vserver 2.0 rc7
[linux-2.6.git] / drivers / net / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI EISA and PCI controller families.  Supported adapters include:
14  *
15  *              DEC FDDIcontroller/EISA (DEFEA)
16  *              DEC FDDIcontroller/PCI  (DEFPA)
17  *
18  * The original author:
19  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
20  *
21  * Maintainers:
22  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
23  *
24  * Credits:
25  *   I'd like to thank Patricia Cross for helping me get started with
26  *   Linux, David Davies for a lot of help upgrading and configuring
27  *   my development system and for answering many OS and driver
28  *   development questions, and Alan Cox for recommendations and
29  *   integration help on getting FDDI support into Linux.  LVS
30  *
31  * Driver Architecture:
32  *   The driver architecture is largely based on previous driver work
33  *   for other operating systems.  The upper edge interface and
34  *   functions were largely taken from existing Linux device drivers
35  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
36  *   driver.
37  *
38  *   Adapter Probe -
39  *              The driver scans for supported EISA adapters by reading the
40  *              SLOT ID register for each EISA slot and making a match
41  *              against the expected value.
42  *
43  *   Bus-Specific Initialization -
44  *              This driver currently supports both EISA and PCI controller
45  *              families.  While the custom DMA chip and FDDI logic is similar
46  *              or identical, the bus logic is very different.  After
47  *              initialization, the     only bus-specific differences is in how the
48  *              driver enables and disables interrupts.  Other than that, the
49  *              run-time critical code behaves the same on both families.
50  *              It's important to note that both adapter families are configured
51  *              to I/O map, rather than memory map, the adapter registers.
52  *
53  *   Driver Open/Close -
54  *              In the driver open routine, the driver ISR (interrupt service
55  *              routine) is registered and the adapter is brought to an
56  *              operational state.  In the driver close routine, the opposite
57  *              occurs; the driver ISR is deregistered and the adapter is
58  *              brought to a safe, but closed state.  Users may use consecutive
59  *              commands to bring the adapter up and down as in the following
60  *              example:
61  *                                      ifconfig fddi0 up
62  *                                      ifconfig fddi0 down
63  *                                      ifconfig fddi0 up
64  *
65  *   Driver Shutdown -
66  *              Apparently, there is no shutdown or halt routine support under
67  *              Linux.  This routine would be called during "reboot" or
68  *              "shutdown" to allow the driver to place the adapter in a safe
69  *              state before a warm reboot occurs.  To be really safe, the user
70  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
71  *              to ensure that the adapter DMA engine is taken off-line.  However,
72  *              the current driver code anticipates this problem and always issues
73  *              a soft reset of the adapter     at the beginning of driver initialization.
74  *              A future driver enhancement in this area may occur in 2.1.X where
75  *              Alan indicated that a shutdown handler may be implemented.
76  *
77  *   Interrupt Service Routine -
78  *              The driver supports shared interrupts, so the ISR is registered for
79  *              each board with the appropriate flag and the pointer to that board's
80  *              device structure.  This provides the context during interrupt
81  *              processing to support shared interrupts and multiple boards.
82  *
83  *              Interrupt enabling/disabling can occur at many levels.  At the host
84  *              end, you can disable system interrupts, or disable interrupts at the
85  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
86  *              have a bus-logic chip interrupt enable/disable as well as a DMA
87  *              controller interrupt enable/disable.
88  *
89  *              The driver currently enables and disables adapter interrupts at the
90  *              bus-logic chip and assumes that Linux will take care of clearing or
91  *              acknowledging any host-based interrupt chips.
92  *
93  *   Control Functions -
94  *              Control functions are those used to support functions such as adding
95  *              or deleting multicast addresses, enabling or disabling packet
96  *              reception filters, or other custom/proprietary commands.  Presently,
97  *              the driver supports the "get statistics", "set multicast list", and
98  *              "set mac address" functions defined by Linux.  A list of possible
99  *              enhancements include:
100  *
101  *                              - Custom ioctl interface for executing port interface commands
102  *                              - Custom ioctl interface for adding unicast addresses to
103  *                                adapter CAM (to support bridge functions).
104  *                              - Custom ioctl interface for supporting firmware upgrades.
105  *
106  *   Hardware (port interface) Support Routines -
107  *              The driver function names that start with "dfx_hw_" represent
108  *              low-level port interface routines that are called frequently.  They
109  *              include issuing a DMA or port control command to the adapter,
110  *              resetting the adapter, or reading the adapter state.  Since the
111  *              driver initialization and run-time code must make calls into the
112  *              port interface, these routines were written to be as generic and
113  *              usable as possible.
114  *
115  *   Receive Path -
116  *              The adapter DMA engine supports a 256 entry receive descriptor block
117  *              of which up to 255 entries can be used at any given time.  The
118  *              architecture is a standard producer, consumer, completion model in
119  *              which the driver "produces" receive buffers to the adapter, the
120  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
121  *              and the driver "completes" the receive buffers by servicing the
122  *              incoming packet, then "produces" a new buffer and starts the cycle
123  *              again.  Receive buffers can be fragmented in up to 16 fragments
124  *              (descriptor     entries).  For simplicity, this driver posts
125  *              single-fragment receive buffers of 4608 bytes, then allocates a
126  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
127  *              utilization, a better approach would be to pass up the receive
128  *              buffer (no extra copy) then allocate and post a replacement buffer.
129  *              This is a performance enhancement that should be looked into at
130  *              some point.
131  *
132  *   Transmit Path -
133  *              Like the receive path, the adapter DMA engine supports a 256 entry
134  *              transmit descriptor block of which up to 255 entries can be used at
135  *              any     given time.  Transmit buffers can be fragmented in up to 255
136  *              fragments (descriptor entries).  This driver always posts one
137  *              fragment per transmit packet request.
138  *
139  *              The fragment contains the entire packet from FC to end of data.
140  *              Before posting the buffer to the adapter, the driver sets a three-byte
141  *              packet request header (PRH) which is required by the Motorola MAC chip
142  *              used on the adapters.  The PRH tells the MAC the type of token to
143  *              receive/send, whether or not to generate and append the CRC, whether
144  *              synchronous or asynchronous framing is used, etc.  Since the PRH
145  *              definition is not necessarily consistent across all FDDI chipsets,
146  *              the driver, rather than the common FDDI packet handler routines,
147  *              sets these bytes.
148  *
149  *              To reduce the amount of descriptor fetches needed per transmit request,
150  *              the driver takes advantage of the fact that there are at least three
151  *              bytes available before the skb->data field on the outgoing transmit
152  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
153  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
154  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
155  *              bytes which we'll use to store the PRH.
156  *
157  *              There's a subtle advantage to adding these pad bytes to the
158  *              hard_header_len, it ensures that the data portion of the packet for
159  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
160  *              implementations may not need the extra padding and can start copying
161  *              or DMAing directly from the FC byte which starts at skb->data.  Should
162  *              another driver implementation need ADDITIONAL padding, the net_init.c
163  *              module should be updated and dev->hard_header_len should be increased.
164  *              NOTE: To maintain the alignment on the data portion of the packet,
165  *              dev->hard_header_len should always be evenly divisible by 4 and at
166  *              least 24 bytes in size.
167  *
168  * Modification History:
169  *              Date            Name    Description
170  *              16-Aug-96       LVS             Created.
171  *              20-Aug-96       LVS             Updated dfx_probe so that version information
172  *                                                      string is only displayed if 1 or more cards are
173  *                                                      found.  Changed dfx_rcv_queue_process to copy
174  *                                                      3 NULL bytes before FC to ensure that data is
175  *                                                      longword aligned in receive buffer.
176  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
177  *                                                      LLC group promiscuous mode if multicast list
178  *                                                      is too large.  LLC individual/group promiscuous
179  *                                                      mode is now disabled if IFF_PROMISC flag not set.
180  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
181  *                                                      on Alan Cox recommendation.  Added node address
182  *                                                      override support.
183  *              12-Sep-96       LVS             Reset current address to factory address during
184  *                                                      device open.  Updated transmit path to post a
185  *                                                      single fragment which includes PRH->end of data.
186  *              Mar 2000        AC              Did various cleanups for 2.3.x
187  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
188  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
189  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
190  *              Feb 2001                        Skb allocation fixes
191  *              Feb 2001        davej           PCI enable cleanups.
192  *              04 Aug 2003     macro           Converted to the DMA API.
193  *              14 Aug 2004     macro           Fix device names reported.
194  */
195
196 /* Include files */
197
198 #include <linux/module.h>
199 #include <linux/kernel.h>
200 #include <linux/string.h>
201 #include <linux/errno.h>
202 #include <linux/ioport.h>
203 #include <linux/slab.h>
204 #include <linux/interrupt.h>
205 #include <linux/pci.h>
206 #include <linux/delay.h>
207 #include <linux/init.h>
208 #include <linux/netdevice.h>
209 #include <linux/fddidevice.h>
210 #include <linux/skbuff.h>
211 #include <linux/bitops.h>
212
213 #include <asm/byteorder.h>
214 #include <asm/io.h>
215
216 #include "defxx.h"
217
218 /* Version information string should be updated prior to each new release!  */
219 #define DRV_NAME "defxx"
220 #define DRV_VERSION "v1.07"
221 #define DRV_RELDATE "2004/08/14"
222
223 static char version[] __devinitdata =
224         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
225         "  Lawrence V. Stefani and others\n";
226
227 #define DYNAMIC_BUFFERS 1
228
229 #define SKBUFF_RX_COPYBREAK 200
230 /*
231  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
232  * alignment for compatibility with old EISA boards.
233  */
234 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
235
236 /* Define module-wide (static) routines */
237
238 static void             dfx_bus_init(struct net_device *dev);
239 static void             dfx_bus_config_check(DFX_board_t *bp);
240
241 static int              dfx_driver_init(struct net_device *dev, const char *print_name);
242 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
243
244 static int              dfx_open(struct net_device *dev);
245 static int              dfx_close(struct net_device *dev);
246
247 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
248 static void             dfx_int_type_0_process(DFX_board_t *bp);
249 static void             dfx_int_common(struct net_device *dev);
250 static void             dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
251
252 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
253 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
254 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
255 static int              dfx_ctl_update_cam(DFX_board_t *bp);
256 static int              dfx_ctl_update_filters(DFX_board_t *bp);
257
258 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
259 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
260 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
261 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
262 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
263
264 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
265 static void             dfx_rcv_queue_process(DFX_board_t *bp);
266 static void             dfx_rcv_flush(DFX_board_t *bp);
267
268 static int              dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
269 static int              dfx_xmt_done(DFX_board_t *bp);
270 static void             dfx_xmt_flush(DFX_board_t *bp);
271
272 /* Define module-wide (static) variables */
273
274 static struct net_device *root_dfx_eisa_dev;
275
276 \f
277 /*
278  * =======================
279  * = dfx_port_write_byte =
280  * = dfx_port_read_byte  =
281  * = dfx_port_write_long =
282  * = dfx_port_read_long  =
283  * =======================
284  *   
285  * Overview:
286  *   Routines for reading and writing values from/to adapter
287  *  
288  * Returns:
289  *   None
290  *       
291  * Arguments:
292  *   bp     - pointer to board information
293  *   offset - register offset from base I/O address
294  *   data   - for dfx_port_write_byte and dfx_port_write_long, this
295  *                        is a value to write.
296  *                        for dfx_port_read_byte and dfx_port_read_byte, this
297  *                        is a pointer to store the read value.
298  *
299  * Functional Description:
300  *   These routines perform the correct operation to read or write
301  *   the adapter register.
302  *   
303  *   EISA port block base addresses are based on the slot number in which the
304  *   controller is installed.  For example, if the EISA controller is installed
305  *   in slot 4, the port block base address is 0x4000.  If the controller is
306  *   installed in slot 2, the port block base address is 0x2000, and so on.
307  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
308  *   registers using the register offsets defined in DEFXX.H.
309  *
310  *   PCI port block base addresses are assigned by the PCI BIOS or system
311  *       firmware.  There is one 128 byte port block which can be accessed.  It
312  *   allows for I/O mapping of both PDQ and PFI registers using the register
313  *   offsets defined in DEFXX.H.
314  *
315  * Return Codes:
316  *   None
317  *
318  * Assumptions:
319  *   bp->base_addr is a valid base I/O address for this adapter.
320  *   offset is a valid register offset for this adapter.
