vserver 1.9.3
[linux-2.6.git] / drivers / net / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI EISA and PCI controller families.  Supported adapters include:
14  *
15  *              DEC FDDIcontroller/EISA (DEFEA)
16  *              DEC FDDIcontroller/PCI  (DEFPA)
17  *
18  * The original author:
19  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
20  *
21  * Maintainers:
22  *   macro      Maciej W. Rozycki <macro@ds2.pg.gda.pl>
23  *
24  * Credits:
25  *   I'd like to thank Patricia Cross for helping me get started with
26  *   Linux, David Davies for a lot of help upgrading and configuring
27  *   my development system and for answering many OS and driver
28  *   development questions, and Alan Cox for recommendations and
29  *   integration help on getting FDDI support into Linux.  LVS
30  *
31  * Driver Architecture:
32  *   The driver architecture is largely based on previous driver work
33  *   for other operating systems.  The upper edge interface and
34  *   functions were largely taken from existing Linux device drivers
35  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
36  *   driver.
37  *
38  *   Adapter Probe -
39  *              The driver scans for supported EISA adapters by reading the
40  *              SLOT ID register for each EISA slot and making a match
41  *              against the expected value.
42  *
43  *   Bus-Specific Initialization -
44  *              This driver currently supports both EISA and PCI controller
45  *              families.  While the custom DMA chip and FDDI logic is similar
46  *              or identical, the bus logic is very different.  After
47  *              initialization, the     only bus-specific differences is in how the
48  *              driver enables and disables interrupts.  Other than that, the
49  *              run-time critical code behaves the same on both families.
50  *              It's important to note that both adapter families are configured
51  *              to I/O map, rather than memory map, the adapter registers.
52  *
53  *   Driver Open/Close -
54  *              In the driver open routine, the driver ISR (interrupt service
55  *              routine) is registered and the adapter is brought to an
56  *              operational state.  In the driver close routine, the opposite
57  *              occurs; the driver ISR is deregistered and the adapter is
58  *              brought to a safe, but closed state.  Users may use consecutive
59  *              commands to bring the adapter up and down as in the following
60  *              example:
61  *                                      ifconfig fddi0 up
62  *                                      ifconfig fddi0 down
63  *                                      ifconfig fddi0 up
64  *
65  *   Driver Shutdown -
66  *              Apparently, there is no shutdown or halt routine support under
67  *              Linux.  This routine would be called during "reboot" or
68  *              "shutdown" to allow the driver to place the adapter in a safe
69  *              state before a warm reboot occurs.  To be really safe, the user
70  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
71  *              to ensure that the adapter DMA engine is taken off-line.  However,
72  *              the current driver code anticipates this problem and always issues
73  *              a soft reset of the adapter     at the beginning of driver initialization.
74  *              A future driver enhancement in this area may occur in 2.1.X where
75  *              Alan indicated that a shutdown handler may be implemented.
76  *
77  *   Interrupt Service Routine -
78  *              The driver supports shared interrupts, so the ISR is registered for
79  *              each board with the appropriate flag and the pointer to that board's
80  *              device structure.  This provides the context during interrupt
81  *              processing to support shared interrupts and multiple boards.
82  *
83  *              Interrupt enabling/disabling can occur at many levels.  At the host
84  *              end, you can disable system interrupts, or disable interrupts at the
85  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
86  *              have a bus-logic chip interrupt enable/disable as well as a DMA
87  *              controller interrupt enable/disable.
88  *
89  *              The driver currently enables and disables adapter interrupts at the
90  *              bus-logic chip and assumes that Linux will take care of clearing or
91  *              acknowledging any host-based interrupt chips.
92  *
93  *   Control Functions -
94  *              Control functions are those used to support functions such as adding
95  *              or deleting multicast addresses, enabling or disabling packet
96  *              reception filters, or other custom/proprietary commands.  Presently,
97  *              the driver supports the "get statistics", "set multicast list", and
98  *              "set mac address" functions defined by Linux.  A list of possible
99  *              enhancements include:
100  *
101  *                              - Custom ioctl interface for executing port interface commands
102  *                              - Custom ioctl interface for adding unicast addresses to
103  *                                adapter CAM (to support bridge functions).
104  *                              - Custom ioctl interface for supporting firmware upgrades.
105  *
106  *   Hardware (port interface) Support Routines -
107  *              The driver function names that start with "dfx_hw_" represent
108  *              low-level port interface routines that are called frequently.  They
109  *              include issuing a DMA or port control command to the adapter,
110  *              resetting the adapter, or reading the adapter state.  Since the
111  *              driver initialization and run-time code must make calls into the
112  *              port interface, these routines were written to be as generic and
113  *              usable as possible.
114  *
115  *   Receive Path -
116  *              The adapter DMA engine supports a 256 entry receive descriptor block
117  *              of which up to 255 entries can be used at any given time.  The
118  *              architecture is a standard producer, consumer, completion model in
119  *              which the driver "produces" receive buffers to the adapter, the
120  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
121  *              and the driver "completes" the receive buffers by servicing the
122  *              incoming packet, then "produces" a new buffer and starts the cycle
123  *              again.  Receive buffers can be fragmented in up to 16 fragments
124  *              (descriptor     entries).  For simplicity, this driver posts
125  *              single-fragment receive buffers of 4608 bytes, then allocates a
126  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
127  *              utilization, a better approach would be to pass up the receive
128  *              buffer (no extra copy) then allocate and post a replacement buffer.
129  *              This is a performance enhancement that should be looked into at
130  *              some point.
131  *
132  *   Transmit Path -
133  *              Like the receive path, the adapter DMA engine supports a 256 entry
134  *              transmit descriptor block of which up to 255 entries can be used at
135  *              any     given time.  Transmit buffers can be fragmented in up to 255
136  *              fragments (descriptor entries).  This driver always posts one
137  *              fragment per transmit packet request.
138  *
139  *              The fragment contains the entire packet from FC to end of data.
140  *              Before posting the buffer to the adapter, the driver sets a three-byte
141  *              packet request header (PRH) which is required by the Motorola MAC chip
142  *              used on the adapters.  The PRH tells the MAC the type of token to
143  *              receive/send, whether or not to generate and append the CRC, whether
144  *              synchronous or asynchronous framing is used, etc.  Since the PRH
145  *              definition is not necessarily consistent across all FDDI chipsets,
146  *              the driver, rather than the common FDDI packet handler routines,
147  *              sets these bytes.
148  *
149  *              To reduce the amount of descriptor fetches needed per transmit request,
150  *              the driver takes advantage of the fact that there are at least three
151  *              bytes available before the skb->data field on the outgoing transmit
152  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
153  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
154  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
155  *              bytes which we'll use to store the PRH.
156  *
157  *              There's a subtle advantage to adding these pad bytes to the
158  *              hard_header_len, it ensures that the data portion of the packet for
159  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
160  *              implementations may not need the extra padding and can start copying
161  *              or DMAing directly from the FC byte which starts at skb->data.  Should
162  *              another driver implementation need ADDITIONAL padding, the net_init.c
163  *              module should be updated and dev->hard_header_len should be increased.
164  *              NOTE: To maintain the alignment on the data portion of the packet,
165  *              dev->hard_header_len should always be evenly divisible by 4 and at
166  *              least 24 bytes in size.
167  *
168  * Modification History:
169  *              Date            Name    Description
170  *              16-Aug-96       LVS             Created.
171  *              20-Aug-96       LVS             Updated dfx_probe so that version information
172  *                                                      string is only displayed if 1 or more cards are
173  *                                                      found.  Changed dfx_rcv_queue_process to copy
174  *                                                      3 NULL bytes before FC to ensure that data is
175  *                                                      longword aligned in receive buffer.
176  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
177  *                                                      LLC group promiscuous mode if multicast list
178  *                                                      is too large.  LLC individual/group promiscuous
179  *                                                      mode is now disabled if IFF_PROMISC flag not set.
180  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
181  *                                                      on Alan Cox recommendation.  Added node address
182  *                                                      override support.
183  *              12-Sep-96       LVS             Reset current address to factory address during
184  *                                                      device open.  Updated transmit path to post a
185  *                                                      single fragment which includes PRH->end of data.
186  *              Mar 2000        AC              Did various cleanups for 2.3.x
187  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
188  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
189  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
190  *              Feb 2001                        Skb allocation fixes
191  *              Feb 2001        davej           PCI enable cleanups.
192  *              04 Aug 2003     macro           Converted to the DMA API.
193  */
194
195 /* Include files */
196
197 #include <linux/module.h>
198 #include <linux/kernel.h>
199 #include <linux/string.h>
200 #include <linux/errno.h>
201 #include <linux/ioport.h>
202 #include <linux/slab.h>
203 #include <linux/interrupt.h>
204 #include <linux/pci.h>
205 #include <linux/delay.h>
206 #include <linux/init.h>
207 #include <linux/netdevice.h>
208 #include <linux/fddidevice.h>
209 #include <linux/skbuff.h>
210
211 #include <asm/byteorder.h>
212 #include <asm/bitops.h>
213 #include <asm/io.h>
214
215 #include "defxx.h"
216
217 /* Version information string - should be updated prior to each new release!!! */
218
219 static char version[] __devinitdata =
220         "defxx.c:v1.06 2003/08/04  Lawrence V. Stefani and others\n";
221
222 #define DRV_NAME "defxx"
223
224 #define DYNAMIC_BUFFERS 1
225
226 #define SKBUFF_RX_COPYBREAK 200
227 /*
228  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
229  * alignment for compatibility with old EISA boards.
230  */
231 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
232
233 /* Define module-wide (static) routines */
234
235 static void             dfx_bus_init(struct net_device *dev);
236 static void             dfx_bus_config_check(DFX_board_t *bp);
237
238 static int              dfx_driver_init(struct net_device *dev);
239 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
240
241 static int              dfx_open(struct net_device *dev);
242 static int              dfx_close(struct net_device *dev);
243
244 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
245 static void             dfx_int_type_0_process(DFX_board_t *bp);
246 static void             dfx_int_common(struct net_device *dev);
247 static void             dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
248
249 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
250 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
251 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
252 static int              dfx_ctl_update_cam(DFX_board_t *bp);
253 static int              dfx_ctl_update_filters(DFX_board_t *bp);
254
255 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
256 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
257 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
258 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
259 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
260
261 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
262 static void             dfx_rcv_queue_process(DFX_board_t *bp);
263 static void             dfx_rcv_flush(DFX_board_t *bp);
264
265 static int              dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
266 static int              dfx_xmt_done(DFX_board_t *bp);
267 static void             dfx_xmt_flush(DFX_board_t *bp);
268
269 /* Define module-wide (static) variables */
270
271 static struct net_device *root_dfx_eisa_dev;
272
273 \f
274 /*
275  * =======================
276  * = dfx_port_write_byte =
277  * = dfx_port_read_byte  =
278  * = dfx_port_write_long =
279  * = dfx_port_read_long  =
280  * =======================
281  *   
282  * Overview:
283  *   Routines for reading and writing values from/to adapter
284  *  
285  * Returns:
286  *   None
287  *       
288  * Arguments:
289  *   bp     - pointer to board information
290  *   offset - register offset from base I/O address
291  *   data   - for dfx_port_write_byte and dfx_port_write_long, this
292  *                        is a value to write.
293  *                        for dfx_port_read_byte and dfx_port_read_byte, this
294  *                        is a pointer to store the read value.
295  *
296  * Functional Description:
297  *   These routines perform the correct operation to read or write
298  *   the adapter register.
299  *   
300  *   EISA port block base addresses are based on the slot number in which the
301  *   controller is installed.  For example, if the EISA controller is installed
302  *   in slot 4, the port block base address is 0x4000.  If the controller is
303  *   installed in slot 2, the port block base address is 0x2000, and so on.
304  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
305  *   registers using the register offsets defined in DEFXX.H.
306  *
307  *   PCI port block base addresses are assigned by the PCI BIOS or system
308  *       firmware.  There is one 128 byte port block which can be accessed.  It
309  *   allows for I/O mapping of both PDQ and PFI registers using the register
310  *   offsets defined in DEFXX.H.
311  *
312  * Return Codes:
313  *   None
314  *
315  * Assumptions:
316  *   bp->base_addr is a valid base I/O address for this adapter.
317  *   offset is a valid register offset for this adapter.
318  *
319  * Side Effects:
320  *   Rather than produce macros for these functions, these routines
321  *   are defined using "inline" to ensure that the compiler will
322  *   generate inline code and not waste a procedure call and return.
