
1213                 }
1214                 *e = e1;
1215                 *ce = ce1;
1216         }
1217         return pidx;
1218 }
1219
1220 /*
1221  * Write the command descriptors to transmit the given skb starting at
1222  * descriptor pidx with the given generation.
1223  */
1224 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1225                                   unsigned int pidx, unsigned int gen,
1226                                   struct cmdQ *q)
1227 {
1228         dma_addr_t mapping, desc_mapping;
1229         struct cmdQ_e *e, *e1;
1230         struct cmdQ_ce *ce;
1231         unsigned int i, flags, first_desc_len, desc_len,
1232             nfrags = skb_shinfo(skb)->nr_frags;
1233
1234         e = e1 = &q->entries[pidx];
1235         ce = &q->centries[pidx];
1236
1237         mapping = pci_map_single(adapter->pdev, skb->data,
1238                                 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1239
1240         desc_mapping = mapping;
1241         desc_len = skb->len - skb->data_len;
1242
1243         flags = F_CMD_DATAVALID | F_CMD_SOP |
1244             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1245             V_CMD_GEN2(gen);
1246         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1247             desc_len : SGE_TX_DESC_MAX_PLEN;
1248         e->addr_lo = (u32)desc_mapping;
1249         e->addr_hi = (u64)desc_mapping >> 32;
1250         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1251         ce->skb = NULL;
1252         pci_unmap_len_set(ce, dma_len, 0);
1253
1254         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1255             desc_len > SGE_TX_DESC_MAX_PLEN) {
1256                 desc_mapping += first_desc_len;
1257                 desc_len -= first_desc_len;
1258                 e1++;
1259                 ce++;
1260                 if (++pidx == q->size) {
1261                         pidx = 0;
1262                         gen ^= 1;
1263                         e1 = q->entries;
1264                         ce = q->centries;
1265                 }
1266                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1267                                                  &desc_mapping, &desc_len,
1268                                                  nfrags, q);
1269
1270                 if (likely(desc_len))
1271                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1272                                       nfrags == 0);
1273         }
1274
1275         ce->skb = NULL;
1276         pci_unmap_addr_set(ce, dma_addr, mapping);
1277         pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1278
1279         for (i = 0; nfrags--; i++) {
1280                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1281                 e1++;
1282                 ce++;
1283                 if (++pidx == q->size) {
1284                         pidx = 0;
1285                         gen ^= 1;
1286                         e1 = q->entries;
1287                         ce = q->centries;
1288                 }
1289
1290                 mapping = pci_map_page(adapter->pdev, frag->page,
1291                                        frag->page_offset, frag->size,
1292                                        PCI_DMA_TODEVICE);
1293                 desc_mapping = mapping;
1294                 desc_len = frag->size;
1295
1296                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1297                                                  &desc_mapping, &desc_len,
1298                                                  nfrags, q);
1299                 if (likely(desc_len))
1300                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1301                                       nfrags == 0);
1302                 ce->skb = NULL;
1303                 pci_unmap_addr_set(ce, dma_addr, mapping);
1304                 pci_unmap_len_set(ce, dma_len, frag->size);
1305         }
1306         ce->skb = skb;
1307         wmb();
1308         e->flags = flags;
1309 }
1310
1311 /*
1312  * Clean up completed Tx buffers.
1313  */
1314 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1315 {
1316         unsigned int reclaim = q->processed - q->cleaned;
1317
1318         if (reclaim) {
1319                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1320                          q->processed, q->cleaned);
1321                 free_cmdQ_buffers(sge, q, reclaim);
1322                 q->cleaned += reclaim;
1323         }
1324 }
1325
1326 /*
1327  * Called from tasklet. Checks the scheduler for any
1328  * pending skbs that can be sent.
