vserver 1.9.3
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79         { "tx_deferred_ok", E1000_STAT(stats.dc) },
80         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82         { "rx_long_length_errors", E1000_STAT(stats.roc) },
83         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
84         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
85         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
86         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
87         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
88         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
89         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
90         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
91         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
92         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
93         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
94 };
95 #define E1000_STATS_LEN \
96         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98         "Register test  (offline)", "Eeprom test    (offline)",
99         "Interrupt test (offline)", "Loopback test  (offline)",
100         "Link test   (on/offline)"
101 };
102 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
103
104 static int
105 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
106 {
107         struct e1000_adapter *adapter = netdev->priv;
108         struct e1000_hw *hw = &adapter->hw;
109
110         if(hw->media_type == e1000_media_type_copper) {
111
112                 ecmd->supported = (SUPPORTED_10baseT_Half |
113                                    SUPPORTED_10baseT_Full |
114                                    SUPPORTED_100baseT_Half |
115                                    SUPPORTED_100baseT_Full |
116                                    SUPPORTED_1000baseT_Full|
117                                    SUPPORTED_Autoneg |
118                                    SUPPORTED_TP);
119
120                 ecmd->advertising = ADVERTISED_TP;
121
122                 if(hw->autoneg == 1) {
123                         ecmd->advertising |= ADVERTISED_Autoneg;
124
125                         /* the e1000 autoneg seems to match ethtool nicely */
126
127                         ecmd->advertising |= hw->autoneg_advertised;
128                 }
129
130                 ecmd->port = PORT_TP;
131                 ecmd->phy_address = hw->phy_addr;
132
133                 if(hw->mac_type == e1000_82543)
134                         ecmd->transceiver = XCVR_EXTERNAL;
135                 else
136                         ecmd->transceiver = XCVR_INTERNAL;
137
138         } else {
139                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
140                                      SUPPORTED_FIBRE |
141                                      SUPPORTED_Autoneg);
142
143                 ecmd->advertising = (SUPPORTED_1000baseT_Full |
144                                      SUPPORTED_FIBRE |
145                                      SUPPORTED_Autoneg);
146
147                 ecmd->port = PORT_FIBRE;
148
149                 if(hw->mac_type >= e1000_82545)
150                         ecmd->transceiver = XCVR_INTERNAL;
151                 else
152                         ecmd->transceiver = XCVR_EXTERNAL;
153         }
154
155         if(netif_carrier_ok(adapter->netdev)) {
156
157                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
158                                                    &adapter->link_duplex);
159                 ecmd->speed = adapter->link_speed;
160
161                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
162                  *          and HALF_DUPLEX != DUPLEX_HALF */
163
164                 if(adapter->link_duplex == FULL_DUPLEX)
165                         ecmd->duplex = DUPLEX_FULL;
166                 else
167                         ecmd->duplex = DUPLEX_HALF;
168         } else {
169                 ecmd->speed = -1;
170                 ecmd->duplex = -1;
171         }
172
173         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
174                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
175         return 0;
176 }
177
178 static int
179 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181         struct e1000_adapter *adapter = netdev->priv;
182         struct e1000_hw *hw = &adapter->hw;
183
184         if(ecmd->autoneg == AUTONEG_ENABLE) {
185                 hw->autoneg = 1;
186                 hw->autoneg_advertised = 0x002F;
187                 ecmd->advertising = 0x002F;
188         } else
189                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
190                         return -EINVAL;
191
192         /* reset the link */
193
194         if(netif_running(adapter->netdev)) {
195                 e1000_down(adapter);
196                 e1000_reset(adapter);
197                 e1000_up(adapter);
198         } else
199                 e1000_reset(adapter);
200
201         return 0;
202 }
203
204 static void
205 e1000_get_pauseparam(struct net_device *netdev,
206                      struct ethtool_pauseparam *pause)
207 {
208         struct e1000_adapter *adapter = netdev->priv;
209         struct e1000_hw *hw = &adapter->hw;
210
211         pause->autoneg = 
212                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
213         
214         if(hw->fc == e1000_fc_rx_pause)
215                 pause->rx_pause = 1;
216         else if(hw->fc == e1000_fc_tx_pause)
217                 pause->tx_pause = 1;
218         else if(hw->fc == e1000_fc_full) {
219                 pause->rx_pause = 1;
220                 pause->tx_pause = 1;
221         }
222 }
223
224 static int
225 e1000_set_pauseparam(struct net_device *netdev,
226                      struct ethtool_pauseparam *pause)
227 {
228         struct e1000_adapter *adapter = netdev->priv;
229         struct e1000_hw *hw = &adapter->hw;
230         
231         adapter->fc_autoneg = pause->autoneg;
232
233         if(pause->rx_pause && pause->tx_pause)
234                 hw->fc = e1000_fc_full;
235         else if(pause->rx_pause && !pause->tx_pause)
236                 hw->fc = e1000_fc_rx_pause;
237         else if(!pause->rx_pause && pause->tx_pause)
238                 hw->fc = e1000_fc_tx_pause;
239         else if(!pause->rx_pause && !pause->tx_pause)
240                 hw->fc = e1000_fc_none;
241
242         hw->original_fc = hw->fc;
243
244         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
245                 if(netif_running(adapter->netdev)) {
246                         e1000_down(adapter);
247                         e1000_up(adapter);
248                 } else
249                         e1000_reset(adapter);
250         }
251         else
252                 return e1000_force_mac_fc(hw);
253         
254         return 0;
255 }
256
257 static uint32_t
258 e1000_get_rx_csum(struct net_device *netdev)
259 {
260         struct e1000_adapter *adapter = netdev->priv;
261         return adapter->rx_csum;
262 }
263
264 static int
265 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
266 {
267         struct e1000_adapter *adapter = netdev->priv;
268         adapter->rx_csum = data;
269
270         if(netif_running(netdev)) {
271                 e1000_down(adapter);
272                 e1000_up(adapter);
273         } else
274                 e1000_reset(adapter);
275         return 0;
276 }
277         
278 static uint32_t
279 e1000_get_tx_csum(struct net_device *netdev)
280 {
281         return (netdev->features & NETIF_F_HW_CSUM) != 0;
282 }
283
284 static int
285 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
286 {
287         struct e1000_adapter *adapter = netdev->priv;
288
289         if(adapter->hw.mac_type < e1000_82543) {
290                 if (!data)
291                         return -EINVAL;
292                 return 0;
293         }
294
295         if (data)
296                 netdev->features |= NETIF_F_HW_CSUM;
297         else
298                 netdev->features &= ~NETIF_F_HW_CSUM;