323  *   This provides all the benefits of macros, but with the
324  *   advantage of strict data type checking.
325  */
326
327 static inline void dfx_port_write_byte(
328         DFX_board_t     *bp,
329         int                     offset,
330         u8                      data
331         )
332
333         {
334         u16 port = bp->base_addr + offset;
335
336         outb(data, port);
337         }
338
339 static inline void dfx_port_read_byte(
340         DFX_board_t     *bp,
341         int                     offset,
342         u8                      *data
343         )
344
345         {
346         u16 port = bp->base_addr + offset;
347
348         *data = inb(port);
349         }
350
351 static inline void dfx_port_write_long(
352         DFX_board_t     *bp,
353         int                     offset,
354         u32                     data
355         )
356
357         {
358         u16 port = bp->base_addr + offset;
359
360         outl(data, port);
361         }
362
363 static inline void dfx_port_read_long(
364         DFX_board_t     *bp,
365         int                     offset,
366         u32                     *data
367         )
368
369         {
370         u16 port = bp->base_addr + offset;
371
372         *data = inl(port);
373         }
374
375 \f
376 /*
377  * =============
378  * = dfx_init_one_pci_or_eisa =
379  * =============
380  *   
381  * Overview:
382  *   Initializes a supported FDDI EISA or PCI controller
383  *  
384  * Returns:
385  *   Condition code
386  *       
387  * Arguments:
388  *   pdev - pointer to pci device information (NULL for EISA)
389  *   ioaddr - pointer to port (NULL for PCI)
390  *
391  * Functional Description:
392  *
393  * Return Codes:
394  *   0           - This device (fddi0, fddi1, etc) configured successfully
395  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
396  *
397  * Assumptions:
398  *   It compiles so it should work :-( (PCI cards do :-)
399  *
400  * Side Effects:
401  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
402  *   initialized and the board resources are read and stored in
403  *   the device structure.
404  */
405 static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
406 {
407         struct net_device *dev;
408         DFX_board_t       *bp;                  /* board pointer */
409         int alloc_size;                         /* total buffer size used */
410         int err;
411
412 #ifndef MODULE
413         static int version_disp;
414
415         if (!version_disp)      /* display version info if adapter is found */
416         {
417                 version_disp = 1;       /* set display flag to TRUE so that */
418                 printk(version);        /* we only display this string ONCE */
419         }
420 #endif
421
422         dev = alloc_fddidev(sizeof(*bp));
423         if (!dev) {
424                 printk (KERN_ERR "defxx: unable to allocate fddidev, aborting\n");
425                 return -ENOMEM;
426         }
427
428         /* Enable PCI device. */
429         if (pdev != NULL) {
430                 err = pci_enable_device (pdev);
431                 if (err) goto err_out;
432                 ioaddr = pci_resource_start (pdev, 1);
433         }
434
435         SET_MODULE_OWNER(dev);
436         SET_NETDEV_DEV(dev, &pdev->dev);
437
438         bp = dev->priv;
439
440         if (!request_region (ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, DRV_NAME)) {
441                 printk (KERN_ERR "%s: Cannot reserve I/O resource 0x%x @ 0x%lx, aborting\n",
442                         DRV_NAME, PFI_K_CSR_IO_LEN, ioaddr);
443                 err = -EBUSY;
444                 goto err_out;
445         }
446
447         /* Initialize new device structure */
448
449         dev->base_addr                  = ioaddr; /* save port (I/O) base address */
450
451         dev->get_stats                  = dfx_ctl_get_stats;
452         dev->open                       = dfx_open;
453         dev->stop                       = dfx_close;
454         dev->hard_start_xmit            = dfx_xmt_queue_pkt;
455         dev->set_multicast_list         = dfx_ctl_set_multicast_list;
456         dev->set_mac_address            = dfx_ctl_set_mac_address;
457
458         if (pdev == NULL) {
459                 /* EISA board */
460                 bp->bus_type = DFX_BUS_TYPE_EISA;
461                 bp->next = root_dfx_eisa_dev;
462                 root_dfx_eisa_dev = dev;
463         } else {
464                 /* PCI board */
465                 bp->bus_type = DFX_BUS_TYPE_PCI;
466                 bp->pci_dev = pdev;
467                 pci_set_drvdata (pdev, dev);
468                 pci_set_master (pdev);
469         }
470
471         if (dfx_driver_init(dev) != DFX_K_SUCCESS) {
472                 err = -ENODEV;
473                 goto err_out_region;
474         }
475
476         err = register_netdev(dev);
477         if (err)
478                 goto err_out_kfree;
479
480         return 0;
481
482 err_out_kfree:
483         alloc_size = sizeof(PI_DESCR_BLOCK) +
484                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
485 #ifndef DYNAMIC_BUFFERS
486                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
487 #endif
488                      sizeof(PI_CONSUMER_BLOCK) +
489                      (PI_ALIGN_K_DESC_BLK - 1);
490         if (bp->kmalloced)
491                 pci_free_consistent(pdev, alloc_size,
492                                     bp->kmalloced, bp->kmalloced_dma);
493 err_out_region:
494         release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
495 err_out:
496         free_netdev(dev);
497         return err;
498 }
499
500 static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
501 {
502         return dfx_init_one_pci_or_eisa(pdev, 0);
503 }
504
505 static int __init dfx_eisa_init(void)
506 {
507         int rc = -ENODEV;
508         int i;                  /* used in for loops */
509         u16 port;               /* temporary I/O (port) address */
510         u32 slot_id;            /* EISA hardware (slot) ID read from adapter */
511
512         DBG_printk("In dfx_eisa_init...\n");
513
514         /* Scan for FDDI EISA controllers */
515
516         for (i=0; i < DFX_MAX_EISA_SLOTS; i++)          /* only scan for up to 16 EISA slots */
517         {
518                 port = (i << 12) + PI_ESIC_K_SLOT_ID;   /* port = I/O address for reading slot ID */
519                 slot_id = inl(port);                                    /* read EISA HW (slot) ID */
520                 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
521                 {
522                         port = (i << 12);                                       /* recalc base addr */
523
524                         if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
525                 }
526         }
527         return rc;
528 }
529 \f
530 /*
531  * ================
532  * = dfx_bus_init =
533  * ================
534  *   
535  * Overview:
536  *   Initializes EISA and PCI controller bus-specific logic.
537  *  
538  * Returns:
539  *   None
540  *       
541  * Arguments:
542  *   dev - pointer to device information
543  *
544  * Functional Description:
545  *   Determine and save adapter IRQ in device table,
546  *   then perform bus-specific logic initialization.
547  *
548  * Return Codes:
549  *   None
550  *
551  * Assumptions:
552  *   dev->base_addr has already been set with the proper
553  *       base I/O address for this device.
554  *
555  * Side Effects:
556  *   Interrupts are enabled at the adapter bus-specific logic.
557  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
558  *   enabled yet.
559  */
560
561 static void __devinit dfx_bus_init(struct net_device *dev)
562 {
563         DFX_board_t *bp = dev->priv;
564         u8                      val;    /* used for I/O read/writes */
565
566         DBG_printk("In dfx_bus_init...\n");
567
568         /*
569          * Initialize base I/O address field in bp structure
570          *
571          * Note: bp->base_addr is the same as dev->base_addr.
572          *               It's useful because often we'll need to read
573          *               or write registers where we already have the
574          *               bp pointer instead of the dev pointer.  Having
575          *               the base address in the bp structure will
576          *               save a pointer dereference.
577          *
578          *               IMPORTANT!! This field must be defined before
579          *               any of the dfx_port_* inline functions are
580          *               called.
581          */
582
583         bp->base_addr = dev->base_addr;
584
585         /* And a pointer back to the net_device struct */
586         bp->dev = dev;
587
588         /* Initialize adapter based on bus type */
589
590         if (bp->bus_type == DFX_BUS_TYPE_EISA)
591                 {
592                 /* Get the interrupt level from the ESIC chip */
593
594                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
595                 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
596                         {
597                         case PI_CONFIG_STAT_0_IRQ_K_9:
598                                 dev->irq = 9;
599                                 break;
600
601                         case PI_CONFIG_STAT_0_IRQ_K_10:
602                                 dev->irq = 10;
603                                 break;
604
605                         case PI_CONFIG_STAT_0_IRQ_K_11:
606                                 dev->irq = 11;
607                                 break;
608
609                         case PI_CONFIG_STAT_0_IRQ_K_15:
610                                 dev->irq = 15;
611                                 break;
612                         }
613
614                 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
615
616                 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
617
618                 /* Set the I/O decode range of the board */
619
620                 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
621                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
622                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
623
624                 /* Enable access to rest of module (including PDQ and packet memory) */
625
626                 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
627
628                 /*
629                  * Map PDQ registers into I/O space.  This is done by clearing a bit
630                  * in Burst Holdoff register.
631                  */
632
633                 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
634                 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
635
636                 /* Enable interrupts at EISA bus interface chip (ESIC) */
637
638                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
639                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
640                 }
641         else
642                 {
643                 struct pci_dev *pdev = bp->pci_dev;
644
645                 /* Get the interrupt level from the PCI Configuration Table */
646
647                 dev->irq = pdev->irq;
648
649                 /* Check Latency Timer and set if less than minimal */
650
651                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
652                 if (val < PFI_K_LAT_TIMER_MIN)  /* if less than min, override with default */
653                         {
654                         val = PFI_K_LAT_TIMER_DEF;
655                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
656                         }
657
658                 /* Enable interrupts at PCI bus interface chip (PFI) */
659
660                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
661                 }
662         }
663
664 \f
665 /*
666  * ========================
667  * = dfx_bus_config_check =
668  * ========================
669  *   
670  * Overview:
671  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
672  *   are illegal, then this routine will set new defaults.
673  *  
674  * Returns:
675  *   None
676  *       
677  * Arguments:
678  *   bp - pointer to board information
679  *
680  * Functional Description:
681  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
682  *   PDQ, and all FDDI PCI controllers, all values are legal.
683  *
684  * Return Codes:
685  *   None
686  *
687  * Assumptions:
688  *   dfx_adap_init has NOT been called yet so burst size and other items have
689  *   not been set.
690  *
691  * Side Effects:
692  *   None
693  */
694
695 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
696 {
697         int     status;                         /* return code from adapter port control call */
698         u32     slot_id;                        /* EISA-bus hardware id (DEC3001, DEC3002,...) */
699         u32     host_data;                      /* LW data returned from port control call */
700
701         DBG_printk("In dfx_bus_config_check...\n");
702
703         /* Configuration check only valid for EISA adapter */
704
705         if (bp->bus_type == DFX_BUS_TYPE_EISA)
706                 {
707                 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
708
709                 /*
710                  * First check if revision 2 EISA controller.  Rev. 1 cards used
711                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
712                  * cards used PDQ revision E, so no workaround needed in this
713                  * case, either.  Only Rev. 2 cards used either Rev. D or E
714                  * chips, so we must verify the chip revision on Rev. 2 cards.
715                  */
716
717                 if (slot_id == DEFEA_PROD_ID_2)
718                         {
719                         /*
720                          * Revision 2 FDDI EISA controller found, so let's check PDQ
721                          * revision of adapter.
722                          */
723
724                         status = dfx_hw_port_ctrl_req(bp,
725                                                                                         PI_PCTRL_M_SUB_CMD,
726                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
727                                                                                         0,
728                                                                                         &host_data);
729                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
730                                 {
731                                 /*
732                                  * Either we couldn't determine the PDQ revision, or
733                                  * we determined that it is at revision D.  In either case,
734                                  * we need to implement the workaround.
735                                  */
736
737                                 /* Ensure that the burst size is set to 8 longwords or less */
738
739                                 switch (bp->burst_size)
740                                         {
741                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
742                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
743                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
744                                                 break;
745
746                                         default:
747                                                 break;
748                                         }
749
750                                 /* Ensure that full-duplex mode is not enabled */
751
752                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
753                                 }
754                         }
755                 }
756         }
757
758 \f
759 /*
760  * ===================
761  * = dfx_driver_init =
762  * ===================
763  *   
764  * Overview:
765  *   Initializes remaining adapter board structure information
766  *   and makes sure adapter is in a safe state prior to dfx_open().
767  *  
768  * Returns:
769  *   Condition code
770  *       
771  * Arguments:
772  *   dev - pointer to device information
773  *
774  * Functional Description:
775  *   This function allocates additional resources such as the host memory
776  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
777  *       Remaining bus initialization steps are also completed.  The adapter
778  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
779  *   must call dfx_open() to open the adapter and bring it on-line.