1329  */
1330 static void restart_sched(unsigned long arg)
1331 {
1332         struct sge *sge = (struct sge *) arg;
1333         struct adapter *adapter = sge->adapter;
1334         struct cmdQ *q = &sge->cmdQ[0];
1335         struct sk_buff *skb;
1336         unsigned int credits, queued_skb = 0;
1337
1338         spin_lock(&q->lock);
1339         reclaim_completed_tx(sge, q);
1340
1341         credits = q->size - q->in_use;
1342         pr_debug("restart_sched credits=%d\n", credits);
1343         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1344                 unsigned int genbit, pidx, count;
1345                 count = 1 + skb_shinfo(skb)->nr_frags;
1346                 count += compute_large_page_tx_descs(skb);
1347                 q->in_use += count;
1348                 genbit = q->genbit;
1349                 pidx = q->pidx;
1350                 q->pidx += count;
1351                 if (q->pidx >= q->size) {
1352                         q->pidx -= q->size;
1353                         q->genbit ^= 1;
1354                 }
1355                 write_tx_descs(adapter, skb, pidx, genbit, q);
1356                 credits = q->size - q->in_use;
1357                 queued_skb = 1;
1358         }
1359
1360         if (queued_skb) {
1361                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1362                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1363                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1364                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1365                 }
1366         }
1367         spin_unlock(&q->lock);
1368 }
1369
1370 /**
1371  *      sge_rx - process an ingress ethernet packet
1372  *      @sge: the sge structure
1373  *      @fl: the free list that contains the packet buffer
1374  *      @len: the packet length
1375  *
1376  *      Process an ingress ethernet pakcet and deliver it to the stack.
1377  */
1378 static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1379 {
1380         struct sk_buff *skb;
1381         struct cpl_rx_pkt *p;
1382         struct adapter *adapter = sge->adapter;
1383         struct sge_port_stats *st;
1384
1385         skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
1386                          sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
1387                          SGE_RX_DROP_THRES);
1388         if (unlikely(!skb)) {
1389                 sge->stats.rx_drops++;
1390                 return 0;
1391         }
1392
1393         p = (struct cpl_rx_pkt *)skb->data;
1394         skb_pull(skb, sizeof(*p));
1395         if (p->iff >= adapter->params.nports) {
1396                 kfree_skb(skb);
1397                 return 0;
1398         }
1399
1400         skb->dev = adapter->port[p->iff].dev;
1401         skb->dev->last_rx = jiffies;
1402         st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1403         st->rx_packets++;
1404
1405         skb->protocol = eth_type_trans(skb, skb->dev);
1406         if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1407             skb->protocol == htons(ETH_P_IP) &&
1408             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1409                 ++st->rx_cso_good;
1410                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1411         } else
1412                 skb->ip_summed = CHECKSUM_NONE;
1413
1414         if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1415                 st->vlan_xtract++;
1416 #ifdef CONFIG_CHELSIO_T1_NAPI
1417                         vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1418                                                  ntohs(p->vlan));
1419 #else
1420                         vlan_hwaccel_rx(skb, adapter->vlan_grp,
1421                                         ntohs(p->vlan));
1422 #endif
1423         } else {
1424 #ifdef CONFIG_CHELSIO_T1_NAPI
1425                 netif_receive_skb(skb);
1426 #else
1427                 netif_rx(skb);
1428 #endif
1429         }
1430         return 0;
1431 }
1432
1433 /*
1434  * Returns true if a command queue has enough available descriptors that
1435  * we can resume Tx operation after temporarily disabling its packet queue.
1436  */
1437 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1438 {
1439         unsigned int r = q->processed - q->cleaned;
1440
1441         return q->in_use - r < (q->size >> 1);
1442 }
1443
1444 /*
1445  * Called when sufficient space has become available in the SGE command queues
1446  * after the Tx packet schedulers have been suspended to restart the Tx path.
1447  */
1448 static void restart_tx_queues(struct sge *sge)
1449 {
1450         struct adapter *adap = sge->adapter;
1451
1452         if (enough_free_Tx_descs(&sge->cmdQ[0])) {
1453                 int i;
1454
1455                 for_each_port(adap, i) {
1456                         struct net_device *nd = adap->port[i].dev;
1457
1458                         if (test_and_clear_bit(nd->if_port,
1459                                                &sge->stopped_tx_queues) &&
1460                             netif_running(nd)) {
1461                                 sge->stats.cmdQ_restarted[2]++;
1462                                 netif_wake_queue(nd);
1463                         }
1464                 }
1465         }
1466 }
1467
1468 /*
1469  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 
1470  * information.
