vserver 2.0 rc7
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95 };
96 #define E1000_STATS_LEN \
97         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104
105 static int
106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107 {
108         struct e1000_adapter *adapter = netdev->priv;
109         struct e1000_hw *hw = &adapter->hw;
110
111         if(hw->media_type == e1000_media_type_copper) {
112
113                 ecmd->supported = (SUPPORTED_10baseT_Half |
114                                    SUPPORTED_10baseT_Full |
115                                    SUPPORTED_100baseT_Half |
116                                    SUPPORTED_100baseT_Full |
117                                    SUPPORTED_1000baseT_Full|
118                                    SUPPORTED_Autoneg |
119                                    SUPPORTED_TP);
120
121                 ecmd->advertising = ADVERTISED_TP;
122
123                 if(hw->autoneg == 1) {
124                         ecmd->advertising |= ADVERTISED_Autoneg;
125
126                         /* the e1000 autoneg seems to match ethtool nicely */
127
128                         ecmd->advertising |= hw->autoneg_advertised;
129                 }
130
131                 ecmd->port = PORT_TP;
132                 ecmd->phy_address = hw->phy_addr;
133
134                 if(hw->mac_type == e1000_82543)
135                         ecmd->transceiver = XCVR_EXTERNAL;
136                 else
137                         ecmd->transceiver = XCVR_INTERNAL;
138
139         } else {
140                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
141                                      SUPPORTED_FIBRE |
142                                      SUPPORTED_Autoneg);
143
144                 ecmd->advertising = (SUPPORTED_1000baseT_Full |
145                                      SUPPORTED_FIBRE |
146                                      SUPPORTED_Autoneg);
147
148                 ecmd->port = PORT_FIBRE;
149
150                 if(hw->mac_type >= e1000_82545)
151                         ecmd->transceiver = XCVR_INTERNAL;
152                 else
153                         ecmd->transceiver = XCVR_EXTERNAL;
154         }
155
156         if(netif_carrier_ok(adapter->netdev)) {
157
158                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159                                                    &adapter->link_duplex);
160                 ecmd->speed = adapter->link_speed;
161
162                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163                  *          and HALF_DUPLEX != DUPLEX_HALF */
164
165                 if(adapter->link_duplex == FULL_DUPLEX)
166                         ecmd->duplex = DUPLEX_FULL;
167                 else
168                         ecmd->duplex = DUPLEX_HALF;
169         } else {
170                 ecmd->speed = -1;
171                 ecmd->duplex = -1;
172         }
173
174         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int
180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 {
182         struct e1000_adapter *adapter = netdev->priv;
183         struct e1000_hw *hw = &adapter->hw;
184
185         if(ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 hw->autoneg_advertised = 0x002F;
188                 ecmd->advertising = 0x002F;
189         } else
190                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
191                         return -EINVAL;
192
193         /* reset the link */
194
195         if(netif_running(adapter->netdev)) {
196                 e1000_down(adapter);
197                 e1000_reset(adapter);
198                 e1000_up(adapter);
199         } else
200                 e1000_reset(adapter);
201
202         return 0;
203 }
204
205 static void
206 e1000_get_pauseparam(struct net_device *netdev,
207                      struct ethtool_pauseparam *pause)
208 {
209         struct e1000_adapter *adapter = netdev->priv;
210         struct e1000_hw *hw = &adapter->hw;
211
212         pause->autoneg = 
213                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
214         
215         if(hw->fc == e1000_fc_rx_pause)
216                 pause->rx_pause = 1;
217         else if(hw->fc == e1000_fc_tx_pause)
218                 pause->tx_pause = 1;
219         else if(hw->fc == e1000_fc_full) {
220                 pause->rx_pause = 1;
221                 pause->tx_pause = 1;
222         }
223 }
224
225 static int
226 e1000_set_pauseparam(struct net_device *netdev,
227                      struct ethtool_pauseparam *pause)
228 {
229         struct e1000_adapter *adapter = netdev->priv;
230         struct e1000_hw *hw = &adapter->hw;
231         
232         adapter->fc_autoneg = pause->autoneg;
233
234         if(pause->rx_pause && pause->tx_pause)
235                 hw->fc = e1000_fc_full;
236         else if(pause->rx_pause && !pause->tx_pause)
237                 hw->fc = e1000_fc_rx_pause;
238         else if(!pause->rx_pause && pause->tx_pause)
239                 hw->fc = e1000_fc_tx_pause;
240         else if(!pause->rx_pause && !pause->tx_pause)
241                 hw->fc = e1000_fc_none;
242
243         hw->original_fc = hw->fc;
244
245         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
246                 if(netif_running(adapter->netdev)) {
247                         e1000_down(adapter);
248                         e1000_up(adapter);
249                 } else
250                         e1000_reset(adapter);
251         }
252         else
253                 return ((hw->media_type == e1000_media_type_fiber) ?
