This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79         { "tx_deferred_ok", E1000_STAT(stats.dc) },
80         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82         { "rx_long_length_errors", E1000_STAT(stats.roc) },
83         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
84         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
85         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
86         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
87         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
88         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
89         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
90         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
91         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
92         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
93         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
94 };
95 #define E1000_STATS_LEN \
96         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98         "Register test  (offline)", "Eeprom test    (offline)",
99         "Interrupt test (offline)", "Loopback test  (offline)",
100         "Link test   (on/offline)"
101 };
102 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
103
104 static int
105 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
106 {
107         struct e1000_adapter *adapter = netdev->priv;
108         struct e1000_hw *hw = &adapter->hw;
109
110         if(hw->media_type == e1000_media_type_copper) {
111
112                 ecmd->supported = (SUPPORTED_10baseT_Half |
113                                    SUPPORTED_10baseT_Full |
114                                    SUPPORTED_100baseT_Half |
115                                    SUPPORTED_100baseT_Full |
116                                    SUPPORTED_1000baseT_Full|
117                                    SUPPORTED_Autoneg |
118                                    SUPPORTED_TP);
119
120                 ecmd->advertising = ADVERTISED_TP;
121
122                 if(hw->autoneg == 1) {
123                         ecmd->advertising |= ADVERTISED_Autoneg;
124
125                         /* the e1000 autoneg seems to match ethtool nicely */
126
127                         ecmd->advertising |= hw->autoneg_advertised;
128                 }
129
130                 ecmd->port = PORT_TP;
131                 ecmd->phy_address = hw->phy_addr;
132
133                 if(hw->mac_type == e1000_82543)
134                         ecmd->transceiver = XCVR_EXTERNAL;
135                 else
136                         ecmd->transceiver = XCVR_INTERNAL;
137
138         } else {
139                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
140                                      SUPPORTED_FIBRE |
141                                      SUPPORTED_Autoneg);
142
143                 ecmd->advertising = (SUPPORTED_1000baseT_Full |
144                                      SUPPORTED_FIBRE |
145                                      SUPPORTED_Autoneg);
146
147                 ecmd->port = PORT_FIBRE;
148
149                 if(hw->mac_type >= e1000_82545)
150                         ecmd->transceiver = XCVR_INTERNAL;
151                 else
152                         ecmd->transceiver = XCVR_EXTERNAL;
153         }
154
155         if(netif_carrier_ok(adapter->netdev)) {
156
157                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
158                                                    &adapter->link_duplex);
159                 ecmd->speed = adapter->link_speed;
160
161                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
162                  *          and HALF_DUPLEX != DUPLEX_HALF */
163
164                 if(adapter->link_duplex == FULL_DUPLEX)
165                         ecmd->duplex = DUPLEX_FULL;
166                 else
167                         ecmd->duplex = DUPLEX_HALF;
168         } else {
169                 ecmd->speed = -1;
170                 ecmd->duplex = -1;
171         }
172
173         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
174                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
175         return 0;
176 }
177
178 static int
179 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181         struct e1000_adapter *adapter = netdev->priv;
182         struct e1000_hw *hw = &adapter->hw;
183
184         if(ecmd->autoneg == AUTONEG_ENABLE) {
185                 hw->autoneg = 1;
186                 hw->autoneg_advertised = 0x002F;
187                 ecmd->advertising = 0x002F;
188         } else
189                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
190                         return -EINVAL;
191
192         /* reset the link */
193
194         if(netif_running(adapter->netdev)) {
195                 e1000_down(adapter);
196                 e1000_reset(adapter);
197                 e1000_up(adapter);
198         } else
199                 e1000_reset(adapter);
200
201         return 0;
202 }
203
204 static void
205 e1000_get_pauseparam(struct net_device *netdev,
206                      struct ethtool_pauseparam *pause)
207 {
208         struct e1000_adapter *adapter = netdev->priv;
209         struct e1000_hw *hw = &adapter->hw;
210
211         pause->autoneg = 
212                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
213         
214         if(hw->fc == e1000_fc_rx_pause)
215                 pause->rx_pause = 1;
216         else if(hw->fc == e1000_fc_tx_pause)
217                 pause->tx_pause = 1;
218         else if(hw->fc == e1000_fc_full) {
219                 pause->rx_pause = 1;
220                 pause->tx_pause = 1;
221         }
222 }
223
224 static int
225 e1000_set_pauseparam(struct net_device *netdev,
226                      struct ethtool_pauseparam *pause)
227 {
228         struct e1000_adapter *adapter = netdev->priv;
229         struct e1000_hw *hw = &adapter->hw;
230         
231         adapter->fc_autoneg = pause->autoneg;
232
233         if(pause->rx_pause && pause->tx_pause)