1471  */
1472 static unsigned int update_tx_info(struct adapter *adapter, 
1473                                           unsigned int flags, 
1474                                           unsigned int pr0)
1475 {
1476         struct sge *sge = adapter->sge;
1477         struct cmdQ *cmdq = &sge->cmdQ[0];
1478
1479         cmdq->processed += pr0;
1480         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1481                 freelQs_empty(sge);
1482                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1483         }
1484         if (flags & F_CMDQ0_ENABLE) {
1485                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1486
1487                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1488                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1489                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1490                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1491                 }
1492                 if (sge->tx_sched)
1493                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1494
1495                 flags &= ~F_CMDQ0_ENABLE;
1496         }
1497
1498         if (unlikely(sge->stopped_tx_queues != 0))
1499                 restart_tx_queues(sge);
1500
1501         return flags;
1502 }
1503
1504 /*
1505  * Process SGE responses, up to the supplied budget.  Returns the number of
1506  * responses processed.  A negative budget is effectively unlimited.
1507  */
1508 static int process_responses(struct adapter *adapter, int budget)
1509 {
1510         struct sge *sge = adapter->sge;
1511         struct respQ *q = &sge->respQ;
1512         struct respQ_e *e = &q->entries[q->cidx];
1513         int budget_left = budget;
1514         unsigned int flags = 0;
1515         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1516         
1517
1518         while (likely(budget_left && e->GenerationBit == q->genbit)) {
1519                 flags |= e->Qsleeping;
1520                 
1521                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1522                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1523                 
1524                 /* We batch updates to the TX side to avoid cacheline
1525                  * ping-pong of TX state information on MP where the sender
1526                  * might run on a different CPU than this function...
1527                  */
1528                 if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
1529                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1530                         cmdq_processed[0] = 0;
1531                 }
1532                 if (unlikely(cmdq_processed[1] > 16)) {
1533                         sge->cmdQ[1].processed += cmdq_processed[1];
1534                         cmdq_processed[1] = 0;
1535                 }
1536                 if (likely(e->DataValid)) {
1537                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1538
1539                         BUG_ON(!e->Sop || !e->Eop);
1540                         if (unlikely(e->Offload))
1541                                 unexpected_offload(adapter, fl);
1542                         else
1543                                 sge_rx(sge, fl, e->BufferLength);
1544
1545                         /*
1546                          * Note: this depends on each packet consuming a
1547                          * single free-list buffer; cf. the BUG above.
1548                          */
1549                         if (++fl->cidx == fl->size)
1550                                 fl->cidx = 0;
1551                         if (unlikely(--fl->credits <
1552                                      fl->size - SGE_FREEL_REFILL_THRESH))
1553                                 refill_free_list(sge, fl);
1554                 } else
1555                         sge->stats.pure_rsps++;
1556
1557                 e++;
1558                 if (unlikely(++q->cidx == q->size)) {
1559                         q->cidx = 0;
1560                         q->genbit ^= 1;
1561                         e = q->entries;
1562                 }
1563                 prefetch(e);
1564
1565                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1566                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1567                         q->credits = 0;
1568                 }
1569                 --budget_left;
1570         }
1571
1572         flags = update_tx_info(adapter, flags, cmdq_processed[0]); 
1573         sge->cmdQ[1].processed += cmdq_processed[1];
1574
1575         budget -= budget_left;
1576         return budget;
1577 }
1578
1579 #ifdef CONFIG_CHELSIO_T1_NAPI
1580 /*
1581  * A simpler version of process_responses() that handles only pure (i.e.,
1582  * non data-carrying) responses.  Such respones are too light-weight to justify
1583  * calling a softirq when using NAPI, so we handle them specially in hard
1584  * interrupt context.  The function is called with a pointer to a response,
1585  * which the caller must ensure is a valid pure response.  Returns 1 if it
1586  * encounters a valid data-carrying response, 0 otherwise.