780  *
781  * Return Codes:
782  *   DFX_K_SUCCESS      - initialization succeeded
783  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
784  *                                              or read adapter MAC address
785  *
786  * Assumptions:
787  *   Memory allocated from pci_alloc_consistent() call is physically
788  *   contiguous, locked memory.
789  *
790  * Side Effects:
791  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
792  *   returning from this routine.
793  */
794
795 static int __devinit dfx_driver_init(struct net_device *dev)
796 {
797         DFX_board_t *bp = dev->priv;
798         int                     alloc_size;                     /* total buffer size needed */
799         char            *top_v, *curr_v;        /* virtual addrs into memory block */
800         dma_addr_t              top_p, curr_p;          /* physical addrs into memory block */
801         u32                     data;                           /* host data register value */
802
803         DBG_printk("In dfx_driver_init...\n");
804
805         /* Initialize bus-specific hardware registers */
806
807         dfx_bus_init(dev);
808
809         /*
810          * Initialize default values for configurable parameters
811          *
812          * Note: All of these parameters are ones that a user may
813          *       want to customize.  It'd be nice to break these
814          *               out into Space.c or someplace else that's more
815          *               accessible/understandable than this file.
816          */
817
818         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
819         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
820         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
821         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
822
823         /*
824          * Ensure that HW configuration is OK
825          *
826          * Note: Depending on the hardware revision, we may need to modify
827          *       some of the configurable parameters to workaround hardware
828          *       limitations.  We'll perform this configuration check AFTER
829          *       setting the parameters to their default values.
830          */
831
832         dfx_bus_config_check(bp);
833
834         /* Disable PDQ interrupts first */
835
836         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
837
838         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
839
840         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
841
842         /*  Read the factory MAC address from the adapter then save it */
843
844         if (dfx_hw_port_ctrl_req(bp,
845                                                         PI_PCTRL_M_MLA,
846                                                         PI_PDATA_A_MLA_K_LO,
847                                                         0,
848                                                         &data) != DFX_K_SUCCESS)
849                 {
850                 printk("%s: Could not read adapter factory MAC address!\n", dev->name);
851                 return(DFX_K_FAILURE);
852                 }
853         memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
854
855         if (dfx_hw_port_ctrl_req(bp,
856                                                         PI_PCTRL_M_MLA,
857                                                         PI_PDATA_A_MLA_K_HI,
858                                                         0,
859                                                         &data) != DFX_K_SUCCESS)
860                 {
861                 printk("%s: Could not read adapter factory MAC address!\n", dev->name);
862                 return(DFX_K_FAILURE);
863                 }
864         memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
865
866         /*
867          * Set current address to factory address
868          *
869          * Note: Node address override support is handled through
870          *       dfx_ctl_set_mac_address.
871          */
872
873         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
874         if (bp->bus_type == DFX_BUS_TYPE_EISA)
875                 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
876                                 dev->name,
877                                 dev->base_addr,
878                                 dev->irq,
879                                 dev->dev_addr[0],
880                                 dev->dev_addr[1],
881                                 dev->dev_addr[2],
882                                 dev->dev_addr[3],
883                                 dev->dev_addr[4],
884                                 dev->dev_addr[5]);
885         else
886                 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
887                                 dev->name,
888                                 dev->base_addr,
889                                 dev->irq,
890                                 dev->dev_addr[0],
891                                 dev->dev_addr[1],
892                                 dev->dev_addr[2],
893                                 dev->dev_addr[3],
894                                 dev->dev_addr[4],
895                                 dev->dev_addr[5]);
896
897         /*
898          * Get memory for descriptor block, consumer block, and other buffers
899          * that need to be DMA read or written to by the adapter.
900          */
901
902         alloc_size = sizeof(PI_DESCR_BLOCK) +
903                                         PI_CMD_REQ_K_SIZE_MAX +
904                                         PI_CMD_RSP_K_SIZE_MAX +
905 #ifndef DYNAMIC_BUFFERS
906                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
907 #endif
908                                         sizeof(PI_CONSUMER_BLOCK) +
909                                         (PI_ALIGN_K_DESC_BLK - 1);
910         bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size,
911                                                      &bp->kmalloced_dma);
912         if (top_v == NULL)
913                 {
914                 printk("%s: Could not allocate memory for host buffers and structures!\n", dev->name);
915                 return(DFX_K_FAILURE);
916                 }
917         memset(top_v, 0, alloc_size);   /* zero out memory before continuing */
918         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
919
920         /*
921          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
922          *  plus the amount of memory needed was allocated.  The physical address
923          *      is now 8K aligned.  By carving up the memory in a specific order,
924          *  we'll guarantee the alignment requirements for all other structures.
925          *
926          *  Note: If the assumptions change regarding the non-paged, non-cached,
927          *                physically contiguous nature of the memory block or the address
928          *                alignments, then we'll need to implement a different algorithm
929          *                for allocating the needed memory.
930          */
931
932         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
933         curr_v = top_v + (curr_p - top_p);
934
935         /* Reserve space for descriptor block */
936
937         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
938         bp->descr_block_phys = curr_p;
939         curr_v += sizeof(PI_DESCR_BLOCK);
940         curr_p += sizeof(PI_DESCR_BLOCK);
941
942         /* Reserve space for command request buffer */
943
944         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
945         bp->cmd_req_phys = curr_p;
946         curr_v += PI_CMD_REQ_K_SIZE_MAX;
947         curr_p += PI_CMD_REQ_K_SIZE_MAX;
948
949         /* Reserve space for command response buffer */
950
951         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
952         bp->cmd_rsp_phys = curr_p;
953         curr_v += PI_CMD_RSP_K_SIZE_MAX;
954         curr_p += PI_CMD_RSP_K_SIZE_MAX;
955
956         /* Reserve space for the LLC host receive queue buffers */
957
958         bp->rcv_block_virt = curr_v;
959         bp->rcv_block_phys = curr_p;
960
961 #ifndef DYNAMIC_BUFFERS
962         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
963         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
964 #endif
965
966         /* Reserve space for the consumer block */
967
968         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
969         bp->cons_block_phys = curr_p;
970
971         /* Display virtual and physical addresses if debug driver */
972
973         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",                            dev->name, (long)bp->descr_block_virt,  bp->descr_block_phys);
974         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",                      dev->name, (long)bp->cmd_req_virt,              bp->cmd_req_phys);
975         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",                     dev->name, (long)bp->cmd_rsp_virt,              bp->cmd_rsp_phys);
976         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",                        dev->name, (long)bp->rcv_block_virt,    bp->rcv_block_phys);
977         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",                              dev->name, (long)bp->cons_block_virt,   bp->cons_block_phys);
978
979         return(DFX_K_SUCCESS);
980         }
981
982 \f
983 /*
984  * =================
985  * = dfx_adap_init =
986  * =================
987  *   
988  * Overview:
989  *   Brings the adapter to the link avail/link unavailable state.
990  *  
991  * Returns:
992  *   Condition code
993  *       
994  * Arguments:
995  *   bp - pointer to board information
996  *   get_buffers - non-zero if buffers to be allocated
997  *
998  * Functional Description:
999  *   Issues the low-level firmware/hardware calls necessary to bring
1000  *   the adapter up, or to properly reset and restore adapter during
1001  *   run-time.
1002  *
1003  * Return Codes:
1004  *   DFX_K_SUCCESS - Adapter brought up successfully
1005  *   DFX_K_FAILURE - Adapter initialization failed
1006  *
1007  * Assumptions:
1008  *   bp->reset_type should be set to a valid reset type value before
1009  *   calling this routine.
1010  *
1011  * Side Effects:
1012  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1013  *   upon a successful return of this routine.
1014  */
1015
1016 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1017         {
1018         DBG_printk("In dfx_adap_init...\n");
1019
1020         /* Disable PDQ interrupts first */
1021
1022         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1023
1024         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1025
1026         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1027                 {
1028                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1029                 return(DFX_K_FAILURE);
1030                 }
1031
1032         /*
1033          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1034          * so we'll acknowledge all Type 0 interrupts now before continuing.
1035          */
1036
1037         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1038
1039         /*
1040          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1041          *
1042          * Note: We only need to clear host copies of these registers.  The PDQ reset
1043          *       takes care of the on-board register values.
1044          */
1045
1046         bp->cmd_req_reg.lword   = 0;
1047         bp->cmd_rsp_reg.lword   = 0;
1048         bp->rcv_xmt_reg.lword   = 0;
1049
1050         /* Clear consumer block before going to DMA_AVAILABLE state */
1051
1052         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1053
1054         /* Initialize the DMA Burst Size */
1055
1056         if (dfx_hw_port_ctrl_req(bp,
1057                                                         PI_PCTRL_M_SUB_CMD,
1058                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1059                                                         bp->burst_size,
1060                                                         NULL) != DFX_K_SUCCESS)
1061                 {
1062                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1063                 return(DFX_K_FAILURE);
1064                 }
1065
1066         /*
1067          * Set base address of Consumer Block
1068          *
1069          * Assumption: 32-bit physical address of consumer block is 64 byte
1070          *                         aligned.  That is, bits 0-5 of the address must be zero.
1071          */
1072
1073         if (dfx_hw_port_ctrl_req(bp,
1074                                                         PI_PCTRL_M_CONS_BLOCK,
1075                                                         bp->cons_block_phys,
1076                                                         0,
1077                                                         NULL) != DFX_K_SUCCESS)
1078                 {
1079                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1080                 return(DFX_K_FAILURE);
1081                 }
1082
1083         /*
1084          * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
1085          *
1086          * Note: We also set the literal and data swapping requirements in this
1087          *           command.  Since this driver presently runs on Intel platforms
1088          *               which are Little Endian, we'll tell the adapter to byte swap
1089          *               data only.  This code will need to change when we support
1090          *               Big Endian systems (eg. PowerPC).
1091          *
1092          * Assumption: 32-bit physical address of descriptor block is 8Kbyte
1093          *             aligned.  That is, bits 0-12 of the address must be zero.
1094          */
1095
1096         if (dfx_hw_port_ctrl_req(bp,
1097                                                         PI_PCTRL_M_INIT,
1098                                                         (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
1099                                                         0,
1100                                                         NULL) != DFX_K_SUCCESS)
1101                 {
1102                 printk("%s: Could not set descriptor block address!\n", bp->dev->name);
1103                 return(DFX_K_FAILURE);
1104                 }
1105
1106         /* Set transmit flush timeout value */
1107
1108         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1109         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1110         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1111         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1112         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1113         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1114                 {
1115                 printk("%s: DMA command request failed!\n", bp->dev->name);
1116                 return(DFX_K_FAILURE);
1117                 }
1118
1119         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1120
1121         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1122         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1123         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1124         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1125         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1126         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1127         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1128         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1129         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1130                 {
1131                 printk("%s: DMA command request failed!\n", bp->dev->name);
1132                 return(DFX_K_FAILURE);
1133                 }
1134
1135         /* Initialize adapter CAM */
1136
1137         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1138                 {
1139                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1140                 return(DFX_K_FAILURE);
1141                 }
1142
1143         /* Initialize adapter filters */
1144
1145         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1146                 {
1147                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1148                 return(DFX_K_FAILURE);
1149                 }
1150
1151         /*
1152          * Remove any existing dynamic buffers (i.e. if the adapter is being
1153          * reinitialized)
1154          */
1155
1156         if (get_buffers)
1157                 dfx_rcv_flush(bp);
1158
1159         /* Initialize receive descriptor block and produce buffers */
1160
1161         if (dfx_rcv_init(bp, get_buffers))
1162                 {
1163                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1164                 if (get_buffers)
1165                         dfx_rcv_flush(bp);
1166                 return(DFX_K_FAILURE);
1167                 }
1168
1169         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1170
1171         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1172         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1173                 {
1174                 printk("%s: Start command failed\n", bp->dev->name);
1175                 if (get_buffers)
1176                         dfx_rcv_flush(bp);
1177                 return(DFX_K_FAILURE);
1178                 }
1179
1180         /* Initialization succeeded, reenable PDQ interrupts */
1181
1182         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1183         return(DFX_K_SUCCESS);
1184         }
1185
1186 \f
1187 /*
1188  * ============
1189  * = dfx_open =
1190  * ============
1191  *   
1192  * Overview:
1193  *   Opens the adapter
1194  *  
1195  * Returns:
1196  *   Condition code
1197  *       
1198  * Arguments:
1199  *   dev - pointer to device information
1200  *
1201  * Functional Description:
1202  *   This function brings the adapter to an operational state.
