patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79         { "tx_deferred_ok", E1000_STAT(stats.dc) },
80         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82         { "rx_long_length_errors", E1000_STAT(stats.roc) },
83         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
84         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
85         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
86         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
87         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
88         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
89         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
90         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "rx_long_byte_count", E1000_STAT(stats.gorcl) }
94 };
95 #define E1000_STATS_LEN \
96         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98         "Register test  (offline)", "Eeprom test    (offline)",
99         "Interrupt test (offline)", "Loopback test  (offline)",
100         "Link test   (on/offline)"
101 };
102 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
103
104 static int
105 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
106 {
107         struct e1000_adapter *adapter = netdev->priv;
108         struct e1000_hw *hw = &adapter->hw;
109
110         if(hw->media_type == e1000_media_type_copper) {
111
112                 ecmd->supported = (SUPPORTED_10baseT_Half |
113                                    SUPPORTED_10baseT_Full |
114                                    SUPPORTED_100baseT_Half |
115                                    SUPPORTED_100baseT_Full |
116                                    SUPPORTED_1000baseT_Full|
117                                    SUPPORTED_Autoneg |
118                                    SUPPORTED_TP);
119
120                 ecmd->advertising = ADVERTISED_TP;
121
122                 if(hw->autoneg == 1) {
123                         ecmd->advertising |= ADVERTISED_Autoneg;
124
125                         /* the e1000 autoneg seems to match ethtool nicely */
126
127                         ecmd->advertising |= hw->autoneg_advertised;
128                 }
129
130                 ecmd->port = PORT_TP;
131                 ecmd->phy_address = hw->phy_addr;
132
133                 if(hw->mac_type == e1000_82543)
134                         ecmd->transceiver = XCVR_EXTERNAL;
135                 else
136                         ecmd->transceiver = XCVR_INTERNAL;
137
138         } else {
139                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
140                                      SUPPORTED_FIBRE |
141                                      SUPPORTED_Autoneg);
142
143                 ecmd->advertising = (SUPPORTED_1000baseT_Full |
144                                      SUPPORTED_FIBRE |
145                                      SUPPORTED_Autoneg);
146
147                 ecmd->port = PORT_FIBRE;
148
149                 if(hw->mac_type >= e1000_82545)
150                         ecmd->transceiver = XCVR_INTERNAL;
151                 else
152                         ecmd->transceiver = XCVR_EXTERNAL;
153         }
154
155         if(netif_carrier_ok(adapter->netdev)) {
156
157                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
158                                                    &adapter->link_duplex);
159                 ecmd->speed = adapter->link_speed;
160
161                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
162                  *          and HALF_DUPLEX != DUPLEX_HALF */
163
164                 if(adapter->link_duplex == FULL_DUPLEX)
165                         ecmd->duplex = DUPLEX_FULL;
166                 else
167                         ecmd->duplex = DUPLEX_HALF;
168         } else {
169                 ecmd->speed = -1;
170                 ecmd->duplex = -1;
171         }
172
173         ecmd->autoneg = (hw->autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
174         return 0;
175 }
176
177 static int
178 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
179 {
180         struct e1000_adapter *adapter = netdev->priv;
181         struct e1000_hw *hw = &adapter->hw;
182
183         if(ecmd->autoneg == AUTONEG_ENABLE) {
184                 hw->autoneg = 1;
185                 hw->autoneg_advertised = 0x002F;
186                 ecmd->advertising = 0x002F;
187         } else
188                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
189                         return -EINVAL;
190
191         /* reset the link */
192
193         if(netif_running(adapter->netdev)) {
194                 e1000_down(adapter);
195                 e1000_up(adapter);
196         } else
197                 e1000_reset(adapter);
198
199         return 0;
200 }
201
202 static void 
203 e1000_get_pauseparam(struct net_device *netdev,
204                     struct ethtool_pauseparam *pause)
205 {
206         struct e1000_adapter *adapter = netdev->priv;
207         struct e1000_hw *hw = &adapter->hw;
208         pause->autoneg = 
209                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
210         
211         if(hw->fc == e1000_fc_rx_pause)
212                 pause->rx_pause = 1;
213         else if(hw->fc == e1000_fc_tx_pause)
214                 pause->tx_pause = 1;
215         else if(hw->fc == e1000_fc_full) {
216                 pause->rx_pause = 1;
217                 pause->tx_pause = 1;
218         }
219 }
220
221 static int 
222 e1000_set_pauseparam(struct net_device *netdev,
223                     struct ethtool_pauseparam *pause)
224 {
225         struct e1000_adapter *adapter = netdev->priv;
226         struct e1000_hw *hw = &adapter->hw;
227         
228         adapter->fc_autoneg = pause->autoneg;
229
230         if(pause->rx_pause && pause->tx_pause)
231                 hw->fc = e1000_fc_full;
232         else if(pause->rx_pause && !pause->tx_pause)
233                 hw->fc = e1000_fc_rx_pause;
234         else if(!pause->rx_pause && pause->tx_pause)
235                 hw->fc = e1000_fc_tx_pause;
236         else if(!pause->rx_pause && !pause->tx_pause)
237                 hw->fc = e1000_fc_none;
238
239         hw->original_fc = hw->fc;
240
241         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
242                 if(netif_running(adapter->netdev)) {
243                         e1000_down(adapter);
244                         e1000_up(adapter);
245                 } else
246                         e1000_reset(adapter);
247         }
248         else
249                 return e1000_force_mac_fc(hw);
250         
251         return 0;
252 }
253
254 static uint32_t
255 e1000_get_rx_csum(struct net_device *netdev)
256 {
257         struct e1000_adapter *adapter = netdev->priv;
258         return adapter->rx_csum;
259 }
260
261 static int
262 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
263 {
264         struct e1000_adapter *adapter = netdev->priv;
265         adapter->rx_csum = data;
266
267         if(netif_running(netdev)) {
268                 e1000_down(adapter);
269                 e1000_up(adapter);
270         } else
271                 e1000_reset(adapter);
272         return 0;
273 }
274
275 static uint32_t
276 e1000_get_tx_csum(struct net_device *netdev)
277 {
278         return (netdev->features & NETIF_F_HW_CSUM) != 0;
279 }
280
281 static int
282 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
283 {
284         struct e1000_adapter *adapter = netdev->priv;
285
286         if(adapter->hw.mac_type < e1000_82543) {
287                 if (!data)
288                         return -EINVAL;
289                 return 0;
290         }
291
292         if (data)
293                 netdev->features |= NETIF_F_HW_CSUM;
294         else
295                 netdev->features &= ~NETIF_F_HW_CSUM;
296
297         return 0;
298 }
299