321  *
322  * Side Effects:
323  *   Rather than produce macros for these functions, these routines
324  *   are defined using "inline" to ensure that the compiler will
325  *   generate inline code and not waste a procedure call and return.
326  *   This provides all the benefits of macros, but with the
327  *   advantage of strict data type checking.
328  */
329
330 static inline void dfx_port_write_byte(
331         DFX_board_t     *bp,
332         int                     offset,
333         u8                      data
334         )
335
336         {
337         u16 port = bp->base_addr + offset;
338
339         outb(data, port);
340         }
341
342 static inline void dfx_port_read_byte(
343         DFX_board_t     *bp,
344         int                     offset,
345         u8                      *data
346         )
347
348         {
349         u16 port = bp->base_addr + offset;
350
351         *data = inb(port);
352         }
353
354 static inline void dfx_port_write_long(
355         DFX_board_t     *bp,
356         int                     offset,
357         u32                     data
358         )
359
360         {
361         u16 port = bp->base_addr + offset;
362
363         outl(data, port);
364         }
365
366 static inline void dfx_port_read_long(
367         DFX_board_t     *bp,
368         int                     offset,
369         u32                     *data
370         )
371
372         {
373         u16 port = bp->base_addr + offset;
374
375         *data = inl(port);
376         }
377
378 \f
379 /*
380  * =============
381  * = dfx_init_one_pci_or_eisa =
382  * =============
383  *   
384  * Overview:
385  *   Initializes a supported FDDI EISA or PCI controller
386  *  
387  * Returns:
388  *   Condition code
389  *       
390  * Arguments:
391  *   pdev - pointer to pci device information (NULL for EISA)
392  *   ioaddr - pointer to port (NULL for PCI)
393  *
394  * Functional Description:
395  *
396  * Return Codes:
397  *   0           - This device (fddi0, fddi1, etc) configured successfully
398  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
399  *
400  * Assumptions:
401  *   It compiles so it should work :-( (PCI cards do :-)
402  *
403  * Side Effects:
404  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
405  *   initialized and the board resources are read and stored in
406  *   the device structure.
407  */
408 static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
409 {
410         static int version_disp;
411         char *print_name = DRV_NAME;
412         struct net_device *dev;
413         DFX_board_t       *bp;                  /* board pointer */
414         int alloc_size;                         /* total buffer size used */
415         int err;
416
417         if (!version_disp) {    /* display version info if adapter is found */
418                 version_disp = 1;       /* set display flag to TRUE so that */
419                 printk(version);        /* we only display this string ONCE */
420         }
421
422         if (pdev != NULL)
423                 print_name = pci_name(pdev);
424
425         dev = alloc_fddidev(sizeof(*bp));
426         if (!dev) {
427                 printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n",
428                        print_name);
429                 return -ENOMEM;
430         }
431
432         /* Enable PCI device. */
433         if (pdev != NULL) {
434                 err = pci_enable_device (pdev);
435                 if (err) goto err_out;
436                 ioaddr = pci_resource_start (pdev, 1);
437         }
438
439         SET_MODULE_OWNER(dev);
440         SET_NETDEV_DEV(dev, &pdev->dev);
441
442         bp = dev->priv;
443
444         if (!request_region(ioaddr,
445                             pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN,
446                             print_name)) {
447                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
448                        "0x%x @ 0x%lx, aborting\n", print_name,
449                        pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr);
450                 err = -EBUSY;
451                 goto err_out;
452         }
453
454         /* Initialize new device structure */
455
456         dev->base_addr                  = ioaddr; /* save port (I/O) base address */
457
458         dev->get_stats                  = dfx_ctl_get_stats;
459         dev->open                       = dfx_open;
460         dev->stop                       = dfx_close;
461         dev->hard_start_xmit            = dfx_xmt_queue_pkt;
462         dev->set_multicast_list         = dfx_ctl_set_multicast_list;
463         dev->set_mac_address            = dfx_ctl_set_mac_address;
464
465         if (pdev == NULL) {
466                 /* EISA board */
467                 bp->bus_type = DFX_BUS_TYPE_EISA;
468                 bp->next = root_dfx_eisa_dev;
469                 root_dfx_eisa_dev = dev;
470         } else {
471                 /* PCI board */
472                 bp->bus_type = DFX_BUS_TYPE_PCI;
473                 bp->pci_dev = pdev;
474                 pci_set_drvdata (pdev, dev);
475                 pci_set_master (pdev);
476         }
477
478         if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) {
479                 err = -ENODEV;
480                 goto err_out_region;
481         }
482
483         err = register_netdev(dev);
484         if (err)
485                 goto err_out_kfree;
486
487         printk("%s: registered as %s\n", print_name, dev->name);
488         return 0;
489
490 err_out_kfree:
491         alloc_size = sizeof(PI_DESCR_BLOCK) +
492                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
493 #ifndef DYNAMIC_BUFFERS
494                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
495 #endif
496                      sizeof(PI_CONSUMER_BLOCK) +
497                      (PI_ALIGN_K_DESC_BLK - 1);
498         if (bp->kmalloced)
499                 pci_free_consistent(pdev, alloc_size,
500                                     bp->kmalloced, bp->kmalloced_dma);
501 err_out_region:
502         release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
503 err_out:
504         free_netdev(dev);
505         return err;
506 }
507
508 static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
509 {
510         return dfx_init_one_pci_or_eisa(pdev, 0);
511 }
512
513 static int __init dfx_eisa_init(void)
514 {
515         int rc = -ENODEV;
516         int i;                  /* used in for loops */
517         u16 port;               /* temporary I/O (port) address */
518         u32 slot_id;            /* EISA hardware (slot) ID read from adapter */
519
520         DBG_printk("In dfx_eisa_init...\n");
521
522         /* Scan for FDDI EISA controllers */
523
524         for (i=0; i < DFX_MAX_EISA_SLOTS; i++)          /* only scan for up to 16 EISA slots */
525         {
526                 port = (i << 12) + PI_ESIC_K_SLOT_ID;   /* port = I/O address for reading slot ID */
527                 slot_id = inl(port);                                    /* read EISA HW (slot) ID */
528                 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
529                 {
530                         port = (i << 12);                                       /* recalc base addr */
531
532                         if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
533                 }
534         }
535         return rc;
536 }
537 \f
538 /*
539  * ================
540  * = dfx_bus_init =
541  * ================
542  *   
543  * Overview:
544  *   Initializes EISA and PCI controller bus-specific logic.
545  *  
546  * Returns:
547  *   None
548  *       
549  * Arguments:
550  *   dev - pointer to device information
551  *
552  * Functional Description:
553  *   Determine and save adapter IRQ in device table,
554  *   then perform bus-specific logic initialization.
555  *
556  * Return Codes:
557  *   None
558  *
559  * Assumptions:
560  *   dev->base_addr has already been set with the proper
561  *       base I/O address for this device.
562  *
563  * Side Effects:
564  *   Interrupts are enabled at the adapter bus-specific logic.
565  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
566  *   enabled yet.
567  */
568
569 static void __devinit dfx_bus_init(struct net_device *dev)
570 {
571         DFX_board_t *bp = dev->priv;
572         u8                      val;    /* used for I/O read/writes */
573
574         DBG_printk("In dfx_bus_init...\n");
575
576         /*
577          * Initialize base I/O address field in bp structure
578          *
579          * Note: bp->base_addr is the same as dev->base_addr.
580          *               It's useful because often we'll need to read
581          *               or write registers where we already have the
582          *               bp pointer instead of the dev pointer.  Having
583          *               the base address in the bp structure will
584          *               save a pointer dereference.
585          *
586          *               IMPORTANT!! This field must be defined before
587          *               any of the dfx_port_* inline functions are
588          *               called.
589          */
590
591         bp->base_addr = dev->base_addr;
592
593         /* And a pointer back to the net_device struct */
594         bp->dev = dev;
595
596         /* Initialize adapter based on bus type */
597
598         if (bp->bus_type == DFX_BUS_TYPE_EISA)
599                 {
600                 /* Get the interrupt level from the ESIC chip */
601
602                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
603                 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
604                         {
605                         case PI_CONFIG_STAT_0_IRQ_K_9:
606                                 dev->irq = 9;
607                                 break;
608
609                         case PI_CONFIG_STAT_0_IRQ_K_10:
610                                 dev->irq = 10;
611                                 break;
612
613                         case PI_CONFIG_STAT_0_IRQ_K_11:
614                                 dev->irq = 11;
615                                 break;
616
617                         case PI_CONFIG_STAT_0_IRQ_K_15:
618                                 dev->irq = 15;
619                                 break;
620                         }
621
622                 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
623
624                 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
625
626                 /* Set the I/O decode range of the board */
627
628                 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
629                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
630                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
631
632                 /* Enable access to rest of module (including PDQ and packet memory) */
633
634                 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
635
636                 /*
637                  * Map PDQ registers into I/O space.  This is done by clearing a bit
638                  * in Burst Holdoff register.
639                  */
640
641                 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
642                 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
643
644                 /* Enable interrupts at EISA bus interface chip (ESIC) */
645
646                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
647                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
648                 }
649         else
650                 {
651                 struct pci_dev *pdev = bp->pci_dev;
652
653                 /* Get the interrupt level from the PCI Configuration Table */
654
655                 dev->irq = pdev->irq;
656
657                 /* Check Latency Timer and set if less than minimal */
658
659                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
660                 if (val < PFI_K_LAT_TIMER_MIN)  /* if less than min, override with default */
661                         {
662                         val = PFI_K_LAT_TIMER_DEF;
663                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
664                         }
665
666                 /* Enable interrupts at PCI bus interface chip (PFI) */
667
668                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
669                 }
670         }
671
672 \f
673 /*
674  * ========================
675  * = dfx_bus_config_check =
676  * ========================
677  *   
678  * Overview:
679  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
680  *   are illegal, then this routine will set new defaults.
681  *  
682  * Returns:
683  *   None
684  *       
685  * Arguments:
686  *   bp - pointer to board information
687  *
688  * Functional Description:
689  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
690  *   PDQ, and all FDDI PCI controllers, all values are legal.
691  *
692  * Return Codes:
693  *   None
694  *
695  * Assumptions:
696  *   dfx_adap_init has NOT been called yet so burst size and other items have
697  *   not been set.
698  *
699  * Side Effects:
700  *   None
701  */
702
703 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
704 {
705         int     status;                         /* return code from adapter port control call */
706         u32     slot_id;                        /* EISA-bus hardware id (DEC3001, DEC3002,...) */
707         u32     host_data;                      /* LW data returned from port control call */
708
709         DBG_printk("In dfx_bus_config_check...\n");
710
711         /* Configuration check only valid for EISA adapter */
712
713         if (bp->bus_type == DFX_BUS_TYPE_EISA)
714                 {
715                 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
716
717                 /*
718                  * First check if revision 2 EISA controller.  Rev. 1 cards used
719                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
720                  * cards used PDQ revision E, so no workaround needed in this
721                  * case, either.  Only Rev. 2 cards used either Rev. D or E
722                  * chips, so we must verify the chip revision on Rev. 2 cards.
723                  */
724
725                 if (slot_id == DEFEA_PROD_ID_2)
726                         {
727                         /*
728                          * Revision 2 FDDI EISA controller found, so let's check PDQ
729                          * revision of adapter.
730                          */
731
732                         status = dfx_hw_port_ctrl_req(bp,
733                                                                                         PI_PCTRL_M_SUB_CMD,
734                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
735                                                                                         0,
736                                                                                         &host_data);
737                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
738                                 {
739                                 /*
740                                  * Either we couldn't determine the PDQ revision, or
741                                  * we determined that it is at revision D.  In either case,
742                                  * we need to implement the workaround.
743                                  */
744
745                                 /* Ensure that the burst size is set to 8 longwords or less */
746
747                                 switch (bp->burst_size)
748                                         {
749                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
750                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
751                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
752                                                 break;
753
754                                         default:
755                                                 break;
756                                         }
757
758                                 /* Ensure that full-duplex mode is not enabled */
759
760                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
761                                 }
762                         }
763                 }
764         }
765
766 \f
767 /*
768  * ===================
769  * = dfx_driver_init =
770  * ===================
771  *   
772  * Overview:
773  *   Initializes remaining adapter board structure information
774  *   and makes sure adapter is in a safe state prior to dfx_open().