1587  */
1588 static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
1589 {
1590         struct sge *sge = adapter->sge;
1591         struct respQ *q = &sge->respQ;
1592         unsigned int flags = 0;
1593         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1594
1595         do {
1596                 flags |= e->Qsleeping;
1597
1598                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1599                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1600                 
1601                 e++;
1602                 if (unlikely(++q->cidx == q->size)) {
1603                         q->cidx = 0;
1604                         q->genbit ^= 1;
1605                         e = q->entries;
1606                 }
1607                 prefetch(e);
1608
1609                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1610                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1611                         q->credits = 0;
1612                 }
1613                 sge->stats.pure_rsps++;
1614         } while (e->GenerationBit == q->genbit && !e->DataValid);
1615
1616         flags = update_tx_info(adapter, flags, cmdq_processed[0]); 
1617         sge->cmdQ[1].processed += cmdq_processed[1];
1618
1619         return e->GenerationBit == q->genbit;
1620 }
1621
1622 /*
1623  * Handler for new data events when using NAPI.  This does not need any locking
1624  * or protection from interrupts as data interrupts are off at this point and
1625  * other adapter interrupts do not interfere.
1626  */
1627 int t1_poll(struct net_device *dev, int *budget)
1628 {
1629         struct adapter *adapter = dev->priv;
1630         int effective_budget = min(*budget, dev->quota);
1631         int work_done = process_responses(adapter, effective_budget);
1632
1633         *budget -= work_done;
1634         dev->quota -= work_done;
1635
1636         if (work_done >= effective_budget)
1637                 return 1;
1638
1639         spin_lock_irq(&adapter->async_lock);
1640         __netif_rx_complete(dev);
1641         writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1642         writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1643                adapter->regs + A_PL_ENABLE);
1644         spin_unlock_irq(&adapter->async_lock);
1645
1646         return 0;
1647 }
1648
1649 /*
1650  * NAPI version of the main interrupt handler.
1651  */
1652 irqreturn_t t1_interrupt(int irq, void *data)
1653 {
1654         struct adapter *adapter = data;
1655         struct net_device *dev = adapter->sge->netdev;
1656         struct sge *sge = adapter->sge;
1657         u32 cause;
1658         int handled = 0;
1659
1660         cause = readl(adapter->regs + A_PL_CAUSE);
1661         if (cause == 0 || cause == ~0)
1662                 return IRQ_NONE;
1663
1664         spin_lock(&adapter->async_lock);
1665         if (cause & F_PL_INTR_SGE_DATA) {
1666                 struct respQ *q = &adapter->sge->respQ;
1667                 struct respQ_e *e = &q->entries[q->cidx];
1668
1669                 handled = 1;
1670                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1671
1672                 if (e->GenerationBit == q->genbit &&
1673                     __netif_rx_schedule_prep(dev)) {
1674                         if (e->DataValid || process_pure_responses(adapter, e)) {
1675                                 /* mask off data IRQ */
1676                                 writel(adapter->slow_intr_mask,
1677                                        adapter->regs + A_PL_ENABLE);
1678                                 __netif_rx_schedule(sge->netdev);
1679                                 goto unlock;
1680                         }
1681                         /* no data, no NAPI needed */
1682                         netif_poll_enable(dev);
1683
1684                 }
1685                 writel(q->cidx, adapter->regs + A_SG_SLEEPING);
1686         } else
1687                 handled = t1_slow_intr_handler(adapter);
1688
1689         if (!handled)
1690                 sge->stats.unhandled_irqs++;
1691 unlock:
1692         spin_unlock(&adapter->async_lock);
1693         return IRQ_RETVAL(handled != 0);
1694 }
1695
1696 #else
1697 /*
1698  * Main interrupt handler, optimized assuming that we took a 'DATA'
1699  * interrupt.
1700  *
1701  * 1. Clear the interrupt
1702  * 2. Loop while we find valid descriptors and process them; accumulate
1703  *      information that can be processed after the loop
1704  * 3. Tell the SGE at which index we stopped processing descriptors
1705  * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1706  *      outstanding TX buffers waiting, replenish RX buffers, potentially
1707  *      reenable upper layers if they were turned off due to lack of TX
1708  *      resources which are available again.
1709  * 5. If we took an interrupt, but no valid respQ descriptors was found we
1710  *      let the slow_intr_handler run and do error handling.