300 #ifdef NETIF_F_TSO
301 static int
302 e1000_set_tso(struct net_device *netdev, uint32_t data)
303 {
304         struct e1000_adapter *adapter = netdev->priv;
305         if ((adapter->hw.mac_type < e1000_82544) ||
306             (adapter->hw.mac_type == e1000_82547)) 
307                 return data ? -EINVAL : 0;
308
309         if (data)
310                 netdev->features |= NETIF_F_TSO;
311         else
312                 netdev->features &= ~NETIF_F_TSO;
313         return 0;
314
315 #endif /* NETIF_F_TSO */
316
317 static uint32_t
318 e1000_get_msglevel(struct net_device *netdev)
319 {
320         struct e1000_adapter *adapter = netdev->priv;
321         return adapter->msg_enable;
322 }
323
324 static void
325 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
326 {
327         struct e1000_adapter *adapter = netdev->priv;
328         adapter->msg_enable = data;
329 }
330
331 static int 
332 e1000_get_regs_len(struct net_device *netdev)
333 {
334 #define E1000_REGS_LEN 32
335         return E1000_REGS_LEN * sizeof(uint32_t);
336 }
337
338 static void
339 e1000_get_regs(struct net_device *netdev,
340                     struct ethtool_regs *regs, void *p)
341 {
342         struct e1000_adapter *adapter = netdev->priv;
343         struct e1000_hw *hw = &adapter->hw;
344         uint32_t *regs_buff = p;
345         uint16_t phy_data;
346
347         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
348
349         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
350
351         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
352         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
353
354         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
355         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
356         regs_buff[4]  = E1000_READ_REG(hw, RDH);
357         regs_buff[5]  = E1000_READ_REG(hw, RDT);
358         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
359
360         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
361         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
362         regs_buff[9]  = E1000_READ_REG(hw, TDH);
363         regs_buff[10] = E1000_READ_REG(hw, TDT);
364         regs_buff[11] = E1000_READ_REG(hw, TIDV);
365
366         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
367         if(hw->phy_type == e1000_phy_igp) {
368                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369                                     IGP01E1000_PHY_AGC_A);
370                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
371                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374                                     IGP01E1000_PHY_AGC_B);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_AGC_C);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
383                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384                                     IGP01E1000_PHY_AGC_D);
385                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
386                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
388                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
389                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
390                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
391                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
393                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
394                                     IGP01E1000_PHY_PCS_INIT_REG);
395                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
396                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
398                 regs_buff[20] = 0; /* polarity correction enabled (always) */
399                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
400                 regs_buff[23] = regs_buff[18]; /* mdix mode */
401                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
402         } else {
403                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
404                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
405                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
406                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
407                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
408                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
409                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
410                 regs_buff[18] = regs_buff[13]; /* cable polarity */
411                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[20] = regs_buff[17]; /* polarity correction */
413                 /* phy receive errors */
414                 regs_buff[22] = adapter->phy_stats.receive_errors;
415                 regs_buff[23] = regs_buff[13]; /* mdix mode */
416         }
417         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
418         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
419         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
420         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
421 }
422
423 static int
424 e1000_get_eeprom_len(struct net_device *netdev)
425 {
426         struct e1000_adapter *adapter = netdev->priv;
427         return adapter->hw.eeprom.word_size * 2;
428 }
429
430 static int
431 e1000_get_eeprom(struct net_device *netdev,
432                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
433 {
434         struct e1000_adapter *adapter = netdev->priv;
435         struct e1000_hw *hw = &adapter->hw;
436         uint16_t *eeprom_buff;
437         int first_word, last_word;
438         int ret_val = 0;
439         uint16_t i;
440
441         if(eeprom->len == 0) 
442                 return -EINVAL;
443
444         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
445
446         first_word = eeprom->offset >> 1;
447         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
448
449         eeprom_buff = kmalloc(sizeof(uint16_t) * 
450                         (last_word - first_word + 1), GFP_KERNEL);
451         if (!eeprom_buff)
452                 return -ENOMEM;
453
454         if(hw->eeprom.type == e1000_eeprom_spi)
455                 ret_val = e1000_read_eeprom(hw, first_word,
456                                             last_word - first_word + 1,
457                                             eeprom_buff);
458         else {
459                 for (i = 0; i < last_word - first_word + 1; i++)
460                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
461                                                         &eeprom_buff[i])))
462                                 break;
463         }
464
465         /* Device's eeprom is always little-endian, word addressable */
466         for (i = 0; i < last_word - first_word + 1; i++)
467                 le16_to_cpus(&eeprom_buff[i]);
468
469
470         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset%2), 
471                                 eeprom->len);
472         kfree(eeprom_buff);
473
474         return ret_val;
475 }
476
477 static int
478 e1000_set_eeprom(struct net_device *netdev,
479                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
480 {
481         struct e1000_adapter *adapter = netdev->priv;
482         struct e1000_hw *hw = &adapter->hw;
483         uint16_t *eeprom_buff;
484         void *ptr;
485         int max_len, first_word, last_word, ret_val = 0;
486         uint16_t i;
487
488         if(eeprom->len == 0)
489                 return -EOPNOTSUPP;
490
491         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
492                 return -EFAULT;
493
494         max_len = hw->eeprom.word_size * 2;
495
496         first_word = eeprom->offset >> 1;
497         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