775  *  
776  * Returns:
777  *   Condition code
778  *       
779  * Arguments:
780  *   dev - pointer to device information
781  *   print_name - printable device name
782  *
783  * Functional Description:
784  *   This function allocates additional resources such as the host memory
785  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
786  *       Remaining bus initialization steps are also completed.  The adapter
787  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
788  *   must call dfx_open() to open the adapter and bring it on-line.
789  *
790  * Return Codes:
791  *   DFX_K_SUCCESS      - initialization succeeded
792  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
793  *                                              or read adapter MAC address
794  *
795  * Assumptions:
796  *   Memory allocated from pci_alloc_consistent() call is physically
797  *   contiguous, locked memory.
798  *
799  * Side Effects:
800  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
801  *   returning from this routine.
802  */
803
804 static int __devinit dfx_driver_init(struct net_device *dev,
805                                      const char *print_name)
806 {
807         DFX_board_t *bp = dev->priv;
808         int                     alloc_size;                     /* total buffer size needed */
809         char            *top_v, *curr_v;        /* virtual addrs into memory block */
810         dma_addr_t              top_p, curr_p;          /* physical addrs into memory block */
811         u32                     data;                           /* host data register value */
812
813         DBG_printk("In dfx_driver_init...\n");
814
815         /* Initialize bus-specific hardware registers */
816
817         dfx_bus_init(dev);
818
819         /*
820          * Initialize default values for configurable parameters
821          *
822          * Note: All of these parameters are ones that a user may
823          *       want to customize.  It'd be nice to break these
824          *               out into Space.c or someplace else that's more
825          *               accessible/understandable than this file.
826          */
827
828         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
829         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
830         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
831         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
832
833         /*
834          * Ensure that HW configuration is OK
835          *
836          * Note: Depending on the hardware revision, we may need to modify
837          *       some of the configurable parameters to workaround hardware
838          *       limitations.  We'll perform this configuration check AFTER
839          *       setting the parameters to their default values.
840          */
841
842         dfx_bus_config_check(bp);
843
844         /* Disable PDQ interrupts first */
845
846         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
847
848         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
849
850         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
851
852         /*  Read the factory MAC address from the adapter then save it */
853
854         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
855                                  &data) != DFX_K_SUCCESS) {
856                 printk("%s: Could not read adapter factory MAC address!\n",
857                        print_name);
858                 return(DFX_K_FAILURE);
859         }
860         memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
861
862         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
863                                  &data) != DFX_K_SUCCESS) {
864                 printk("%s: Could not read adapter factory MAC address!\n",
865                        print_name);
866                 return(DFX_K_FAILURE);
867         }
868         memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
869
870         /*
871          * Set current address to factory address
872          *
873          * Note: Node address override support is handled through
874          *       dfx_ctl_set_mac_address.
875          */
876
877         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
878         if (bp->bus_type == DFX_BUS_TYPE_EISA)
879                 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, "
880                        "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
881                        print_name, dev->base_addr, dev->irq,
882                        dev->dev_addr[0], dev->dev_addr[1],
883                        dev->dev_addr[2], dev->dev_addr[3],
884                        dev->dev_addr[4], dev->dev_addr[5]);
885         else
886                 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, "
887                        "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
888                        print_name, dev->base_addr, dev->irq,
889                        dev->dev_addr[0], dev->dev_addr[1],
890                        dev->dev_addr[2], dev->dev_addr[3],
891                        dev->dev_addr[4], dev->dev_addr[5]);
892
893         /*
894          * Get memory for descriptor block, consumer block, and other buffers
895          * that need to be DMA read or written to by the adapter.
896          */
897
898         alloc_size = sizeof(PI_DESCR_BLOCK) +
899                                         PI_CMD_REQ_K_SIZE_MAX +
900                                         PI_CMD_RSP_K_SIZE_MAX +
901 #ifndef DYNAMIC_BUFFERS
902                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
903 #endif
904                                         sizeof(PI_CONSUMER_BLOCK) +
905                                         (PI_ALIGN_K_DESC_BLK - 1);
906         bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size,
907                                                      &bp->kmalloced_dma);
908         if (top_v == NULL) {
909                 printk("%s: Could not allocate memory for host buffers "
910                        "and structures!\n", print_name);
911                 return(DFX_K_FAILURE);
912         }
913         memset(top_v, 0, alloc_size);   /* zero out memory before continuing */
914         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
915
916         /*
917          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
918          *  plus the amount of memory needed was allocated.  The physical address
919          *      is now 8K aligned.  By carving up the memory in a specific order,
920          *  we'll guarantee the alignment requirements for all other structures.
921          *
922          *  Note: If the assumptions change regarding the non-paged, non-cached,
923          *                physically contiguous nature of the memory block or the address
924          *                alignments, then we'll need to implement a different algorithm
925          *                for allocating the needed memory.
926          */
927
928         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
929         curr_v = top_v + (curr_p - top_p);
930
931         /* Reserve space for descriptor block */
932
933         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
934         bp->descr_block_phys = curr_p;
935         curr_v += sizeof(PI_DESCR_BLOCK);
936         curr_p += sizeof(PI_DESCR_BLOCK);
937
938         /* Reserve space for command request buffer */
939
940         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
941         bp->cmd_req_phys = curr_p;
942         curr_v += PI_CMD_REQ_K_SIZE_MAX;
943         curr_p += PI_CMD_REQ_K_SIZE_MAX;
944
945         /* Reserve space for command response buffer */
946
947         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
948         bp->cmd_rsp_phys = curr_p;
949         curr_v += PI_CMD_RSP_K_SIZE_MAX;
950         curr_p += PI_CMD_RSP_K_SIZE_MAX;
951
952         /* Reserve space for the LLC host receive queue buffers */
953
954         bp->rcv_block_virt = curr_v;
955         bp->rcv_block_phys = curr_p;
956
957 #ifndef DYNAMIC_BUFFERS
958         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
959         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
960 #endif
961
962         /* Reserve space for the consumer block */
963
964         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
965         bp->cons_block_phys = curr_p;
966
967         /* Display virtual and physical addresses if debug driver */
968
969         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
970                    print_name,
971                    (long)bp->descr_block_virt, bp->descr_block_phys);
972         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
973                    print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
974         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
975                    print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
976         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
977                    print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
978         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
979                    print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
980
981         return(DFX_K_SUCCESS);
982 }
983
984 \f
985 /*
986  * =================
987  * = dfx_adap_init =
988  * =================
989  *   
990  * Overview:
991  *   Brings the adapter to the link avail/link unavailable state.
992  *  
993  * Returns:
994  *   Condition code
995  *       
996  * Arguments:
997  *   bp - pointer to board information
998  *   get_buffers - non-zero if buffers to be allocated
999  *
1000  * Functional Description:
1001  *   Issues the low-level firmware/hardware calls necessary to bring
1002  *   the adapter up, or to properly reset and restore adapter during
1003  *   run-time.
1004  *
1005  * Return Codes:
1006  *   DFX_K_SUCCESS - Adapter brought up successfully
1007  *   DFX_K_FAILURE - Adapter initialization failed
1008  *
1009  * Assumptions:
1010  *   bp->reset_type should be set to a valid reset type value before
1011  *   calling this routine.
1012  *
1013  * Side Effects:
1014  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1015  *   upon a successful return of this routine.
1016  */
1017
1018 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1019         {
1020         DBG_printk("In dfx_adap_init...\n");
1021
1022         /* Disable PDQ interrupts first */
1023
1024         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1025
1026         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1027
1028         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1029                 {
1030                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1031                 return(DFX_K_FAILURE);
1032                 }
1033
1034         /*
1035          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1036          * so we'll acknowledge all Type 0 interrupts now before continuing.
1037          */
1038
1039         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1040
1041         /*
1042          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1043          *
1044          * Note: We only need to clear host copies of these registers.  The PDQ reset
1045          *       takes care of the on-board register values.
1046          */
1047
1048         bp->cmd_req_reg.lword   = 0;
1049         bp->cmd_rsp_reg.lword   = 0;
1050         bp->rcv_xmt_reg.lword   = 0;
1051
1052         /* Clear consumer block before going to DMA_AVAILABLE state */
1053
1054         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1055
1056         /* Initialize the DMA Burst Size */
1057
1058         if (dfx_hw_port_ctrl_req(bp,
1059                                                         PI_PCTRL_M_SUB_CMD,
1060                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1061                                                         bp->burst_size,
1062                                                         NULL) != DFX_K_SUCCESS)
1063                 {
1064                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1065                 return(DFX_K_FAILURE);
1066                 }
1067
1068         /*
1069          * Set base address of Consumer Block
1070          *
1071          * Assumption: 32-bit physical address of consumer block is 64 byte
1072          *                         aligned.  That is, bits 0-5 of the address must be zero.
1073          */
1074
1075         if (dfx_hw_port_ctrl_req(bp,
1076                                                         PI_PCTRL_M_CONS_BLOCK,
1077                                                         bp->cons_block_phys,
1078                                                         0,
1079                                                         NULL) != DFX_K_SUCCESS)
1080                 {
1081                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1082                 return(DFX_K_FAILURE);
1083                 }
1084
1085         /*
1086          * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
1087          *
1088          * Note: We also set the literal and data swapping requirements in this
1089          *           command.  Since this driver presently runs on Intel platforms
1090          *               which are Little Endian, we'll tell the adapter to byte swap
1091          *               data only.  This code will need to change when we support
1092          *               Big Endian systems (eg. PowerPC).
1093          *
1094          * Assumption: 32-bit physical address of descriptor block is 8Kbyte
1095          *             aligned.  That is, bits 0-12 of the address must be zero.
1096          */
1097
1098         if (dfx_hw_port_ctrl_req(bp,
1099                                                         PI_PCTRL_M_INIT,
1100                                                         (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
1101                                                         0,
1102                                                         NULL) != DFX_K_SUCCESS)
1103                 {
1104                 printk("%s: Could not set descriptor block address!\n", bp->dev->name);
1105                 return(DFX_K_FAILURE);
1106                 }
1107
1108         /* Set transmit flush timeout value */
1109
1110         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1111         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1112         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1113         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1114         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1115         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1116                 {
1117                 printk("%s: DMA command request failed!\n", bp->dev->name);
1118                 return(DFX_K_FAILURE);
1119                 }
1120
1121         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1122
1123         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1124         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1125         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1126         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1127         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1128         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1129         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1130         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1131         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1132                 {
1133                 printk("%s: DMA command request failed!\n", bp->dev->name);
1134                 return(DFX_K_FAILURE);
1135                 }
1136
1137         /* Initialize adapter CAM */
1138
1139         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1140                 {
1141                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1142                 return(DFX_K_FAILURE);
1143                 }
1144
1145         /* Initialize adapter filters */
1146
1147         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1148                 {
1149                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1150                 return(DFX_K_FAILURE);
1151                 }
1152
1153         /*
1154          * Remove any existing dynamic buffers (i.e. if the adapter is being
1155          * reinitialized)
1156          */
1157
1158         if (get_buffers)
1159                 dfx_rcv_flush(bp);
1160
1161         /* Initialize receive descriptor block and produce buffers */
1162
1163         if (dfx_rcv_init(bp, get_buffers))
1164                 {
1165                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1166                 if (get_buffers)
1167                         dfx_rcv_flush(bp);
1168                 return(DFX_K_FAILURE);
1169                 }
1170
1171         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1172
1173         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1174         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1175                 {
1176                 printk("%s: Start command failed\n", bp->dev->name);
1177                 if (get_buffers)
1178                         dfx_rcv_flush(bp);
1179                 return(DFX_K_FAILURE);
1180                 }
1181
1182         /* Initialization succeeded, reenable PDQ interrupts */
1183
1184         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1185         return(DFX_K_SUCCESS);
1186         }
1187
1188 \f
1189 /*
1190  * ============
1191  * = dfx_open =
1192  * ============
1193  *   
1194  * Overview:
1195  *   Opens the adapter
1196  *  
1197  * Returns:
1198  *   Condition code
1199  *       
1200  * Arguments:
1201  *   dev - pointer to device information
1202  *
1203  * Functional Description:
1204  *   This function brings the adapter to an operational state.
1205  *
1206  * Return Codes:
1207  *   0           - Adapter was successfully opened
1208  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1209  *
1210  * Assumptions:
1211  *   This routine should only be called for a device that was
1212  *   initialized successfully.