1203  *
1204  * Return Codes:
1205  *   0           - Adapter was successfully opened
1206  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1207  *
1208  * Assumptions:
1209  *   This routine should only be called for a device that was
1210  *   initialized successfully.
1211  *
1212  * Side Effects:
1213  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1214  *   if the open is successful.
1215  */
1216
1217 static int dfx_open(struct net_device *dev)
1218 {
1219         int ret;
1220         DFX_board_t     *bp = dev->priv;
1221
1222         DBG_printk("In dfx_open...\n");
1223         
1224         /* Register IRQ - support shared interrupts by passing device ptr */
1225
1226         ret = request_irq(dev->irq, (void *)dfx_interrupt, SA_SHIRQ, dev->name, dev);
1227         if (ret) {
1228                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1229                 return ret;
1230         }
1231
1232         /*
1233          * Set current address to factory MAC address
1234          *
1235          * Note: We've already done this step in dfx_driver_init.
1236          *       However, it's possible that a user has set a node
1237          *               address override, then closed and reopened the
1238          *               adapter.  Unless we reset the device address field
1239          *               now, we'll continue to use the existing modified
1240          *               address.
1241          */
1242
1243         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1244
1245         /* Clear local unicast/multicast address tables and counts */
1246
1247         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1248         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1249         bp->uc_count = 0;
1250         bp->mc_count = 0;
1251
1252         /* Disable promiscuous filter settings */
1253
1254         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1255         bp->group_prom          = PI_FSTATE_K_BLOCK;
1256
1257         spin_lock_init(&bp->lock);
1258
1259         /* Reset and initialize adapter */
1260
1261         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1262         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1263         {
1264                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1265                 free_irq(dev->irq, dev);
1266                 return -EAGAIN;
1267         }
1268
1269         /* Set device structure info */
1270         netif_start_queue(dev);
1271         return(0);
1272 }
1273
1274 \f
1275 /*
1276  * =============
1277  * = dfx_close =
1278  * =============
1279  *   
1280  * Overview:
1281  *   Closes the device/module.
1282  *  
1283  * Returns:
1284  *   Condition code
1285  *       
1286  * Arguments:
1287  *   dev - pointer to device information
1288  *
1289  * Functional Description:
1290  *   This routine closes the adapter and brings it to a safe state.
1291  *   The interrupt service routine is deregistered with the OS.
1292  *   The adapter can be opened again with another call to dfx_open().
1293  *
1294  * Return Codes:
1295  *   Always return 0.
1296  *
1297  * Assumptions:
1298  *   No further requests for this adapter are made after this routine is
1299  *   called.  dfx_open() can be called to reset and reinitialize the
1300  *   adapter.
1301  *
1302  * Side Effects:
1303  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1304  *   routine.
1305  */
1306
1307 static int dfx_close(struct net_device *dev)
1308 {
1309         DFX_board_t     *bp = dev->priv;
1310
1311         DBG_printk("In dfx_close...\n");
1312
1313         /* Disable PDQ interrupts first */
1314
1315         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1316
1317         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1318
1319         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1320
1321         /*
1322          * Flush any pending transmit buffers
1323          *
1324          * Note: It's important that we flush the transmit buffers
1325          *               BEFORE we clear our copy of the Type 2 register.
1326          *               Otherwise, we'll have no idea how many buffers
1327          *               we need to free.
1328          */
1329
1330         dfx_xmt_flush(bp);
1331
1332         /*
1333          * Clear Type 1 and Type 2 registers after adapter reset
1334          *
1335          * Note: Even though we're closing the adapter, it's
1336          *       possible that an interrupt will occur after
1337          *               dfx_close is called.  Without some assurance to
1338          *               the contrary we want to make sure that we don't
1339          *               process receive and transmit LLC frames and update
1340          *               the Type 2 register with bad information.
1341          */
1342
1343         bp->cmd_req_reg.lword   = 0;
1344         bp->cmd_rsp_reg.lword   = 0;
1345         bp->rcv_xmt_reg.lword   = 0;
1346
1347         /* Clear consumer block for the same reason given above */
1348
1349         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1350
1351         /* Release all dynamically allocate skb in the receive ring. */
1352
1353         dfx_rcv_flush(bp);
1354
1355         /* Clear device structure flags */
1356
1357         netif_stop_queue(dev);
1358         
1359         /* Deregister (free) IRQ */
1360
1361         free_irq(dev->irq, dev);
1362         
1363         return(0);
1364 }
1365
1366 \f
1367 /*
1368  * ======================
1369  * = dfx_int_pr_halt_id =
1370  * ======================
1371  *   
1372  * Overview:
1373  *   Displays halt id's in string form.
1374  *  
1375  * Returns:
1376  *   None
1377  *       
1378  * Arguments:
1379  *   bp - pointer to board information
1380  *
1381  * Functional Description:
1382  *   Determine current halt id and display appropriate string.
1383  *
1384  * Return Codes:
1385  *   None
1386  *
1387  * Assumptions:
1388  *   None
1389  *
1390  * Side Effects:
1391  *   None
1392  */
1393
1394 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1395         {
1396         PI_UINT32       port_status;                    /* PDQ port status register value */
1397         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1398
1399         /* Read the latest port status */
1400
1401         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1402
1403         /* Display halt state transition information */
1404
1405         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1406         switch (halt_id)
1407                 {
1408                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1409                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1410                         break;
1411
1412                 case PI_HALT_ID_K_PARITY_ERROR:
1413                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1414                         break;
1415
1416                 case PI_HALT_ID_K_HOST_DIR_HALT:
1417                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1418                         break;
1419
1420                 case PI_HALT_ID_K_SW_FAULT:
1421                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1422                         break;
1423
1424                 case PI_HALT_ID_K_HW_FAULT:
1425                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1426                         break;
1427
1428                 case PI_HALT_ID_K_PC_TRACE:
1429                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1430                         break;
1431
1432                 case PI_HALT_ID_K_DMA_ERROR:
1433                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1434                         break;
1435
1436                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1437                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1438                         break;
1439
1440                 case PI_HALT_ID_K_BUS_EXCEPTION:
1441                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1442                         break;
1443
1444                 default:
1445                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1446                         break;
1447                 }
1448         }
1449
1450 \f
1451 /*
1452  * ==========================
1453  * = dfx_int_type_0_process =
1454  * ==========================
1455  *   
1456  * Overview:
1457  *   Processes Type 0 interrupts.
1458  *  
1459  * Returns:
1460  *   None
1461  *       
1462  * Arguments:
1463  *   bp - pointer to board information
1464  *
1465  * Functional Description:
1466  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1467  *   is a serious fault on the adapter, then an error message is displayed
1468  *   and the adapter is reset.
1469  *
1470  *   One tricky potential timing window is the rapid succession of "link avail"
1471  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1472  *   interrupt must be done before reading the state from the Port Status
1473  *   register.  This is true because a state change could occur after reading
1474  *   the data, but before acknowledging the interrupt.  If this state change
1475  *   does happen, it would be lost because the driver is using the old state,
1476  *   and it will never know about the new state because it subsequently
1477  *   acknowledges the state change interrupt.
1478  *
1479  *          INCORRECT                                      CORRECT
1480  *      read type 0 int reasons                   read type 0 int reasons
1481  *      read adapter state                        ack type 0 interrupts
1482  *      ack type 0 interrupts                     read adapter state
1483  *      ... process interrupt ...                 ... process interrupt ...
1484  *
1485  * Return Codes:
1486  *   None
1487  *
1488  * Assumptions:
1489  *   None
1490  *
1491  * Side Effects:
1492  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1493  *   or if the port status indicates that the adapter is halted.  The driver
1494  *   is responsible for reinitializing the adapter with the current CAM
1495  *   contents and adapter filter settings.
1496  */
1497
1498 static void dfx_int_type_0_process(DFX_board_t  *bp)
1499
1500         {
1501         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1502         PI_UINT32       state;                          /* current adap state (from port status) */
1503
1504         /*
1505          * Read host interrupt Type 0 register to determine which Type 0
1506          * interrupts are pending.  Immediately write it back out to clear
1507          * those interrupts.
1508          */
1509
1510         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1511         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1512
1513         /* Check for Type 0 error interrupts */
1514
1515         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1516                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1517                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1518                 {
1519                 /* Check for Non-Existent Memory error */
1520
1521                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1522                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1523
1524                 /* Check for Packet Memory Parity error */
1525
1526                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1527                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1528
1529                 /* Check for Host Bus Parity error */
1530
1531                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1532                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1533
1534                 /* Reset adapter and bring it back on-line */
1535
1536                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1537                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1538                 printk("%s: Resetting adapter...\n", bp->dev->name);
1539                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1540                         {
1541                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1542                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1543                         return;
1544                         }
1545                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1546                 return;
1547                 }
1548
1549         /* Check for transmit flush interrupt */
1550
1551         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1552                 {
1553                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1554
1555                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1556                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1557                 (void) dfx_hw_port_ctrl_req(bp,
1558                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1559                                                                         0,
1560                                                                         0,
1561                                                                         NULL);
1562                 }
1563
1564         /* Check for adapter state change */
1565
1566         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1567                 {                     
1568                 /* Get latest adapter state */
1569
1570                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1571                 if (state == PI_STATE_K_HALTED)
1572                         {
1573                         /*
1574                          * Adapter has transitioned to HALTED state, try to reset
1575                          * adapter to bring it back on-line.  If reset fails,
1576                          * leave the adapter in the broken state.
1577                          */
1578
1579                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1580                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1581
1582                         /* Reset adapter and bring it back on-line */
1583
1584                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1585                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1586                         printk("%s: Resetting adapter...\n", bp->dev->name);
1587                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1588                                 {
1589                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1590                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1591                                 return;
1592                                 }
1593                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1594                         }
1595                 else if (state == PI_STATE_K_LINK_AVAIL)
1596                         {
1597                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1598                         }
1599                 }
1600         }
1601
1602 \f
1603 /*
1604  * ==================
1605  * = dfx_int_common =
1606  * ==================
1607  *   
1608  * Overview:
1609  *   Interrupt service routine (ISR)
1610  *  
1611  * Returns:
1612  *   None
1613  *       
1614  * Arguments:
1615  *   bp - pointer to board information
1616  *
1617  * Functional Description:
1618  *   This is the ISR which processes incoming adapter interrupts.
1619  *
1620  * Return Codes:
1621  *   None
1622  *
1623  * Assumptions:
1624  *   This routine assumes PDQ interrupts have not been disabled.
1625  *   When interrupts are disabled at the PDQ, the Port Status register
1626  *   is automatically cleared.  This routine uses the Port Status
1627  *   register value to determine whether a Type 0 interrupt occurred,
1628  *   so it's important that adapter interrupts are not normally
1629  *   enabled/disabled at the PDQ.
1630  *
1631  *   It's vital that this routine is NOT reentered for the
1632  *   same board and that the OS is not in another section of
1633  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1634  *   different thread.
1635  *
1636  * Side Effects:
1637  *   Pending interrupts are serviced.  Depending on the type of
1638  *   interrupt, acknowledging and clearing the interrupt at the
1639  *   PDQ involves writing a register to clear the interrupt bit
1640  *   or updating completion indices.
1641  */
1642
1643 static void dfx_int_common(struct net_device *dev)
1644 {
1645         DFX_board_t     *bp = dev->priv;
1646         PI_UINT32       port_status;            /* Port Status register */
1647
1648         /* Process xmt interrupts - frequent case, so always call this routine */
1649
1650         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1651                 netif_wake_queue(dev);
1652
1653         /* Process rcv interrupts - frequent case, so always call this routine */
1654
1655         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1656
1657         /*
1658          * Transmit and receive producer and completion indices are updated on the
1659          * adapter by writing to the Type 2 Producer register.  Since the frequent
1660          * case is that we'll be processing either LLC transmit or receive buffers,
1661          * we'll optimize I/O writes by doing a single register write here.