498         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
499         if(!eeprom_buff)
500                 return -ENOMEM;
501
502         ptr = (void *)eeprom_buff;
503
504         if(eeprom->offset & 1) {
505                 /* need read/modify/write of first changed EEPROM word */
506                 /* only the second byte of the word is being modified */
507                 ret_val = e1000_read_eeprom(hw, first_word, 1,
508                                             &eeprom_buff[0]);
509                 ptr++;
510         }
511         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
512                 /* need read/modify/write of last changed EEPROM word */
513                 /* only the first byte of the word is being modified */
514                 ret_val = e1000_read_eeprom(hw, last_word, 1,
515                                   &eeprom_buff[last_word - first_word]);
516         }
517
518         /* Device's eeprom is always little-endian, word addressable */
519         for (i = 0; i < last_word - first_word + 1; i++)
520                 le16_to_cpus(&eeprom_buff[i]);
521
522         memcpy(ptr, bytes, eeprom->len);
523         for (i = 0; i < last_word - first_word + 1; i++)
524                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
525
526         ret_val = e1000_write_eeprom(hw, first_word,
527                                      last_word - first_word + 1, eeprom_buff);
528
529         /* Update the checksum over the first part of the EEPROM if needed */
530         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
531                 e1000_update_eeprom_checksum(hw);
532
533         kfree(eeprom_buff);
534         return ret_val;
535 }
536
537 static void
538 e1000_get_drvinfo(struct net_device *netdev,
539                        struct ethtool_drvinfo *drvinfo)
540 {
541         struct e1000_adapter *adapter = netdev->priv;
542
543         strncpy(drvinfo->driver,  e1000_driver_name, 32);
544         strncpy(drvinfo->version, e1000_driver_version, 32);
545         strncpy(drvinfo->fw_version, "N/A", 32);
546         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
547         drvinfo->n_stats = E1000_STATS_LEN;
548         drvinfo->testinfo_len = E1000_TEST_LEN;
549         drvinfo->regdump_len = e1000_get_regs_len(netdev);
550         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
551 }
552
553 static void
554 e1000_get_ringparam(struct net_device *netdev,
555                     struct ethtool_ringparam *ring)
556 {
557         struct e1000_adapter *adapter = netdev->priv;
558         e1000_mac_type mac_type = adapter->hw.mac_type;
559         struct e1000_desc_ring *txdr = &adapter->tx_ring;
560         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
561
562         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
563                 E1000_MAX_82544_RXD;
564         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
565                 E1000_MAX_82544_TXD;
566         ring->rx_mini_max_pending = 0;
567         ring->rx_jumbo_max_pending = 0;
568         ring->rx_pending = rxdr->count;
569         ring->tx_pending = txdr->count;
570         ring->rx_mini_pending = 0;
571         ring->rx_jumbo_pending = 0;
572 }
573
574 static int 
575 e1000_set_ringparam(struct net_device *netdev,
576                     struct ethtool_ringparam *ring)
577 {
578         int err;
579         struct e1000_adapter *adapter = netdev->priv;
580         e1000_mac_type mac_type = adapter->hw.mac_type;
581         struct e1000_desc_ring *txdr = &adapter->tx_ring;
582         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
583         struct e1000_desc_ring tx_old, tx_new;
584         struct e1000_desc_ring rx_old, rx_new;
585
586         tx_old = adapter->tx_ring;
587         rx_old = adapter->rx_ring;
588         
589         if(netif_running(adapter->netdev))
590                 e1000_down(adapter);
591
592         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
593         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
594                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
595         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
596
597         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
598         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
599                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
600         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
601
602         if(netif_running(adapter->netdev)) {
603                 /* try to get new resources before deleting old */
604                 if((err = e1000_setup_rx_resources(adapter)))
605                         goto err_setup_rx;
606                 if((err = e1000_setup_tx_resources(adapter)))
607                         goto err_setup_tx;
608
609                 /* save the new, restore the old in order to free it,
610                  * then restore the new back again */   
611         
612                 rx_new = adapter->rx_ring;
613                 tx_new = adapter->tx_ring;
614                 adapter->rx_ring = rx_old;
615                 adapter->tx_ring = tx_old;
616                 e1000_free_rx_resources(adapter);
617                 e1000_free_tx_resources(adapter);
618                 adapter->rx_ring = rx_new;
619                 adapter->tx_ring = tx_new;
620                 if((err = e1000_up(adapter)))
621                         return err;
622         }
623         return 0;
624 err_setup_tx:
625         e1000_free_rx_resources(adapter);
626 err_setup_rx:
627         adapter->rx_ring = rx_old;
628         adapter->tx_ring = tx_old;
629         e1000_up(adapter);
630         return err;
631 }
632
633
634 #define REG_PATTERN_TEST(R, M, W)                                              \
635 {                                                                              \
636         uint32_t pat, value;                                                   \
637         uint32_t test[] =                                                      \
638                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
639         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
640                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
641                 value = E1000_READ_REG(&adapter->hw, R);                       \
642                 if(value != (test[pat] & W & M)) {                             \
643                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
644                                 E1000_82542_##R : E1000_##R;                   \
645                         return 1;                                              \
646                 }                                                              \
647         }                                                                      \
648 }
649
650 #define REG_SET_AND_CHECK(R, M, W)                                             \
651 {                                                                              \
652         uint32_t value;                                                        \
653         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
654         value = E1000_READ_REG(&adapter->hw, R);                               \
655         if ((W & M) != (value & M)) {                                          \
656                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
657                         E1000_82542_##R : E1000_##R;                           \
658                 return 1;                                                      \
659         }                                                                      \
660 }
661
662 static int
663 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
664 {
665         uint32_t value;
666         uint32_t i;
667
668         /* The status register is Read Only, so a write should fail.