299
300         return 0;
301 }
302
303 #ifdef NETIF_F_TSO
304 static int
305 e1000_set_tso(struct net_device *netdev, uint32_t data)
306 {
307         struct e1000_adapter *adapter = netdev->priv;
308         if ((adapter->hw.mac_type < e1000_82544) ||
309             (adapter->hw.mac_type == e1000_82547)) 
310                 return data ? -EINVAL : 0;
311
312         if (data)
313                 netdev->features |= NETIF_F_TSO;
314         else
315                 netdev->features &= ~NETIF_F_TSO;
316         return 0;
317
318 #endif /* NETIF_F_TSO */
319
320 static uint32_t
321 e1000_get_msglevel(struct net_device *netdev)
322 {
323         struct e1000_adapter *adapter = netdev->priv;
324         return adapter->msg_enable;
325 }
326
327 static void
328 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
329 {
330         struct e1000_adapter *adapter = netdev->priv;
331         adapter->msg_enable = data;
332 }
333
334 static int 
335 e1000_get_regs_len(struct net_device *netdev)
336 {
337 #define E1000_REGS_LEN 32
338         return E1000_REGS_LEN * sizeof(uint32_t);
339 }
340
341 static void
342 e1000_get_regs(struct net_device *netdev,
343                struct ethtool_regs *regs, void *p)
344 {
345         struct e1000_adapter *adapter = netdev->priv;
346         struct e1000_hw *hw = &adapter->hw;
347         uint32_t *regs_buff = p;
348         uint16_t phy_data;
349
350         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
351
352         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
355         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
356
357         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
358         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
359         regs_buff[4]  = E1000_READ_REG(hw, RDH);
360         regs_buff[5]  = E1000_READ_REG(hw, RDT);
361         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
362
363         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
364         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
365         regs_buff[9]  = E1000_READ_REG(hw, TDH);
366         regs_buff[10] = E1000_READ_REG(hw, TDT);
367         regs_buff[11] = E1000_READ_REG(hw, TIDV);
368
369         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
370         if(hw->phy_type == e1000_phy_igp) {
371                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
372                                     IGP01E1000_PHY_AGC_A);
373                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
374                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
375                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
376                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377                                     IGP01E1000_PHY_AGC_B);
378                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
379                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
381                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382                                     IGP01E1000_PHY_AGC_C);
383                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
384                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387                                     IGP01E1000_PHY_AGC_D);
388                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
389                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
391                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
392                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
393                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
394                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
396                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
397                                     IGP01E1000_PHY_PCS_INIT_REG);
398                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
399                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
401                 regs_buff[20] = 0; /* polarity correction enabled (always) */
402                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
403                 regs_buff[23] = regs_buff[18]; /* mdix mode */
404                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
405         } else {
406                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
407                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
408                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
409                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
410                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
412                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
413                 regs_buff[18] = regs_buff[13]; /* cable polarity */
414                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
415                 regs_buff[20] = regs_buff[17]; /* polarity correction */
416                 /* phy receive errors */
417                 regs_buff[22] = adapter->phy_stats.receive_errors;
418                 regs_buff[23] = regs_buff[13]; /* mdix mode */
419         }
420         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
421         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
422         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
423         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
424         if(hw->mac_type >= e1000_82540 &&
425            hw->media_type == e1000_media_type_copper) {
426                 regs_buff[26] = E1000_READ_REG(hw, MANC);
427         }
428 }
429
430 static int
431 e1000_get_eeprom_len(struct net_device *netdev)
432 {
433         struct e1000_adapter *adapter = netdev->priv;
434         return adapter->hw.eeprom.word_size * 2;
435 }
436
437 static int
438 e1000_get_eeprom(struct net_device *netdev,
439                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
440 {
441         struct e1000_adapter *adapter = netdev->priv;
442         struct e1000_hw *hw = &adapter->hw;
443         uint16_t *eeprom_buff;
444         int first_word, last_word;
445         int ret_val = 0;
446         uint16_t i;
447
448         if(eeprom->len == 0)
449                 return -EINVAL;
450
451         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
452
453         first_word = eeprom->offset >> 1;
454         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
455
456         eeprom_buff = kmalloc(sizeof(uint16_t) *
457                         (last_word - first_word + 1), GFP_KERNEL);
458         if(!eeprom_buff)
459                 return -ENOMEM;
460
461         if(hw->eeprom.type == e1000_eeprom_spi)
462                 ret_val = e1000_read_eeprom(hw, first_word,
463                                             last_word - first_word + 1,
464                                             eeprom_buff);
465         else {
466                 for (i = 0; i < last_word - first_word + 1; i++)
467                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
468                                                         &eeprom_buff[i])))
469                                 break;
470         }
471
472         /* Device's eeprom is always little-endian, word addressable */
473         for (i = 0; i < last_word - first_word + 1; i++)
474                 le16_to_cpus(&eeprom_buff[i]);
475
476         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
477                         eeprom->len);
478         kfree(eeprom_buff);
479
480         return ret_val;
481 }
482
483 static int
484 e1000_set_eeprom(struct net_device *netdev,
485                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
486 {
487         struct e1000_adapter *adapter = netdev->priv;
488         struct e1000_hw *hw = &adapter->hw;
489         uint16_t *eeprom_buff;
490         void *ptr;
491         int max_len, first_word, last_word, ret_val = 0;
492         uint16_t i;
493
494         if(eeprom->len == 0)
495                 return -EOPNOTSUPP;