254                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
255         
256         return 0;
257 }
258
259 static uint32_t
260 e1000_get_rx_csum(struct net_device *netdev)
261 {
262         struct e1000_adapter *adapter = netdev->priv;
263         return adapter->rx_csum;
264 }
265
266 static int
267 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
268 {
269         struct e1000_adapter *adapter = netdev->priv;
270         adapter->rx_csum = data;
271
272         if(netif_running(netdev)) {
273                 e1000_down(adapter);
274                 e1000_up(adapter);
275         } else
276                 e1000_reset(adapter);
277         return 0;
278 }
279         
280 static uint32_t
281 e1000_get_tx_csum(struct net_device *netdev)
282 {
283         return (netdev->features & NETIF_F_HW_CSUM) != 0;
284 }
285
286 static int
287 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
288 {
289         struct e1000_adapter *adapter = netdev->priv;
290
291         if(adapter->hw.mac_type < e1000_82543) {
292                 if (!data)
293                         return -EINVAL;
294                 return 0;
295         }
296
297         if (data)
298                 netdev->features |= NETIF_F_HW_CSUM;
299         else
300                 netdev->features &= ~NETIF_F_HW_CSUM;
301
302         return 0;
303 }
304
305 #ifdef NETIF_F_TSO
306 static int
307 e1000_set_tso(struct net_device *netdev, uint32_t data)
308 {
309         struct e1000_adapter *adapter = netdev->priv;
310         if ((adapter->hw.mac_type < e1000_82544) ||
311             (adapter->hw.mac_type == e1000_82547)) 
312                 return data ? -EINVAL : 0;
313
314         if (data)
315                 netdev->features |= NETIF_F_TSO;
316         else
317                 netdev->features &= ~NETIF_F_TSO;
318         return 0;
319
320 #endif /* NETIF_F_TSO */
321
322 static uint32_t
323 e1000_get_msglevel(struct net_device *netdev)
324 {
325         struct e1000_adapter *adapter = netdev->priv;
326         return adapter->msg_enable;
327 }
328
329 static void
330 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
331 {
332         struct e1000_adapter *adapter = netdev->priv;
333         adapter->msg_enable = data;
334 }
335
336 static int 
337 e1000_get_regs_len(struct net_device *netdev)
338 {
339 #define E1000_REGS_LEN 32
340         return E1000_REGS_LEN * sizeof(uint32_t);
341 }
342
343 static void
344 e1000_get_regs(struct net_device *netdev,
345                struct ethtool_regs *regs, void *p)
346 {
347         struct e1000_adapter *adapter = netdev->priv;
348         struct e1000_hw *hw = &adapter->hw;
349         uint32_t *regs_buff = p;
350         uint16_t phy_data;
351
352         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
353
354         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355
356         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
357         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
358
359         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
360         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
361         regs_buff[4]  = E1000_READ_REG(hw, RDH);
362         regs_buff[5]  = E1000_READ_REG(hw, RDT);
363         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
364
365         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
366         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
367         regs_buff[9]  = E1000_READ_REG(hw, TDH);
368         regs_buff[10] = E1000_READ_REG(hw, TDT);
369         regs_buff[11] = E1000_READ_REG(hw, TIDV);
370
371         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
372         if(hw->phy_type == e1000_phy_igp) {
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374                                     IGP01E1000_PHY_AGC_A);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_AGC_B);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
383                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384                                     IGP01E1000_PHY_AGC_C);
385                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
388                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389                                     IGP01E1000_PHY_AGC_D);
390                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
393                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
398                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399                                     IGP01E1000_PHY_PCS_INIT_REG);
400                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
403                 regs_buff[20] = 0; /* polarity correction enabled (always) */
404                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405                 regs_buff[23] = regs_buff[18]; /* mdix mode */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407         } else {
408                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
415                 regs_buff[18] = regs_buff[13]; /* cable polarity */
416                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417                 regs_buff[20] = regs_buff[17]; /* polarity correction */
418                 /* phy receive errors */
419                 regs_buff[22] = adapter->phy_stats.receive_errors;
420                 regs_buff[23] = regs_buff[13]; /* mdix mode */
421         }
422         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
423         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
425         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
426         if(hw->mac_type >= e1000_82540 &&
427            hw->media_type == e1000_media_type_copper) {
428                 regs_buff[26] = E1000_READ_REG(hw, MANC);
429         }
430 }
431
432 static int
433 e1000_get_eeprom_len(struct net_device *netdev)
434 {
435         struct e1000_adapter *adapter = netdev->priv;
436         return adapter->hw.eeprom.word_size * 2;
437 }
438
439 static int
440 e1000_get_eeprom(struct net_device *netdev,
441                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
442 {
443         struct e1000_adapter *adapter = netdev->priv;
444         struct e1000_hw *hw = &adapter->hw;
445         uint16_t *eeprom_buff;
446         int first_word, last_word;
447         int ret_val = 0;
448         uint16_t i;
449
450         if(eeprom->len == 0)
451                 return -EINVAL;
452
453         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454
455         first_word = eeprom->offset >> 1;
456         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457
458         eeprom_buff = kmalloc(sizeof(uint16_t) *
459                         (last_word - first_word + 1), GFP_KERNEL);
460         if(!eeprom_buff)
461                 return -ENOMEM;
462
463         if(hw->eeprom.type == e1000_eeprom_spi)
464                 ret_val = e1000_read_eeprom(hw, first_word,
465                                             last_word - first_word + 1,
466                                             eeprom_buff);
467         else {
468                 for (i = 0; i < last_word - first_word + 1; i++)
469                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470                                                         &eeprom_buff[i])))
471                                 break;
472         }
473
474         /* Device's eeprom is always little-endian, word addressable */
475         for (i = 0; i < last_word - first_word + 1; i++)
476                 le16_to_cpus(&eeprom_buff[i]);
477
478         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
479                         eeprom->len);
480         kfree(eeprom_buff);
481
482         return ret_val;
483 }
484
485 static int
486 e1000_set_eeprom(struct net_device *netdev,
487                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
488 {
489         struct e1000_adapter *adapter = netdev->priv;
490         struct e1000_hw *hw = &adapter->hw;
491         uint16_t *eeprom_buff;
492         void *ptr;
493         int max_len, first_word, last_word, ret_val = 0;
494         uint16_t i;
495
496         if(eeprom->len == 0)
497                 return -EOPNOTSUPP;
498