1711  */
1712 irqreturn_t t1_interrupt(int irq, void *cookie)
1713 {
1714         int work_done;
1715         struct respQ_e *e;
1716         struct adapter *adapter = cookie;
1717         struct respQ *Q = &adapter->sge->respQ;
1718
1719         spin_lock(&adapter->async_lock);
1720         e = &Q->entries[Q->cidx];
1721         prefetch(e);
1722
1723         writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1724
1725         if (likely(e->GenerationBit == Q->genbit))
1726                 work_done = process_responses(adapter, -1);
1727         else
1728                 work_done = t1_slow_intr_handler(adapter);
1729
1730         /*
1731          * The unconditional clearing of the PL_CAUSE above may have raced
1732          * with DMA completion and the corresponding generation of a response
1733          * to cause us to miss the resulting data interrupt.  The next write
1734          * is also unconditional to recover the missed interrupt and render
1735          * this race harmless.
1736          */
1737         writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1738
1739         if (!work_done)
1740                 adapter->sge->stats.unhandled_irqs++;
1741         spin_unlock(&adapter->async_lock);
1742         return IRQ_RETVAL(work_done != 0);
1743 }
1744 #endif
1745
1746 /*
1747  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1748  *
1749  * The code figures out how many entries the sk_buff will require in the
1750  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1751  * has complete. Then, it doesn't access the global structure anymore, but
1752  * uses the corresponding fields on the stack. In conjuction with a spinlock
1753  * around that code, we can make the function reentrant without holding the
1754  * lock when we actually enqueue (which might be expensive, especially on
1755  * architectures with IO MMUs).
1756  *
1757  * This runs with softirqs disabled.
1758  */
1759 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1760                      unsigned int qid, struct net_device *dev)
1761 {
1762         struct sge *sge = adapter->sge;
1763         struct cmdQ *q = &sge->cmdQ[qid];
1764         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1765
1766         if (!spin_trylock(&q->lock))
1767                 return NETDEV_TX_LOCKED;
1768
1769         reclaim_completed_tx(sge, q);
1770
1771         pidx = q->pidx;
1772         credits = q->size - q->in_use;
1773         count = 1 + skb_shinfo(skb)->nr_frags;
1774         count += compute_large_page_tx_descs(skb);
1775
1776         /* Ethernet packet */
1777         if (unlikely(credits < count)) {
1778                 if (!netif_queue_stopped(dev)) {
1779                         netif_stop_queue(dev);
1780                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1781                         sge->stats.cmdQ_full[2]++;
1782                         CH_ERR("%s: Tx ring full while queue awake!\n",
1783                                adapter->name);
1784                 }
1785                 spin_unlock(&q->lock);
1786                 return NETDEV_TX_BUSY;
1787         }
1788
1789         if (unlikely(credits - count < q->stop_thres)) {
1790                 netif_stop_queue(dev);
1791                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1792                 sge->stats.cmdQ_full[2]++;
1793         }
1794
1795         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1796          * through the scheduler.
1797          */
1798         if (sge->tx_sched && !qid && skb->dev) {
1799         use_sched:
1800                 use_sched_skb = 1;
1801                 /* Note that the scheduler might return a different skb than
1802                  * the one passed in.
1803                  */
1804                 skb = sched_skb(sge, skb, credits);
1805                 if (!skb) {
1806                         spin_unlock(&q->lock);
1807                         return NETDEV_TX_OK;
1808                 }
1809                 pidx = q->pidx;
1810                 count = 1 + skb_shinfo(skb)->nr_frags;
1811                 count += compute_large_page_tx_descs(skb);
1812         }
1813
1814         q->in_use += count;
1815         genbit = q->genbit;
1816         pidx = q->pidx;
1817         q->pidx += count;
1818         if (q->pidx >= q->size) {
1819                 q->pidx -= q->size;
1820                 q->genbit ^= 1;
1821         }
1822         spin_unlock(&q->lock);
1823
1824         write_tx_descs(adapter, skb, pidx, genbit, q);
1825
1826         /*
1827          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1828          * the doorbell if the Q is asleep. There is a natural race, where
1829          * the hardware is going to sleep just after we checked, however,
1830          * then the interrupt handler will detect the outstanding TX packet
1831          * and ring the doorbell for us.