496
497         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
498                 return -EFAULT;
499
500         max_len = hw->eeprom.word_size * 2;
501
502         first_word = eeprom->offset >> 1;
503         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
505         if(!eeprom_buff)
506                 return -ENOMEM;
507
508         ptr = (void *)eeprom_buff;
509
510         if(eeprom->offset & 1) {
511                 /* need read/modify/write of first changed EEPROM word */
512                 /* only the second byte of the word is being modified */
513                 ret_val = e1000_read_eeprom(hw, first_word, 1,
514                                             &eeprom_buff[0]);
515                 ptr++;
516         }
517         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
518                 /* need read/modify/write of last changed EEPROM word */
519                 /* only the first byte of the word is being modified */
520                 ret_val = e1000_read_eeprom(hw, last_word, 1,
521                                   &eeprom_buff[last_word - first_word]);
522         }
523
524         /* Device's eeprom is always little-endian, word addressable */
525         for (i = 0; i < last_word - first_word + 1; i++)
526                 le16_to_cpus(&eeprom_buff[i]);
527
528         memcpy(ptr, bytes, eeprom->len);
529
530         for (i = 0; i < last_word - first_word + 1; i++)
531                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
532
533         ret_val = e1000_write_eeprom(hw, first_word,
534                                      last_word - first_word + 1, eeprom_buff);
535
536         /* Update the checksum over the first part of the EEPROM if needed */
537         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
538                 e1000_update_eeprom_checksum(hw);
539
540         kfree(eeprom_buff);
541         return ret_val;
542 }
543
544 static void
545 e1000_get_drvinfo(struct net_device *netdev,
546                        struct ethtool_drvinfo *drvinfo)
547 {
548         struct e1000_adapter *adapter = netdev->priv;
549
550         strncpy(drvinfo->driver,  e1000_driver_name, 32);
551         strncpy(drvinfo->version, e1000_driver_version, 32);
552         strncpy(drvinfo->fw_version, "N/A", 32);
553         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
554         drvinfo->n_stats = E1000_STATS_LEN;
555         drvinfo->testinfo_len = E1000_TEST_LEN;
556         drvinfo->regdump_len = e1000_get_regs_len(netdev);
557         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
558 }
559
560 static void
561 e1000_get_ringparam(struct net_device *netdev,
562                     struct ethtool_ringparam *ring)
563 {
564         struct e1000_adapter *adapter = netdev->priv;
565         e1000_mac_type mac_type = adapter->hw.mac_type;
566         struct e1000_desc_ring *txdr = &adapter->tx_ring;
567         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
568
569         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
570                 E1000_MAX_82544_RXD;
571         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
572                 E1000_MAX_82544_TXD;
573         ring->rx_mini_max_pending = 0;
574         ring->rx_jumbo_max_pending = 0;
575         ring->rx_pending = rxdr->count;
576         ring->tx_pending = txdr->count;
577         ring->rx_mini_pending = 0;
578         ring->rx_jumbo_pending = 0;
579 }
580
581 static int 
582 e1000_set_ringparam(struct net_device *netdev,
583                     struct ethtool_ringparam *ring)
584 {
585         struct e1000_adapter *adapter = netdev->priv;
586         e1000_mac_type mac_type = adapter->hw.mac_type;
587         struct e1000_desc_ring *txdr = &adapter->tx_ring;
588         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
589         struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
590         int err;
591
592         tx_old = adapter->tx_ring;
593         rx_old = adapter->rx_ring;
594
595         if(netif_running(adapter->netdev))
596                 e1000_down(adapter);
597
598         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
599         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
600                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
601         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
602
603         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
604         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
605                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
606         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
607
608         if(netif_running(adapter->netdev)) {
609                 /* Try to get new resources before deleting old */
610                 if((err = e1000_setup_rx_resources(adapter)))
611                         goto err_setup_rx;
612                 if((err = e1000_setup_tx_resources(adapter)))
613                         goto err_setup_tx;
614
615                 /* save the new, restore the old in order to free it,
616                  * then restore the new back again */
617
618                 rx_new = adapter->rx_ring;
619                 tx_new = adapter->tx_ring;
620                 adapter->rx_ring = rx_old;
621                 adapter->tx_ring = tx_old;
622                 e1000_free_rx_resources(adapter);
623                 e1000_free_tx_resources(adapter);
624                 adapter->rx_ring = rx_new;
625                 adapter->tx_ring = tx_new;
626                 if((err = e1000_up(adapter)))
627                         return err;
628         }
629
630         return 0;
631 err_setup_tx:
632         e1000_free_rx_resources(adapter);
633 err_setup_rx:
634         adapter->rx_ring = rx_old;
635         adapter->tx_ring = tx_old;
636         e1000_up(adapter);
637         return err;
638 }
639
640
641 #define REG_PATTERN_TEST(R, M, W)                                              \
642 {                                                                              \
643         uint32_t pat, value;                                                   \
644         uint32_t test[] =                                                      \
645                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
646         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
647                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
648                 value = E1000_READ_REG(&adapter->hw, R);                       \
649                 if(value != (test[pat] & W & M)) {                             \
650                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
651                                 E1000_82542_##R : E1000_##R;                   \
652                         return 1;                                              \
653                 }                                                              \
654         }                                                                      \
655 }
656
657 #define REG_SET_AND_CHECK(R, M, W)                                             \
658 {                                                                              \
659         uint32_t value;                                                        \
660         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
661         value = E1000_READ_REG(&adapter->hw, R);                               \
662         if ((W & M) != (value & M)) {                                          \
663                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
664                         E1000_82542_##R : E1000_##R;                           \
665                 return 1;                                                      \
666         }                                                                      \
667 }
668
669 static int
670 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
671 {
672         uint32_t value;
673         uint32_t i;
674
675         /* The status register is Read Only, so a write should fail.