669          * Some bits that get toggled are ignored.
670          */
671         value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
672         E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
673         if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
674                 *data = 1;
675                 return 1;
676         }
677
678         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
679         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
680         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
681         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
682         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
683         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
684         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
685         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
686         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
687         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
688         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
689         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
690         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
691         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
692
693         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
694         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
695         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
696
697         if(adapter->hw.mac_type >= e1000_82543) {
698
699                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
700                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
701                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
702                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
703                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
704
705                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
706                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
707                                          0xFFFFFFFF);
708                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
709                                          0xFFFFFFFF);
710                 }
711
712         } else {
713
714                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
715                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
716                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
717                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
718
719         }
720
721         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
722                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
723
724         *data = 0;
725         return 0;
726 }
727
728 static int
729 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
730 {
731         uint16_t temp;
732         uint16_t checksum = 0;
733         uint16_t i;
734
735         *data = 0;
736         /* Read and add up the contents of the EEPROM */
737         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
738                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
739                         *data = 1;
740                         break;
741                 }
742                 checksum += temp;
743         }
744
745         /* If Checksum is not Correct return error else test passed */
746         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
747                 *data = 2;
748
749         return *data;
750 }
751
752 static irqreturn_t
753 e1000_test_intr(int irq,
754                 void *data,
755                 struct pt_regs *regs)
756 {
757         struct net_device *netdev = (struct net_device *) data;
758         struct e1000_adapter *adapter = netdev->priv;
759
760         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
761
762         return IRQ_HANDLED;
763 }
764
765 static int
766 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
767 {
768         struct net_device *netdev = adapter->netdev;
769         uint32_t icr, mask, i=0;
770
771         *data = 0;
772
773         /* Hook up test interrupt handler just for this test */
774         if(request_irq(adapter->pdev->irq, &e1000_test_intr, SA_SHIRQ,
775            netdev->name, netdev)) {
776                 *data = 1;
777                 return -1;
778         }
779
780         /* Disable all the interrupts */
781         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
782         msec_delay(10);
783
784         /* Interrupts are disabled, so read interrupt cause
785          * register (icr) twice to verify that there are no interrupts
786          * pending.  icr is clear on read.
787          */
788         icr = E1000_READ_REG(&adapter->hw, ICR);
789         icr = E1000_READ_REG(&adapter->hw, ICR);
790
791         if(icr != 0) {
792                 /* if icr is non-zero, there is no point
793                  * running other interrupt tests.
794                  */
795                 *data = 2;
796                 i = 10;
797         }
798
799         /* Test each interrupt */
800         for(; i < 10; i++) {
801
802                 /* Interrupt to test */
803                 mask = 1 << i;
804
805                 /* Disable the interrupt to be reported in
806                  * the cause register and then force the same
807                  * interrupt and see if one gets posted.  If
808                  * an interrupt was posted to the bus, the
809                  * test failed.
810                  */
811                 adapter->test_icr = 0;
812                 E1000_WRITE_REG(&adapter->hw, IMC, mask);
813                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
814                 msec_delay(10);
815
816                 if(adapter->test_icr & mask) {
817                         *data = 3;
818                         break;
819                 }
820
821                 /* Enable the interrupt to be reported in
822                  * the cause register and then force the same
823                  * interrupt and see if one gets posted.  If
824                  * an interrupt was not posted to the bus, the
825                  * test failed.
826                  */
827                 adapter->test_icr = 0;
828                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
829                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
830                 msec_delay(10);
831
832                 if(!(adapter->test_icr & mask)) {
833                         *data = 4;
834                         break;
835                 }
836
837                 /* Disable the other interrupts to be reported in
838                  * the cause register and then force the other
839                  * interrupts and see if any get posted.  If
840                  * an interrupt was posted to the bus, the
841                  * test failed.
842                  */
843                 adapter->test_icr = 0;
844                 E1000_WRITE_REG(&adapter->hw, IMC, ~mask);
845                 E1000_WRITE_REG(&adapter->hw, ICS, ~mask);
846                 msec_delay(10);
847
848                 if(adapter->test_icr) {
849                         *data = 5;
850                         break;
851                 }
852         }
853
854         /* Disable all the interrupts */
855         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
856         msec_delay(10);
857
858         /* Unhook test interrupt handler */
859         free_irq(adapter->pdev->irq, netdev);
860
861         return *data;
862 }
863
864 static void
865 e1000_free_desc_rings(struct e1000_adapter *adapter)
866 {
867         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
868         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
869         struct pci_dev *pdev = adapter->pdev;
870         int i;
871
872         if(txdr->desc && txdr->buffer_info) {
873                 for(i = 0; i < txdr->count; i++) {
874                         if(txdr->buffer_info[i].dma)
875                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
876                                                  txdr->buffer_info[i].length,
877                                                  PCI_DMA_TODEVICE);
878                         if(txdr->buffer_info[i].skb)
879                                 dev_kfree_skb(txdr->buffer_info[i].skb);
880                 }
881         }
882
883         if(rxdr->desc && rxdr->buffer_info) {
884                 for(i = 0; i < rxdr->count; i++) {
885                         if(rxdr->buffer_info[i].dma)