234                 hw->fc = e1000_fc_full;
235         else if(pause->rx_pause && !pause->tx_pause)
236                 hw->fc = e1000_fc_rx_pause;
237         else if(!pause->rx_pause && pause->tx_pause)
238                 hw->fc = e1000_fc_tx_pause;
239         else if(!pause->rx_pause && !pause->tx_pause)
240                 hw->fc = e1000_fc_none;
241
242         hw->original_fc = hw->fc;
243
244         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
245                 if(netif_running(adapter->netdev)) {
246                         e1000_down(adapter);
247                         e1000_up(adapter);
248                 } else
249                         e1000_reset(adapter);
250         }
251         else
252                 return e1000_force_mac_fc(hw);
253         
254         return 0;
255 }
256
257 static uint32_t
258 e1000_get_rx_csum(struct net_device *netdev)
259 {
260         struct e1000_adapter *adapter = netdev->priv;
261         return adapter->rx_csum;
262 }
263
264 static int
265 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
266 {
267         struct e1000_adapter *adapter = netdev->priv;
268         adapter->rx_csum = data;
269
270         if(netif_running(netdev)) {
271                 e1000_down(adapter);
272                 e1000_up(adapter);
273         } else
274                 e1000_reset(adapter);
275         return 0;
276 }
277         
278 static uint32_t
279 e1000_get_tx_csum(struct net_device *netdev)
280 {
281         return (netdev->features & NETIF_F_HW_CSUM) != 0;
282 }
283
284 static int
285 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
286 {
287         struct e1000_adapter *adapter = netdev->priv;
288
289         if(adapter->hw.mac_type < e1000_82543) {
290                 if (!data)
291                         return -EINVAL;
292                 return 0;
293         }
294
295         if (data)
296                 netdev->features |= NETIF_F_HW_CSUM;
297         else
298                 netdev->features &= ~NETIF_F_HW_CSUM;
299
300         return 0;
301 }
302
303 #ifdef NETIF_F_TSO
304 static int
305 e1000_set_tso(struct net_device *netdev, uint32_t data)
306 {
307         struct e1000_adapter *adapter = netdev->priv;
308         if ((adapter->hw.mac_type < e1000_82544) ||
309             (adapter->hw.mac_type == e1000_82547)) 
310                 return data ? -EINVAL : 0;
311
312         if (data)
313                 netdev->features |= NETIF_F_TSO;
314         else
315                 netdev->features &= ~NETIF_F_TSO;
316         return 0;
317
318 #endif /* NETIF_F_TSO */
319
320 static uint32_t
321 e1000_get_msglevel(struct net_device *netdev)
322 {
323         struct e1000_adapter *adapter = netdev->priv;
324         return adapter->msg_enable;
325 }
326
327 static void
328 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
329 {
330         struct e1000_adapter *adapter = netdev->priv;
331         adapter->msg_enable = data;
332 }
333
334 static int 
335 e1000_get_regs_len(struct net_device *netdev)
336 {
337 #define E1000_REGS_LEN 32
338         return E1000_REGS_LEN * sizeof(uint32_t);
339 }
340
341 static void
342 e1000_get_regs(struct net_device *netdev,
343                struct ethtool_regs *regs, void *p)
344 {
345         struct e1000_adapter *adapter = netdev->priv;
346         struct e1000_hw *hw = &adapter->hw;
347         uint32_t *regs_buff = p;
348         uint16_t phy_data;
349
350         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
351
352         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
355         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
356
357         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
358         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
359         regs_buff[4]  = E1000_READ_REG(hw, RDH);
360         regs_buff[5]  = E1000_READ_REG(hw, RDT);
361         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
362
363         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
364         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
365         regs_buff[9]  = E1000_READ_REG(hw, TDH);
366         regs_buff[10] = E1000_READ_REG(hw, TDT);
367         regs_buff[11] = E1000_READ_REG(hw, TIDV);
368
369         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
370         if(hw->phy_type == e1000_phy_igp) {
371                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
372                                     IGP01E1000_PHY_AGC_A);
373                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
374                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
375                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
376                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377                                     IGP01E1000_PHY_AGC_B);
378                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
379                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
381                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382                                     IGP01E1000_PHY_AGC_C);
383                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
384                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387                                     IGP01E1000_PHY_AGC_D);
388                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
389                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
391                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
392                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
393                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
394                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
396                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
397                                     IGP01E1000_PHY_PCS_INIT_REG);
398                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
399                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
401                 regs_buff[20] = 0; /* polarity correction enabled (always) */