1213  *
1214  * Side Effects:
1215  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1216  *   if the open is successful.
1217  */
1218
1219 static int dfx_open(struct net_device *dev)
1220 {
1221         int ret;
1222         DFX_board_t     *bp = dev->priv;
1223
1224         DBG_printk("In dfx_open...\n");
1225         
1226         /* Register IRQ - support shared interrupts by passing device ptr */
1227
1228         ret = request_irq(dev->irq, (void *)dfx_interrupt, SA_SHIRQ, dev->name, dev);
1229         if (ret) {
1230                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1231                 return ret;
1232         }
1233
1234         /*
1235          * Set current address to factory MAC address
1236          *
1237          * Note: We've already done this step in dfx_driver_init.
1238          *       However, it's possible that a user has set a node
1239          *               address override, then closed and reopened the
1240          *               adapter.  Unless we reset the device address field
1241          *               now, we'll continue to use the existing modified
1242          *               address.
1243          */
1244
1245         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1246
1247         /* Clear local unicast/multicast address tables and counts */
1248
1249         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1250         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1251         bp->uc_count = 0;
1252         bp->mc_count = 0;
1253
1254         /* Disable promiscuous filter settings */
1255
1256         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1257         bp->group_prom          = PI_FSTATE_K_BLOCK;
1258
1259         spin_lock_init(&bp->lock);
1260
1261         /* Reset and initialize adapter */
1262
1263         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1264         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1265         {
1266                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1267                 free_irq(dev->irq, dev);
1268                 return -EAGAIN;
1269         }
1270
1271         /* Set device structure info */
1272         netif_start_queue(dev);
1273         return(0);
1274 }
1275
1276 \f
1277 /*
1278  * =============
1279  * = dfx_close =
1280  * =============
1281  *   
1282  * Overview:
1283  *   Closes the device/module.
1284  *  
1285  * Returns:
1286  *   Condition code
1287  *       
1288  * Arguments:
1289  *   dev - pointer to device information
1290  *
1291  * Functional Description:
1292  *   This routine closes the adapter and brings it to a safe state.
1293  *   The interrupt service routine is deregistered with the OS.
1294  *   The adapter can be opened again with another call to dfx_open().
1295  *
1296  * Return Codes:
1297  *   Always return 0.
1298  *
1299  * Assumptions:
1300  *   No further requests for this adapter are made after this routine is
1301  *   called.  dfx_open() can be called to reset and reinitialize the
1302  *   adapter.
1303  *
1304  * Side Effects:
1305  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1306  *   routine.
1307  */
1308
1309 static int dfx_close(struct net_device *dev)
1310 {
1311         DFX_board_t     *bp = dev->priv;
1312
1313         DBG_printk("In dfx_close...\n");
1314
1315         /* Disable PDQ interrupts first */
1316
1317         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1318
1319         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1320
1321         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1322
1323         /*
1324          * Flush any pending transmit buffers
1325          *
1326          * Note: It's important that we flush the transmit buffers
1327          *               BEFORE we clear our copy of the Type 2 register.
1328          *               Otherwise, we'll have no idea how many buffers
1329          *               we need to free.
1330          */
1331
1332         dfx_xmt_flush(bp);
1333
1334         /*
1335          * Clear Type 1 and Type 2 registers after adapter reset
1336          *
1337          * Note: Even though we're closing the adapter, it's
1338          *       possible that an interrupt will occur after
1339          *               dfx_close is called.  Without some assurance to
1340          *               the contrary we want to make sure that we don't
1341          *               process receive and transmit LLC frames and update
1342          *               the Type 2 register with bad information.
1343          */
1344
1345         bp->cmd_req_reg.lword   = 0;
1346         bp->cmd_rsp_reg.lword   = 0;
1347         bp->rcv_xmt_reg.lword   = 0;
1348
1349         /* Clear consumer block for the same reason given above */
1350
1351         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1352
1353         /* Release all dynamically allocate skb in the receive ring. */
1354
1355         dfx_rcv_flush(bp);
1356
1357         /* Clear device structure flags */
1358
1359         netif_stop_queue(dev);
1360         
1361         /* Deregister (free) IRQ */
1362
1363         free_irq(dev->irq, dev);
1364         
1365         return(0);
1366 }
1367
1368 \f
1369 /*
1370  * ======================
1371  * = dfx_int_pr_halt_id =
1372  * ======================
1373  *   
1374  * Overview:
1375  *   Displays halt id's in string form.
1376  *  
1377  * Returns:
1378  *   None
1379  *       
1380  * Arguments:
1381  *   bp - pointer to board information
1382  *
1383  * Functional Description:
1384  *   Determine current halt id and display appropriate string.
1385  *
1386  * Return Codes:
1387  *   None
1388  *
1389  * Assumptions:
1390  *   None
1391  *
1392  * Side Effects:
1393  *   None
1394  */
1395
1396 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1397         {
1398         PI_UINT32       port_status;                    /* PDQ port status register value */
1399         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1400
1401         /* Read the latest port status */
1402
1403         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1404
1405         /* Display halt state transition information */
1406
1407         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1408         switch (halt_id)
1409                 {
1410                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1411                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1412                         break;
1413
1414                 case PI_HALT_ID_K_PARITY_ERROR:
1415                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1416                         break;
1417
1418                 case PI_HALT_ID_K_HOST_DIR_HALT:
1419                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1420                         break;
1421
1422                 case PI_HALT_ID_K_SW_FAULT:
1423                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1424                         break;
1425
1426                 case PI_HALT_ID_K_HW_FAULT:
1427                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1428                         break;
1429
1430                 case PI_HALT_ID_K_PC_TRACE:
1431                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1432                         break;
1433
1434                 case PI_HALT_ID_K_DMA_ERROR:
1435                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1436                         break;
1437
1438                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1439                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1440                         break;
1441
1442                 case PI_HALT_ID_K_BUS_EXCEPTION:
1443                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1444                         break;
1445
1446                 default:
1447                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1448                         break;
1449                 }
1450         }
1451
1452 \f
1453 /*
1454  * ==========================
1455  * = dfx_int_type_0_process =
1456  * ==========================
1457  *   
1458  * Overview:
1459  *   Processes Type 0 interrupts.
1460  *  
1461  * Returns:
1462  *   None
1463  *       
1464  * Arguments:
1465  *   bp - pointer to board information
1466  *
1467  * Functional Description:
1468  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1469  *   is a serious fault on the adapter, then an error message is displayed
1470  *   and the adapter is reset.
1471  *
1472  *   One tricky potential timing window is the rapid succession of "link avail"
1473  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1474  *   interrupt must be done before reading the state from the Port Status
1475  *   register.  This is true because a state change could occur after reading
1476  *   the data, but before acknowledging the interrupt.  If this state change
1477  *   does happen, it would be lost because the driver is using the old state,
1478  *   and it will never know about the new state because it subsequently
1479  *   acknowledges the state change interrupt.
1480  *
1481  *          INCORRECT                                      CORRECT
1482  *      read type 0 int reasons                   read type 0 int reasons
1483  *      read adapter state                        ack type 0 interrupts
1484  *      ack type 0 interrupts                     read adapter state
1485  *      ... process interrupt ...                 ... process interrupt ...
1486  *
1487  * Return Codes:
1488  *   None
1489  *
1490  * Assumptions:
1491  *   None
1492  *
1493  * Side Effects:
1494  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1495  *   or if the port status indicates that the adapter is halted.  The driver
1496  *   is responsible for reinitializing the adapter with the current CAM
1497  *   contents and adapter filter settings.
1498  */
1499
1500 static void dfx_int_type_0_process(DFX_board_t  *bp)
1501
1502         {
1503         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1504         PI_UINT32       state;                          /* current adap state (from port status) */
1505
1506         /*
1507          * Read host interrupt Type 0 register to determine which Type 0
1508          * interrupts are pending.  Immediately write it back out to clear
1509          * those interrupts.
1510          */
1511
1512         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1513         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1514
1515         /* Check for Type 0 error interrupts */
1516
1517         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1518                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1519                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1520                 {
1521                 /* Check for Non-Existent Memory error */
1522
1523                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1524                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1525
1526                 /* Check for Packet Memory Parity error */
1527
1528                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1529                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1530
1531                 /* Check for Host Bus Parity error */
1532
1533                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1534                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1535
1536                 /* Reset adapter and bring it back on-line */
1537
1538                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1539                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1540                 printk("%s: Resetting adapter...\n", bp->dev->name);
1541                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1542                         {
1543                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1544                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1545                         return;
1546                         }
1547                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1548                 return;
1549                 }
1550
1551         /* Check for transmit flush interrupt */
1552
1553         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1554                 {
1555                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1556
1557                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1558                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1559                 (void) dfx_hw_port_ctrl_req(bp,
1560                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1561                                                                         0,
1562                                                                         0,
1563                                                                         NULL);
1564                 }
1565
1566         /* Check for adapter state change */
1567
1568         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1569                 {                     
1570                 /* Get latest adapter state */
1571
1572                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1573                 if (state == PI_STATE_K_HALTED)
1574                         {
1575                         /*
1576                          * Adapter has transitioned to HALTED state, try to reset
1577                          * adapter to bring it back on-line.  If reset fails,
1578                          * leave the adapter in the broken state.
1579                          */
1580
1581                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1582                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1583
1584                         /* Reset adapter and bring it back on-line */
1585
1586                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1587                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1588                         printk("%s: Resetting adapter...\n", bp->dev->name);
1589                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1590                                 {
1591                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1592                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1593                                 return;
1594                                 }
1595                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1596                         }
1597                 else if (state == PI_STATE_K_LINK_AVAIL)
1598                         {
1599                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1600                         }
1601                 }
1602         }
1603
1604 \f
1605 /*
1606  * ==================
1607  * = dfx_int_common =
1608  * ==================
1609  *   
1610  * Overview:
1611  *   Interrupt service routine (ISR)
1612  *  
1613  * Returns:
1614  *   None
1615  *       
1616  * Arguments:
1617  *   bp - pointer to board information
1618  *
1619  * Functional Description:
1620  *   This is the ISR which processes incoming adapter interrupts.
1621  *
1622  * Return Codes:
1623  *   None
1624  *
1625  * Assumptions:
1626  *   This routine assumes PDQ interrupts have not been disabled.
1627  *   When interrupts are disabled at the PDQ, the Port Status register
1628  *   is automatically cleared.  This routine uses the Port Status
1629  *   register value to determine whether a Type 0 interrupt occurred,
1630  *   so it's important that adapter interrupts are not normally
1631  *   enabled/disabled at the PDQ.
1632  *
1633  *   It's vital that this routine is NOT reentered for the
1634  *   same board and that the OS is not in another section of
1635  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1636  *   different thread.
1637  *
1638  * Side Effects:
1639  *   Pending interrupts are serviced.  Depending on the type of
1640  *   interrupt, acknowledging and clearing the interrupt at the
1641  *   PDQ involves writing a register to clear the interrupt bit
1642  *   or updating completion indices.
1643  */
1644
1645 static void dfx_int_common(struct net_device *dev)
1646 {
1647         DFX_board_t     *bp = dev->priv;
1648         PI_UINT32       port_status;            /* Port Status register */
1649
1650         /* Process xmt interrupts - frequent case, so always call this routine */
1651
1652         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1653                 netif_wake_queue(dev);
1654
1655         /* Process rcv interrupts - frequent case, so always call this routine */
1656
1657         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1658
1659         /*
1660          * Transmit and receive producer and completion indices are updated on the
1661          * adapter by writing to the Type 2 Producer register.  Since the frequent
1662          * case is that we'll be processing either LLC transmit or receive buffers,
1663          * we'll optimize I/O writes by doing a single register write here.
1664          */
1665
1666         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1667
1668         /* Read PDQ Port Status register to find out which interrupts need processing */
1669
1670         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1671
1672         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1673
1674         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1675                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1676         }
1677
1678 \f
1679 /*
1680  * =================
1681  * = dfx_interrupt =
1682  * =================
1683  *   
1684  * Overview:
1685  *   Interrupt processing routine
1686  *  
1687  * Returns:
1688  *   None
1689  *       
1690  * Arguments:
1691  *   irq        - interrupt vector
1692  *   dev_id     - pointer to device information
1693  *       regs   - pointer to registers structure
1694  *
1695  * Functional Description:
1696  *   This routine calls the interrupt processing routine for this adapter.  It
1697  *   disables and reenables adapter interrupts, as appropriate.  We can support
1698  *   shared interrupts since the incoming dev_id pointer provides our device
1699  *   structure context.