676          * Some bits that get toggled are ignored.
677          */
678         value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
679         E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
680         if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
681                 *data = 1;
682                 return 1;
683         }
684
685         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
686         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
687         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
688         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
689         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
690         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
691         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
692         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
693         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
694         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
695         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
696         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
697         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
698         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
699
700         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
701         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
702         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
703
704         if(adapter->hw.mac_type >= e1000_82543) {
705
706                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
707                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
708                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
709                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
710                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
711
712                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
713                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
714                                          0xFFFFFFFF);
715                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
716                                          0xFFFFFFFF);
717                 }
718
719         } else {
720
721                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
722                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
723                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
724                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
725
726         }
727
728         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
729                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
730
731         *data = 0;
732         return 0;
733 }
734
735 static int
736 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
737 {
738         uint16_t temp;
739         uint16_t checksum = 0;
740         uint16_t i;
741
742         *data = 0;
743         /* Read and add up the contents of the EEPROM */
744         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
745                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
746                         *data = 1;
747                         break;
748                 }
749                 checksum += temp;
750         }
751
752         /* If Checksum is not Correct return error else test passed */
753         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
754                 *data = 2;
755
756         return *data;
757 }
758
759 static irqreturn_t
760 e1000_test_intr(int irq,
761                 void *data,
762                 struct pt_regs *regs)
763 {
764         struct net_device *netdev = (struct net_device *) data;
765         struct e1000_adapter *adapter = netdev->priv;
766
767         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
768
769         return IRQ_HANDLED;
770 }
771
772 static int
773 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
774 {
775         struct net_device *netdev = adapter->netdev;
776         uint32_t icr, mask, i=0, shared_int = TRUE;
777         uint32_t irq = adapter->pdev->irq;
778
779         *data = 0;
780
781         /* Hook up test interrupt handler just for this test */
782         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
783                 shared_int = FALSE;
784         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, netdev->name, netdev)){
785                 *data = 1;
786                 return -1;
787         }
788
789         /* Disable all the interrupts */
790         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
791         msec_delay(10);
792
793         /* Interrupts are disabled, so read interrupt cause
794          * register (icr) twice to verify that there are no interrupts
795          * pending.  icr is clear on read.
796          */
797         icr = E1000_READ_REG(&adapter->hw, ICR);
798         icr = E1000_READ_REG(&adapter->hw, ICR);
799
800         if(icr != 0) {
801                 /* if icr is non-zero, there is no point
802                  * running other interrupt tests.
803                  */
804                 *data = 2;
805                 i = 10;
806         }
807
808         /* Test each interrupt */
809         for(; i < 10; i++) {
810
811                 /* Interrupt to test */
812                 mask = 1 << i;
813
814                 if(!shared_int) {
815                         /* Disable the interrupt to be reported in
816                          * the cause register and then force the same
817                          * interrupt and see if one gets posted.  If
818                          * an interrupt was posted to the bus, the
819                          * test failed.
820                          */
821                         adapter->test_icr = 0;
822                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
823                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
824                         msec_delay(10);
825  
826                         if(adapter->test_icr & mask) {
827                                 *data = 3;
828                                 break;
829                         }
830                 }
831
832                 /* Enable the interrupt to be reported in
833                  * the cause register and then force the same
834                  * interrupt and see if one gets posted.  If
835                  * an interrupt was not posted to the bus, the
836                  * test failed.
837                  */
838                 adapter->test_icr = 0;
839                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
840                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
841                 msec_delay(10);
842
843                 if(!(adapter->test_icr & mask)) {
844                         *data = 4;
845                         break;
846                 }
847
848                 if(!shared_int) {
849                         /* Disable the other interrupts to be reported in
850                          * the cause register and then force the other
851                          * interrupts and see if any get posted.  If
852                          * an interrupt was posted to the bus, the
853                          * test failed.