402                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
403                 regs_buff[23] = regs_buff[18]; /* mdix mode */
404                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
405         } else {
406                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
407                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
408                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
409                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
410                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
412                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
413                 regs_buff[18] = regs_buff[13]; /* cable polarity */
414                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
415                 regs_buff[20] = regs_buff[17]; /* polarity correction */
416                 /* phy receive errors */
417                 regs_buff[22] = adapter->phy_stats.receive_errors;
418                 regs_buff[23] = regs_buff[13]; /* mdix mode */
419         }
420         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
421         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
422         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
423         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
424         if(hw->mac_type >= e1000_82540 &&
425            hw->media_type == e1000_media_type_copper) {
426                 regs_buff[26] = E1000_READ_REG(hw, MANC);
427         }
428 }
429
430 static int
431 e1000_get_eeprom_len(struct net_device *netdev)
432 {
433         struct e1000_adapter *adapter = netdev->priv;
434         return adapter->hw.eeprom.word_size * 2;
435 }
436
437 static int
438 e1000_get_eeprom(struct net_device *netdev,
439                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
440 {
441         struct e1000_adapter *adapter = netdev->priv;
442         struct e1000_hw *hw = &adapter->hw;
443         uint16_t *eeprom_buff;
444         int first_word, last_word;
445         int ret_val = 0;
446         uint16_t i;
447
448         if(eeprom->len == 0)
449                 return -EINVAL;
450
451         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
452
453         first_word = eeprom->offset >> 1;
454         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
455
456         eeprom_buff = kmalloc(sizeof(uint16_t) *
457                         (last_word - first_word + 1), GFP_KERNEL);
458         if(!eeprom_buff)
459                 return -ENOMEM;
460
461         if(hw->eeprom.type == e1000_eeprom_spi)
462                 ret_val = e1000_read_eeprom(hw, first_word,
463                                             last_word - first_word + 1,
464                                             eeprom_buff);
465         else {
466                 for (i = 0; i < last_word - first_word + 1; i++)
467                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
468                                                         &eeprom_buff[i])))
469                                 break;
470         }
471
472         /* Device's eeprom is always little-endian, word addressable */
473         for (i = 0; i < last_word - first_word + 1; i++)
474                 le16_to_cpus(&eeprom_buff[i]);
475
476         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
477                         eeprom->len);
478         kfree(eeprom_buff);
479
480         return ret_val;
481 }
482
483 static int
484 e1000_set_eeprom(struct net_device *netdev,
485                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
486 {
487         struct e1000_adapter *adapter = netdev->priv;
488         struct e1000_hw *hw = &adapter->hw;
489         uint16_t *eeprom_buff;
490         void *ptr;
491         int max_len, first_word, last_word, ret_val = 0;
492         uint16_t i;
493
494         if(eeprom->len == 0)
495                 return -EOPNOTSUPP;
496
497         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
498                 return -EFAULT;
499
500         max_len = hw->eeprom.word_size * 2;
501
502         first_word = eeprom->offset >> 1;
503         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
505         if(!eeprom_buff)
506                 return -ENOMEM;
507
508         ptr = (void *)eeprom_buff;
509
510         if(eeprom->offset & 1) {
511                 /* need read/modify/write of first changed EEPROM word */
512                 /* only the second byte of the word is being modified */
513                 ret_val = e1000_read_eeprom(hw, first_word, 1,
514                                             &eeprom_buff[0]);
515                 ptr++;
516         }
517         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
518                 /* need read/modify/write of last changed EEPROM word */
519                 /* only the first byte of the word is being modified */
520                 ret_val = e1000_read_eeprom(hw, last_word, 1,
521                                   &eeprom_buff[last_word - first_word]);
522         }
523
524         /* Device's eeprom is always little-endian, word addressable */
525         for (i = 0; i < last_word - first_word + 1; i++)
526                 le16_to_cpus(&eeprom_buff[i]);
527
528         memcpy(ptr, bytes, eeprom->len);
529
530         for (i = 0; i < last_word - first_word + 1; i++)
531                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
532
533         ret_val = e1000_write_eeprom(hw, first_word,
534                                      last_word - first_word + 1, eeprom_buff);
535
536         /* Update the checksum over the first part of the EEPROM if needed */
537         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
538                 e1000_update_eeprom_checksum(hw);
539
540         kfree(eeprom_buff);
541         return ret_val;
542 }
543
544 static void
545 e1000_get_drvinfo(struct net_device *netdev,
546                        struct ethtool_drvinfo *drvinfo)
547 {