886                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
887                                                  rxdr->buffer_info[i].length,
888                                                  PCI_DMA_FROMDEVICE);
889                         if(rxdr->buffer_info[i].skb)
890                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
891                 }
892         }
893
894         if(txdr->desc)
895                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
896         if(rxdr->desc)
897                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
898
899         if(txdr->buffer_info)
900                 kfree(txdr->buffer_info);
901         if(rxdr->buffer_info)
902                 kfree(rxdr->buffer_info);
903
904         return;
905 }
906
907 static int
908 e1000_setup_desc_rings(struct e1000_adapter *adapter)
909 {
910         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
911         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
912         struct pci_dev *pdev = adapter->pdev;
913         uint32_t rctl;
914         int size, i, ret_val;
915
916         /* Setup Tx descriptor ring and Tx buffers */
917
918         txdr->count = 80;
919
920         size = txdr->count * sizeof(struct e1000_buffer);
921         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
922                 ret_val = 1;
923                 goto err_nomem;
924         }
925         memset(txdr->buffer_info, 0, size);
926
927         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
928         E1000_ROUNDUP(txdr->size, 4096);
929         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
930                 ret_val = 2;
931                 goto err_nomem;
932         }
933         memset(txdr->desc, 0, txdr->size);
934         txdr->next_to_use = txdr->next_to_clean = 0;
935
936         E1000_WRITE_REG(&adapter->hw, TDBAL,
937                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
938         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
939         E1000_WRITE_REG(&adapter->hw, TDLEN,
940                         txdr->count * sizeof(struct e1000_tx_desc));
941         E1000_WRITE_REG(&adapter->hw, TDH, 0);
942         E1000_WRITE_REG(&adapter->hw, TDT, 0);
943         E1000_WRITE_REG(&adapter->hw, TCTL,
944                         E1000_TCTL_PSP | E1000_TCTL_EN |
945                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
946                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
947
948         for(i = 0; i < txdr->count; i++) {
949                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
950                 struct sk_buff *skb;
951                 unsigned int size = 1024;
952
953                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
954                         ret_val = 3;
955                         goto err_nomem;
956                 }
957                 skb_put(skb, size);
958                 txdr->buffer_info[i].skb = skb;
959                 txdr->buffer_info[i].length = skb->len;
960                 txdr->buffer_info[i].dma =
961                         pci_map_single(pdev, skb->data, skb->len,
962                                        PCI_DMA_TODEVICE);
963                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
964                 tx_desc->lower.data = cpu_to_le32(skb->len);
965                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
966                                                    E1000_TXD_CMD_IFCS |
967                                                    E1000_TXD_CMD_RPS);
968                 tx_desc->upper.data = 0;
969         }
970
971         /* Setup Rx descriptor ring and Rx buffers */
972
973         rxdr->count = 80;
974
975         size = rxdr->count * sizeof(struct e1000_buffer);
976         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
977                 ret_val = 4;
978                 goto err_nomem;
979         }
980         memset(rxdr->buffer_info, 0, size);
981
982         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
983         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
984                 ret_val = 5;
985                 goto err_nomem;
986         }
987         memset(rxdr->desc, 0, rxdr->size);
988         rxdr->next_to_use = rxdr->next_to_clean = 0;
989
990         rctl = E1000_READ_REG(&adapter->hw, RCTL);
991         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
992         E1000_WRITE_REG(&adapter->hw, RDBAL,
993                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
994         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
995         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
996         E1000_WRITE_REG(&adapter->hw, RDH, 0);
997         E1000_WRITE_REG(&adapter->hw, RDT, 0);
998         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
999                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1000                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1001         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1002
1003         for(i = 0; i < rxdr->count; i++) {
1004                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1005                 struct sk_buff *skb;
1006
1007                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + 2, GFP_KERNEL))) {
1008                         ret_val = 6;
1009                         goto err_nomem;
1010                 }
1011                 skb_reserve(skb, 2);
1012                 rxdr->buffer_info[i].skb = skb;
1013                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1014                 rxdr->buffer_info[i].dma =
1015                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1016                                        PCI_DMA_FROMDEVICE);
1017                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1018                 memset(skb->data, 0x00, skb->len);
1019         }
1020
1021         return 0;
1022
1023       err_nomem:
1024         e1000_free_desc_rings(adapter);
1025         return ret_val;
1026 }
1027
1028 static void
1029 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1030 {
1031         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1032         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1033         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1034         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1035         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1036 }
1037
1038 static void
1039 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1040 {
1041         uint16_t phy_reg;
1042
1043         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1044          * Extended PHY Specific Control Register to 25MHz clock.  This
1045          * value defaults back to a 2.5MHz clock when the PHY is reset.
1046          */
1047         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1048         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1049         e1000_write_phy_reg(&adapter->hw,
1050                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1051
1052         /* In addition, because of the s/w reset above, we need to enable
1053          * CRS on TX.  This must be set for both full and half duplex
1054          * operation.
1055          */
1056         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1057         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1058         e1000_write_phy_reg(&adapter->hw,
1059                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1060 }
1061
1062 static int
1063 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1064 {
1065         uint32_t ctrl_reg;
1066         uint16_t phy_reg;
1067
1068         /* Setup the Device Control Register for PHY loopback test. */
1069
1070         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1071         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1072                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1073                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1074                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1075                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1076
1077         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1078
1079         /* Read the PHY Specific Control Register (0x10) */
1080         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1081
1082         /* Clear Auto-Crossover bits in PHY Specific Control Register
1083          * (bits 6:5).