854                          */
855                         adapter->test_icr = 0;
856                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask);
857                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask);
858                         msec_delay(10);
859
860                         if(adapter->test_icr) {
861                                 *data = 5;
862                                 break;
863                         }
864                 }
865         }
866
867         /* Disable all the interrupts */
868         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
869         msec_delay(10);
870
871         /* Unhook test interrupt handler */
872         free_irq(irq, netdev);
873
874         return *data;
875 }
876
877 static void
878 e1000_free_desc_rings(struct e1000_adapter *adapter)
879 {
880         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
881         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
882         struct pci_dev *pdev = adapter->pdev;
883         int i;
884
885         if(txdr->desc && txdr->buffer_info) {
886                 for(i = 0; i < txdr->count; i++) {
887                         if(txdr->buffer_info[i].dma)
888                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
889                                                  txdr->buffer_info[i].length,
890                                                  PCI_DMA_TODEVICE);
891                         if(txdr->buffer_info[i].skb)
892                                 dev_kfree_skb(txdr->buffer_info[i].skb);
893                 }
894         }
895
896         if(rxdr->desc && rxdr->buffer_info) {
897                 for(i = 0; i < rxdr->count; i++) {
898                         if(rxdr->buffer_info[i].dma)
899                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
900                                                  rxdr->buffer_info[i].length,
901                                                  PCI_DMA_FROMDEVICE);
902                         if(rxdr->buffer_info[i].skb)
903                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
904                 }
905         }
906
907         if(txdr->desc)
908                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
909         if(rxdr->desc)
910                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
911
912         if(txdr->buffer_info)
913                 kfree(txdr->buffer_info);
914         if(rxdr->buffer_info)
915                 kfree(rxdr->buffer_info);
916
917         return;
918 }
919
920 static int
921 e1000_setup_desc_rings(struct e1000_adapter *adapter)
922 {
923         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
924         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
925         struct pci_dev *pdev = adapter->pdev;
926         uint32_t rctl;
927         int size, i, ret_val;
928
929         /* Setup Tx descriptor ring and Tx buffers */
930
931         txdr->count = 80;
932
933         size = txdr->count * sizeof(struct e1000_buffer);
934         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
935                 ret_val = 1;
936                 goto err_nomem;
937         }
938         memset(txdr->buffer_info, 0, size);
939
940         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
941         E1000_ROUNDUP(txdr->size, 4096);
942         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
943                 ret_val = 2;
944                 goto err_nomem;
945         }
946         memset(txdr->desc, 0, txdr->size);
947         txdr->next_to_use = txdr->next_to_clean = 0;
948
949         E1000_WRITE_REG(&adapter->hw, TDBAL,
950                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
951         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
952         E1000_WRITE_REG(&adapter->hw, TDLEN,
953                         txdr->count * sizeof(struct e1000_tx_desc));
954         E1000_WRITE_REG(&adapter->hw, TDH, 0);
955         E1000_WRITE_REG(&adapter->hw, TDT, 0);
956         E1000_WRITE_REG(&adapter->hw, TCTL,
957                         E1000_TCTL_PSP | E1000_TCTL_EN |
958                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
959                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
960
961         for(i = 0; i < txdr->count; i++) {
962                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
963                 struct sk_buff *skb;
964                 unsigned int size = 1024;
965
966                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
967                         ret_val = 3;
968                         goto err_nomem;
969                 }
970                 skb_put(skb, size);
971                 txdr->buffer_info[i].skb = skb;
972                 txdr->buffer_info[i].length = skb->len;
973                 txdr->buffer_info[i].dma =
974                         pci_map_single(pdev, skb->data, skb->len,
975                                        PCI_DMA_TODEVICE);
976                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
977                 tx_desc->lower.data = cpu_to_le32(skb->len);
978                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
979                                                    E1000_TXD_CMD_IFCS |
980                                                    E1000_TXD_CMD_RPS);
981                 tx_desc->upper.data = 0;
982         }
983
984         /* Setup Rx descriptor ring and Rx buffers */
985
986         rxdr->count = 80;
987
988         size = rxdr->count * sizeof(struct e1000_buffer);
989         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
990                 ret_val = 4;
991                 goto err_nomem;
992         }
993         memset(rxdr->buffer_info, 0, size);
994
995         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
996         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
997                 ret_val = 5;
998                 goto err_nomem;
999         }
1000         memset(rxdr->desc, 0, rxdr->size);
1001         rxdr->next_to_use = rxdr->next_to_clean = 0;
1002
1003         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1004         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1005         E1000_WRITE_REG(&adapter->hw, RDBAL,
1006                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1007         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1008         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1009         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1010         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1011         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1012                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1013                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1014         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1015
1016         for(i = 0; i < rxdr->count; i++) {
1017                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1018                 struct sk_buff *skb;
1019
1020                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1021                                      GFP_KERNEL))) {
1022                         ret_val = 6;
1023                         goto err_nomem;
1024                 }
1025                 skb_reserve(skb, NET_IP_ALIGN);
1026                 rxdr->buffer_info[i].skb = skb;
1027                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1028                 rxdr->buffer_info[i].dma =
1029                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1030                                        PCI_DMA_FROMDEVICE);
1031                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1032                 memset(skb->data, 0x00, skb->len);
1033         }
1034
1035         return 0;
1036
1037 err_nomem:
1038         e1000_free_desc_rings(adapter);
1039         return ret_val;
1040 }
1041
1042 static void
1043 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1044 {
1045         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1046         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1047         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1048         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1049         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1050 }
1051
1052 static void
1053 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1054 {
1055         uint16_t phy_reg;
1056
1057         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1058          * Extended PHY Specific Control Register to 25MHz clock.  This
1059          * value defaults back to a 2.5MHz clock when the PHY is reset.
1060          */
1061         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1062         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1063         e1000_write_phy_reg(&adapter->hw,
1064                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1065
1066         /* In addition, because of the s/w reset above, we need to enable
1067          * CRS on TX.  This must be set for both full and half duplex
1068          * operation.
1069          */
1070         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1071         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1072         e1000_write_phy_reg(&adapter->hw,
1073                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1074 }
1075
1076 static int
1077 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1078 {
1079         uint32_t ctrl_reg;
1080         uint16_t phy_reg;
1081
1082         /* Setup the Device Control Register for PHY loopback test. */
1083
1084         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1085         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1086                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1087                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1088                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1089                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1090
1091         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1092
1093         /* Read the PHY Specific Control Register (0x10) */
1094         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1095
1096         /* Clear Auto-Crossover bits in PHY Specific Control Register
1097          * (bits 6:5).