1700  *
1701  * Return Codes:
1702  *   None
1703  *
1704  * Assumptions:
1705  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1706  *   on Intel-based systems) is done by the operating system outside this
1707  *   routine.
1708  *
1709  *       System interrupts are enabled through this call.
1710  *
1711  * Side Effects:
1712  *   Interrupts are disabled, then reenabled at the adapter.
1713  */
1714
1715 static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1716         {
1717         struct net_device       *dev = dev_id;
1718         DFX_board_t             *bp;    /* private board structure pointer */
1719         u8                              tmp;    /* used for disabling/enabling ints */
1720
1721         /* Get board pointer only if device structure is valid */
1722
1723         bp = dev->priv;
1724
1725         spin_lock(&bp->lock);
1726         
1727         /* See if we're already servicing an interrupt */
1728
1729         /* Service adapter interrupts */
1730
1731         if (bp->bus_type == DFX_BUS_TYPE_PCI)
1732                 {
1733                 /* Disable PDQ-PFI interrupts at PFI */
1734
1735                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB);
1736
1737                 /* Call interrupt service routine for this adapter */
1738
1739                 dfx_int_common(dev);
1740
1741                 /* Clear PDQ interrupt status bit and reenable interrupts */
1742
1743                 dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT);
1744                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1745                                         (PFI_MODE_M_PDQ_INT_ENB + PFI_MODE_M_DMA_ENB));
1746                 }
1747         else
1748                 {
1749                 /* Disable interrupts at the ESIC */
1750
1751                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1752                 tmp &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1753                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1754
1755                 /* Call interrupt service routine for this adapter */
1756
1757                 dfx_int_common(dev);
1758
1759                 /* Reenable interrupts at the ESIC */
1760
1761                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1762                 tmp |= PI_CONFIG_STAT_0_M_INT_ENB;
1763                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1764                 }
1765
1766         spin_unlock(&bp->lock);
1767         }
1768
1769 \f
1770 /*
1771  * =====================
1772  * = dfx_ctl_get_stats =
1773  * =====================
1774  *   
1775  * Overview:
1776  *   Get statistics for FDDI adapter
1777  *  
1778  * Returns:
1779  *   Pointer to FDDI statistics structure
1780  *       
1781  * Arguments:
1782  *   dev - pointer to device information
1783  *
1784  * Functional Description:
1785  *   Gets current MIB objects from adapter, then
1786  *   returns FDDI statistics structure as defined
1787  *   in if_fddi.h.
1788  *
1789  *   Note: Since the FDDI statistics structure is
1790  *   still new and the device structure doesn't
1791  *   have an FDDI-specific get statistics handler,
1792  *   we'll return the FDDI statistics structure as
1793  *   a pointer to an Ethernet statistics structure.
1794  *   That way, at least the first part of the statistics
1795  *   structure can be decoded properly, and it allows
1796  *   "smart" applications to perform a second cast to
1797  *   decode the FDDI-specific statistics.
1798  *
1799  *   We'll have to pay attention to this routine as the
1800  *   device structure becomes more mature and LAN media
1801  *   independent.
1802  *
1803  * Return Codes:
1804  *   None
1805  *
1806  * Assumptions:
1807  *   None
1808  *
1809  * Side Effects:
1810  *   None
1811  */
1812
1813 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1814         {
1815         DFX_board_t     *bp = dev->priv;
1816
1817         /* Fill the bp->stats structure with driver-maintained counters */
1818
1819         bp->stats.gen.rx_packets = bp->rcv_total_frames;
1820         bp->stats.gen.tx_packets = bp->xmt_total_frames;
1821         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
1822         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
1823         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
1824                                    bp->rcv_frame_status_errors +
1825                                    bp->rcv_length_errors;
1826         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
1827         bp->stats.gen.rx_dropped = bp->rcv_discards;
1828         bp->stats.gen.tx_dropped = bp->xmt_discards;
1829         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
1830         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
1831
1832         /* Get FDDI SMT MIB objects */
1833
1834         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
1835         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1836                 return((struct net_device_stats *) &bp->stats);
1837
1838         /* Fill the bp->stats structure with the SMT MIB object values */
1839
1840         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
1841         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
1842         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
1843         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
1844         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
1845         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
1846         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
1847         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1848         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1849         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1850         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1851         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1852         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1853         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1854         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1855         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1856         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1857         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1858         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1859         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1860         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1861         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1862         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1863         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1864         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1865         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1866         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1867         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1868         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1869         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1870         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1871         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1872         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1873         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1874         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1875         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1876         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1877         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1878         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1879         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1880         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1881         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1882         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1883         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1884         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1885         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1886         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1887         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1888         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1889         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1890         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1891         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1892         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1893         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1894         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1895         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1896         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1897         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1898         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1899         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1900         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1901         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1902         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1903         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1904         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1905         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1906         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1907         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1908         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1909         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1910         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1911         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1912         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1913         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1914         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1915         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1916         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1917         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1918         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1919         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1920         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1921         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1922         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1923         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1924         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1925         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1926         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1927         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1928         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1929         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1930         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1931         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1932
1933         /* Get FDDI counters */
1934
1935         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
1936         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1937                 return((struct net_device_stats *) &bp->stats);
1938
1939         /* Fill the bp->stats structure with the FDDI counter values */
1940
1941         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1942         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1943         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1944         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1945         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1946         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1947         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1948         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1949         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1950         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1951         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1952
1953         return((struct net_device_stats *) &bp->stats);
1954         }
1955
1956 \f
1957 /*
1958  * ==============================
1959  * = dfx_ctl_set_multicast_list =
1960  * ==============================
1961  *   
1962  * Overview:
1963  *   Enable/Disable LLC frame promiscuous mode reception
1964  *   on the adapter and/or update multicast address table.
1965  *  
1966  * Returns:
1967  *   None
1968  *       
1969  * Arguments:
1970  *   dev - pointer to device information
1971  *
1972  * Functional Description:
1973  *   This routine follows a fairly simple algorithm for setting the
1974  *   adapter filters and CAM:
1975  *
1976  *              if IFF_PROMISC flag is set
1977  *                      enable LLC individual/group promiscuous mode
1978  *              else
1979  *                      disable LLC individual/group promiscuous mode
1980  *                      if number of incoming multicast addresses >
1981  *                                      (CAM max size - number of unicast addresses in CAM)
1982  *                              enable LLC group promiscuous mode
1983  *                              set driver-maintained multicast address count to zero
1984  *                      else
1985  *                              disable LLC group promiscuous mode
1986  *                              set driver-maintained multicast address count to incoming count
1987  *                      update adapter CAM
1988  *              update adapter filters
1989  *
1990  * Return Codes:
1991  *   None
1992  *
1993  * Assumptions:
1994  *   Multicast addresses are presented in canonical (LSB) format.
1995  *
1996  * Side Effects:
1997  *   On-board adapter CAM and filters are updated.
1998  */
1999
2000 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2001         {
2002         DFX_board_t                     *bp = dev->priv;
2003         int                                     i;                      /* used as index in for loop */
2004         struct dev_mc_list      *dmi;           /* ptr to multicast addr entry */
2005
2006         /* Enable LLC frame promiscuous mode, if necessary */
2007
2008         if (dev->flags & IFF_PROMISC)
2009                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2010
2011         /* Else, update multicast address table */
2012
2013         else
2014                 {
2015                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2016                 /*
2017                  * Check whether incoming multicast address count exceeds table size
2018                  *
2019                  * Note: The adapters utilize an on-board 64 entry CAM for
2020                  *       supporting perfect filtering of multicast packets
2021                  *               and bridge functions when adding unicast addresses.
2022                  *               There is no hash function available.  To support
2023                  *               additional multicast addresses, the all multicast
2024                  *               filter (LLC group promiscuous mode) must be enabled.
2025                  *
2026                  *               The firmware reserves two CAM entries for SMT-related
2027                  *               multicast addresses, which leaves 62 entries available.
2028                  *               The following code ensures that we're not being asked
2029                  *               to add more than 62 addresses to the CAM.  If we are,
2030                  *               the driver will enable the all multicast filter.
2031                  *               Should the number of multicast addresses drop below
2032                  *               the high water mark, the filter will be disabled and
2033                  *               perfect filtering will be used.
2034                  */
2035
2036                 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2037                         {
2038                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2039                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2040                         }
2041                 else
2042                         {
2043                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2044                         bp->mc_count    = dev->mc_count;                /* Add mc addrs to CAM */
2045                         }
2046
2047                 /* Copy addresses to multicast address table, then update adapter CAM */
2048
2049                 dmi = dev->mc_list;                             /* point to first multicast addr */
2050                 for (i=0; i < bp->mc_count; i++)
2051                         {
2052                         memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2053                         dmi = dmi->next;                        /* point to next multicast addr */
2054                         }
2055                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2056                         {
2057                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2058                         }
2059                 else
2060                         {
2061                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2062                         }
2063                 }
2064
2065         /* Update adapter filters */
2066
2067         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2068                 {
2069                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2070                 }
2071         else
2072                 {
2073                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2074                 }
2075         }
2076
2077 \f
2078 /*
2079  * ===========================
2080  * = dfx_ctl_set_mac_address =
2081  * ===========================
2082  *   
2083  * Overview:
2084  *   Add node address override (unicast address) to adapter
2085  *   CAM and update dev_addr field in device table.
2086  *  
2087  * Returns:
2088  *   None
2089  *       
2090  * Arguments:
2091  *   dev  - pointer to device information
2092  *   addr - pointer to sockaddr structure containing unicast address to add
2093  *
2094  * Functional Description:
2095  *   The adapter supports node address overrides by adding one or more
2096  *   unicast addresses to the adapter CAM.  This is similar to adding
2097  *   multicast addresses.  In this routine we'll update the driver and
2098  *   device structures with the new address, then update the adapter CAM
2099  *   to ensure that the adapter will copy and strip frames destined and
2100  *   sourced by that address.
2101  *
2102  * Return Codes:
2103  *   Always returns zero.
2104  *
2105  * Assumptions:
2106  *   The address pointed to by addr->sa_data is a valid unicast
2107  *   address and is presented in canonical (LSB) format.
2108  *
2109  * Side Effects:
2110  *   On-board adapter CAM is updated.  On-board adapter filters
2111  *   may be updated.
2112  */
2113
2114 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2115         {
2116         DFX_board_t             *bp = dev->priv;
2117         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2118
2119         /* Copy unicast address to driver-maintained structs and update count */
2120
2121         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2122         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2123         bp->uc_count = 1;
2124
2125         /*
2126          * Verify we're not exceeding the CAM size by adding unicast address
2127          *
2128          * Note: It's possible that before entering this routine we've
2129          *       already filled the CAM with 62 multicast addresses.
2130          *               Since we need to place the node address override into
2131          *               the CAM, we have to check to see that we're not
2132          *               exceeding the CAM size.  If we are, we have to enable
2133          *               the LLC group (multicast) promiscuous mode filter as
2134          *               in dfx_ctl_set_multicast_list.
2135          */
2136
2137         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2138                 {
2139                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2140                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2141
2142                 /* Update adapter filters */
2143
2144                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2145                         {
2146                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2147                         }
2148                 else
2149                         {
2150                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2151                         }
2152                 }
2153
2154         /* Update adapter CAM with new unicast address */
2155
2156         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2157                 {
2158                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2159                 }
2160         else
2161                 {
2162                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2163                 }
2164         return(0);                      /* always return zero */
2165         }
2166
2167 \f
2168 /*
2169  * ======================
2170  * = dfx_ctl_update_cam =
2171  * ======================
2172  *
2173  * Overview:
2174  *   Procedure to update adapter CAM (Content Addressable Memory)
2175  *   with desired unicast and multicast address entries.
2176  *
2177  * Returns:
2178  *   Condition code
2179  *
2180  * Arguments:
2181  *   bp - pointer to board information
2182  *
2183  * Functional Description:
2184  *   Updates adapter CAM with current contents of board structure
2185  *   unicast and multicast address tables.  Since there are only 62
2186  *   free entries in CAM, this routine ensures that the command
2187  *   request buffer is not overrun.