1084          */
1085         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1086         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1087
1088         /* Perform software reset on the PHY */
1089         e1000_phy_reset(&adapter->hw);
1090
1091         /* Have to setup TX_CLK and TX_CRS after software reset */
1092         e1000_phy_reset_clk_and_crs(adapter);
1093
1094         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1095
1096         /* Wait for reset to complete. */
1097         udelay(500);
1098
1099         /* Have to setup TX_CLK and TX_CRS after software reset */
1100         e1000_phy_reset_clk_and_crs(adapter);
1101
1102         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1103         e1000_phy_disable_receiver(adapter);
1104
1105         /* Set the loopback bit in the PHY control register. */
1106         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1107         phy_reg |= MII_CR_LOOPBACK;
1108         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1109
1110         /* Setup TX_CLK and TX_CRS one more time. */
1111         e1000_phy_reset_clk_and_crs(adapter);
1112
1113         /* Check Phy Configuration */
1114         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1115         if(phy_reg != 0x4100)
1116                  return 9;
1117
1118         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1119         if(phy_reg != 0x0070)
1120                 return 10;
1121
1122         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1123         if(phy_reg != 0x001A)
1124                 return 11;
1125
1126         return 0;
1127 }
1128
1129 static int
1130 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1131 {
1132         uint32_t ctrl_reg = 0;
1133         uint32_t stat_reg = 0;
1134
1135         adapter->hw.autoneg = FALSE;
1136
1137         if(adapter->hw.phy_type == e1000_phy_m88) {
1138                 /* Auto-MDI/MDIX Off */
1139                 e1000_write_phy_reg(&adapter->hw,
1140                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1141                 /* reset to update Auto-MDI/MDIX */
1142                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1143                 /* autoneg off */
1144                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1145         }
1146         /* force 1000, set loopback */
1147         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1148
1149         /* Now set up the MAC to the same speed/duplex as the PHY. */
1150         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1151         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1152         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1153                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1154                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1155                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1156
1157         if(adapter->hw.media_type == e1000_media_type_copper &&
1158            adapter->hw.phy_type == e1000_phy_m88) {
1159                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1160         } else {
1161                 /* Set the ILOS bit on the fiber Nic is half
1162                  * duplex link is detected. */
1163                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1164                 if((stat_reg & E1000_STATUS_FD) == 0)
1165                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1166         }
1167
1168         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1169
1170         /* Disable the receiver on the PHY so when a cable is plugged in, the
1171          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1172          */
1173         if(adapter->hw.phy_type == e1000_phy_m88)
1174                 e1000_phy_disable_receiver(adapter);
1175
1176         udelay(500);
1177
1178         return 0;
1179 }
1180
1181 static int
1182 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1183 {
1184         uint16_t phy_reg = 0;
1185         uint16_t count = 0;
1186
1187         switch (adapter->hw.mac_type) {
1188         case e1000_82543:
1189                 if(adapter->hw.media_type == e1000_media_type_copper) {
1190                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1191                          * Some PHY registers get corrupted at random, so
1192                          * attempt this 10 times.
1193                          */
1194                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1195                               count++ < 10);
1196                         if(count < 11)
1197                                 return 0;
1198                 }
1199                 break;
1200
1201         case e1000_82544:
1202         case e1000_82540:
1203         case e1000_82545:
1204         case e1000_82545_rev_3:
1205         case e1000_82546:
1206         case e1000_82546_rev_3:
1207         case e1000_82541:
1208         case e1000_82541_rev_2:
1209         case e1000_82547:
1210         case e1000_82547_rev_2:
1211                 return e1000_integrated_phy_loopback(adapter);
1212                 break;
1213
1214         default:
1215                 /* Default PHY loopback work is to read the MII
1216                  * control register and assert bit 14 (loopback mode).
1217                  */
1218                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1219                 phy_reg |= MII_CR_LOOPBACK;
1220                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1221                 return 0;
1222                 break;
1223         }
1224
1225         return 8;
1226 }
1227
1228 static int
1229 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1230 {
1231         uint32_t rctl;
1232
1233         if(adapter->hw.media_type == e1000_media_type_fiber ||
1234            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1235                 if(adapter->hw.mac_type == e1000_82545 ||
1236                    adapter->hw.mac_type == e1000_82546 ||
1237                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1238                    adapter->hw.mac_type == e1000_82546_rev_3)
1239                         return e1000_set_phy_loopback(adapter);
1240                 else {
1241                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1242                         rctl |= E1000_RCTL_LBM_TCVR;
1243                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1244                         return 0;
1245                 }
1246         } else if(adapter->hw.media_type == e1000_media_type_copper)
1247                 return e1000_set_phy_loopback(adapter);
1248
1249         return 7;
1250 }
1251
1252 static void
1253 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1254 {
1255         uint32_t rctl;
1256         uint16_t phy_reg;
1257
1258         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1259         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1260         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1261
1262         if(adapter->hw.media_type == e1000_media_type_copper ||
1263            ((adapter->hw.media_type == e1000_media_type_fiber ||
1264              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1265             (adapter->hw.mac_type == e1000_82545 ||