499         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
500                 return -EFAULT;
501
502         max_len = hw->eeprom.word_size * 2;
503
504         first_word = eeprom->offset >> 1;
505         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
506         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
507         if(!eeprom_buff)
508                 return -ENOMEM;
509
510         ptr = (void *)eeprom_buff;
511
512         if(eeprom->offset & 1) {
513                 /* need read/modify/write of first changed EEPROM word */
514                 /* only the second byte of the word is being modified */
515                 ret_val = e1000_read_eeprom(hw, first_word, 1,
516                                             &eeprom_buff[0]);
517                 ptr++;
518         }
519         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
520                 /* need read/modify/write of last changed EEPROM word */
521                 /* only the first byte of the word is being modified */
522                 ret_val = e1000_read_eeprom(hw, last_word, 1,
523                                   &eeprom_buff[last_word - first_word]);
524         }
525
526         /* Device's eeprom is always little-endian, word addressable */
527         for (i = 0; i < last_word - first_word + 1; i++)
528                 le16_to_cpus(&eeprom_buff[i]);
529
530         memcpy(ptr, bytes, eeprom->len);
531
532         for (i = 0; i < last_word - first_word + 1; i++)
533                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
534
535         ret_val = e1000_write_eeprom(hw, first_word,
536                                      last_word - first_word + 1, eeprom_buff);
537
538         /* Update the checksum over the first part of the EEPROM if needed */
539         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
540                 e1000_update_eeprom_checksum(hw);
541
542         kfree(eeprom_buff);
543         return ret_val;
544 }
545
546 static void
547 e1000_get_drvinfo(struct net_device *netdev,
548                        struct ethtool_drvinfo *drvinfo)
549 {
550         struct e1000_adapter *adapter = netdev->priv;
551
552         strncpy(drvinfo->driver,  e1000_driver_name, 32);
553         strncpy(drvinfo->version, e1000_driver_version, 32);
554         strncpy(drvinfo->fw_version, "N/A", 32);
555         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
556         drvinfo->n_stats = E1000_STATS_LEN;
557         drvinfo->testinfo_len = E1000_TEST_LEN;
558         drvinfo->regdump_len = e1000_get_regs_len(netdev);
559         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
560 }
561
562 static void
563 e1000_get_ringparam(struct net_device *netdev,
564                     struct ethtool_ringparam *ring)
565 {
566         struct e1000_adapter *adapter = netdev->priv;
567         e1000_mac_type mac_type = adapter->hw.mac_type;
568         struct e1000_desc_ring *txdr = &adapter->tx_ring;
569         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
570
571         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
572                 E1000_MAX_82544_RXD;
573         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
574                 E1000_MAX_82544_TXD;
575         ring->rx_mini_max_pending = 0;
576         ring->rx_jumbo_max_pending = 0;
577         ring->rx_pending = rxdr->count;
578         ring->tx_pending = txdr->count;
579         ring->rx_mini_pending = 0;
580         ring->rx_jumbo_pending = 0;
581 }
582
583 static int 
584 e1000_set_ringparam(struct net_device *netdev,
585                     struct ethtool_ringparam *ring)
586 {
587         struct e1000_adapter *adapter = netdev->priv;
588         e1000_mac_type mac_type = adapter->hw.mac_type;
589         struct e1000_desc_ring *txdr = &adapter->tx_ring;
590         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
591         struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
592         int err;
593
594         tx_old = adapter->tx_ring;
595         rx_old = adapter->rx_ring;
596
597         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
598                 return -EINVAL;
599
600         if(netif_running(adapter->netdev))
601                 e1000_down(adapter);
602
603         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
604         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
605                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
606         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
607
608         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
609         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
610                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
611         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
612
613         if(netif_running(adapter->netdev)) {
614                 /* Try to get new resources before deleting old */
615                 if((err = e1000_setup_rx_resources(adapter)))
616                         goto err_setup_rx;
617                 if((err = e1000_setup_tx_resources(adapter)))
618                         goto err_setup_tx;
619
620                 /* save the new, restore the old in order to free it,
621                  * then restore the new back again */
622
623                 rx_new = adapter->rx_ring;
624                 tx_new = adapter->tx_ring;
625                 adapter->rx_ring = rx_old;
626                 adapter->tx_ring = tx_old;
627                 e1000_free_rx_resources(adapter);
628                 e1000_free_tx_resources(adapter);
629                 adapter->rx_ring = rx_new;
630                 adapter->tx_ring = tx_new;
631                 if((err = e1000_up(adapter)))
632                         return err;
633         }
634
635         return 0;
636 err_setup_tx:
637         e1000_free_rx_resources(adapter);
638 err_setup_rx:
639         adapter->rx_ring = rx_old;
640         adapter->tx_ring = tx_old;
641         e1000_up(adapter);
642         return err;
643 }
644
645 #define REG_PATTERN_TEST(R, M, W)                                              \
646 {                                                                              \
647         uint32_t pat, value;                                                   \
648         uint32_t test[] =                                                      \
649                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
650         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
651                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
652                 value = E1000_READ_REG(&adapter->hw, R);                       \
653                 if(value != (test[pat] & W & M)) {                             \
654                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
655                                 E1000_82542_##R : E1000_##R;                   \
656                         return 1;                                              \
657                 }                                                              \
658         }                                                                      \
659 }
660
661 #define REG_SET_AND_CHECK(R, M, W)                                             \
662 {                                                                              \
663         uint32_t value;                                                        \
664         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
665         value = E1000_READ_REG(&adapter->hw, R);                               \
666         if ((W & M) != (value & M)) {                                          \
667                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
668                         E1000_82542_##R : E1000_##R;                           \
669                 return 1;                                                      \
670         }                                                                      \
671 }
672
673 static int
674 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
675 {
676         uint32_t value;
677         uint32_t i;
678
679         /* The status register is Read Only, so a write should fail.
680          * Some bits that get toggled are ignored.