2188  *
2189  * Return Codes:
2190  *   DFX_K_SUCCESS - Request succeeded
2191  *   DFX_K_FAILURE - Request failed
2192  *
2193  * Assumptions:
2194  *   All addresses being added (unicast and multicast) are in canonical
2195  *   order.
2196  *
2197  * Side Effects:
2198  *   On-board adapter CAM is updated.
2199  */
2200
2201 static int dfx_ctl_update_cam(DFX_board_t *bp)
2202         {
2203         int                     i;                              /* used as index */
2204         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2205
2206         /*
2207          * Fill in command request information
2208          *
2209          * Note: Even though both the unicast and multicast address
2210          *       table entries are stored as contiguous 6 byte entries,
2211          *               the firmware address filter set command expects each
2212          *               entry to be two longwords (8 bytes total).  We must be
2213          *               careful to only copy the six bytes of each unicast and
2214          *               multicast table entry into each command entry.  This
2215          *               is also why we must first clear the entire command
2216          *               request buffer.
2217          */
2218
2219         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2220         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2221         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2222
2223         /* Now add unicast addresses to command request buffer, if any */
2224
2225         for (i=0; i < (int)bp->uc_count; i++)
2226                 {
2227                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2228                         {
2229                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2230                         p_addr++;                       /* point to next command entry */
2231                         }
2232                 }
2233
2234         /* Now add multicast addresses to command request buffer, if any */
2235
2236         for (i=0; i < (int)bp->mc_count; i++)
2237                 {
2238                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2239                         {
2240                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2241                         p_addr++;                       /* point to next command entry */
2242                         }
2243                 }
2244
2245         /* Issue command to update adapter CAM, then return */
2246
2247         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2248                 return(DFX_K_FAILURE);
2249         return(DFX_K_SUCCESS);
2250         }
2251
2252 \f
2253 /*
2254  * ==========================
2255  * = dfx_ctl_update_filters =
2256  * ==========================
2257  *
2258  * Overview:
2259  *   Procedure to update adapter filters with desired
2260  *   filter settings.
2261  *  
2262  * Returns:
2263  *   Condition code
2264  *       
2265  * Arguments:
2266  *   bp - pointer to board information
2267  *
2268  * Functional Description:
2269  *   Enables or disables filter using current filter settings.
2270  *
2271  * Return Codes:
2272  *   DFX_K_SUCCESS - Request succeeded.
2273  *   DFX_K_FAILURE - Request failed.
2274  *
2275  * Assumptions:
2276  *   We must always pass up packets destined to the broadcast
2277  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2278  *   broadcast filter enabled.
2279  *
2280  * Side Effects:
2281  *   On-board adapter filters are updated.
2282  */
2283
2284 static int dfx_ctl_update_filters(DFX_board_t *bp)
2285         {
2286         int     i = 0;                                  /* used as index */
2287
2288         /* Fill in command request information */
2289
2290         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2291
2292         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2293
2294         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2295         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2296
2297         /* Initialize LLC Individual/Group Promiscuous filter */
2298
2299         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2300         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2301
2302         /* Initialize LLC Group Promiscuous filter */
2303
2304         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2305         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2306
2307         /* Terminate the item code list */
2308
2309         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2310
2311         /* Issue command to update adapter filters, then return */
2312
2313         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2314                 return(DFX_K_FAILURE);
2315         return(DFX_K_SUCCESS);
2316         }
2317
2318 \f
2319 /*
2320  * ======================
2321  * = dfx_hw_dma_cmd_req =
2322  * ======================
2323  *   
2324  * Overview:
2325  *   Sends PDQ DMA command to adapter firmware
2326  *  
2327  * Returns:
2328  *   Condition code
2329  *       
2330  * Arguments:
2331  *   bp - pointer to board information
2332  *
2333  * Functional Description:
2334  *   The command request and response buffers are posted to the adapter in the manner
2335  *   described in the PDQ Port Specification:
2336  *
2337  *              1. Command Response Buffer is posted to adapter.
2338  *              2. Command Request Buffer is posted to adapter.
2339  *              3. Command Request consumer index is polled until it indicates that request
2340  *         buffer has been DMA'd to adapter.
2341  *              4. Command Response consumer index is polled until it indicates that response
2342  *         buffer has been DMA'd from adapter.
2343  *
2344  *   This ordering ensures that a response buffer is already available for the firmware
2345  *   to use once it's done processing the request buffer.
2346  *
2347  * Return Codes:
2348  *   DFX_K_SUCCESS        - DMA command succeeded
2349  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2350  *   DFX_K_HW_TIMEOUT - DMA command timed out
2351  *
2352  * Assumptions:
2353  *   Command request buffer has already been filled with desired DMA command.
2354  *
2355  * Side Effects:
2356  *   None
2357  */
2358
2359 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2360         {
2361         int status;                     /* adapter status */
2362         int timeout_cnt;        /* used in for loops */
2363         
2364         /* Make sure the adapter is in a state that we can issue the DMA command in */
2365         
2366         status = dfx_hw_adap_state_rd(bp);
2367         if ((status == PI_STATE_K_RESET)                ||
2368                 (status == PI_STATE_K_HALTED)           ||
2369                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2370                 (status == PI_STATE_K_UPGRADE))
2371                 return(DFX_K_OUTSTATE);
2372
2373         /* Put response buffer on the command response queue */
2374
2375         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2376                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2377         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2378
2379         /* Bump (and wrap) the producer index and write out to register */
2380
2381         bp->cmd_rsp_reg.index.prod += 1;
2382         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2383         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2384
2385         /* Put request buffer on the command request queue */
2386         
2387         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2388                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2389         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2390
2391         /* Bump (and wrap) the producer index and write out to register */
2392
2393         bp->cmd_req_reg.index.prod += 1;
2394         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2395         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2396
2397         /*
2398          * Here we wait for the command request consumer index to be equal
2399          * to the producer, indicating that the adapter has DMAed the request.
2400          */
2401
2402         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2403                 {
2404                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2405                         break;
2406                 udelay(100);                    /* wait for 100 microseconds */
2407                 }
2408         if (timeout_cnt == 0) 
2409                 return(DFX_K_HW_TIMEOUT);
2410
2411         /* Bump (and wrap) the completion index and write out to register */
2412
2413         bp->cmd_req_reg.index.comp += 1;
2414         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2415         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2416
2417         /*
2418          * Here we wait for the command response consumer index to be equal
2419          * to the producer, indicating that the adapter has DMAed the response.
2420          */
2421
2422         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2423                 {
2424                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2425                         break;
2426                 udelay(100);                    /* wait for 100 microseconds */
2427                 }
2428         if (timeout_cnt == 0) 
2429                 return(DFX_K_HW_TIMEOUT);
2430
2431         /* Bump (and wrap) the completion index and write out to register */
2432
2433         bp->cmd_rsp_reg.index.comp += 1;
2434         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2435         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2436         return(DFX_K_SUCCESS);
2437         }
2438
2439 \f
2440 /*
2441  * ========================
2442  * = dfx_hw_port_ctrl_req =
2443  * ========================
2444  *   
2445  * Overview:
2446  *   Sends PDQ port control command to adapter firmware
2447  *  
2448  * Returns:
2449  *   Host data register value in host_data if ptr is not NULL
2450  *       
2451  * Arguments:
2452  *   bp                 - pointer to board information
2453  *       command        - port control command
2454  *       data_a         - port data A register value
2455  *       data_b         - port data B register value
2456  *       host_data      - ptr to host data register value
2457  *
2458  * Functional Description:
2459  *   Send generic port control command to adapter by writing
2460  *   to various PDQ port registers, then polling for completion.
2461  *
2462  * Return Codes:
2463  *   DFX_K_SUCCESS        - port control command succeeded
2464  *   DFX_K_HW_TIMEOUT - port control command timed out
2465  *
2466  * Assumptions:
2467  *   None
2468  *
2469  * Side Effects:
2470  *   None
2471  */
2472
2473 static int dfx_hw_port_ctrl_req(
2474         DFX_board_t     *bp,
2475         PI_UINT32       command,
2476         PI_UINT32       data_a,
2477         PI_UINT32       data_b,
2478         PI_UINT32       *host_data
2479         )
2480
2481         {
2482         PI_UINT32       port_cmd;               /* Port Control command register value */
2483         int                     timeout_cnt;    /* used in for loops */
2484
2485         /* Set Command Error bit in command longword */
2486         
2487         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2488
2489         /* Issue port command to the adapter */
2490
2491         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2492         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2493         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2494
2495         /* Now wait for command to complete */
2496
2497         if (command == PI_PCTRL_M_BLAST_FLASH)
2498                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2499         else
2500                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2501
2502         for (; timeout_cnt > 0; timeout_cnt--)
2503                 {
2504                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2505                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2506                         break;
2507                 udelay(100);                    /* wait for 100 microseconds */
2508                 }
2509         if (timeout_cnt == 0) 
2510                 return(DFX_K_HW_TIMEOUT);
2511
2512         /*
2513          * If the address of host_data is non-zero, assume caller has supplied a  
2514          * non NULL pointer, and return the contents of the HOST_DATA register in 
2515          * it.
2516          */
2517
2518         if (host_data != NULL)
2519                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2520         return(DFX_K_SUCCESS);
2521         }
2522
2523 \f
2524 /*
2525  * =====================
2526  * = dfx_hw_adap_reset =
2527  * =====================
2528  *   
2529  * Overview:
2530  *   Resets adapter
2531  *  
2532  * Returns:
2533  *   None
2534  *       
2535  * Arguments:
2536  *   bp   - pointer to board information
2537  *   type - type of reset to perform
2538  *
2539  * Functional Description:
2540  *   Issue soft reset to adapter by writing to PDQ Port Reset
2541  *   register.  Use incoming reset type to tell adapter what
2542  *   kind of reset operation to perform.
2543  *
2544  * Return Codes:
2545  *   None
2546  *
2547  * Assumptions:
2548  *   This routine merely issues a soft reset to the adapter.
2549  *   It is expected that after this routine returns, the caller
2550  *   will appropriately poll the Port Status register for the
2551  *   adapter to enter the proper state.
2552  *
2553  * Side Effects:
2554  *   Internal adapter registers are cleared.
2555  */
2556
2557 static void dfx_hw_adap_reset(
2558         DFX_board_t     *bp,
2559         PI_UINT32       type
2560         )
2561
2562         {
2563         /* Set Reset type and assert reset */
2564
2565         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2566         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2567
2568         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2569
2570         udelay(20);
2571
2572         /* Deassert reset */
2573
2574         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2575         }
2576
2577 \f
2578 /*
2579  * ========================
2580  * = dfx_hw_adap_state_rd =
2581  * ========================
2582  *   
2583  * Overview:
2584  *   Returns current adapter state
2585  *  
2586  * Returns:
2587  *   Adapter state per PDQ Port Specification
2588  *       
2589  * Arguments:
2590  *   bp - pointer to board information
2591  *
2592  * Functional Description:
2593  *   Reads PDQ Port Status register and returns adapter state.
2594  *
2595  * Return Codes:
2596  *   None
2597  *
2598  * Assumptions:
2599  *   None
2600  *
2601  * Side Effects:
2602  *   None
2603  */
2604
2605 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2606         {
2607         PI_UINT32 port_status;          /* Port Status register value */
2608
2609         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2610         return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2611         }
2612
2613 \f
2614 /*
2615  * =====================
2616  * = dfx_hw_dma_uninit =
2617  * =====================
2618  *   
2619  * Overview:
2620  *   Brings adapter to DMA_UNAVAILABLE state
2621  *  
2622  * Returns:
2623  *   Condition code
2624  *       
2625  * Arguments:
2626  *   bp   - pointer to board information
2627  *   type - type of reset to perform
2628  *
2629  * Functional Description:
2630  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2631  *              1. Set reset type bit in Port Data A Register then reset adapter.
2632  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2633  *
2634  * Return Codes:
2635  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2636  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2637  *
2638  * Assumptions:
2639  *   None
2640  *
2641  * Side Effects:
2642  *   Internal adapter registers are cleared.