1662          */
1663
1664         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1665
1666         /* Read PDQ Port Status register to find out which interrupts need processing */
1667
1668         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1669
1670         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1671
1672         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1673                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1674         }
1675
1676 \f
1677 /*
1678  * =================
1679  * = dfx_interrupt =
1680  * =================
1681  *   
1682  * Overview:
1683  *   Interrupt processing routine
1684  *  
1685  * Returns:
1686  *   None
1687  *       
1688  * Arguments:
1689  *   irq        - interrupt vector
1690  *   dev_id     - pointer to device information
1691  *       regs   - pointer to registers structure
1692  *
1693  * Functional Description:
1694  *   This routine calls the interrupt processing routine for this adapter.  It
1695  *   disables and reenables adapter interrupts, as appropriate.  We can support
1696  *   shared interrupts since the incoming dev_id pointer provides our device
1697  *   structure context.
1698  *
1699  * Return Codes:
1700  *   None
1701  *
1702  * Assumptions:
1703  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1704  *   on Intel-based systems) is done by the operating system outside this
1705  *   routine.
1706  *
1707  *       System interrupts are enabled through this call.
1708  *
1709  * Side Effects:
1710  *   Interrupts are disabled, then reenabled at the adapter.
1711  */
1712
1713 static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1714         {
1715         struct net_device       *dev = dev_id;
1716         DFX_board_t             *bp;    /* private board structure pointer */
1717         u8                              tmp;    /* used for disabling/enabling ints */
1718
1719         /* Get board pointer only if device structure is valid */
1720
1721         bp = dev->priv;
1722
1723         spin_lock(&bp->lock);
1724         
1725         /* See if we're already servicing an interrupt */
1726
1727         /* Service adapter interrupts */
1728
1729         if (bp->bus_type == DFX_BUS_TYPE_PCI)
1730                 {
1731                 /* Disable PDQ-PFI interrupts at PFI */
1732
1733                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB);
1734
1735                 /* Call interrupt service routine for this adapter */
1736
1737                 dfx_int_common(dev);
1738
1739                 /* Clear PDQ interrupt status bit and reenable interrupts */
1740
1741                 dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT);
1742                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1743                                         (PFI_MODE_M_PDQ_INT_ENB + PFI_MODE_M_DMA_ENB));
1744                 }
1745         else
1746                 {
1747                 /* Disable interrupts at the ESIC */
1748
1749                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1750                 tmp &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1751                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1752
1753                 /* Call interrupt service routine for this adapter */
1754
1755                 dfx_int_common(dev);
1756
1757                 /* Reenable interrupts at the ESIC */
1758
1759                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1760                 tmp |= PI_CONFIG_STAT_0_M_INT_ENB;
1761                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1762                 }
1763
1764         spin_unlock(&bp->lock);
1765         }
1766
1767 \f
1768 /*
1769  * =====================
1770  * = dfx_ctl_get_stats =
1771  * =====================
1772  *   
1773  * Overview:
1774  *   Get statistics for FDDI adapter
1775  *  
1776  * Returns:
1777  *   Pointer to FDDI statistics structure
1778  *       
1779  * Arguments:
1780  *   dev - pointer to device information
1781  *
1782  * Functional Description:
1783  *   Gets current MIB objects from adapter, then
1784  *   returns FDDI statistics structure as defined
1785  *   in if_fddi.h.
1786  *
1787  *   Note: Since the FDDI statistics structure is
1788  *   still new and the device structure doesn't
1789  *   have an FDDI-specific get statistics handler,
1790  *   we'll return the FDDI statistics structure as
1791  *   a pointer to an Ethernet statistics structure.
1792  *   That way, at least the first part of the statistics
1793  *   structure can be decoded properly, and it allows
1794  *   "smart" applications to perform a second cast to
1795  *   decode the FDDI-specific statistics.
1796  *
1797  *   We'll have to pay attention to this routine as the
1798  *   device structure becomes more mature and LAN media
1799  *   independent.
1800  *
1801  * Return Codes:
1802  *   None
1803  *
1804  * Assumptions:
1805  *   None
1806  *
1807  * Side Effects:
1808  *   None
1809  */
1810
1811 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1812         {
1813         DFX_board_t     *bp = dev->priv;
1814
1815         /* Fill the bp->stats structure with driver-maintained counters */
1816
1817         bp->stats.gen.rx_packets = bp->rcv_total_frames;
1818         bp->stats.gen.tx_packets = bp->xmt_total_frames;
1819         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
1820         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
1821         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
1822                                    bp->rcv_frame_status_errors +
1823                                    bp->rcv_length_errors;
1824         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
1825         bp->stats.gen.rx_dropped = bp->rcv_discards;
1826         bp->stats.gen.tx_dropped = bp->xmt_discards;
1827         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
1828         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
1829
1830         /* Get FDDI SMT MIB objects */
1831
1832         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
1833         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1834                 return((struct net_device_stats *) &bp->stats);
1835
1836         /* Fill the bp->stats structure with the SMT MIB object values */
1837
1838         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
1839         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
1840         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
1841         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
1842         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
1843         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
1844         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
1845         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1846         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1847         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1848         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1849         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1850         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1851         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1852         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1853         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1854         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1855         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1856         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1857         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1858         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1859         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1860         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1861         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1862         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1863         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1864         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1865         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1866         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1867         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1868         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1869         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1870         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1871         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1872         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1873         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1874         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1875         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1876         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1877         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1878         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1879         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1880         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1881         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1882         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1883         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1884         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1885         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1886         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1887         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1888         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1889         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1890         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1891         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1892         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1893         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1894         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1895         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1896         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1897         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1898         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1899         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1900         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1901         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1902         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1903         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1904         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1905         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1906         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1907         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1908         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1909         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1910         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1911         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1912         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1913         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1914         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1915         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1916         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1917         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1918         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1919         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1920         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1921         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1922         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1923         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1924         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1925         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1926         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1927         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1928         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1929         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1930
1931         /* Get FDDI counters */
1932
1933         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
1934         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1935                 return((struct net_device_stats *) &bp->stats);
1936
1937         /* Fill the bp->stats structure with the FDDI counter values */
1938
1939         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1940         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1941         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1942         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1943         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1944         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1945         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1946         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1947         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1948         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1949         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1950
1951         return((struct net_device_stats *) &bp->stats);
1952         }
1953
1954 \f
1955 /*
1956  * ==============================
1957  * = dfx_ctl_set_multicast_list =
1958  * ==============================
1959  *   
1960  * Overview:
1961  *   Enable/Disable LLC frame promiscuous mode reception
1962  *   on the adapter and/or update multicast address table.
1963  *  
1964  * Returns:
1965  *   None
1966  *       
1967  * Arguments:
1968  *   dev - pointer to device information
1969  *
1970  * Functional Description:
1971  *   This routine follows a fairly simple algorithm for setting the
1972  *   adapter filters and CAM:
1973  *
1974  *              if IFF_PROMISC flag is set
1975  *                      enable LLC individual/group promiscuous mode
1976  *              else
1977  *                      disable LLC individual/group promiscuous mode
1978  *                      if number of incoming multicast addresses >
1979  *                                      (CAM max size - number of unicast addresses in CAM)
1980  *                              enable LLC group promiscuous mode
1981  *                              set driver-maintained multicast address count to zero
1982  *                      else
1983  *                              disable LLC group promiscuous mode
1984  *                              set driver-maintained multicast address count to incoming count
1985  *                      update adapter CAM
1986  *              update adapter filters
1987  *
1988  * Return Codes:
1989  *   None
1990  *
1991  * Assumptions:
1992  *   Multicast addresses are presented in canonical (LSB) format.
1993  *
1994  * Side Effects:
1995  *   On-board adapter CAM and filters are updated.
1996  */
1997
1998 static void dfx_ctl_set_multicast_list(struct net_device *dev)
1999         {
2000         DFX_board_t                     *bp = dev->priv;
2001         int                                     i;                      /* used as index in for loop */
2002         struct dev_mc_list      *dmi;           /* ptr to multicast addr entry */
2003
2004         /* Enable LLC frame promiscuous mode, if necessary */
2005
2006         if (dev->flags & IFF_PROMISC)
2007                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2008
2009         /* Else, update multicast address table */
2010
2011         else
2012                 {
2013                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2014                 /*
2015                  * Check whether incoming multicast address count exceeds table size
2016                  *
2017                  * Note: The adapters utilize an on-board 64 entry CAM for
2018                  *       supporting perfect filtering of multicast packets
2019                  *               and bridge functions when adding unicast addresses.
2020                  *               There is no hash function available.  To support
2021                  *               additional multicast addresses, the all multicast
2022                  *               filter (LLC group promiscuous mode) must be enabled.
2023                  *
2024                  *               The firmware reserves two CAM entries for SMT-related
2025                  *               multicast addresses, which leaves 62 entries available.
2026                  *               The following code ensures that we're not being asked
2027                  *               to add more than 62 addresses to the CAM.  If we are,
2028                  *               the driver will enable the all multicast filter.
2029                  *               Should the number of multicast addresses drop below
2030                  *               the high water mark, the filter will be disabled and
2031                  *               perfect filtering will be used.
2032                  */
2033
2034                 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2035                         {
2036                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2037                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2038                         }
2039                 else
2040                         {
2041                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2042                         bp->mc_count    = dev->mc_count;                /* Add mc addrs to CAM */
2043                         }
2044
2045                 /* Copy addresses to multicast address table, then update adapter CAM */
2046
2047                 dmi = dev->mc_list;                             /* point to first multicast addr */
2048                 for (i=0; i < bp->mc_count; i++)
2049                         {
2050                         memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2051                         dmi = dmi->next;                        /* point to next multicast addr */
2052                         }
2053                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2054                         {
2055                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2056                         }
2057                 else
2058                         {
2059                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2060                         }
2061                 }
2062
2063         /* Update adapter filters */
2064
2065         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2066                 {
2067                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2068                 }
2069         else
2070                 {
2071                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2072                 }
2073         }
2074
2075 \f
2076 /*
2077  * ===========================
2078  * = dfx_ctl_set_mac_address =
2079  * ===========================
2080  *   
2081  * Overview:
2082  *   Add node address override (unicast address) to adapter
2083  *   CAM and update dev_addr field in device table.
2084  *  
2085  * Returns:
2086  *   None
2087  *       
2088  * Arguments:
2089  *   dev  - pointer to device information
2090  *   addr - pointer to sockaddr structure containing unicast address to add
2091  *
2092  * Functional Description:
2093  *   The adapter supports node address overrides by adding one or more
2094  *   unicast addresses to the adapter CAM.  This is similar to adding
2095  *   multicast addresses.  In this routine we'll update the driver and
2096  *   device structures with the new address, then update the adapter CAM
2097  *   to ensure that the adapter will copy and strip frames destined and
2098  *   sourced by that address.
2099  *
2100  * Return Codes:
2101  *   Always returns zero.
2102  *
2103  * Assumptions:
2104  *   The address pointed to by addr->sa_data is a valid unicast
2105  *   address and is presented in canonical (LSB) format.
2106  *
2107  * Side Effects:
2108  *   On-board adapter CAM is updated.  On-board adapter filters
2109  *   may be updated.
2110  */
2111
2112 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2113         {
2114         DFX_board_t             *bp = dev->priv;
2115         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2116
2117         /* Copy unicast address to driver-maintained structs and update count */
2118
2119         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2120         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2121         bp->uc_count = 1;
2122
2123         /*
2124          * Verify we're not exceeding the CAM size by adding unicast address
2125          *
2126          * Note: It's possible that before entering this routine we've
2127          *       already filled the CAM with 62 multicast addresses.
2128          *               Since we need to place the node address override into
2129          *               the CAM, we have to check to see that we're not
2130          *               exceeding the CAM size.  If we are, we have to enable
2131          *               the LLC group (multicast) promiscuous mode filter as
2132          *               in dfx_ctl_set_multicast_list.
2133          */
2134
2135         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2136                 {
2137                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2138                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2139
2140                 /* Update adapter filters */
2141
2142                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2143                         {
2144                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2145                         }
2146                 else
2147                         {
2148                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2149                         }
2150                 }
2151
2152         /* Update adapter CAM with new unicast address */
2153
2154         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2155                 {
2156                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2157                 }
2158         else
2159                 {
2160                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2161                 }
2162         return(0);                      /* always return zero */
2163         }
2164
2165 \f
2166 /*
2167  * ======================
2168  * = dfx_ctl_update_cam =
2169  * ======================
2170  *
2171  * Overview:
2172  *   Procedure to update adapter CAM (Content Addressable Memory)
2173  *   with desired unicast and multicast address entries.