1098          */
1099         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1100         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1101
1102         /* Perform software reset on the PHY */
1103         e1000_phy_reset(&adapter->hw);
1104
1105         /* Have to setup TX_CLK and TX_CRS after software reset */
1106         e1000_phy_reset_clk_and_crs(adapter);
1107
1108         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1109
1110         /* Wait for reset to complete. */
1111         udelay(500);
1112
1113         /* Have to setup TX_CLK and TX_CRS after software reset */
1114         e1000_phy_reset_clk_and_crs(adapter);
1115
1116         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1117         e1000_phy_disable_receiver(adapter);
1118
1119         /* Set the loopback bit in the PHY control register. */
1120         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1121         phy_reg |= MII_CR_LOOPBACK;
1122         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1123
1124         /* Setup TX_CLK and TX_CRS one more time. */
1125         e1000_phy_reset_clk_and_crs(adapter);
1126
1127         /* Check Phy Configuration */
1128         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1129         if(phy_reg != 0x4100)
1130                  return 9;
1131
1132         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1133         if(phy_reg != 0x0070)
1134                 return 10;
1135
1136         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1137         if(phy_reg != 0x001A)
1138                 return 11;
1139
1140         return 0;
1141 }
1142
1143 static int
1144 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1145 {
1146         uint32_t ctrl_reg = 0;
1147         uint32_t stat_reg = 0;
1148
1149         adapter->hw.autoneg = FALSE;
1150
1151         if(adapter->hw.phy_type == e1000_phy_m88) {
1152                 /* Auto-MDI/MDIX Off */
1153                 e1000_write_phy_reg(&adapter->hw,
1154                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1155                 /* reset to update Auto-MDI/MDIX */
1156                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1157                 /* autoneg off */
1158                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1159         }
1160         /* force 1000, set loopback */
1161         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1162
1163         /* Now set up the MAC to the same speed/duplex as the PHY. */
1164         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1165         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1166         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1167                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1168                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1169                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1170
1171         if(adapter->hw.media_type == e1000_media_type_copper &&
1172            adapter->hw.phy_type == e1000_phy_m88) {
1173                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1174         } else {
1175                 /* Set the ILOS bit on the fiber Nic is half
1176                  * duplex link is detected. */
1177                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1178                 if((stat_reg & E1000_STATUS_FD) == 0)
1179                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1180         }
1181
1182         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1183
1184         /* Disable the receiver on the PHY so when a cable is plugged in, the
1185          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1186          */
1187         if(adapter->hw.phy_type == e1000_phy_m88)
1188                 e1000_phy_disable_receiver(adapter);
1189
1190         udelay(500);
1191
1192         return 0;
1193 }
1194
1195 static int
1196 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1197 {
1198         uint16_t phy_reg = 0;
1199         uint16_t count = 0;
1200
1201         switch (adapter->hw.mac_type) {
1202         case e1000_82543:
1203                 if(adapter->hw.media_type == e1000_media_type_copper) {
1204                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1205                          * Some PHY registers get corrupted at random, so
1206                          * attempt this 10 times.
1207                          */
1208                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1209                               count++ < 10);
1210                         if(count < 11)
1211                                 return 0;
1212                 }
1213                 break;
1214
1215         case e1000_82544:
1216         case e1000_82540:
1217         case e1000_82545:
1218         case e1000_82545_rev_3:
1219         case e1000_82546:
1220         case e1000_82546_rev_3:
1221         case e1000_82541:
1222         case e1000_82541_rev_2:
1223         case e1000_82547:
1224         case e1000_82547_rev_2:
1225                 return e1000_integrated_phy_loopback(adapter);
1226                 break;
1227
1228         default:
1229                 /* Default PHY loopback work is to read the MII
1230                  * control register and assert bit 14 (loopback mode).
1231                  */
1232                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1233                 phy_reg |= MII_CR_LOOPBACK;
1234                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1235                 return 0;
1236                 break;
1237         }
1238
1239         return 8;
1240 }
1241
1242 static int
1243 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1244 {
1245         uint32_t rctl;
1246
1247         if(adapter->hw.media_type == e1000_media_type_fiber ||
1248            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1249                 if(adapter->hw.mac_type == e1000_82545 ||
1250                    adapter->hw.mac_type == e1000_82546 ||
1251                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1252                    adapter->hw.mac_type == e1000_82546_rev_3)
1253                         return e1000_set_phy_loopback(adapter);
1254                 else {
1255                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1256                         rctl |= E1000_RCTL_LBM_TCVR;
1257                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1258                         return 0;
1259                 }
1260         } else if(adapter->hw.media_type == e1000_media_type_copper)
1261                 return e1000_set_phy_loopback(adapter);
1262
1263         return 7;
1264 }
1265
1266 static void
1267 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1268 {
1269         uint32_t rctl;
1270         uint16_t phy_reg;
1271
1272         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1273         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1274         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1275
1276         if(adapter->hw.media_type == e1000_media_type_copper ||
1277            ((adapter->hw.media_type == e1000_media_type_fiber ||
1278              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1279             (adapter->hw.mac_type == e1000_82545 ||