548         struct e1000_adapter *adapter = netdev->priv;
549
550         strncpy(drvinfo->driver,  e1000_driver_name, 32);
551         strncpy(drvinfo->version, e1000_driver_version, 32);
552         strncpy(drvinfo->fw_version, "N/A", 32);
553         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
554         drvinfo->n_stats = E1000_STATS_LEN;
555         drvinfo->testinfo_len = E1000_TEST_LEN;
556         drvinfo->regdump_len = e1000_get_regs_len(netdev);
557         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
558 }
559
560 static void
561 e1000_get_ringparam(struct net_device *netdev,
562                     struct ethtool_ringparam *ring)
563 {
564         struct e1000_adapter *adapter = netdev->priv;
565         e1000_mac_type mac_type = adapter->hw.mac_type;
566         struct e1000_desc_ring *txdr = &adapter->tx_ring;
567         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
568
569         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
570                 E1000_MAX_82544_RXD;
571         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
572                 E1000_MAX_82544_TXD;
573         ring->rx_mini_max_pending = 0;
574         ring->rx_jumbo_max_pending = 0;
575         ring->rx_pending = rxdr->count;
576         ring->tx_pending = txdr->count;
577         ring->rx_mini_pending = 0;
578         ring->rx_jumbo_pending = 0;
579 }
580
581 static int 
582 e1000_set_ringparam(struct net_device *netdev,
583                     struct ethtool_ringparam *ring)
584 {
585         struct e1000_adapter *adapter = netdev->priv;
586         e1000_mac_type mac_type = adapter->hw.mac_type;
587         struct e1000_desc_ring *txdr = &adapter->tx_ring;
588         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
589         struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
590         int err;
591
592         tx_old = adapter->tx_ring;
593         rx_old = adapter->rx_ring;
594
595         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
596                 return -EINVAL;
597
598         if(netif_running(adapter->netdev))
599                 e1000_down(adapter);
600
601         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
602         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
603                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
604         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
605
606         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
607         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
608                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
609         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
610
611         if(netif_running(adapter->netdev)) {
612                 /* Try to get new resources before deleting old */
613                 if((err = e1000_setup_rx_resources(adapter)))
614                         goto err_setup_rx;
615                 if((err = e1000_setup_tx_resources(adapter)))
616                         goto err_setup_tx;
617
618                 /* save the new, restore the old in order to free it,
619                  * then restore the new back again */
620
621                 rx_new = adapter->rx_ring;
622                 tx_new = adapter->tx_ring;
623                 adapter->rx_ring = rx_old;
624                 adapter->tx_ring = tx_old;
625                 e1000_free_rx_resources(adapter);
626                 e1000_free_tx_resources(adapter);
627                 adapter->rx_ring = rx_new;
628                 adapter->tx_ring = tx_new;
629                 if((err = e1000_up(adapter)))
630                         return err;
631         }
632
633         return 0;
634 err_setup_tx:
635         e1000_free_rx_resources(adapter);
636 err_setup_rx:
637         adapter->rx_ring = rx_old;
638         adapter->tx_ring = tx_old;
639         e1000_up(adapter);
640         return err;
641 }
642
643
644 #define REG_PATTERN_TEST(R, M, W)                                              \
645 {                                                                              \
646         uint32_t pat, value;                                                   \
647         uint32_t test[] =                                                      \
648                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
649         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
650                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
651                 value = E1000_READ_REG(&adapter->hw, R);                       \
652                 if(value != (test[pat] & W & M)) {                             \
653                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
654                                 E1000_82542_##R : E1000_##R;                   \
655                         return 1;                                              \
656                 }                                                              \
657         }                                                                      \
658 }
659
660 #define REG_SET_AND_CHECK(R, M, W)                                             \
661 {                                                                              \
662         uint32_t value;                                                        \
663         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
664         value = E1000_READ_REG(&adapter->hw, R);                               \
665         if ((W & M) != (value & M)) {                                          \
666                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
667                         E1000_82542_##R : E1000_##R;                           \
668                 return 1;                                                      \
669         }                                                                      \
670 }
671
672 static int
673 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
674 {
675         uint32_t value;
676         uint32_t i;
677
678         /* The status register is Read Only, so a write should fail.