681          */
682         value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
683         E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
684         if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
685                 *data = 1;
686                 return 1;
687         }
688
689         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
690         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
691         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
692         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
693         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
694         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
695         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
696         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
697         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
698         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
699         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
700         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
701         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
702         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
703
704         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
705         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
706         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
707
708         if(adapter->hw.mac_type >= e1000_82543) {
709
710                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
711                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
712                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
713                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
714                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
715
716                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
717                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
718                                          0xFFFFFFFF);
719                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
720                                          0xFFFFFFFF);
721                 }
722
723         } else {
724
725                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
726                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
727                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
728                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
729
730         }
731
732         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
733                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
734
735         *data = 0;
736         return 0;
737 }
738
739 static int
740 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
741 {
742         uint16_t temp;
743         uint16_t checksum = 0;
744         uint16_t i;
745
746         *data = 0;
747         /* Read and add up the contents of the EEPROM */
748         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
749                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
750                         *data = 1;
751                         break;
752                 }
753                 checksum += temp;
754         }
755
756         /* If Checksum is not Correct return error else test passed */
757         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
758                 *data = 2;
759
760         return *data;
761 }
762
763 static irqreturn_t
764 e1000_test_intr(int irq,
765                 void *data,
766                 struct pt_regs *regs)
767 {
768         struct net_device *netdev = (struct net_device *) data;
769         struct e1000_adapter *adapter = netdev->priv;
770
771         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
772
773         return IRQ_HANDLED;
774 }
775
776 static int
777 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
778 {
779         struct net_device *netdev = adapter->netdev;
780         uint32_t mask, i=0, shared_int = TRUE;
781         uint32_t irq = adapter->pdev->irq;
782
783         *data = 0;
784
785         /* Hook up test interrupt handler just for this test */
786         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
787                 shared_int = FALSE;
788         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
789                               netdev->name, netdev)){
790                 *data = 1;
791                 return -1;
792         }
793
794         /* Disable all the interrupts */
795         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
796         msec_delay(10);
797
798         /* Test each interrupt */
799         for(; i < 10; i++) {
800
801                 /* Interrupt to test */
802                 mask = 1 << i;
803
804                 if(!shared_int) {
805                         /* Disable the interrupt to be reported in
806                          * the cause register and then force the same
807                          * interrupt and see if one gets posted.  If
808                          * an interrupt was posted to the bus, the
809                          * test failed.
810                          */
811                         adapter->test_icr = 0;
812                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
813                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
814                         msec_delay(10);
815  
816                         if(adapter->test_icr & mask) {
817                                 *data = 3;
818                                 break;
819                         }
820                 }
821
822                 /* Enable the interrupt to be reported in
823                  * the cause register and then force the same
824                  * interrupt and see if one gets posted.  If
825                  * an interrupt was not posted to the bus, the
826                  * test failed.
827                  */
828                 adapter->test_icr = 0;
829                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
830                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
831                 msec_delay(10);
832
833                 if(!(adapter->test_icr & mask)) {
834                         *data = 4;
835                         break;
836                 }
837
838                 if(!shared_int) {
839                         /* Disable the other interrupts to be reported in
840                          * the cause register and then force the other
841                          * interrupts and see if any get posted.  If
842                          * an interrupt was posted to the bus, the
843                          * test failed.
844                          */
845                         adapter->test_icr = 0;
846                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
847                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
848                         msec_delay(10);
849
850                         if(adapter->test_icr) {
851                                 *data = 5;
852                                 break;
853                         }
854                 }
855         }
856
857         /* Disable all the interrupts */
858         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
859         msec_delay(10);
860
861         /* Unhook test interrupt handler */
862         free_irq(irq, netdev);
863
864         return *data;
865 }
866
867 static void
868 e1000_free_desc_rings(struct e1000_adapter *adapter)
869 {
870         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
871         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
872         struct pci_dev *pdev = adapter->pdev;
873         int i;
874
875         if(txdr->desc && txdr->buffer_info) {
876                 for(i = 0; i < txdr->count; i++) {
877                         if(txdr->buffer_info[i].dma)
878                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
879                                                  txdr->buffer_info[i].length,
880                                                  PCI_DMA_TODEVICE);
881                         if(txdr->buffer_info[i].skb)
882                                 dev_kfree_skb(txdr->buffer_info[i].skb);
883                 }
884         }
885
886         if(rxdr->desc && rxdr->buffer_info) {
887                 for(i = 0; i < rxdr->count; i++) {
888                         if(rxdr->buffer_info[i].dma)
889                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
890                                                  rxdr->buffer_info[i].length,
891                                                  PCI_DMA_FROMDEVICE);
892                         if(rxdr->buffer_info[i].skb)
893                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
894                 }
895         }
896
897         if(txdr->desc)
898                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
899         if(rxdr->desc)
900                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
901
902         if(txdr->buffer_info)
903                 kfree(txdr->buffer_info);
904         if(rxdr->buffer_info)
905                 kfree(rxdr->buffer_info);
906
907         return;
908 }
909
910 static int
911 e1000_setup_desc_rings(struct e1000_adapter *adapter)
912 {
913         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
914         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
915         struct pci_dev *pdev = adapter->pdev;
916         uint32_t rctl;
917         int size, i, ret_val;
918
919         /* Setup Tx descriptor ring and Tx buffers */
920
921         if(!txdr->count)
922                 txdr->count = E1000_DEFAULT_TXD;   
923
924         size = txdr->count * sizeof(struct e1000_buffer);
925         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
926                 ret_val = 1;
927                 goto err_nomem;
928         }
929         memset(txdr->buffer_info, 0, size);
930
931         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
932         E1000_ROUNDUP(txdr->size, 4096);
933         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
934                 ret_val = 2;
935                 goto err_nomem;
936         }
937         memset(txdr->desc, 0, txdr->size);
938         txdr->next_to_use = txdr->next_to_clean = 0;
939
940         E1000_WRITE_REG(&adapter->hw, TDBAL,
941                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
942         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
943         E1000_WRITE_REG(&adapter->hw, TDLEN,
944                         txdr->count * sizeof(struct e1000_tx_desc));
945         E1000_WRITE_REG(&adapter->hw, TDH, 0);
946         E1000_WRITE_REG(&adapter->hw, TDT, 0);