1280              adapter->hw.mac_type == e1000_82546 ||
1281              adapter->hw.mac_type == e1000_82545_rev_3 ||
1282              adapter->hw.mac_type == e1000_82546_rev_3))) {
1283                 adapter->hw.autoneg = TRUE;
1284                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1285                 if(phy_reg & MII_CR_LOOPBACK) {
1286                         phy_reg &= ~MII_CR_LOOPBACK;
1287                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1288                         e1000_phy_reset(&adapter->hw);
1289                 }
1290         }
1291 }
1292
1293 static void
1294 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1295 {
1296         memset(skb->data, 0xFF, frame_size);
1297         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1298         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1299         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1300         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1301 }
1302
1303 static int
1304 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1305 {
1306         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1307         if(*(skb->data + 3) == 0xFF) {
1308                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1309                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1310                         return 0;
1311                 }
1312         }
1313         return 13;
1314 }
1315
1316 static int
1317 e1000_run_loopback_test(struct e1000_adapter *adapter)
1318 {
1319         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1320         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1321         struct pci_dev *pdev = adapter->pdev;
1322         int i;
1323
1324         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1325
1326         for(i = 0; i < 64; i++) {
1327                 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
1328                 pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma,
1329                                             txdr->buffer_info[i].length,
1330                                             PCI_DMA_TODEVICE);
1331         }
1332         E1000_WRITE_REG(&adapter->hw, TDT, i);
1333
1334         msec_delay(200);
1335
1336         pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[0].dma,
1337                             rxdr->buffer_info[0].length, PCI_DMA_FROMDEVICE);
1338
1339         return e1000_check_lbtest_frame(rxdr->buffer_info[0].skb, 1024);
1340 }
1341
1342 static int
1343 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1344 {
1345         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1346         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1347         *data = e1000_run_loopback_test(adapter);
1348         e1000_loopback_cleanup(adapter);
1349         e1000_free_desc_rings(adapter);
1350 err_loopback:
1351         return *data;
1352 }
1353
1354 static int
1355 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1356 {
1357         *data = 0;
1358         e1000_check_for_link(&adapter->hw);
1359
1360         if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1361                 *data = 1;
1362         }
1363         return *data;
1364 }
1365
1366 static int 
1367 e1000_diag_test_count(struct net_device *netdev)
1368 {
1369         return E1000_TEST_LEN;
1370 }
1371
1372 static void
1373 e1000_diag_test(struct net_device *netdev,
1374                    struct ethtool_test *eth_test, uint64_t *data)
1375 {
1376         struct e1000_adapter *adapter = netdev->priv;
1377         boolean_t if_running = netif_running(netdev);
1378
1379         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1380                 /* Offline tests */
1381
1382                 /* save speed, duplex, autoneg settings */
1383                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1384                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1385                 uint8_t autoneg = adapter->hw.autoneg;
1386
1387                 /* Link test performed before hardware reset so autoneg doesn't
1388                  * interfere with test result */
1389                 if(e1000_link_test(adapter, &data[4]))
1390                         eth_test->flags |= ETH_TEST_FL_FAILED;
1391
1392                 if(if_running)
1393                         e1000_down(adapter);
1394                 else
1395                         e1000_reset(adapter);
1396
1397                 if(e1000_reg_test(adapter, &data[0]))
1398                         eth_test->flags |= ETH_TEST_FL_FAILED;
1399
1400                 e1000_reset(adapter);
1401                 if(e1000_eeprom_test(adapter, &data[1]))
1402                         eth_test->flags |= ETH_TEST_FL_FAILED;
1403
1404                 e1000_reset(adapter);
1405                 if(e1000_intr_test(adapter, &data[2]))
1406                         eth_test->flags |= ETH_TEST_FL_FAILED;
1407
1408                 e1000_reset(adapter);
1409                 if(e1000_loopback_test(adapter, &data[3]))
1410                         eth_test->flags |= ETH_TEST_FL_FAILED;
1411
1412                 /* restore speed, duplex, autoneg settings */
1413                 adapter->hw.autoneg_advertised = autoneg_advertised;
1414                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1415                 adapter->hw.autoneg = autoneg;
1416
1417                 e1000_reset(adapter);
1418                 if(if_running)
1419                         e1000_up(adapter);
1420         } else {
1421                 /* Online tests */
1422                 if(e1000_link_test(adapter, &data[4]))
1423                         eth_test->flags |= ETH_TEST_FL_FAILED;
1424
1425                 /* Offline tests aren't run; pass by default */
1426                 data[0] = 0;
1427                 data[1] = 0;
1428                 data[2] = 0;
1429                 data[3] = 0;
1430         }
1431 }
1432
1433 static void
1434 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1435 {
1436         struct e1000_adapter *adapter = netdev->priv;
1437         struct e1000_hw *hw = &adapter->hw;
1438
1439         switch(adapter->hw.device_id) {
1440         case E1000_DEV_ID_82542:
1441         case E1000_DEV_ID_82543GC_FIBER:
1442         case E1000_DEV_ID_82543GC_COPPER:
1443         case E1000_DEV_ID_82544EI_FIBER:
1444         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1445                 wol->supported = 0;
1446                 wol->wolopts   = 0;
1447                 return;
1448
1449         case E1000_DEV_ID_82546EB_FIBER:
1450         case E1000_DEV_ID_82546GB_FIBER:
1451                 /* Wake events only supported on port A for dual fiber */
1452                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1453                         wol->supported = 0;
1454                         wol->wolopts   = 0;
1455                         return;
1456                 }
1457                 /* Fall Through */
1458
1459         default:
1460                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1461                                  WAKE_BCAST | WAKE_MAGIC;
1462
1463                 wol->wolopts = 0;
1464                 if(adapter->wol & E1000_WUFC_EX)
1465                         wol->wolopts |= WAKE_UCAST;
1466                 if(adapter->wol & E1000_WUFC_MC)