679          * Some bits that get toggled are ignored.
680          */
681         value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
682         E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
683         if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
684                 *data = 1;
685                 return 1;
686         }
687
688         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
689         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
690         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
691         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
692         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
693         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
694         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
695         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
696         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
697         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
698         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
699         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
700         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
701         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
702
703         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
704         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
705         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
706
707         if(adapter->hw.mac_type >= e1000_82543) {
708
709                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
710                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
711                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
712                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
713                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
714
715                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
716                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
717                                          0xFFFFFFFF);
718                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
719                                          0xFFFFFFFF);
720                 }
721
722         } else {
723
724                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
725                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
726                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
727                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
728
729         }
730
731         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
732                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
733
734         *data = 0;
735         return 0;
736 }
737
738 static int
739 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
740 {
741         uint16_t temp;
742         uint16_t checksum = 0;
743         uint16_t i;
744
745         *data = 0;
746         /* Read and add up the contents of the EEPROM */
747         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
748                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
749                         *data = 1;
750                         break;
751                 }
752                 checksum += temp;
753         }
754
755         /* If Checksum is not Correct return error else test passed */
756         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
757                 *data = 2;
758
759         return *data;
760 }
761
762 static irqreturn_t
763 e1000_test_intr(int irq,
764                 void *data,
765                 struct pt_regs *regs)
766 {
767         struct net_device *netdev = (struct net_device *) data;
768         struct e1000_adapter *adapter = netdev->priv;
769
770         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
771
772         return IRQ_HANDLED;
773 }
774
775 static int
776 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
777 {
778         struct net_device *netdev = adapter->netdev;
779         uint32_t icr, mask, i=0, shared_int = TRUE;
780         uint32_t irq = adapter->pdev->irq;
781
782         *data = 0;
783
784         /* Hook up test interrupt handler just for this test */
785         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
786                 shared_int = FALSE;
787         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, netdev->name, netdev)){
788                 *data = 1;
789                 return -1;
790         }
791
792         /* Disable all the interrupts */
793         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
794         msec_delay(10);
795
796         /* Interrupts are disabled, so read interrupt cause
797          * register (icr) twice to verify that there are no interrupts
798          * pending.  icr is clear on read.
799          */
800         icr = E1000_READ_REG(&adapter->hw, ICR);
801         icr = E1000_READ_REG(&adapter->hw, ICR);
802
803         if(icr != 0) {
804                 /* if icr is non-zero, there is no point
805                  * running other interrupt tests.
806                  */
807                 *data = 2;
808                 i = 10;
809         }
810
811         /* Test each interrupt */
812         for(; i < 10; i++) {
813
814                 /* Interrupt to test */
815                 mask = 1 << i;
816
817                 if(!shared_int) {
818                         /* Disable the interrupt to be reported in
819                          * the cause register and then force the same
820                          * interrupt and see if one gets posted.  If
821                          * an interrupt was posted to the bus, the
822                          * test failed.
823                          */
824                         adapter->test_icr = 0;
825                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
826                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
827                         msec_delay(10);
828  
829                         if(adapter->test_icr & mask) {
830                                 *data = 3;
831                                 break;
832                         }
833                 }
834
835                 /* Enable the interrupt to be reported in
836                  * the cause register and then force the same
837                  * interrupt and see if one gets posted.  If
838                  * an interrupt was not posted to the bus, the
839                  * test failed.
840                  */
841                 adapter->test_icr = 0;
842                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
843                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
844                 msec_delay(10);
845
846                 if(!(adapter->test_icr & mask)) {
847                         *data = 4;
848                         break;
849                 }
850
851                 if(!shared_int) {
852                         /* Disable the other interrupts to be reported in
853                          * the cause register and then force the other
854                          * interrupts and see if any get posted.  If
855                          * an interrupt was posted to the bus, the
856                          * test failed.