947         E1000_WRITE_REG(&adapter->hw, TCTL,
948                         E1000_TCTL_PSP | E1000_TCTL_EN |
949                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
950                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
951
952         for(i = 0; i < txdr->count; i++) {
953                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
954                 struct sk_buff *skb;
955                 unsigned int size = 1024;
956
957                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
958                         ret_val = 3;
959                         goto err_nomem;
960                 }
961                 skb_put(skb, size);
962                 txdr->buffer_info[i].skb = skb;
963                 txdr->buffer_info[i].length = skb->len;
964                 txdr->buffer_info[i].dma =
965                         pci_map_single(pdev, skb->data, skb->len,
966                                        PCI_DMA_TODEVICE);
967                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
968                 tx_desc->lower.data = cpu_to_le32(skb->len);
969                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
970                                                    E1000_TXD_CMD_IFCS |
971                                                    E1000_TXD_CMD_RPS);
972                 tx_desc->upper.data = 0;
973         }
974
975         /* Setup Rx descriptor ring and Rx buffers */
976
977         if(!rxdr->count)
978                 rxdr->count = E1000_DEFAULT_RXD;   
979
980         size = rxdr->count * sizeof(struct e1000_buffer);
981         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
982                 ret_val = 4;
983                 goto err_nomem;
984         }
985         memset(rxdr->buffer_info, 0, size);
986
987         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
988         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
989                 ret_val = 5;
990                 goto err_nomem;
991         }
992         memset(rxdr->desc, 0, rxdr->size);
993         rxdr->next_to_use = rxdr->next_to_clean = 0;
994
995         rctl = E1000_READ_REG(&adapter->hw, RCTL);
996         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
997         E1000_WRITE_REG(&adapter->hw, RDBAL,
998                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
999         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1000         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1001         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1002         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1003         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1004                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1005                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1006         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1007
1008         for(i = 0; i < rxdr->count; i++) {
1009                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1010                 struct sk_buff *skb;
1011
1012                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1013                                 GFP_KERNEL))) {
1014                         ret_val = 6;
1015                         goto err_nomem;
1016                 }
1017                 skb_reserve(skb, NET_IP_ALIGN);
1018                 rxdr->buffer_info[i].skb = skb;
1019                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1020                 rxdr->buffer_info[i].dma =
1021                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1022                                        PCI_DMA_FROMDEVICE);
1023                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1024                 memset(skb->data, 0x00, skb->len);
1025         }
1026
1027         return 0;
1028
1029 err_nomem:
1030         e1000_free_desc_rings(adapter);
1031         return ret_val;
1032 }
1033
1034 static void
1035 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1036 {
1037         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1038         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1039         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1040         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1041         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1042 }
1043
1044 static void
1045 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1046 {
1047         uint16_t phy_reg;
1048
1049         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1050          * Extended PHY Specific Control Register to 25MHz clock.  This
1051          * value defaults back to a 2.5MHz clock when the PHY is reset.
1052          */
1053         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1054         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1055         e1000_write_phy_reg(&adapter->hw,
1056                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1057
1058         /* In addition, because of the s/w reset above, we need to enable
1059          * CRS on TX.  This must be set for both full and half duplex
1060          * operation.
1061          */
1062         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1063         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1064         e1000_write_phy_reg(&adapter->hw,
1065                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1066 }
1067
1068 static int
1069 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1070 {
1071         uint32_t ctrl_reg;
1072         uint16_t phy_reg;
1073
1074         /* Setup the Device Control Register for PHY loopback test. */
1075
1076         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1077         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1078                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1079                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1080                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1081                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1082
1083         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1084
1085         /* Read the PHY Specific Control Register (0x10) */
1086         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1087
1088         /* Clear Auto-Crossover bits in PHY Specific Control Register
1089          * (bits 6:5).
1090          */
1091         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1092         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1093
1094         /* Perform software reset on the PHY */
1095         e1000_phy_reset(&adapter->hw);
1096
1097         /* Have to setup TX_CLK and TX_CRS after software reset */
1098         e1000_phy_reset_clk_and_crs(adapter);
1099
1100         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1101
1102         /* Wait for reset to complete. */
1103         udelay(500);
1104
1105         /* Have to setup TX_CLK and TX_CRS after software reset */
1106         e1000_phy_reset_clk_and_crs(adapter);
1107
1108         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109         e1000_phy_disable_receiver(adapter);
1110
1111         /* Set the loopback bit in the PHY control register. */
1112         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1113         phy_reg |= MII_CR_LOOPBACK;
1114         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1115
1116         /* Setup TX_CLK and TX_CRS one more time. */
1117         e1000_phy_reset_clk_and_crs(adapter);
1118
1119         /* Check Phy Configuration */
1120         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1121         if(phy_reg != 0x4100)
1122                  return 9;
1123
1124         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125         if(phy_reg != 0x0070)
1126                 return 10;
1127
1128         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1129         if(phy_reg != 0x001A)
1130                 return 11;
1131
1132         return 0;
1133 }
1134
1135 static int
1136 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1137 {
1138         uint32_t ctrl_reg = 0;
1139         uint32_t stat_reg = 0;
1140
1141         adapter->hw.autoneg = FALSE;
1142
1143         if(adapter->hw.phy_type == e1000_phy_m88) {
1144                 /* Auto-MDI/MDIX Off */
1145                 e1000_write_phy_reg(&adapter->hw,
1146                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1147                 /* reset to update Auto-MDI/MDIX */
1148                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1149                 /* autoneg off */
1150                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1151         }
1152         /* force 1000, set loopback */
1153         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1154
1155         /* Now set up the MAC to the same speed/duplex as the PHY. */
1156         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1157         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1158         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1159                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1160                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1161                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1162
1163         if(adapter->hw.media_type == e1000_media_type_copper &&
1164            adapter->hw.phy_type == e1000_phy_m88) {
1165                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1166         } else {
1167                 /* Set the ILOS bit on the fiber Nic is half
1168                  * duplex link is detected. */
1169                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1170                 if((stat_reg & E1000_STATUS_FD) == 0)
1171                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1172         }
1173
1174         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1175
1176         /* Disable the receiver on the PHY so when a cable is plugged in, the
1177          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1178          */
1179         if(adapter->hw.phy_type == e1000_phy_m88)
1180                 e1000_phy_disable_receiver(adapter);
1181
1182         udelay(500);
1183
1184         return 0;
1185 }
1186
1187 static int
1188 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1189 {
1190         uint16_t phy_reg = 0;
1191         uint16_t count = 0;
1192
1193         switch (adapter->hw.mac_type) {
1194         case e1000_82543:
1195                 if(adapter->hw.media_type == e1000_media_type_copper) {
1196                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1197                          * Some PHY registers get corrupted at random, so
1198                          * attempt this 10 times.