2174  *
2175  * Returns:
2176  *   Condition code
2177  *
2178  * Arguments:
2179  *   bp - pointer to board information
2180  *
2181  * Functional Description:
2182  *   Updates adapter CAM with current contents of board structure
2183  *   unicast and multicast address tables.  Since there are only 62
2184  *   free entries in CAM, this routine ensures that the command
2185  *   request buffer is not overrun.
2186  *
2187  * Return Codes:
2188  *   DFX_K_SUCCESS - Request succeeded
2189  *   DFX_K_FAILURE - Request failed
2190  *
2191  * Assumptions:
2192  *   All addresses being added (unicast and multicast) are in canonical
2193  *   order.
2194  *
2195  * Side Effects:
2196  *   On-board adapter CAM is updated.
2197  */
2198
2199 static int dfx_ctl_update_cam(DFX_board_t *bp)
2200         {
2201         int                     i;                              /* used as index */
2202         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2203
2204         /*
2205          * Fill in command request information
2206          *
2207          * Note: Even though both the unicast and multicast address
2208          *       table entries are stored as contiguous 6 byte entries,
2209          *               the firmware address filter set command expects each
2210          *               entry to be two longwords (8 bytes total).  We must be
2211          *               careful to only copy the six bytes of each unicast and
2212          *               multicast table entry into each command entry.  This
2213          *               is also why we must first clear the entire command
2214          *               request buffer.
2215          */
2216
2217         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2218         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2219         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2220
2221         /* Now add unicast addresses to command request buffer, if any */
2222
2223         for (i=0; i < (int)bp->uc_count; i++)
2224                 {
2225                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2226                         {
2227                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2228                         p_addr++;                       /* point to next command entry */
2229                         }
2230                 }
2231
2232         /* Now add multicast addresses to command request buffer, if any */
2233
2234         for (i=0; i < (int)bp->mc_count; i++)
2235                 {
2236                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2237                         {
2238                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2239                         p_addr++;                       /* point to next command entry */
2240                         }
2241                 }
2242
2243         /* Issue command to update adapter CAM, then return */
2244
2245         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2246                 return(DFX_K_FAILURE);
2247         return(DFX_K_SUCCESS);
2248         }
2249
2250 \f
2251 /*
2252  * ==========================
2253  * = dfx_ctl_update_filters =
2254  * ==========================
2255  *
2256  * Overview:
2257  *   Procedure to update adapter filters with desired
2258  *   filter settings.
2259  *  
2260  * Returns:
2261  *   Condition code
2262  *       
2263  * Arguments:
2264  *   bp - pointer to board information
2265  *
2266  * Functional Description:
2267  *   Enables or disables filter using current filter settings.
2268  *
2269  * Return Codes:
2270  *   DFX_K_SUCCESS - Request succeeded.
2271  *   DFX_K_FAILURE - Request failed.
2272  *
2273  * Assumptions:
2274  *   We must always pass up packets destined to the broadcast
2275  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2276  *   broadcast filter enabled.
2277  *
2278  * Side Effects:
2279  *   On-board adapter filters are updated.
2280  */
2281
2282 static int dfx_ctl_update_filters(DFX_board_t *bp)
2283         {
2284         int     i = 0;                                  /* used as index */
2285
2286         /* Fill in command request information */
2287
2288         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2289
2290         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2291
2292         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2293         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2294
2295         /* Initialize LLC Individual/Group Promiscuous filter */
2296
2297         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2298         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2299
2300         /* Initialize LLC Group Promiscuous filter */
2301
2302         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2303         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2304
2305         /* Terminate the item code list */
2306
2307         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2308
2309         /* Issue command to update adapter filters, then return */
2310
2311         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2312                 return(DFX_K_FAILURE);
2313         return(DFX_K_SUCCESS);
2314         }
2315
2316 \f
2317 /*
2318  * ======================
2319  * = dfx_hw_dma_cmd_req =
2320  * ======================
2321  *   
2322  * Overview:
2323  *   Sends PDQ DMA command to adapter firmware
2324  *  
2325  * Returns:
2326  *   Condition code
2327  *       
2328  * Arguments:
2329  *   bp - pointer to board information
2330  *
2331  * Functional Description:
2332  *   The command request and response buffers are posted to the adapter in the manner
2333  *   described in the PDQ Port Specification:
2334  *
2335  *              1. Command Response Buffer is posted to adapter.
2336  *              2. Command Request Buffer is posted to adapter.
2337  *              3. Command Request consumer index is polled until it indicates that request
2338  *         buffer has been DMA'd to adapter.
2339  *              4. Command Response consumer index is polled until it indicates that response
2340  *         buffer has been DMA'd from adapter.
2341  *
2342  *   This ordering ensures that a response buffer is already available for the firmware
2343  *   to use once it's done processing the request buffer.
2344  *
2345  * Return Codes:
2346  *   DFX_K_SUCCESS        - DMA command succeeded
2347  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2348  *   DFX_K_HW_TIMEOUT - DMA command timed out
2349  *
2350  * Assumptions:
2351  *   Command request buffer has already been filled with desired DMA command.
2352  *
2353  * Side Effects:
2354  *   None
2355  */
2356
2357 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2358         {
2359         int status;                     /* adapter status */
2360         int timeout_cnt;        /* used in for loops */
2361         
2362         /* Make sure the adapter is in a state that we can issue the DMA command in */
2363         
2364         status = dfx_hw_adap_state_rd(bp);
2365         if ((status == PI_STATE_K_RESET)                ||
2366                 (status == PI_STATE_K_HALTED)           ||
2367                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2368                 (status == PI_STATE_K_UPGRADE))
2369                 return(DFX_K_OUTSTATE);
2370
2371         /* Put response buffer on the command response queue */
2372
2373         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2374                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2375         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2376
2377         /* Bump (and wrap) the producer index and write out to register */
2378
2379         bp->cmd_rsp_reg.index.prod += 1;
2380         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2381         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2382
2383         /* Put request buffer on the command request queue */
2384         
2385         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2386                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2387         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2388
2389         /* Bump (and wrap) the producer index and write out to register */
2390
2391         bp->cmd_req_reg.index.prod += 1;
2392         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2393         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2394
2395         /*
2396          * Here we wait for the command request consumer index to be equal
2397          * to the producer, indicating that the adapter has DMAed the request.
2398          */
2399
2400         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2401                 {
2402                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2403                         break;
2404                 udelay(100);                    /* wait for 100 microseconds */
2405                 }
2406         if (timeout_cnt == 0) 
2407                 return(DFX_K_HW_TIMEOUT);
2408
2409         /* Bump (and wrap) the completion index and write out to register */
2410
2411         bp->cmd_req_reg.index.comp += 1;
2412         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2413         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2414
2415         /*
2416          * Here we wait for the command response consumer index to be equal
2417          * to the producer, indicating that the adapter has DMAed the response.
2418          */
2419
2420         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2421                 {
2422                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2423                         break;
2424                 udelay(100);                    /* wait for 100 microseconds */
2425                 }
2426         if (timeout_cnt == 0) 
2427                 return(DFX_K_HW_TIMEOUT);
2428
2429         /* Bump (and wrap) the completion index and write out to register */
2430
2431         bp->cmd_rsp_reg.index.comp += 1;
2432         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2433         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2434         return(DFX_K_SUCCESS);
2435         }
2436
2437 \f
2438 /*
2439  * ========================
2440  * = dfx_hw_port_ctrl_req =
2441  * ========================
2442  *   
2443  * Overview:
2444  *   Sends PDQ port control command to adapter firmware
2445  *  
2446  * Returns:
2447  *   Host data register value in host_data if ptr is not NULL
2448  *       
2449  * Arguments:
2450  *   bp                 - pointer to board information
2451  *       command        - port control command
2452  *       data_a         - port data A register value
2453  *       data_b         - port data B register value
2454  *       host_data      - ptr to host data register value
2455  *
2456  * Functional Description:
2457  *   Send generic port control command to adapter by writing
2458  *   to various PDQ port registers, then polling for completion.
2459  *
2460  * Return Codes:
2461  *   DFX_K_SUCCESS        - port control command succeeded
2462  *   DFX_K_HW_TIMEOUT - port control command timed out
2463  *
2464  * Assumptions:
2465  *   None
2466  *
2467  * Side Effects:
2468  *   None
2469  */
2470
2471 static int dfx_hw_port_ctrl_req(
2472         DFX_board_t     *bp,
2473         PI_UINT32       command,
2474         PI_UINT32       data_a,
2475         PI_UINT32       data_b,
2476         PI_UINT32       *host_data
2477         )
2478
2479         {
2480         PI_UINT32       port_cmd;               /* Port Control command register value */
2481         int                     timeout_cnt;    /* used in for loops */
2482
2483         /* Set Command Error bit in command longword */
2484         
2485         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2486
2487         /* Issue port command to the adapter */
2488
2489         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2490         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2491         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2492
2493         /* Now wait for command to complete */
2494
2495         if (command == PI_PCTRL_M_BLAST_FLASH)
2496                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2497         else
2498                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2499
2500         for (; timeout_cnt > 0; timeout_cnt--)
2501                 {
2502                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2503                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2504                         break;
2505                 udelay(100);                    /* wait for 100 microseconds */
2506                 }
2507         if (timeout_cnt == 0) 
2508                 return(DFX_K_HW_TIMEOUT);
2509
2510         /*
2511          * If the address of host_data is non-zero, assume caller has supplied a  
2512          * non NULL pointer, and return the contents of the HOST_DATA register in 
2513          * it.
2514          */
2515
2516         if (host_data != NULL)
2517                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2518         return(DFX_K_SUCCESS);
2519         }
2520
2521 \f
2522 /*
2523  * =====================
2524  * = dfx_hw_adap_reset =
2525  * =====================
2526  *   
2527  * Overview:
2528  *   Resets adapter
2529  *  
2530  * Returns:
2531  *   None
2532  *       
2533  * Arguments:
2534  *   bp   - pointer to board information
2535  *   type - type of reset to perform
2536  *
2537  * Functional Description:
2538  *   Issue soft reset to adapter by writing to PDQ Port Reset
2539  *   register.  Use incoming reset type to tell adapter what
2540  *   kind of reset operation to perform.
2541  *
2542  * Return Codes:
2543  *   None
2544  *
2545  * Assumptions:
2546  *   This routine merely issues a soft reset to the adapter.
2547  *   It is expected that after this routine returns, the caller
2548  *   will appropriately poll the Port Status register for the
2549  *   adapter to enter the proper state.
2550  *
2551  * Side Effects:
2552  *   Internal adapter registers are cleared.
2553  */
2554
2555 static void dfx_hw_adap_reset(
2556         DFX_board_t     *bp,
2557         PI_UINT32       type
2558         )
2559
2560         {
2561         /* Set Reset type and assert reset */
2562
2563         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2564         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2565
2566         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2567
2568         udelay(20);
2569
2570         /* Deassert reset */
2571
2572         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2573         }
2574
2575 \f
2576 /*
2577  * ========================
2578  * = dfx_hw_adap_state_rd =
2579  * ========================
2580  *   
2581  * Overview:
2582  *   Returns current adapter state
2583  *  
2584  * Returns:
2585  *   Adapter state per PDQ Port Specification
2586  *       
2587  * Arguments:
2588  *   bp - pointer to board information
2589  *
2590  * Functional Description:
2591  *   Reads PDQ Port Status register and returns adapter state.
2592  *
2593  * Return Codes:
2594  *   None
2595  *
2596  * Assumptions:
2597  *   None
2598  *
2599  * Side Effects:
2600  *   None
2601  */
2602
2603 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2604         {
2605         PI_UINT32 port_status;          /* Port Status register value */
2606
2607         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2608         return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2609         }
2610
2611 \f
2612 /*
2613  * =====================
2614  * = dfx_hw_dma_uninit =
2615  * =====================
2616  *   
2617  * Overview:
2618  *   Brings adapter to DMA_UNAVAILABLE state
2619  *  
2620  * Returns:
2621  *   Condition code
2622  *       
2623  * Arguments:
2624  *   bp   - pointer to board information
2625  *   type - type of reset to perform
2626  *
2627  * Functional Description:
2628  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2629  *              1. Set reset type bit in Port Data A Register then reset adapter.
2630  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2631  *
2632  * Return Codes:
2633  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2634  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2635  *
2636  * Assumptions:
2637  *   None
2638  *
2639  * Side Effects:
2640  *   Internal adapter registers are cleared.