2643  */
2644
2645 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2646         {
2647         int timeout_cnt;        /* used in for loops */
2648
2649         /* Set reset type bit and reset adapter */
2650
2651         dfx_hw_adap_reset(bp, type);
2652
2653         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2654
2655         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2656                 {
2657                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2658                         break;
2659                 udelay(100);                                    /* wait for 100 microseconds */
2660                 }
2661         if (timeout_cnt == 0) 
2662                 return(DFX_K_HW_TIMEOUT);
2663         return(DFX_K_SUCCESS);
2664         }
2665 \f
2666 /*
2667  *      Align an sk_buff to a boundary power of 2
2668  *
2669  */
2670  
2671 static void my_skb_align(struct sk_buff *skb, int n)
2672 {
2673         unsigned long x = (unsigned long)skb->data;
2674         unsigned long v;
2675         
2676         v = ALIGN(x, n);        /* Where we want to be */
2677         
2678         skb_reserve(skb, v - x);
2679 }
2680
2681 \f
2682 /*
2683  * ================
2684  * = dfx_rcv_init =
2685  * ================
2686  *   
2687  * Overview:
2688  *   Produces buffers to adapter LLC Host receive descriptor block
2689  *  
2690  * Returns:
2691  *   None
2692  *       
2693  * Arguments:
2694  *   bp - pointer to board information
2695  *   get_buffers - non-zero if buffers to be allocated
2696  *
2697  * Functional Description:
2698  *   This routine can be called during dfx_adap_init() or during an adapter
2699  *       reset.  It initializes the descriptor block and produces all allocated
2700  *   LLC Host queue receive buffers.
2701  *
2702  * Return Codes:
2703  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2704  *   dynamic buffer allocation). If the buffer allocation failed, the
2705  *   already allocated buffers will not be released and the caller should do
2706  *   this.
2707  *
2708  * Assumptions:
2709  *   The PDQ has been reset and the adapter and driver maintained Type 2
2710  *   register indices are cleared.
2711  *
2712  * Side Effects:
2713  *   Receive buffers are posted to the adapter LLC queue and the adapter
2714  *   is notified.
2715  */
2716
2717 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2718         {
2719         int     i, j;                                   /* used in for loop */
2720
2721         /*
2722          *  Since each receive buffer is a single fragment of same length, initialize
2723          *  first longword in each receive descriptor for entire LLC Host descriptor
2724          *  block.  Also initialize second longword in each receive descriptor with
2725          *  physical address of receive buffer.  We'll always allocate receive
2726          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2727          *  block and produce new receive buffers by simply updating the receive
2728          *  producer index.
2729          *
2730          *      Assumptions:
2731          *              To support all shipping versions of PDQ, the receive buffer size
2732          *              must be mod 128 in length and the physical address must be 128 byte
2733          *              aligned.  In other words, bits 0-6 of the length and address must
2734          *              be zero for the following descriptor field entries to be correct on
2735          *              all PDQ-based boards.  We guaranteed both requirements during
2736          *              driver initialization when we allocated memory for the receive buffers.
2737          */
2738
2739         if (get_buffers) {
2740 #ifdef DYNAMIC_BUFFERS
2741         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2742                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2743                 {
2744                         struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2745                         if (!newskb)
2746                                 return -ENOMEM;
2747                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2748                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2749                         /*
2750                          * align to 128 bytes for compatibility with
2751                          * the old EISA boards.
2752                          */
2753                          
2754                         my_skb_align(newskb, 128);
2755                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2756                                 (u32)pci_map_single(bp->pci_dev, newskb->data,
2757                                                     NEW_SKB_SIZE,
2758                                                     PCI_DMA_FROMDEVICE);
2759                         /*
2760                          * p_rcv_buff_va is only used inside the
2761                          * kernel so we put the skb pointer here.
2762                          */
2763                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2764                 }
2765 #else
2766         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2767                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2768                         {
2769                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2770                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2771                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2772                         bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2773                         }
2774 #endif
2775         }
2776
2777         /* Update receive producer and Type 2 register */
2778
2779         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2780         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2781         return 0;
2782         }
2783
2784 \f
2785 /*
2786  * =========================
2787  * = dfx_rcv_queue_process =
2788  * =========================
2789  *   
2790  * Overview:
2791  *   Process received LLC frames.
2792  *  
2793  * Returns:
2794  *   None
2795  *       
2796  * Arguments:
2797  *   bp - pointer to board information
2798  *
2799  * Functional Description:
2800  *   Received LLC frames are processed until there are no more consumed frames.
2801  *   Once all frames are processed, the receive buffers are returned to the
2802  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2803  *   in this routine, because there are a fixed number of receive buffers to
2804  *   process and buffers are not produced until this routine exits and returns
2805  *   to the ISR.
2806  *
2807  * Return Codes:
2808  *   None
2809  *
2810  * Assumptions:
2811  *   None
2812  *
2813  * Side Effects:
2814  *   None
2815  */
2816
2817 static void dfx_rcv_queue_process(
2818         DFX_board_t *bp
2819         )
2820
2821         {
2822         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
2823         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
2824         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
2825         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
2826
2827         /* Service all consumed LLC receive frames */
2828
2829         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
2830         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
2831                 {
2832                 /* Process any errors */
2833
2834                 int entry;
2835
2836                 entry = bp->rcv_xmt_reg.index.rcv_comp;
2837 #ifdef DYNAMIC_BUFFERS
2838                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
2839 #else
2840                 p_buff = (char *) bp->p_rcv_buff_va[entry];
2841 #endif
2842                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
2843
2844                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
2845                         {
2846                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
2847                                 bp->rcv_crc_errors++;
2848                         else
2849                                 bp->rcv_frame_status_errors++;
2850                         }
2851                 else
2852                 {
2853                         int rx_in_place = 0;
2854
2855                         /* The frame was received without errors - verify packet length */
2856
2857                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
2858                         pkt_len -= 4;                           /* subtract 4 byte CRC */
2859                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2860                                 bp->rcv_length_errors++;
2861                         else{
2862 #ifdef DYNAMIC_BUFFERS
2863                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
2864                                         struct sk_buff *newskb;
2865
2866                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
2867                                         if (newskb){
2868                                                 rx_in_place = 1;
2869                                                 
2870                                                 my_skb_align(newskb, 128);
2871                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
2872                                                 pci_unmap_single(bp->pci_dev,
2873                                                         bp->descr_block_virt->rcv_data[entry].long_1,
2874                                                         NEW_SKB_SIZE,
2875                                                         PCI_DMA_FROMDEVICE);
2876                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
2877                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
2878                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
2879                                                         (u32)pci_map_single(bp->pci_dev,
2880                                                                 newskb->data,
2881                                                                 NEW_SKB_SIZE,
2882                                                                 PCI_DMA_FROMDEVICE);
2883                                         } else
2884                                                 skb = NULL;
2885                                 } else
2886 #endif
2887                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
2888                                 if (skb == NULL)
2889                                         {
2890                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
2891                                         bp->rcv_discards++;
2892                                         break;
2893                                         }
2894                                 else {
2895 #ifndef DYNAMIC_BUFFERS
2896                                         if (! rx_in_place)
2897 #endif
2898                                         {
2899                                                 /* Receive buffer allocated, pass receive packet up */
2900
2901                                                 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
2902                                         }
2903                                         
2904                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
2905                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
2906                                         skb->dev = bp->dev;             /* pass up device pointer */
2907
2908                                         skb->protocol = fddi_type_trans(skb, bp->dev);
2909                                         bp->rcv_total_bytes += skb->len;
2910                                         netif_rx(skb);
2911
2912                                         /* Update the rcv counters */
2913                                         bp->dev->last_rx = jiffies;
2914                                         bp->rcv_total_frames++;
2915                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
2916                                                 bp->rcv_multicast_frames++;
2917                                 }
2918                         }
2919                         }
2920
2921                 /*
2922                  * Advance the producer (for recycling) and advance the completion
2923                  * (for servicing received frames).  Note that it is okay to
2924                  * advance the producer without checking that it passes the
2925                  * completion index because they are both advanced at the same
2926                  * rate.
2927                  */
2928
2929                 bp->rcv_xmt_reg.index.rcv_prod += 1;
2930                 bp->rcv_xmt_reg.index.rcv_comp += 1;
2931                 }
2932         }
2933
2934 \f
2935 /*
2936  * =====================
2937  * = dfx_xmt_queue_pkt =
2938  * =====================
2939  *   
2940  * Overview:
2941  *   Queues packets for transmission
2942  *  
2943  * Returns:
2944  *   Condition code
2945  *       
2946  * Arguments:
2947  *   skb - pointer to sk_buff to queue for transmission
2948  *   dev - pointer to device information
2949  *
2950  * Functional Description:
2951  *   Here we assume that an incoming skb transmit request
2952  *   is contained in a single physically contiguous buffer
2953  *   in which the virtual address of the start of packet
2954  *   (skb->data) can be converted to a physical address
2955  *   by using pci_map_single().
2956  *
2957  *   Since the adapter architecture requires a three byte
2958  *   packet request header to prepend the start of packet,
2959  *   we'll write the three byte field immediately prior to
2960  *   the FC byte.  This assumption is valid because we've
2961  *   ensured that dev->hard_header_len includes three pad
2962  *   bytes.  By posting a single fragment to the adapter,
2963  *   we'll reduce the number of descriptor fetches and
2964  *   bus traffic needed to send the request.
2965  *
2966  *   Also, we can't free the skb until after it's been DMA'd
2967  *   out by the adapter, so we'll queue it in the driver and
2968  *   return it in dfx_xmt_done.
2969  *
2970  * Return Codes:
2971  *   0 - driver queued packet, link is unavailable, or skbuff was bad
2972  *       1 - caller should requeue the sk_buff for later transmission
2973  *
2974  * Assumptions:
2975  *       First and foremost, we assume the incoming skb pointer
2976  *   is NOT NULL and is pointing to a valid sk_buff structure.
2977  *
2978  *   The outgoing packet is complete, starting with the
2979  *   frame control byte including the last byte of data,
2980  *   but NOT including the 4 byte CRC.  We'll let the
2981  *   adapter hardware generate and append the CRC.
2982  *
2983  *   The entire packet is stored in one physically
2984  *   contiguous buffer which is not cached and whose
2985  *   32-bit physical address can be determined.
2986  *
2987  *   It's vital that this routine is NOT reentered for the
2988  *   same board and that the OS is not in another section of
2989  *   code (eg. dfx_int_common) for the same board on a
2990  *   different thread.
2991  *
2992  * Side Effects:
2993  *   None
2994  */
2995
2996 static int dfx_xmt_queue_pkt(
2997         struct sk_buff  *skb,
2998         struct net_device       *dev
2999         )
3000
3001         {
3002         DFX_board_t             *bp = dev->priv;
3003         u8                      prod;                           /* local transmit producer index */
3004         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3005         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3006         unsigned long           flags;
3007
3008         netif_stop_queue(dev);
3009         
3010         /*
3011          * Verify that incoming transmit request is OK
3012          *
3013          * Note: The packet size check is consistent with other
3014          *               Linux device drivers, although the correct packet
3015          *               size should be verified before calling the
3016          *               transmit routine.
3017          */
3018
3019         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3020         {
3021                 printk("%s: Invalid packet length - %u bytes\n", 
3022                         dev->name, skb->len);
3023                 bp->xmt_length_errors++;                /* bump error counter */
3024                 netif_wake_queue(dev);
3025                 dev_kfree_skb(skb);
3026                 return(0);                              /* return "success" */
3027         }
3028         /*
3029          * See if adapter link is available, if not, free buffer
3030          *
3031          * Note: If the link isn't available, free buffer and return 0
3032          *               rather than tell the upper layer to requeue the packet.
3033          *               The methodology here is that by the time the link
3034          *               becomes available, the packet to be sent will be
3035          *               fairly stale.  By simply dropping the packet, the
3036          *               higher layer protocols will eventually time out
3037          *               waiting for response packets which it won't receive.
3038          */
3039
3040         if (bp->link_available == PI_K_FALSE)
3041                 {
3042                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3043                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3044                 else
3045                         {
3046                         bp->xmt_discards++;                                     /* bump error counter */
3047                         dev_kfree_skb(skb);             /* free sk_buff now */
3048                         netif_wake_queue(dev);
3049                         return(0);                                                      /* return "success" */
3050                         }
3051                 }
3052
3053         spin_lock_irqsave(&bp->lock, flags);
3054         
3055         /* Get the current producer and the next free xmt data descriptor */
3056
3057         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3058         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3059
3060         /*
3061          * Get pointer to auxiliary queue entry to contain information
3062          * for this packet.