1199                          */
1200                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1201                               count++ < 10);
1202                         if(count < 11)
1203                                 return 0;
1204                 }
1205                 break;
1206
1207         case e1000_82544:
1208         case e1000_82540:
1209         case e1000_82545:
1210         case e1000_82545_rev_3:
1211         case e1000_82546:
1212         case e1000_82546_rev_3:
1213         case e1000_82541:
1214         case e1000_82541_rev_2:
1215         case e1000_82547:
1216         case e1000_82547_rev_2:
1217                 return e1000_integrated_phy_loopback(adapter);
1218                 break;
1219
1220         default:
1221                 /* Default PHY loopback work is to read the MII
1222                  * control register and assert bit 14 (loopback mode).
1223                  */
1224                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1225                 phy_reg |= MII_CR_LOOPBACK;
1226                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1227                 return 0;
1228                 break;
1229         }
1230
1231         return 8;
1232 }
1233
1234 static int
1235 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1236 {
1237         uint32_t rctl;
1238
1239         if(adapter->hw.media_type == e1000_media_type_fiber ||
1240            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1241                 if(adapter->hw.mac_type == e1000_82545 ||
1242                    adapter->hw.mac_type == e1000_82546 ||
1243                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1244                    adapter->hw.mac_type == e1000_82546_rev_3)
1245                         return e1000_set_phy_loopback(adapter);
1246                 else {
1247                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1248                         rctl |= E1000_RCTL_LBM_TCVR;
1249                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1250                         return 0;
1251                 }
1252         } else if(adapter->hw.media_type == e1000_media_type_copper)
1253                 return e1000_set_phy_loopback(adapter);
1254
1255         return 7;
1256 }
1257
1258 static void
1259 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1260 {
1261         uint32_t rctl;
1262         uint16_t phy_reg;
1263
1264         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1265         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1266         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1267
1268         if(adapter->hw.media_type == e1000_media_type_copper ||
1269            ((adapter->hw.media_type == e1000_media_type_fiber ||
1270              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1271             (adapter->hw.mac_type == e1000_82545 ||
1272              adapter->hw.mac_type == e1000_82546 ||
1273              adapter->hw.mac_type == e1000_82545_rev_3 ||
1274              adapter->hw.mac_type == e1000_82546_rev_3))) {
1275                 adapter->hw.autoneg = TRUE;
1276                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1277                 if(phy_reg & MII_CR_LOOPBACK) {
1278                         phy_reg &= ~MII_CR_LOOPBACK;
1279                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1280                         e1000_phy_reset(&adapter->hw);
1281                 }
1282         }
1283 }
1284
1285 static void
1286 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1287 {
1288         memset(skb->data, 0xFF, frame_size);
1289         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1290         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1291         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1292         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1293 }
1294
1295 static int
1296 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1297 {
1298         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1299         if(*(skb->data + 3) == 0xFF) {
1300                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1301                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1302                         return 0;
1303                 }
1304         }
1305         return 13;
1306 }
1307
1308 static int
1309 e1000_run_loopback_test(struct e1000_adapter *adapter)
1310 {
1311         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1312         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1313         struct pci_dev *pdev = adapter->pdev;
1314         int i, j, k, l, lc, good_cnt, ret_val=0;
1315         unsigned long time;
1316
1317         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1318
1319         /* Calculate the loop count based on the largest descriptor ring 
1320          * The idea is to wrap the largest ring a number of times using 64
1321          * send/receive pairs during each loop
1322          */
1323
1324         if(rxdr->count <= txdr->count)
1325                 lc = ((txdr->count / 64) * 2) + 1;
1326         else
1327                 lc = ((rxdr->count / 64) * 2) + 1;
1328
1329         k = l = 0;
1330         for(j = 0; j <= lc; j++) { /* loop count loop */
1331                 for(i = 0; i < 64; i++) { /* send the packets */
1332                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1333                                         1024);
1334                         pci_dma_sync_single_for_device(pdev, 
1335                                         txdr->buffer_info[k].dma,
1336                                         txdr->buffer_info[k].length,
1337                                         PCI_DMA_TODEVICE);
1338                         if(unlikely(++k == txdr->count)) k = 0;
1339                 }
1340                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1341                 msec_delay(200);
1342                 time = jiffies; /* set the start time for the receive */
1343                 good_cnt = 0;
1344                 do { /* receive the sent packets */
1345                         pci_dma_sync_single_for_cpu(pdev, 
1346                                         rxdr->buffer_info[l].dma,
1347                                         rxdr->buffer_info[l].length,
1348                                         PCI_DMA_FROMDEVICE);
1349         
1350                         ret_val = e1000_check_lbtest_frame(
1351                                         rxdr->buffer_info[l].skb,
1352                                         1024);
1353                         if(!ret_val)
1354                                 good_cnt++;
1355                         if(unlikely(++l == rxdr->count)) l = 0;
1356                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1357                          * enough time to complete the receives, if it's 