1832          */
1833         if (qid)
1834                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1835         else {
1836                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1837                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1838                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1839                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1840                 }
1841         }
1842
1843         if (use_sched_skb) {
1844                 if (spin_trylock(&q->lock)) {
1845                         credits = q->size - q->in_use;
1846                         skb = NULL;
1847                         goto use_sched;
1848                 }
1849         }
1850         return NETDEV_TX_OK;
1851 }
1852
1853 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1854
1855 /*
1856  *      eth_hdr_len - return the length of an Ethernet header
1857  *      @data: pointer to the start of the Ethernet header
1858  *
1859  *      Returns the length of an Ethernet header, including optional VLAN tag.
1860  */
1861 static inline int eth_hdr_len(const void *data)
1862 {
1863         const struct ethhdr *e = data;
1864
1865         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1866 }
1867
1868 /*
1869  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1870  */
1871 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1872 {
1873         struct adapter *adapter = dev->priv;
1874         struct sge *sge = adapter->sge;
1875         struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
1876         struct cpl_tx_pkt *cpl;
1877         struct sk_buff *orig_skb = skb;
1878         int ret;
1879
1880         if (skb->protocol == htons(ETH_P_CPL5))
1881                 goto send;
1882
1883         if (skb_shinfo(skb)->gso_size) {
1884                 int eth_type;
1885                 struct cpl_tx_pkt_lso *hdr;
1886
1887                 ++st->tx_tso;
1888
1889                 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
1890                         CPL_ETH_II : CPL_ETH_II_VLAN;
1891
1892                 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1893                 hdr->opcode = CPL_TX_PKT_LSO;
1894                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1895                 hdr->ip_hdr_words = skb->nh.iph->ihl;
1896                 hdr->tcp_hdr_words = skb->h.th->doff;
1897                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1898                                                           skb_shinfo(skb)->gso_size));
1899                 hdr->len = htonl(skb->len - sizeof(*hdr));
1900                 cpl = (struct cpl_tx_pkt *)hdr;
1901         } else {
1902                 /*
1903                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1904                  * early.  Also, we may get oversized packets because some
1905                  * parts of the kernel don't handle our unusual hard_header_len
1906                  * right, drop those too.
1907                  */
1908                 if (unlikely(skb->len < ETH_HLEN ||
1909                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1910                         pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1911                                  skb->len, eth_hdr_len(skb->data), dev->mtu);
1912                         dev_kfree_skb_any(skb);
1913                         return NETDEV_TX_OK;
1914                 }
1915
1916                 /*
1917                  * We are using a non-standard hard_header_len and some kernel
1918                  * components, such as pktgen, do not handle it right.
1919                  * Complain when this happens but try to fix things up.
1920                  */
1921                 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1922                         pr_debug("%s: headroom %d header_len %d\n", dev->name,
1923                                  skb_headroom(skb), dev->hard_header_len);
1924
1925                         if (net_ratelimit())
1926                                 printk(KERN_ERR "%s: inadequate headroom in "
1927                                        "Tx packet\n", dev->name);
1928                         skb = skb_realloc_headroom(skb, sizeof(*cpl));
1929                         dev_kfree_skb_any(orig_skb);
1930                         if (!skb)
1931                                 return NETDEV_TX_OK;
1932                 }
1933
1934                 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1935                     skb->ip_summed == CHECKSUM_PARTIAL &&
1936                     skb->nh.iph->protocol == IPPROTO_UDP) {
1937                         if (unlikely(skb_checksum_help(skb))) {
1938                                 pr_debug("%s: unable to do udp checksum\n", dev->name);
1939                                 dev_kfree_skb_any(skb);
1940                                 return NETDEV_TX_OK;
1941                         }
1942                 }
1943
1944                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1945                  * it to flush out stuck espi packets...
1946                  */
1947                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1948                         if (skb->protocol == htons(ETH_P_ARP) &&
1949                             skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
1950                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1951                                 /* We want to re-use this skb later. We
1952                                  * simply bump the reference count and it
1953                                  * will not be freed...