3063          *
3064          * Note: The current xmt producer index will become the
3065          *       current xmt completion index when we complete this
3066          *       packet later on.  So, we'll get the pointer to the
3067          *       next auxiliary queue entry now before we bump the
3068          *       producer index.
3069          */
3070
3071         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3072
3073         /* Write the three PRH bytes immediately before the FC byte */
3074
3075         skb_push(skb,3);
3076         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3077         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3078         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3079
3080         /*
3081          * Write the descriptor with buffer info and bump producer
3082          *
3083          * Note: Since we need to start DMA from the packet request
3084          *               header, we'll add 3 bytes to the DMA buffer length,
3085          *               and we'll determine the physical address of the
3086          *               buffer from the PRH, not skb->data.
3087          *
3088          * Assumptions:
3089          *               1. Packet starts with the frame control (FC) byte
3090          *                  at skb->data.
3091          *               2. The 4-byte CRC is not appended to the buffer or
3092          *                      included in the length.
3093          *               3. Packet length (skb->len) is from FC to end of
3094          *                      data, inclusive.
3095          *               4. The packet length does not exceed the maximum
3096          *                      FDDI LLC frame length of 4491 bytes.
3097          *               5. The entire packet is contained in a physically
3098          *                      contiguous, non-cached, locked memory space
3099          *                      comprised of a single buffer pointed to by
3100          *                      skb->data.
3101          *               6. The physical address of the start of packet
3102          *                      can be determined from the virtual address
3103          *                      by using pci_map_single() and is only 32-bits
3104          *                      wide.
3105          */
3106
3107         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3108         p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data,
3109                                                   skb->len, PCI_DMA_TODEVICE);
3110
3111         /*
3112          * Verify that descriptor is actually available
3113          *
3114          * Note: If descriptor isn't available, return 1 which tells
3115          *       the upper layer to requeue the packet for later
3116          *       transmission.
3117          *
3118          *       We need to ensure that the producer never reaches the
3119          *       completion, except to indicate that the queue is empty.
3120          */
3121
3122         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3123         {
3124                 skb_pull(skb,3);
3125                 spin_unlock_irqrestore(&bp->lock, flags);
3126                 return(1);                      /* requeue packet for later */
3127         }
3128
3129         /*
3130          * Save info for this packet for xmt done indication routine
3131          *
3132          * Normally, we'd save the producer index in the p_xmt_drv_descr
3133          * structure so that we'd have it handy when we complete this
3134          * packet later (in dfx_xmt_done).  However, since the current
3135          * transmit architecture guarantees a single fragment for the
3136          * entire packet, we can simply bump the completion index by
3137          * one (1) for each completed packet.
3138          *
3139          * Note: If this assumption changes and we're presented with
3140          *       an inconsistent number of transmit fragments for packet
3141          *       data, we'll need to modify this code to save the current
3142          *       transmit producer index.
3143          */
3144
3145         p_xmt_drv_descr->p_skb = skb;
3146
3147         /* Update Type 2 register */
3148
3149         bp->rcv_xmt_reg.index.xmt_prod = prod;
3150         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3151         spin_unlock_irqrestore(&bp->lock, flags);
3152         netif_wake_queue(dev);
3153         return(0);                                                      /* packet queued to adapter */
3154         }
3155
3156 \f
3157 /*
3158  * ================
3159  * = dfx_xmt_done =
3160  * ================
3161  *   
3162  * Overview:
3163  *   Processes all frames that have been transmitted.
3164  *  
3165  * Returns:
3166  *   None
3167  *       
3168  * Arguments:
3169  *   bp - pointer to board information
3170  *
3171  * Functional Description:
3172  *   For all consumed transmit descriptors that have not
3173  *   yet been completed, we'll free the skb we were holding
3174  *   onto using dev_kfree_skb and bump the appropriate
3175  *   counters.
3176  *
3177  * Return Codes:
3178  *   None
3179  *
3180  * Assumptions:
3181  *   The Type 2 register is not updated in this routine.  It is
3182  *   assumed that it will be updated in the ISR when dfx_xmt_done
3183  *   returns.
3184  *
3185  * Side Effects:
3186  *   None
3187  */
3188
3189 static int dfx_xmt_done(DFX_board_t *bp)
3190         {
3191         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3192         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3193         u8                      comp;                   /* local transmit completion index */
3194         int                     freed = 0;              /* buffers freed */
3195
3196         /* Service all consumed transmit frames */
3197
3198         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3199         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3200                 {
3201                 /* Get pointer to the transmit driver descriptor block information */
3202
3203                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3204
3205                 /* Increment transmit counters */
3206
3207                 bp->xmt_total_frames++;
3208                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3209
3210                 /* Return skb to operating system */
3211                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3212                 pci_unmap_single(bp->pci_dev,
3213                                  bp->descr_block_virt->xmt_data[comp].long_1,
3214                                  p_xmt_drv_descr->p_skb->len,
3215                                  PCI_DMA_TODEVICE);
3216                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3217
3218                 /*
3219                  * Move to start of next packet by updating completion index
3220                  *
3221                  * Here we assume that a transmit packet request is always
3222                  * serviced by posting one fragment.  We can therefore
3223                  * simplify the completion code by incrementing the
3224                  * completion index by one.  This code will need to be
3225                  * modified if this assumption changes.  See comments
3226                  * in dfx_xmt_queue_pkt for more details.
3227                  */
3228
3229                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3230                 freed++;
3231                 }
3232         return freed;
3233         }
3234
3235 \f
3236 /*
3237  * =================
3238  * = dfx_rcv_flush =
3239  * =================
3240  *   
3241  * Overview:
3242  *   Remove all skb's in the receive ring.
3243  *  
3244  * Returns:
3245  *   None
3246  *       
3247  * Arguments:
3248  *   bp - pointer to board information
3249  *
3250  * Functional Description:
3251  *   Free's all the dynamically allocated skb's that are
3252  *   currently attached to the device receive ring. This
3253  *   function is typically only used when the device is
3254  *   initialized or reinitialized.
3255  *
3256  * Return Codes:
3257  *   None
3258  *
3259  * Side Effects:
3260  *   None
3261  */
3262 #ifdef DYNAMIC_BUFFERS
3263 static void dfx_rcv_flush( DFX_board_t *bp )
3264         {
3265         int i, j;
3266
3267         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3268                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3269                 {
3270                         struct sk_buff *skb;
3271                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3272                         if (skb)
3273                                 dev_kfree_skb(skb);
3274                         bp->p_rcv_buff_va[i+j] = NULL;
3275                 }
3276
3277         }
3278 #else
3279 static inline void dfx_rcv_flush( DFX_board_t *bp )
3280 {
3281 }
3282 #endif /* DYNAMIC_BUFFERS */
3283
3284 /*
3285  * =================
3286  * = dfx_xmt_flush =
3287  * =================
3288  *   
3289  * Overview:
3290  *   Processes all frames whether they've been transmitted
3291  *   or not.
3292  *  
3293  * Returns:
3294  *   None
3295  *       
3296  * Arguments:
3297  *   bp - pointer to board information
3298  *
3299  * Functional Description:
3300  *   For all produced transmit descriptors that have not
3301  *   yet been completed, we'll free the skb we were holding
3302  *   onto using dev_kfree_skb and bump the appropriate
3303  *   counters.  Of course, it's possible that some of
3304  *   these transmit requests actually did go out, but we
3305  *   won't make that distinction here.  Finally, we'll
3306  *   update the consumer index to match the producer.
3307  *
3308  * Return Codes:
3309  *   None
3310  *
3311  * Assumptions:
3312  *   This routine does NOT update the Type 2 register.  It
3313  *   is assumed that this routine is being called during a
3314  *   transmit flush interrupt, or a shutdown or close routine.
3315  *
3316  * Side Effects:
3317  *   None
3318  */
3319
3320 static void dfx_xmt_flush( DFX_board_t *bp )
3321         {
3322         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3323         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3324         u8                      comp;                   /* local transmit completion index */
3325
3326         /* Flush all outstanding transmit frames */
3327
3328         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3329                 {
3330                 /* Get pointer to the transmit driver descriptor block information */
3331
3332                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3333
3334                 /* Return skb to operating system */
3335                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3336                 pci_unmap_single(bp->pci_dev,
3337                                  bp->descr_block_virt->xmt_data[comp].long_1,
3338                                  p_xmt_drv_descr->p_skb->len,
3339                                  PCI_DMA_TODEVICE);
3340                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3341
3342                 /* Increment transmit error counter */
3343
3344                 bp->xmt_discards++;
3345
3346                 /*
3347                  * Move to start of next packet by updating completion index
3348                  *
3349                  * Here we assume that a transmit packet request is always
3350                  * serviced by posting one fragment.  We can therefore
3351                  * simplify the completion code by incrementing the
3352                  * completion index by one.  This code will need to be
3353                  * modified if this assumption changes.  See comments
3354                  * in dfx_xmt_queue_pkt for more details.
3355                  */
3356
3357                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3358                 }
3359
3360         /* Update the transmit consumer index in the consumer block */
3361
3362         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3363         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3364         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3365         }
3366
3367 static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev)
3368 {
3369         DFX_board_t     *bp = dev->priv;
3370         int             alloc_size;             /* total buffer size used */
3371
3372         unregister_netdev(dev);
3373         release_region(dev->base_addr,  pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN );
3374
3375         alloc_size = sizeof(PI_DESCR_BLOCK) +
3376                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3377 #ifndef DYNAMIC_BUFFERS
3378                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3379 #endif
3380                      sizeof(PI_CONSUMER_BLOCK) +
3381                      (PI_ALIGN_K_DESC_BLK - 1);
3382         if (bp->kmalloced)
3383                 pci_free_consistent(pdev, alloc_size, bp->kmalloced,
3384                                     bp->kmalloced_dma);
3385         free_netdev(dev);
3386 }
3387
3388 static void __devexit dfx_remove_one (struct pci_dev *pdev)
3389 {
3390         struct net_device *dev = pci_get_drvdata(pdev);
3391
3392         dfx_remove_one_pci_or_eisa(pdev, dev);
3393         pci_set_drvdata(pdev, NULL);
3394 }
3395
3396 static struct pci_device_id dfx_pci_tbl[] = {
3397         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, },
3398         { 0, }
3399 };
3400 MODULE_DEVICE_TABLE(pci, dfx_pci_tbl);
3401
3402 static struct pci_driver dfx_driver = {
3403         .name           = "defxx",
3404         .probe          = dfx_init_one,
3405         .remove         = __devexit_p(dfx_remove_one),
3406         .id_table       = dfx_pci_tbl,
3407 };
3408
3409 static int dfx_have_pci;
3410 static int dfx_have_eisa;
3411
3412
3413 static void __exit dfx_eisa_cleanup(void)
3414 {
3415         struct net_device *dev = root_dfx_eisa_dev;
3416
3417         while (dev)
3418         {
3419                 struct net_device *tmp;
3420                 DFX_board_t *bp;
3421
3422                 bp = (DFX_board_t*)dev->priv;
3423                 tmp = bp->next;
3424                 dfx_remove_one_pci_or_eisa(NULL, dev);
3425                 dev = tmp;
3426         }
3427 }
3428
3429 static int __init dfx_init(void)
3430 {
3431         int rc_pci, rc_eisa;
3432
3433         rc_pci = pci_module_init(&dfx_driver);
3434         if (rc_pci >= 0) dfx_have_pci = 1;
3435         
3436         rc_eisa = dfx_eisa_init();
3437         if (rc_eisa >= 0) dfx_have_eisa = 1;
3438
3439         return ((rc_eisa < 0) ? 0 : rc_eisa)  + ((rc_pci < 0) ? 0 : rc_pci); 
3440 }
3441
3442 static void __exit dfx_cleanup(void)
3443 {
3444         if (dfx_have_pci)
3445                 pci_unregister_driver(&dfx_driver);
3446         if (dfx_have_eisa)
3447                 dfx_eisa_cleanup();
3448                 
3449 }       
3450
3451 module_init(dfx_init);
3452 module_exit(dfx_cleanup);
3453 MODULE_AUTHOR("Lawrence V. Stefani");
3454 MODULE_DESCRIPTION("DEC FDDIcontroller EISA/PCI (DEFEA/DEFPA) driver "
3455                    DRV_VERSION " " DRV_RELDATE);
3456 MODULE_LICENSE("GPL");
3457
3458 \f
3459 /*
3460  * Local variables:
3461  * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3462  * End:
3463  */