2641  */
2642
2643 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2644         {
2645         int timeout_cnt;        /* used in for loops */
2646
2647         /* Set reset type bit and reset adapter */
2648
2649         dfx_hw_adap_reset(bp, type);
2650
2651         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2652
2653         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2654                 {
2655                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2656                         break;
2657                 udelay(100);                                    /* wait for 100 microseconds */
2658                 }
2659         if (timeout_cnt == 0) 
2660                 return(DFX_K_HW_TIMEOUT);
2661         return(DFX_K_SUCCESS);
2662         }
2663 \f
2664 /*
2665  *      Align an sk_buff to a boundary power of 2
2666  *
2667  */
2668  
2669 static void my_skb_align(struct sk_buff *skb, int n)
2670 {
2671         unsigned long x=(unsigned long)skb->data;       
2672         unsigned long v;
2673         
2674         v=(x+n-1)&~(n-1);       /* Where we want to be */
2675         
2676         skb_reserve(skb, v-x);
2677 }
2678
2679 \f
2680 /*
2681  * ================
2682  * = dfx_rcv_init =
2683  * ================
2684  *   
2685  * Overview:
2686  *   Produces buffers to adapter LLC Host receive descriptor block
2687  *  
2688  * Returns:
2689  *   None
2690  *       
2691  * Arguments:
2692  *   bp - pointer to board information
2693  *   get_buffers - non-zero if buffers to be allocated
2694  *
2695  * Functional Description:
2696  *   This routine can be called during dfx_adap_init() or during an adapter
2697  *       reset.  It initializes the descriptor block and produces all allocated
2698  *   LLC Host queue receive buffers.
2699  *
2700  * Return Codes:
2701  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2702  *   dynamic buffer allocation). If the buffer allocation failed, the
2703  *   already allocated buffers will not be released and the caller should do
2704  *   this.
2705  *
2706  * Assumptions:
2707  *   The PDQ has been reset and the adapter and driver maintained Type 2
2708  *   register indices are cleared.
2709  *
2710  * Side Effects:
2711  *   Receive buffers are posted to the adapter LLC queue and the adapter
2712  *   is notified.
2713  */
2714
2715 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2716         {
2717         int     i, j;                                   /* used in for loop */
2718
2719         /*
2720          *  Since each receive buffer is a single fragment of same length, initialize
2721          *  first longword in each receive descriptor for entire LLC Host descriptor
2722          *  block.  Also initialize second longword in each receive descriptor with
2723          *  physical address of receive buffer.  We'll always allocate receive
2724          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2725          *  block and produce new receive buffers by simply updating the receive
2726          *  producer index.
2727          *
2728          *      Assumptions:
2729          *              To support all shipping versions of PDQ, the receive buffer size
2730          *              must be mod 128 in length and the physical address must be 128 byte
2731          *              aligned.  In other words, bits 0-6 of the length and address must
2732          *              be zero for the following descriptor field entries to be correct on
2733          *              all PDQ-based boards.  We guaranteed both requirements during
2734          *              driver initialization when we allocated memory for the receive buffers.
2735          */
2736
2737         if (get_buffers) {
2738 #ifdef DYNAMIC_BUFFERS
2739         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2740                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2741                 {
2742                         struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2743                         if (!newskb)
2744                                 return -ENOMEM;
2745                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2746                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2747                         /*
2748                          * align to 128 bytes for compatibility with
2749                          * the old EISA boards.
2750                          */
2751                          
2752                         my_skb_align(newskb, 128);
2753                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2754                                 (u32)pci_map_single(bp->pci_dev, newskb->data,
2755                                                     NEW_SKB_SIZE,
2756                                                     PCI_DMA_FROMDEVICE);
2757                         /*
2758                          * p_rcv_buff_va is only used inside the
2759                          * kernel so we put the skb pointer here.
2760                          */
2761                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2762                 }
2763 #else
2764         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2765                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2766                         {
2767                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2768                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2769                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2770                         bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2771                         }
2772 #endif
2773         }
2774
2775         /* Update receive producer and Type 2 register */
2776
2777         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2778         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2779         return 0;
2780         }
2781
2782 \f
2783 /*
2784  * =========================
2785  * = dfx_rcv_queue_process =
2786  * =========================
2787  *   
2788  * Overview:
2789  *   Process received LLC frames.
2790  *  
2791  * Returns:
2792  *   None
2793  *       
2794  * Arguments:
2795  *   bp - pointer to board information
2796  *
2797  * Functional Description:
2798  *   Received LLC frames are processed until there are no more consumed frames.
2799  *   Once all frames are processed, the receive buffers are returned to the
2800  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2801  *   in this routine, because there are a fixed number of receive buffers to
2802  *   process and buffers are not produced until this routine exits and returns
2803  *   to the ISR.
2804  *
2805  * Return Codes:
2806  *   None
2807  *
2808  * Assumptions:
2809  *   None
2810  *
2811  * Side Effects:
2812  *   None
2813  */
2814
2815 static void dfx_rcv_queue_process(
2816         DFX_board_t *bp
2817         )
2818
2819         {
2820         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
2821         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
2822         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
2823         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
2824
2825         /* Service all consumed LLC receive frames */
2826
2827         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
2828         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
2829                 {
2830                 /* Process any errors */
2831
2832                 int entry;
2833
2834                 entry = bp->rcv_xmt_reg.index.rcv_comp;
2835 #ifdef DYNAMIC_BUFFERS
2836                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
2837 #else
2838                 p_buff = (char *) bp->p_rcv_buff_va[entry];
2839 #endif
2840                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
2841
2842                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
2843                         {
2844                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
2845                                 bp->rcv_crc_errors++;
2846                         else
2847                                 bp->rcv_frame_status_errors++;
2848                         }
2849                 else
2850                 {
2851                         int rx_in_place = 0;
2852
2853                         /* The frame was received without errors - verify packet length */
2854
2855                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
2856                         pkt_len -= 4;                           /* subtract 4 byte CRC */
2857                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2858                                 bp->rcv_length_errors++;
2859                         else{
2860 #ifdef DYNAMIC_BUFFERS
2861                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
2862                                         struct sk_buff *newskb;
2863
2864                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
2865                                         if (newskb){
2866                                                 rx_in_place = 1;
2867                                                 
2868                                                 my_skb_align(newskb, 128);
2869                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
2870                                                 pci_unmap_single(bp->pci_dev,
2871                                                         bp->descr_block_virt->rcv_data[entry].long_1,
2872                                                         NEW_SKB_SIZE,
2873                                                         PCI_DMA_FROMDEVICE);
2874                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
2875                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
2876                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
2877                                                         (u32)pci_map_single(bp->pci_dev,
2878                                                                 newskb->data,
2879                                                                 NEW_SKB_SIZE,
2880                                                                 PCI_DMA_FROMDEVICE);
2881                                         } else
2882                                                 skb = NULL;
2883                                 } else
2884 #endif
2885                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
2886                                 if (skb == NULL)
2887                                         {
2888                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
2889                                         bp->rcv_discards++;
2890                                         break;
2891                                         }
2892                                 else {
2893 #ifndef DYNAMIC_BUFFERS
2894                                         if (! rx_in_place)
2895 #endif
2896                                         {
2897                                                 /* Receive buffer allocated, pass receive packet up */
2898
2899                                                 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
2900                                         }
2901                                         
2902                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
2903                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
2904                                         skb->dev = bp->dev;             /* pass up device pointer */
2905
2906                                         skb->protocol = fddi_type_trans(skb, bp->dev);
2907                                         bp->rcv_total_bytes += skb->len;
2908                                         netif_rx(skb);
2909
2910                                         /* Update the rcv counters */
2911                                         bp->dev->last_rx = jiffies;
2912                                         bp->rcv_total_frames++;
2913                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
2914                                                 bp->rcv_multicast_frames++;
2915                                 }
2916                         }
2917                         }
2918
2919                 /*
2920                  * Advance the producer (for recycling) and advance the completion
2921                  * (for servicing received frames).  Note that it is okay to
2922                  * advance the producer without checking that it passes the
2923                  * completion index because they are both advanced at the same
2924                  * rate.
2925                  */
2926
2927                 bp->rcv_xmt_reg.index.rcv_prod += 1;
2928                 bp->rcv_xmt_reg.index.rcv_comp += 1;
2929                 }
2930         }
2931
2932 \f
2933 /*
2934  * =====================
2935  * = dfx_xmt_queue_pkt =
2936  * =====================
2937  *   
2938  * Overview:
2939  *   Queues packets for transmission
2940  *  
2941  * Returns:
2942  *   Condition code
2943  *       
2944  * Arguments:
2945  *   skb - pointer to sk_buff to queue for transmission
2946  *   dev - pointer to device information
2947  *
2948  * Functional Description:
2949  *   Here we assume that an incoming skb transmit request
2950  *   is contained in a single physically contiguous buffer
2951  *   in which the virtual address of the start of packet
2952  *   (skb->data) can be converted to a physical address
2953  *   by using pci_map_single().
2954  *
2955  *   Since the adapter architecture requires a three byte
2956  *   packet request header to prepend the start of packet,
2957  *   we'll write the three byte field immediately prior to
2958  *   the FC byte.  This assumption is valid because we've
2959  *   ensured that dev->hard_header_len includes three pad
2960  *   bytes.  By posting a single fragment to the adapter,
2961  *   we'll reduce the number of descriptor fetches and
2962  *   bus traffic needed to send the request.
2963  *
2964  *   Also, we can't free the skb until after it's been DMA'd
2965  *   out by the adapter, so we'll queue it in the driver and
2966  *   return it in dfx_xmt_done.
2967  *
2968  * Return Codes:
2969  *   0 - driver queued packet, link is unavailable, or skbuff was bad
2970  *       1 - caller should requeue the sk_buff for later transmission
2971  *
2972  * Assumptions:
2973  *       First and foremost, we assume the incoming skb pointer
2974  *   is NOT NULL and is pointing to a valid sk_buff structure.
2975  *
2976  *   The outgoing packet is complete, starting with the
2977  *   frame control byte including the last byte of data,
2978  *   but NOT including the 4 byte CRC.  We'll let the
2979  *   adapter hardware generate and append the CRC.
2980  *
2981  *   The entire packet is stored in one physically
2982  *   contiguous buffer which is not cached and whose
2983  *   32-bit physical address can be determined.
2984  *
2985  *   It's vital that this routine is NOT reentered for the
2986  *   same board and that the OS is not in another section of
2987  *   code (eg. dfx_int_common) for the same board on a
2988  *   different thread.
2989  *
2990  * Side Effects:
2991  *   None
2992  */
2993
2994 static int dfx_xmt_queue_pkt(
2995         struct sk_buff  *skb,
2996         struct net_device       *dev
2997         )
2998
2999         {
3000         DFX_board_t             *bp = dev->priv;
3001         u8                      prod;                           /* local transmit producer index */
3002         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3003         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3004         unsigned long           flags;
3005
3006         netif_stop_queue(dev);
3007         
3008         /*
3009          * Verify that incoming transmit request is OK
3010          *
3011          * Note: The packet size check is consistent with other
3012          *               Linux device drivers, although the correct packet
3013          *               size should be verified before calling the
3014          *               transmit routine.
3015          */
3016
3017         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3018         {
3019                 printk("%s: Invalid packet length - %u bytes\n", 
3020                         dev->name, skb->len);
3021                 bp->xmt_length_errors++;                /* bump error counter */
3022                 netif_wake_queue(dev);
3023                 dev_kfree_skb(skb);
3024                 return(0);                              /* return "success" */
3025         }
3026         /*
3027          * See if adapter link is available, if not, free buffer
3028          *
3029          * Note: If the link isn't available, free buffer and return 0
3030          *               rather than tell the upper layer to requeue the packet.
3031          *               The methodology here is that by the time the link
3032          *               becomes available, the packet to be sent will be
3033          *               fairly stale.  By simply dropping the packet, the
3034          *               higher layer protocols will eventually time out
3035          *               waiting for response packets which it won't receive.
3036          */
3037
3038         if (bp->link_available == PI_K_FALSE)
3039                 {
3040                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3041                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3042                 else
3043                         {
3044                         bp->xmt_discards++;                                     /* bump error counter */
3045                         dev_kfree_skb(skb);             /* free sk_buff now */
3046                         netif_wake_queue(dev);
3047                         return(0);                                                      /* return "success" */
3048                         }
3049                 }
3050
3051         spin_lock_irqsave(&bp->lock, flags);
3052         
3053         /* Get the current producer and the next free xmt data descriptor */
3054
3055         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3056         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3057
3058         /*
3059          * Get pointer to auxiliary queue entry to contain information
3060          * for this packet.