1467                         wol->wolopts |= WAKE_MCAST;
1468                 if(adapter->wol & E1000_WUFC_BC)
1469                         wol->wolopts |= WAKE_BCAST;
1470                 if(adapter->wol & E1000_WUFC_MAG)
1471                         wol->wolopts |= WAKE_MAGIC;
1472                 return;
1473         }
1474 }
1475
1476 static int
1477 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1478 {
1479         struct e1000_adapter *adapter = netdev->priv;
1480         struct e1000_hw *hw = &adapter->hw;
1481
1482         switch(adapter->hw.device_id) {
1483         case E1000_DEV_ID_82542:
1484         case E1000_DEV_ID_82543GC_FIBER:
1485         case E1000_DEV_ID_82543GC_COPPER:
1486         case E1000_DEV_ID_82544EI_FIBER:
1487         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1488                 return wol->wolopts ? -EOPNOTSUPP : 0;
1489
1490         case E1000_DEV_ID_82546EB_FIBER:
1491         case E1000_DEV_ID_82546GB_FIBER:
1492                 /* Wake events only supported on port A for dual fiber */
1493                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1494                         return wol->wolopts ? -EOPNOTSUPP : 0;
1495                 /* Fall Through */
1496
1497         default:
1498                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1499                         return -EOPNOTSUPP;
1500
1501                 adapter->wol = 0;
1502
1503                 if(wol->wolopts & WAKE_UCAST)
1504                         adapter->wol |= E1000_WUFC_EX;
1505                 if(wol->wolopts & WAKE_MCAST)
1506                         adapter->wol |= E1000_WUFC_MC;
1507                 if(wol->wolopts & WAKE_BCAST)
1508                         adapter->wol |= E1000_WUFC_BC;
1509                 if(wol->wolopts & WAKE_MAGIC)
1510                         adapter->wol |= E1000_WUFC_MAG;
1511         }
1512
1513         return 0;
1514 }
1515
1516 /* toggle LED 4 times per second = 2 "blinks" per second */
1517 #define E1000_ID_INTERVAL       (HZ/4)
1518
1519 /* bit defines for adapter->led_status */
1520 #define E1000_LED_ON            0
1521
1522 static void
1523 e1000_led_blink_callback(unsigned long data)
1524 {
1525         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1526
1527         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1528                 e1000_led_off(&adapter->hw);
1529         else
1530                 e1000_led_on(&adapter->hw);
1531
1532         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1533 }
1534
1535 static int
1536 e1000_phys_id(struct net_device *netdev, uint32_t data)
1537 {
1538         struct e1000_adapter *adapter = netdev->priv;
1539
1540         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1541                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1542
1543         if(!adapter->blink_timer.function) {
1544                 init_timer(&adapter->blink_timer);
1545                 adapter->blink_timer.function = e1000_led_blink_callback;
1546                 adapter->blink_timer.data = (unsigned long) adapter;
1547         }
1548
1549         e1000_setup_led(&adapter->hw);
1550         mod_timer(&adapter->blink_timer, jiffies);
1551
1552         set_current_state(TASK_INTERRUPTIBLE);
1553
1554         schedule_timeout(data * HZ);
1555         del_timer_sync(&adapter->blink_timer);
1556         e1000_led_off(&adapter->hw);
1557         clear_bit(E1000_LED_ON, &adapter->led_status);
1558         e1000_cleanup_led(&adapter->hw);
1559
1560         return 0;
1561 }
1562
1563 static int
1564 e1000_nway_reset(struct net_device *netdev)
1565 {
1566         struct e1000_adapter *adapter = netdev->priv;
1567         if(netif_running(netdev)) {
1568                 e1000_down(adapter);
1569                 e1000_up(adapter);
1570         }
1571         return 0;
1572 }
1573
1574 static int 
1575 e1000_get_stats_count(struct net_device *netdev)
1576 {
1577         return E1000_STATS_LEN;
1578 }
1579
1580 static void 
1581 e1000_get_ethtool_stats(struct net_device *netdev, 
1582                 struct ethtool_stats *stats, uint64_t *data)
1583 {
1584         struct e1000_adapter *adapter = netdev->priv;
1585         int i;
1586
1587         e1000_update_stats(adapter);
1588         for(i = 0; i < E1000_STATS_LEN; i++) {
1589                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1590                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1591                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1592         }
1593 }
1594
1595 static void 
1596 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1597 {
1598         int i;
1599
1600         switch(stringset) {
1601         case ETH_SS_TEST:
1602                 memcpy(data, *e1000_gstrings_test, 
1603                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1604                 break;
1605         case ETH_SS_STATS:
1606                 for (i=0; i < E1000_STATS_LEN; i++) {
1607                         memcpy(data + i * ETH_GSTRING_LEN, 
1608                         e1000_gstrings_stats[i].stat_string,
1609                         ETH_GSTRING_LEN);
1610                 }
1611                 break;
1612         }
1613 }
1614
1615 struct ethtool_ops e1000_ethtool_ops = {
1616         .get_settings           = e1000_get_settings,
1617         .set_settings           = e1000_set_settings,
1618         .get_drvinfo            = e1000_get_drvinfo,
1619         .get_regs_len           = e1000_get_regs_len,
1620         .get_regs               = e1000_get_regs,
1621         .get_wol                = e1000_get_wol,
1622         .set_wol                = e1000_set_wol,
1623         .get_msglevel           = e1000_get_msglevel,
1624         .set_msglevel           = e1000_set_msglevel,
1625         .nway_reset             = e1000_nway_reset,
1626         .get_link               = ethtool_op_get_link,
1627         .get_eeprom_len         = e1000_get_eeprom_len,
1628         .get_eeprom             = e1000_get_eeprom,
1629         .set_eeprom             = e1000_set_eeprom,
1630         .get_ringparam          = e1000_get_ringparam,
1631         .set_ringparam          = e1000_set_ringparam,
1632         .get_pauseparam         = e1000_get_pauseparam,
1633         .set_pauseparam         = e1000_set_pauseparam,
1634         .get_rx_csum            = e1000_get_rx_csum,
1635         .set_rx_csum            = e1000_set_rx_csum,
1636         .get_tx_csum            = e1000_get_tx_csum,
1637         .set_tx_csum            = e1000_set_tx_csum,
1638         .get_sg                 = ethtool_op_get_sg,
1639         .set_sg                 = ethtool_op_set_sg,
1640 #ifdef NETIF_F_TSO
1641         .get_tso                = ethtool_op_get_tso,
1642         .set_tso                = e1000_set_tso,
1643 #endif
1644         .self_test_count        = e1000_diag_test_count,
1645         .self_test              = e1000_diag_test,
1646         .get_strings            = e1000_get_strings,
1647         .phys_id                = e1000_phys_id,
1648         .get_stats_count        = e1000_get_stats_count,
1649         .get_ethtool_stats      = e1000_get_ethtool_stats,
1650 };
1651
1652 void set_ethtool_ops(struct net_device *netdev)
1653 {
1654         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1655 }