1954                                  */
1955                                 skb = skb_get(skb);
1956                         }
1957                 }
1958
1959                 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1960                 cpl->opcode = CPL_TX_PKT;
1961                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1962                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1963                 /* the length field isn't used so don't bother setting it */
1964
1965                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1966         }
1967         cpl->iff = dev->if_port;
1968
1969 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1970         if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1971                 cpl->vlan_valid = 1;
1972                 cpl->vlan = htons(vlan_tx_tag_get(skb));
1973                 st->vlan_insert++;
1974         } else
1975 #endif
1976                 cpl->vlan_valid = 0;
1977
1978 send:
1979         st->tx_packets++;
1980         dev->trans_start = jiffies;
1981         ret = t1_sge_tx(skb, adapter, 0, dev);
1982
1983         /* If transmit busy, and we reallocated skb's due to headroom limit,
1984          * then silently discard to avoid leak.
1985          */
1986         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1987                 dev_kfree_skb_any(skb);
1988                 ret = NETDEV_TX_OK;
1989         }
1990         return ret;
1991 }
1992
1993 /*
1994  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1995  */
1996 static void sge_tx_reclaim_cb(unsigned long data)
1997 {
1998         int i;
1999         struct sge *sge = (struct sge *)data;
2000
2001         for (i = 0; i < SGE_CMDQ_N; ++i) {
2002                 struct cmdQ *q = &sge->cmdQ[i];
2003
2004                 if (!spin_trylock(&q->lock))
2005                         continue;
2006
2007                 reclaim_completed_tx(sge, q);
2008                 if (i == 0 && q->in_use) {    /* flush pending credits */
2009                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
2010                 }
2011                 spin_unlock(&q->lock);
2012         }
2013         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2014 }
2015
2016 /*
2017  * Propagate changes of the SGE coalescing parameters to the HW.
2018  */
2019 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
2020 {
2021         sge->fixed_intrtimer = p->rx_coalesce_usecs *
2022                 core_ticks_per_usec(sge->adapter);
2023         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
2024         return 0;
2025 }
2026
2027 /*
2028  * Allocates both RX and TX resources and configures the SGE. However,
2029  * the hardware is not enabled yet.
2030  */
2031 int t1_sge_configure(struct sge *sge, struct sge_params *p)
2032 {
2033         if (alloc_rx_resources(sge, p))
2034                 return -ENOMEM;
2035         if (alloc_tx_resources(sge, p)) {
2036                 free_rx_resources(sge);
2037                 return -ENOMEM;
2038         }
2039         configure_sge(sge, p);
2040
2041         /*
2042          * Now that we have sized the free lists calculate the payload
2043          * capacity of the large buffers.  Other parts of the driver use
2044          * this to set the max offload coalescing size so that RX packets
2045          * do not overflow our large buffers.
2046          */
2047         p->large_buf_capacity = jumbo_payload_capacity(sge);
2048         return 0;
2049 }
2050
2051 /*
2052  * Disables the DMA engine.
2053  */
2054 void t1_sge_stop(struct sge *sge)
2055 {
2056         int i;
2057         writel(0, sge->adapter->regs + A_SG_CONTROL);
2058         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2059
2060         if (is_T2(sge->adapter))
2061                 del_timer_sync(&sge->espibug_timer);
2062
2063         del_timer_sync(&sge->tx_reclaim_timer);
2064         if (sge->tx_sched)
2065                 tx_sched_stop(sge);
2066
2067         for (i = 0; i < MAX_NPORTS; i++)
2068                 if (sge->espibug_skb[i])
2069                         kfree_skb(sge->espibug_skb[i]);
2070 }
2071
2072 /*
2073  * Enables the DMA engine.