3061          *
3062          * Note: The current xmt producer index will become the
3063          *       current xmt completion index when we complete this
3064          *       packet later on.  So, we'll get the pointer to the
3065          *       next auxiliary queue entry now before we bump the
3066          *       producer index.
3067          */
3068
3069         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3070
3071         /* Write the three PRH bytes immediately before the FC byte */
3072
3073         skb_push(skb,3);
3074         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3075         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3076         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3077
3078         /*
3079          * Write the descriptor with buffer info and bump producer
3080          *
3081          * Note: Since we need to start DMA from the packet request
3082          *               header, we'll add 3 bytes to the DMA buffer length,
3083          *               and we'll determine the physical address of the
3084          *               buffer from the PRH, not skb->data.
3085          *
3086          * Assumptions:
3087          *               1. Packet starts with the frame control (FC) byte
3088          *                  at skb->data.
3089          *               2. The 4-byte CRC is not appended to the buffer or
3090          *                      included in the length.
3091          *               3. Packet length (skb->len) is from FC to end of
3092          *                      data, inclusive.
3093          *               4. The packet length does not exceed the maximum
3094          *                      FDDI LLC frame length of 4491 bytes.
3095          *               5. The entire packet is contained in a physically
3096          *                      contiguous, non-cached, locked memory space
3097          *                      comprised of a single buffer pointed to by
3098          *                      skb->data.
3099          *               6. The physical address of the start of packet
3100          *                      can be determined from the virtual address
3101          *                      by using pci_map_single() and is only 32-bits
3102          *                      wide.
3103          */
3104
3105         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3106         p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data,
3107                                                   skb->len, PCI_DMA_TODEVICE);
3108
3109         /*
3110          * Verify that descriptor is actually available
3111          *
3112          * Note: If descriptor isn't available, return 1 which tells
3113          *       the upper layer to requeue the packet for later
3114          *       transmission.
3115          *
3116          *       We need to ensure that the producer never reaches the
3117          *       completion, except to indicate that the queue is empty.
3118          */
3119
3120         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3121         {
3122                 skb_pull(skb,3);
3123                 spin_unlock_irqrestore(&bp->lock, flags);
3124                 return(1);                      /* requeue packet for later */
3125         }
3126
3127         /*
3128          * Save info for this packet for xmt done indication routine
3129          *
3130          * Normally, we'd save the producer index in the p_xmt_drv_descr
3131          * structure so that we'd have it handy when we complete this
3132          * packet later (in dfx_xmt_done).  However, since the current
3133          * transmit architecture guarantees a single fragment for the
3134          * entire packet, we can simply bump the completion index by
3135          * one (1) for each completed packet.
3136          *
3137          * Note: If this assumption changes and we're presented with
3138          *       an inconsistent number of transmit fragments for packet
3139          *       data, we'll need to modify this code to save the current
3140          *       transmit producer index.
3141          */
3142
3143         p_xmt_drv_descr->p_skb = skb;
3144
3145         /* Update Type 2 register */
3146
3147         bp->rcv_xmt_reg.index.xmt_prod = prod;
3148         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3149         spin_unlock_irqrestore(&bp->lock, flags);
3150         netif_wake_queue(dev);
3151         return(0);                                                      /* packet queued to adapter */
3152         }
3153
3154 \f
3155 /*
3156  * ================
3157  * = dfx_xmt_done =
3158  * ================
3159  *   
3160  * Overview:
3161  *   Processes all frames that have been transmitted.
3162  *  
3163  * Returns:
3164  *   None
3165  *       
3166  * Arguments:
3167  *   bp - pointer to board information
3168  *
3169  * Functional Description:
3170  *   For all consumed transmit descriptors that have not
3171  *   yet been completed, we'll free the skb we were holding
3172  *   onto using dev_kfree_skb and bump the appropriate
3173  *   counters.
3174  *
3175  * Return Codes:
3176  *   None
3177  *
3178  * Assumptions:
3179  *   The Type 2 register is not updated in this routine.  It is
3180  *   assumed that it will be updated in the ISR when dfx_xmt_done
3181  *   returns.
3182  *
3183  * Side Effects:
3184  *   None
3185  */
3186
3187 static int dfx_xmt_done(DFX_board_t *bp)
3188         {
3189         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3190         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3191         u8                      comp;                   /* local transmit completion index */
3192         int                     freed = 0;              /* buffers freed */
3193
3194         /* Service all consumed transmit frames */
3195
3196         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3197         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3198                 {
3199                 /* Get pointer to the transmit driver descriptor block information */
3200
3201                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3202
3203                 /* Increment transmit counters */
3204
3205                 bp->xmt_total_frames++;
3206                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3207
3208                 /* Return skb to operating system */
3209                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3210                 pci_unmap_single(bp->pci_dev,
3211                                  bp->descr_block_virt->xmt_data[comp].long_1,
3212                                  p_xmt_drv_descr->p_skb->len,
3213                                  PCI_DMA_TODEVICE);
3214                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3215
3216                 /*
3217                  * Move to start of next packet by updating completion index
3218                  *
3219                  * Here we assume that a transmit packet request is always
3220                  * serviced by posting one fragment.  We can therefore
3221                  * simplify the completion code by incrementing the
3222                  * completion index by one.  This code will need to be
3223                  * modified if this assumption changes.  See comments
3224                  * in dfx_xmt_queue_pkt for more details.
3225                  */
3226
3227                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3228                 freed++;
3229                 }
3230         return freed;
3231         }
3232
3233 \f
3234 /*
3235  * =================
3236  * = dfx_rcv_flush =
3237  * =================
3238  *   
3239  * Overview:
3240  *   Remove all skb's in the receive ring.
3241  *  
3242  * Returns:
3243  *   None
3244  *       
3245  * Arguments:
3246  *   bp - pointer to board information
3247  *
3248  * Functional Description:
3249  *   Free's all the dynamically allocated skb's that are
3250  *   currently attached to the device receive ring. This
3251  *   function is typically only used when the device is
3252  *   initialized or reinitialized.
3253  *
3254  * Return Codes:
3255  *   None
3256  *
3257  * Side Effects:
3258  *   None
3259  */
3260 #ifdef DYNAMIC_BUFFERS
3261 static void dfx_rcv_flush( DFX_board_t *bp )
3262         {
3263         int i, j;
3264
3265         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3266                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3267                 {
3268                         struct sk_buff *skb;
3269                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3270                         if (skb)
3271                                 dev_kfree_skb(skb);
3272                         bp->p_rcv_buff_va[i+j] = NULL;
3273                 }
3274
3275         }
3276 #else
3277 static inline void dfx_rcv_flush( DFX_board_t *bp )
3278 {
3279 }
3280 #endif /* DYNAMIC_BUFFERS */
3281
3282 /*
3283  * =================
3284  * = dfx_xmt_flush =
3285  * =================
3286  *   
3287  * Overview:
3288  *   Processes all frames whether they've been transmitted
3289  *   or not.
3290  *  
3291  * Returns:
3292  *   None
3293  *       
3294  * Arguments:
3295  *   bp - pointer to board information
3296  *
3297  * Functional Description:
3298  *   For all produced transmit descriptors that have not
3299  *   yet been completed, we'll free the skb we were holding
3300  *   onto using dev_kfree_skb and bump the appropriate
3301  *   counters.  Of course, it's possible that some of
3302  *   these transmit requests actually did go out, but we
3303  *   won't make that distinction here.  Finally, we'll
3304  *   update the consumer index to match the producer.
3305  *
3306  * Return Codes:
3307  *   None
3308  *
3309  * Assumptions:
3310  *   This routine does NOT update the Type 2 register.  It
3311  *   is assumed that this routine is being called during a
3312  *   transmit flush interrupt, or a shutdown or close routine.
3313  *
3314  * Side Effects:
3315  *   None
3316  */
3317
3318 static void dfx_xmt_flush( DFX_board_t *bp )
3319         {
3320         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3321         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3322         u8                      comp;                   /* local transmit completion index */
3323
3324         /* Flush all outstanding transmit frames */
3325
3326         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3327                 {
3328                 /* Get pointer to the transmit driver descriptor block information */
3329
3330                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3331
3332                 /* Return skb to operating system */
3333                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3334                 pci_unmap_single(bp->pci_dev,
3335                                  bp->descr_block_virt->xmt_data[comp].long_1,
3336                                  p_xmt_drv_descr->p_skb->len,
3337                                  PCI_DMA_TODEVICE);
3338                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3339
3340                 /* Increment transmit error counter */
3341
3342                 bp->xmt_discards++;
3343
3344                 /*
3345                  * Move to start of next packet by updating completion index
3346                  *
3347                  * Here we assume that a transmit packet request is always
3348                  * serviced by posting one fragment.  We can therefore
3349                  * simplify the completion code by incrementing the
3350                  * completion index by one.  This code will need to be
3351                  * modified if this assumption changes.  See comments
3352                  * in dfx_xmt_queue_pkt for more details.
3353                  */
3354
3355                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3356                 }
3357
3358         /* Update the transmit consumer index in the consumer block */
3359
3360         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3361         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3362         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3363         }
3364
3365 static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev)
3366 {
3367         DFX_board_t     *bp = dev->priv;
3368         int             alloc_size;             /* total buffer size used */
3369
3370         unregister_netdev(dev);
3371         release_region(dev->base_addr,  pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN );
3372
3373         alloc_size = sizeof(PI_DESCR_BLOCK) +
3374                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3375 #ifndef DYNAMIC_BUFFERS
3376                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3377 #endif
3378                      sizeof(PI_CONSUMER_BLOCK) +
3379                      (PI_ALIGN_K_DESC_BLK - 1);
3380         if (bp->kmalloced)
3381                 pci_free_consistent(pdev, alloc_size, bp->kmalloced,
3382                                     bp->kmalloced_dma);
3383         free_netdev(dev);
3384 }
3385
3386 static void __devexit dfx_remove_one (struct pci_dev *pdev)
3387 {
3388         struct net_device *dev = pci_get_drvdata(pdev);
3389
3390         dfx_remove_one_pci_or_eisa(pdev, dev);
3391         pci_set_drvdata(pdev, NULL);
3392 }
3393
3394 static struct pci_device_id dfx_pci_tbl[] = {
3395         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, },
3396         { 0, }
3397 };
3398 MODULE_DEVICE_TABLE(pci, dfx_pci_tbl);
3399
3400 static struct pci_driver dfx_driver = {
3401         .name           = "defxx",
3402         .probe          = dfx_init_one,
3403         .remove         = __devexit_p(dfx_remove_one),
3404         .id_table       = dfx_pci_tbl,
3405 };
3406
3407 static int dfx_have_pci;
3408 static int dfx_have_eisa;
3409
3410
3411 static void __exit dfx_eisa_cleanup(void)
3412 {
3413         struct net_device *dev = root_dfx_eisa_dev;
3414
3415         while (dev)
3416         {
3417                 struct net_device *tmp;
3418                 DFX_board_t *bp;
3419
3420                 bp = (DFX_board_t*)dev->priv;
3421                 tmp = bp->next;
3422                 dfx_remove_one_pci_or_eisa(NULL, dev);
3423                 dev = tmp;
3424         }
3425 }
3426
3427 static int __init dfx_init(void)
3428 {
3429         int rc_pci, rc_eisa;
3430
3431 /* when a module, this is printed whether or not devices are found in probe */
3432 #ifdef MODULE
3433         printk(version);
3434 #endif
3435
3436         rc_pci = pci_module_init(&dfx_driver);
3437         if (rc_pci >= 0) dfx_have_pci = 1;
3438         
3439         rc_eisa = dfx_eisa_init();
3440         if (rc_eisa >= 0) dfx_have_eisa = 1;
3441
3442         return ((rc_eisa < 0) ? 0 : rc_eisa)  + ((rc_pci < 0) ? 0 : rc_pci); 
3443 }
3444
3445 static void __exit dfx_cleanup(void)
3446 {
3447         if (dfx_have_pci)
3448                 pci_unregister_driver(&dfx_driver);
3449         if (dfx_have_eisa)
3450                 dfx_eisa_cleanup();
3451                 
3452 }       
3453
3454 module_init(dfx_init);
3455 module_exit(dfx_cleanup);
3456 MODULE_LICENSE("GPL");
3457
3458 \f
3459 /*
3460  * Local variables:
3461  * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3462  * End:
3463  */