1358                          * exceeded, break and error off
1359                          */
1360                 } while (good_cnt < 64 && jiffies < (time + 20));
1361                 if(good_cnt != 64) {
1362                         ret_val = 13; /* ret_val is the same as mis-compare */
1363                         break; 
1364                 }
1365                 if(jiffies >= (time + 2)) {
1366                         ret_val = 14; /* error code for time out error */
1367                         break;
1368                 }
1369         } /* end loop count loop */
1370         return ret_val;
1371 }
1372
1373 static int
1374 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1375 {
1376         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1377         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1378         *data = e1000_run_loopback_test(adapter);
1379         e1000_loopback_cleanup(adapter);
1380         e1000_free_desc_rings(adapter);
1381 err_loopback:
1382         return *data;
1383 }
1384
1385 static int
1386 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1387 {
1388         *data = 0;
1389         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1390                 int i = 0;
1391                 adapter->hw.serdes_link_down = TRUE;
1392
1393                 /* On some blade server designs, link establishment
1394                  * could take as long as 2-3 minutes */
1395                 do {
1396                         e1000_check_for_link(&adapter->hw);
1397                         if (adapter->hw.serdes_link_down == FALSE)
1398                                 return *data;
1399                         msec_delay(20);
1400                 } while (i++ < 3750);
1401
1402                 *data = 1;
1403         } else {
1404                 e1000_check_for_link(&adapter->hw);
1405                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1406                         msec_delay(4000);
1407
1408                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1409                         *data = 1;
1410                 }
1411         }
1412         return *data;
1413 }
1414
1415 static int 
1416 e1000_diag_test_count(struct net_device *netdev)
1417 {
1418         return E1000_TEST_LEN;
1419 }
1420
1421 static void
1422 e1000_diag_test(struct net_device *netdev,
1423                    struct ethtool_test *eth_test, uint64_t *data)
1424 {
1425         struct e1000_adapter *adapter = netdev->priv;
1426         boolean_t if_running = netif_running(netdev);
1427
1428         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1429                 /* Offline tests */
1430
1431                 /* save speed, duplex, autoneg settings */
1432                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1433                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1434                 uint8_t autoneg = adapter->hw.autoneg;
1435
1436                 /* Link test performed before hardware reset so autoneg doesn't
1437                  * interfere with test result */
1438                 if(e1000_link_test(adapter, &data[4]))
1439                         eth_test->flags |= ETH_TEST_FL_FAILED;
1440
1441                 if(if_running)
1442                         e1000_down(adapter);
1443                 else
1444                         e1000_reset(adapter);
1445
1446                 if(e1000_reg_test(adapter, &data[0]))
1447                         eth_test->flags |= ETH_TEST_FL_FAILED;
1448
1449                 e1000_reset(adapter);
1450                 if(e1000_eeprom_test(adapter, &data[1]))
1451                         eth_test->flags |= ETH_TEST_FL_FAILED;
1452
1453                 e1000_reset(adapter);
1454                 if(e1000_intr_test(adapter, &data[2]))
1455                         eth_test->flags |= ETH_TEST_FL_FAILED;
1456
1457                 e1000_reset(adapter);
1458                 if(e1000_loopback_test(adapter, &data[3]))
1459                         eth_test->flags |= ETH_TEST_FL_FAILED;
1460
1461                 /* restore speed, duplex, autoneg settings */
1462                 adapter->hw.autoneg_advertised = autoneg_advertised;
1463                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1464                 adapter->hw.autoneg = autoneg;
1465
1466                 e1000_reset(adapter);
1467                 if(if_running)
1468                         e1000_up(adapter);
1469         } else {
1470                 /* Online tests */
1471                 if(e1000_link_test(adapter, &data[4]))
1472                         eth_test->flags |= ETH_TEST_FL_FAILED;
1473
1474                 /* Offline tests aren't run; pass by default */
1475                 data[0] = 0;
1476                 data[1] = 0;
1477                 data[2] = 0;
1478                 data[3] = 0;
1479         }
1480 }
1481
1482 static void
1483 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1484 {
1485         struct e1000_adapter *adapter = netdev->priv;
1486         struct e1000_hw *hw = &adapter->hw;
1487
1488         switch(adapter->hw.device_id) {
1489         case E1000_DEV_ID_82542:
1490         case E1000_DEV_ID_82543GC_FIBER:
1491         case E1000_DEV_ID_82543GC_COPPER:
1492         case E1000_DEV_ID_82544EI_FIBER:
1493         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1494         case E1000_DEV_ID_82545EM_FIBER:
1495         case E1000_DEV_ID_82545EM_COPPER:
1496                 wol->supported = 0;
1497                 wol->wolopts   = 0;
1498                 return;
1499
1500         case E1000_DEV_ID_82546EB_FIBER:
1501         case E1000_DEV_ID_82546GB_FIBER:
1502                 /* Wake events only supported on port A for dual fiber */
1503                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1504                         wol->supported = 0;
1505                         wol->wolopts   = 0;
1506                         return;
1507                 }
1508                 /* Fall Through */
1509
1510         default:
1511                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1512                                  WAKE_BCAST | WAKE_MAGIC;
1513
1514                 wol->wolopts = 0;
1515                 if(adapter->wol & E1000_WUFC_EX)
1516                         wol->wolopts |= WAKE_UCAST;
1517                 if(adapter->wol & E1000_WUFC_MC)
1518                         wol->wolopts |= WAKE_MCAST;
1519                 if(adapter->wol & E1000_WUFC_BC)
1520                         wol->wolopts |= WAKE_BCAST;
1521                 if(adapter->wol & E1000_WUFC_MAG)
1522                         wol->wolopts |= WAKE_MAGIC;
1523                 return;
1524         }
1525 }
1526
1527 static int
1528 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1529 {
1530         struct e1000_adapter *adapter = netdev->priv;