2074  */
2075 void t1_sge_start(struct sge *sge)
2076 {
2077         refill_free_list(sge, &sge->freelQ[0]);
2078         refill_free_list(sge, &sge->freelQ[1]);
2079
2080         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2081         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2082         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2083
2084         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2085
2086         if (is_T2(sge->adapter))
2087                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2088 }
2089
2090 /*
2091  * Callback for the T2 ESPI 'stuck packet feature' workaorund
2092  */
2093 static void espibug_workaround_t204(unsigned long data)
2094 {
2095         struct adapter *adapter = (struct adapter *)data;
2096         struct sge *sge = adapter->sge;
2097         unsigned int nports = adapter->params.nports;
2098         u32 seop[MAX_NPORTS];
2099
2100         if (adapter->open_device_map & PORT_MASK) {
2101                 int i;
2102                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0) {
2103                         return;
2104                 }
2105                 for (i = 0; i < nports; i++) {
2106                         struct sk_buff *skb = sge->espibug_skb[i];
2107                         if ( (netif_running(adapter->port[i].dev)) &&
2108                              !(netif_queue_stopped(adapter->port[i].dev)) &&
2109                              (seop[i] && ((seop[i] & 0xfff) == 0)) &&
2110                              skb ) {
2111                                 if (!skb->cb[0]) {
2112                                         u8 ch_mac_addr[ETH_ALEN] =
2113                                         {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2114                                         memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2115                                         ch_mac_addr, ETH_ALEN);
2116                                         memcpy(skb->data + skb->len - 10,
2117                                                 ch_mac_addr, ETH_ALEN);
2118                                         skb->cb[0] = 0xff;
2119                                 }
2120
2121                                 /* bump the reference count to avoid freeing of
2122                                  * the skb once the DMA has completed.
2123                                  */
2124                                 skb = skb_get(skb);
2125                                 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2126                         }
2127                 }
2128         }
2129         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2130 }
2131
2132 static void espibug_workaround(unsigned long data)
2133 {
2134         struct adapter *adapter = (struct adapter *)data;
2135         struct sge *sge = adapter->sge;
2136
2137         if (netif_running(adapter->port[0].dev)) {
2138                 struct sk_buff *skb = sge->espibug_skb[0];
2139                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2140
2141                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2142                         if (!skb->cb[0]) {
2143                                 u8 ch_mac_addr[ETH_ALEN] =
2144                                     {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2145                                 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2146                                        ch_mac_addr, ETH_ALEN);
2147                                 memcpy(skb->data + skb->len - 10, ch_mac_addr,
2148                                        ETH_ALEN);
2149                                 skb->cb[0] = 0xff;
2150                         }
2151
2152                         /* bump the reference count to avoid freeing of the
2153                          * skb once the DMA has completed.
2154                          */
2155                         skb = skb_get(skb);
2156                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2157                 }
2158         }
2159         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2160 }
2161
2162 /*
2163  * Creates a t1_sge structure and returns suggested resource parameters.
2164  */
2165 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2166                                      struct sge_params *p)
2167 {
2168         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2169         int i;
2170
2171         if (!sge)
2172                 return NULL;
2173
2174         sge->adapter = adapter;
2175         sge->netdev = adapter->port[0].dev;
2176         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2177         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2178
2179         for_each_port(adapter, i) {
2180                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2181                 if (!sge->port_stats[i])
2182                         goto nomem_port;
2183         }
2184
2185         init_timer(&sge->tx_reclaim_timer);
2186         sge->tx_reclaim_timer.data = (unsigned long)sge;
2187         sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2188
2189         if (is_T2(sge->adapter)) {
2190                 init_timer(&sge->espibug_timer);
2191
2192                 if (adapter->params.nports > 1) {
2193                         tx_sched_init(sge);
2194                         sge->espibug_timer.function = espibug_workaround_t204;
2195                 } else {
2196                         sge->espibug_timer.function = espibug_workaround;
2197                 }
2198                 sge->espibug_timer.data = (unsigned long)sge->adapter;
2199
2200                 sge->espibug_timeout = 1;
2201                 /* for T204, every 10ms */
2202                 if (adapter->params.nports > 1)
2203                         sge->espibug_timeout = HZ/100;
2204         }
2205          
2206
2207         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2208         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2209         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2210         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2211         if (sge->tx_sched) {
2212                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2213                         p->rx_coalesce_usecs = 15;
2214                 else
2215                         p->rx_coalesce_usecs = 50;
2216         } else
2217                 p->rx_coalesce_usecs = 50;
2218
2219         p->coalesce_enable = 0;
2220         p->sample_interval_usecs = 0;
2221
2222         return sge;
2223 nomem_port:
2224         while (i >= 0) {
2225                 free_percpu(sge->port_stats[i]);
2226                 --i;
2227         }
2228         kfree(sge);
2229         return NULL;
2230
2231 }