1266              adapter->hw.mac_type == e1000_82546 ||
1267              adapter->hw.mac_type == e1000_82545_rev_3 ||
1268              adapter->hw.mac_type == e1000_82546_rev_3))) {
1269                 adapter->hw.autoneg = TRUE;
1270                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1271                 if(phy_reg & MII_CR_LOOPBACK) {
1272                         phy_reg &= ~MII_CR_LOOPBACK;
1273                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1274                         e1000_phy_reset(&adapter->hw);
1275                 }
1276         }
1277 }
1278
1279 static void
1280 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1281 {
1282         memset(skb->data, 0xFF, frame_size);
1283         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1284         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1285         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1286         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1287 }
1288
1289 static int
1290 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1291 {
1292         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1293         if(*(skb->data + 3) == 0xFF) {
1294                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1295                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1296                         return 0;
1297                 }
1298         }
1299         return 13;
1300 }
1301
1302 static int
1303 e1000_run_loopback_test(struct e1000_adapter *adapter)
1304 {
1305         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1306         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1307         struct pci_dev *pdev = adapter->pdev;
1308         int i;
1309
1310         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1311
1312         for(i = 0; i < 64; i++) {
1313                 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
1314                 pci_dma_sync_single(pdev, txdr->buffer_info[i].dma,
1315                                     txdr->buffer_info[i].length,
1316                                     PCI_DMA_TODEVICE);
1317         }
1318         E1000_WRITE_REG(&adapter->hw, TDT, i);
1319
1320         msec_delay(200);
1321
1322         pci_dma_sync_single(pdev, rxdr->buffer_info[0].dma,
1323                             rxdr->buffer_info[0].length, PCI_DMA_FROMDEVICE);
1324
1325         return e1000_check_lbtest_frame(rxdr->buffer_info[0].skb, 1024);
1326 }
1327
1328 static int
1329 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1330 {
1331         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1332         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1333         *data = e1000_run_loopback_test(adapter);
1334         e1000_loopback_cleanup(adapter);
1335         e1000_free_desc_rings(adapter);
1336 err_loopback:
1337         return *data;
1338 }
1339
1340 static int
1341 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1342 {
1343         *data = 0;
1344         e1000_check_for_link(&adapter->hw);
1345
1346         if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1347                 *data = 1;
1348         }
1349         return *data;
1350 }
1351
1352 static int 
1353 e1000_diag_test_count(struct net_device *netdev)
1354 {
1355         return E1000_TEST_LEN;
1356 }
1357
1358 static void
1359 e1000_diag_test(struct net_device *netdev, 
1360                    struct ethtool_test *eth_test, uint64_t *data)
1361 {
1362         struct e1000_adapter *adapter = netdev->priv;
1363         boolean_t if_running = netif_running(netdev);
1364
1365         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1366                 /* Offline tests */
1367
1368                 /* save speed, duplex, autoneg settings */
1369                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1370                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1371                 uint8_t autoneg = adapter->hw.autoneg;
1372
1373                 /* Link test performed before hardware reset so autoneg doesn't
1374                  * interfere with test result */
1375                 if(e1000_link_test(adapter, &data[4]))
1376                         eth_test->flags |= ETH_TEST_FL_FAILED;
1377
1378                 if(if_running)
1379                         e1000_down(adapter);
1380                 else
1381                         e1000_reset(adapter);
1382
1383                 if(e1000_reg_test(adapter, &data[0]))
1384                         eth_test->flags |= ETH_TEST_FL_FAILED;
1385
1386                 e1000_reset(adapter);
1387                 if(e1000_eeprom_test(adapter, &data[1]))
1388                         eth_test->flags |= ETH_TEST_FL_FAILED;
1389
1390                 e1000_reset(adapter);
1391                 if(e1000_intr_test(adapter, &data[2]))
1392                         eth_test->flags |= ETH_TEST_FL_FAILED;
1393
1394                 e1000_reset(adapter);
1395                 if(e1000_loopback_test(adapter, &data[3]))
1396                         eth_test->flags |= ETH_TEST_FL_FAILED;
1397
1398                 /* restore Autoneg/speed/duplex settings */
1399                 adapter->hw.autoneg_advertised = autoneg_advertised;
1400                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1401                 adapter->hw.autoneg = autoneg;
1402                 e1000_reset(adapter);
1403                 if(if_running)
1404                         e1000_up(adapter);
1405         } else {
1406                 /* Online tests */
1407                 if(e1000_link_test(adapter, &data[4]))
1408                         eth_test->flags |= ETH_TEST_FL_FAILED;
1409
1410                 /* Offline tests aren't run; pass by default */
1411                 data[0] = 0;
1412                 data[1] = 0;
1413                 data[2] = 0;
1414                 data[3] = 0;
1415         }
1416 }
1417
1418 static void
1419 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1420 {
1421         struct e1000_adapter *adapter = netdev->priv;
1422         struct e1000_hw *hw = &adapter->hw;
1423
1424         switch(adapter->hw.device_id) {
1425         case E1000_DEV_ID_82542:
1426         case E1000_DEV_ID_82543GC_FIBER:
1427         case E1000_DEV_ID_82543GC_COPPER:
1428         case E1000_DEV_ID_82544EI_FIBER:
1429                 wol->supported = 0;
1430                 wol->wolopts   = 0;
1431                 return;
1432
1433         case E1000_DEV_ID_82546EB_FIBER:
1434         case E1000_DEV_ID_82546GB_FIBER:
1435                 /* Wake events only supported on port A for dual fiber */
1436                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1437                         wol->supported = 0;
1438                         wol->wolopts   = 0;
1439                         return;
1440                 }
1441                 /* Fall Through */
1442
1443         default:
1444                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1445                                  WAKE_BCAST | WAKE_MAGIC;
1446
1447                 wol->wolopts = 0;
1448                 if(adapter->wol & E1000_WUFC_EX)
1449                         wol->wolopts |= WAKE_UCAST;
1450                 if(adapter->wol & E1000_WUFC_MC)