1531         struct e1000_hw *hw = &adapter->hw;
1532
1533         switch(adapter->hw.device_id) {
1534         case E1000_DEV_ID_82542:
1535         case E1000_DEV_ID_82543GC_FIBER:
1536         case E1000_DEV_ID_82543GC_COPPER:
1537         case E1000_DEV_ID_82544EI_FIBER:
1538         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1539         case E1000_DEV_ID_82545EM_FIBER:
1540         case E1000_DEV_ID_82545EM_COPPER:
1541                 return wol->wolopts ? -EOPNOTSUPP : 0;
1542
1543         case E1000_DEV_ID_82546EB_FIBER:
1544         case E1000_DEV_ID_82546GB_FIBER:
1545                 /* Wake events only supported on port A for dual fiber */
1546                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1547                         return wol->wolopts ? -EOPNOTSUPP : 0;
1548                 /* Fall Through */
1549
1550         default:
1551                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1552                         return -EOPNOTSUPP;
1553
1554                 adapter->wol = 0;
1555
1556                 if(wol->wolopts & WAKE_UCAST)
1557                         adapter->wol |= E1000_WUFC_EX;
1558                 if(wol->wolopts & WAKE_MCAST)
1559                         adapter->wol |= E1000_WUFC_MC;
1560                 if(wol->wolopts & WAKE_BCAST)
1561                         adapter->wol |= E1000_WUFC_BC;
1562                 if(wol->wolopts & WAKE_MAGIC)
1563                         adapter->wol |= E1000_WUFC_MAG;
1564         }
1565
1566         return 0;
1567 }
1568
1569 /* toggle LED 4 times per second = 2 "blinks" per second */
1570 #define E1000_ID_INTERVAL       (HZ/4)
1571
1572 /* bit defines for adapter->led_status */
1573 #define E1000_LED_ON            0
1574
1575 static void
1576 e1000_led_blink_callback(unsigned long data)
1577 {
1578         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1579
1580         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1581                 e1000_led_off(&adapter->hw);
1582         else
1583                 e1000_led_on(&adapter->hw);
1584
1585         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1586 }
1587
1588 static int
1589 e1000_phys_id(struct net_device *netdev, uint32_t data)
1590 {
1591         struct e1000_adapter *adapter = netdev->priv;
1592
1593         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1594                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1595
1596         if(!adapter->blink_timer.function) {
1597                 init_timer(&adapter->blink_timer);
1598                 adapter->blink_timer.function = e1000_led_blink_callback;
1599                 adapter->blink_timer.data = (unsigned long) adapter;
1600         }
1601
1602         e1000_setup_led(&adapter->hw);
1603         mod_timer(&adapter->blink_timer, jiffies);
1604
1605         msleep_interruptible(data * 1000);
1606         del_timer_sync(&adapter->blink_timer);
1607         e1000_led_off(&adapter->hw);
1608         clear_bit(E1000_LED_ON, &adapter->led_status);
1609         e1000_cleanup_led(&adapter->hw);
1610
1611         return 0;
1612 }
1613
1614 static int
1615 e1000_nway_reset(struct net_device *netdev)
1616 {
1617         struct e1000_adapter *adapter = netdev->priv;
1618         if(netif_running(netdev)) {
1619                 e1000_down(adapter);
1620                 e1000_up(adapter);
1621         }
1622         return 0;
1623 }
1624
1625 static int 
1626 e1000_get_stats_count(struct net_device *netdev)
1627 {
1628         return E1000_STATS_LEN;
1629 }
1630
1631 static void 
1632 e1000_get_ethtool_stats(struct net_device *netdev, 
1633                 struct ethtool_stats *stats, uint64_t *data)
1634 {
1635         struct e1000_adapter *adapter = netdev->priv;
1636         int i;
1637
1638         e1000_update_stats(adapter);
1639         for(i = 0; i < E1000_STATS_LEN; i++) {
1640                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1641                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1642                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1643         }
1644 }
1645
1646 static void 
1647 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1648 {
1649         int i;
1650
1651         switch(stringset) {
1652         case ETH_SS_TEST:
1653                 memcpy(data, *e1000_gstrings_test, 
1654                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1655                 break;
1656         case ETH_SS_STATS:
1657                 for (i=0; i < E1000_STATS_LEN; i++) {
1658                         memcpy(data + i * ETH_GSTRING_LEN, 
1659                         e1000_gstrings_stats[i].stat_string,
1660                         ETH_GSTRING_LEN);
1661                 }
1662                 break;
1663         }
1664 }
1665
1666 struct ethtool_ops e1000_ethtool_ops = {
1667         .get_settings           = e1000_get_settings,
1668         .set_settings           = e1000_set_settings,
1669         .get_drvinfo            = e1000_get_drvinfo,
1670         .get_regs_len           = e1000_get_regs_len,
1671         .get_regs               = e1000_get_regs,
1672         .get_wol                = e1000_get_wol,
1673         .set_wol                = e1000_set_wol,
1674         .get_msglevel           = e1000_get_msglevel,
1675         .set_msglevel           = e1000_set_msglevel,
1676         .nway_reset             = e1000_nway_reset,
1677         .get_link               = ethtool_op_get_link,
1678         .get_eeprom_len         = e1000_get_eeprom_len,
1679         .get_eeprom             = e1000_get_eeprom,
1680         .set_eeprom             = e1000_set_eeprom,
1681         .get_ringparam          = e1000_get_ringparam,
1682         .set_ringparam          = e1000_set_ringparam,
1683         .get_pauseparam         = e1000_get_pauseparam,
1684         .set_pauseparam         = e1000_set_pauseparam,
1685         .get_rx_csum            = e1000_get_rx_csum,
1686         .set_rx_csum            = e1000_set_rx_csum,
1687         .get_tx_csum            = e1000_get_tx_csum,
1688         .set_tx_csum            = e1000_set_tx_csum,
1689         .get_sg                 = ethtool_op_get_sg,
1690         .set_sg                 = ethtool_op_set_sg,
1691 #ifdef NETIF_F_TSO
1692         .get_tso                = ethtool_op_get_tso,
1693         .set_tso                = e1000_set_tso,
1694 #endif
1695         .self_test_count        = e1000_diag_test_count,
1696         .self_test              = e1000_diag_test,
1697         .get_strings            = e1000_get_strings,
1698         .phys_id                = e1000_phys_id,
1699         .get_stats_count        = e1000_get_stats_count,
1700         .get_ethtool_stats      = e1000_get_ethtool_stats,
1701 };
1702
1703 void e1000_set_ethtool_ops(struct net_device *netdev)
1704 {
1705         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1706 }