1451                         wol->wolopts |= WAKE_MCAST;
1452                 if(adapter->wol & E1000_WUFC_BC)
1453                         wol->wolopts |= WAKE_BCAST;
1454                 if(adapter->wol & E1000_WUFC_MAG)
1455                         wol->wolopts |= WAKE_MAGIC;
1456                 return;
1457         }
1458 }
1459
1460 static int
1461 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1462 {
1463         struct e1000_adapter *adapter = netdev->priv;
1464         struct e1000_hw *hw = &adapter->hw;
1465
1466         switch(adapter->hw.device_id) {
1467         case E1000_DEV_ID_82542:
1468         case E1000_DEV_ID_82543GC_FIBER:
1469         case E1000_DEV_ID_82543GC_COPPER:
1470         case E1000_DEV_ID_82544EI_FIBER:
1471                 return wol->wolopts ? -EOPNOTSUPP : 0;
1472
1473         case E1000_DEV_ID_82546EB_FIBER:
1474         case E1000_DEV_ID_82546GB_FIBER:
1475                 /* Wake events only supported on port A for dual fiber */
1476                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1477                         return wol->wolopts ? -EOPNOTSUPP : 0;
1478                 /* Fall Through */
1479
1480         default:
1481                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1482                         return -EOPNOTSUPP;
1483
1484                 adapter->wol = 0;
1485
1486                 if(wol->wolopts & WAKE_UCAST)
1487                         adapter->wol |= E1000_WUFC_EX;
1488                 if(wol->wolopts & WAKE_MCAST)
1489                         adapter->wol |= E1000_WUFC_MC;
1490                 if(wol->wolopts & WAKE_BCAST)
1491                         adapter->wol |= E1000_WUFC_BC;
1492                 if(wol->wolopts & WAKE_MAGIC)
1493                         adapter->wol |= E1000_WUFC_MAG;
1494         }
1495
1496         return 0;
1497 }
1498
1499 /* toggle LED 4 times per second = 2 "blinks" per second */
1500 #define E1000_ID_INTERVAL       (HZ/4)
1501
1502 /* bit defines for adapter->led_status */
1503 #define E1000_LED_ON            0
1504
1505 static void
1506 e1000_led_blink_callback(unsigned long data)
1507 {
1508         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1509
1510         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1511                 e1000_led_off(&adapter->hw);
1512         else
1513                 e1000_led_on(&adapter->hw);
1514
1515         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1516 }
1517
1518 static int
1519 e1000_phys_id(struct net_device *netdev, uint32_t data)
1520 {
1521         struct e1000_adapter *adapter = netdev->priv;
1522
1523         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1524                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1525
1526         if(!adapter->blink_timer.function) {
1527                 init_timer(&adapter->blink_timer);
1528                 adapter->blink_timer.function = e1000_led_blink_callback;
1529                 adapter->blink_timer.data = (unsigned long) adapter;
1530         }
1531
1532         e1000_setup_led(&adapter->hw);
1533         mod_timer(&adapter->blink_timer, jiffies);
1534
1535         set_current_state(TASK_INTERRUPTIBLE);
1536
1537         schedule_timeout(data * HZ);
1538         del_timer_sync(&adapter->blink_timer);
1539         e1000_led_off(&adapter->hw);
1540         clear_bit(E1000_LED_ON, &adapter->led_status);
1541         e1000_cleanup_led(&adapter->hw);
1542
1543         return 0;
1544 }
1545
1546 static int
1547 e1000_nway_reset(struct net_device *netdev)
1548 {
1549         struct e1000_adapter *adapter = netdev->priv;
1550         if(netif_running(netdev)) {
1551                 e1000_down(adapter);
1552                 e1000_up(adapter);
1553         }
1554         return 0;
1555 }
1556
1557 static int 
1558 e1000_get_stats_count(struct net_device *netdev)
1559 {
1560         return E1000_STATS_LEN;
1561 }
1562
1563 static void 
1564 e1000_get_ethtool_stats(struct net_device *netdev, 
1565                 struct ethtool_stats *stats, uint64_t *data)
1566 {
1567         struct e1000_adapter *adapter = netdev->priv;
1568         int i;
1569
1570         e1000_update_stats(adapter);
1571         for(i = 0; i < E1000_STATS_LEN; i++) {
1572                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1573                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == sizeof(uint64_t)) 
1574                         ? *(uint64_t *)p : *(uint32_t *)p;
1575         }
1576 }
1577
1578 static void 
1579 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1580 {
1581         int i;
1582
1583         switch(stringset) {
1584         case ETH_SS_TEST:
1585                 memcpy(data, *e1000_gstrings_test, 
1586                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1587                 break;
1588         case ETH_SS_STATS:
1589                 for (i=0; i < E1000_STATS_LEN; i++) {
1590                         memcpy(data + i * ETH_GSTRING_LEN, 
1591                         e1000_gstrings_stats[i].stat_string,
1592                         ETH_GSTRING_LEN);
1593                 }
1594                 break;
1595         }
1596 }
1597
1598 struct ethtool_ops e1000_ethtool_ops = {
1599         .get_settings           = e1000_get_settings,
1600         .set_settings           = e1000_set_settings,
1601         .get_drvinfo            = e1000_get_drvinfo,
1602         .get_regs_len           = e1000_get_regs_len,
1603         .get_regs               = e1000_get_regs,
1604         .get_wol                = e1000_get_wol,
1605         .set_wol                = e1000_set_wol,
1606         .get_msglevel           = e1000_get_msglevel,
1607         .set_msglevel           = e1000_set_msglevel,
1608         .nway_reset             = e1000_nway_reset,
1609         .get_link               = ethtool_op_get_link,
1610         .get_eeprom_len         = e1000_get_eeprom_len,
1611         .get_eeprom             = e1000_get_eeprom,
1612         .set_eeprom             = e1000_set_eeprom,
1613         .get_ringparam          = e1000_get_ringparam,
1614         .set_ringparam          = e1000_set_ringparam,
1615         .get_pauseparam         = e1000_get_pauseparam,
1616         .set_pauseparam         = e1000_set_pauseparam,
1617         .get_rx_csum            = e1000_get_rx_csum,
1618         .set_rx_csum            = e1000_set_rx_csum,
1619         .get_tx_csum            = e1000_get_tx_csum,
1620         .set_tx_csum            = e1000_set_tx_csum,
1621         .get_sg                 = ethtool_op_get_sg,
1622         .set_sg                 = ethtool_op_set_sg,
1623 #ifdef NETIF_F_TSO
1624         .get_tso                = ethtool_op_get_tso,
1625         .set_tso                = e1000_set_tso,
1626 #endif
1627         .self_test_count        = e1000_diag_test_count,
1628         .self_test              = e1000_diag_test,
1629         .get_strings            = e1000_get_strings,
1630         .phys_id                = e1000_phys_id,
1631         .get_stats_count        = e1000_get_stats_count,
1632         .get_ethtool_stats      = e1000_get_ethtool_stats,
1633 };
1634
1635 void set_ethtool_ops(struct net_device *netdev)
1636 {
1637         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1638 }