857                          */
858                         adapter->test_icr = 0;
859                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask);
860                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask);
861                         msec_delay(10);
862
863                         if(adapter->test_icr) {
864                                 *data = 5;
865                                 break;
866                         }
867                 }
868         }
869
870         /* Disable all the interrupts */
871         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
872         msec_delay(10);
873
874         /* Unhook test interrupt handler */
875         free_irq(irq, netdev);
876
877         return *data;
878 }
879
880 static void
881 e1000_free_desc_rings(struct e1000_adapter *adapter)
882 {
883         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
884         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
885         struct pci_dev *pdev = adapter->pdev;
886         int i;
887
888         if(txdr->desc && txdr->buffer_info) {
889                 for(i = 0; i < txdr->count; i++) {
890                         if(txdr->buffer_info[i].dma)
891                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
892                                                  txdr->buffer_info[i].length,
893                                                  PCI_DMA_TODEVICE);
894                         if(txdr->buffer_info[i].skb)
895                                 dev_kfree_skb(txdr->buffer_info[i].skb);
896                 }
897         }
898
899         if(rxdr->desc && rxdr->buffer_info) {
900                 for(i = 0; i < rxdr->count; i++) {
901                         if(rxdr->buffer_info[i].dma)
902                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
903                                                  rxdr->buffer_info[i].length,
904                                                  PCI_DMA_FROMDEVICE);
905                         if(rxdr->buffer_info[i].skb)
906                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
907                 }
908         }
909
910         if(txdr->desc)
911                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
912         if(rxdr->desc)
913                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
914
915         if(txdr->buffer_info)
916                 kfree(txdr->buffer_info);
917         if(rxdr->buffer_info)
918                 kfree(rxdr->buffer_info);
919
920         return;
921 }
922
923 static int
924 e1000_setup_desc_rings(struct e1000_adapter *adapter)
925 {
926         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
927         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
928         struct pci_dev *pdev = adapter->pdev;
929         uint32_t rctl;
930         int size, i, ret_val;
931
932         /* Setup Tx descriptor ring and Tx buffers */
933
934         txdr->count = 80;
935
936         size = txdr->count * sizeof(struct e1000_buffer);
937         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
938                 ret_val = 1;
939                 goto err_nomem;
940         }
941         memset(txdr->buffer_info, 0, size);
942
943         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
944         E1000_ROUNDUP(txdr->size, 4096);
945         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
946                 ret_val = 2;
947                 goto err_nomem;
948         }
949         memset(txdr->desc, 0, txdr->size);
950         txdr->next_to_use = txdr->next_to_clean = 0;
951
952         E1000_WRITE_REG(&adapter->hw, TDBAL,
953                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
954         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
955         E1000_WRITE_REG(&adapter->hw, TDLEN,
956                         txdr->count * sizeof(struct e1000_tx_desc));
957         E1000_WRITE_REG(&adapter->hw, TDH, 0);
958         E1000_WRITE_REG(&adapter->hw, TDT, 0);
959         E1000_WRITE_REG(&adapter->hw, TCTL,
960                         E1000_TCTL_PSP | E1000_TCTL_EN |
961                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
962                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
963
964         for(i = 0; i < txdr->count; i++) {
965                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
966                 struct sk_buff *skb;
967                 unsigned int size = 1024;
968
969                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
970                         ret_val = 3;
971                         goto err_nomem;
972                 }
973                 skb_put(skb, size);
974                 txdr->buffer_info[i].skb = skb;
975                 txdr->buffer_info[i].length = skb->len;
976                 txdr->buffer_info[i].dma =
977                         pci_map_single(pdev, skb->data, skb->len,
978                                        PCI_DMA_TODEVICE);
979                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
980                 tx_desc->lower.data = cpu_to_le32(skb->len);
981                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
982                                                    E1000_TXD_CMD_IFCS |
983                                                    E1000_TXD_CMD_RPS);
984                 tx_desc->upper.data = 0;
985         }
986
987         /* Setup Rx descriptor ring and Rx buffers */
988
989         rxdr->count = 80;
990
991         size = rxdr->count * sizeof(struct e1000_buffer);
992         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
993                 ret_val = 4;
994                 goto err_nomem;
995         }
996         memset(rxdr->buffer_info, 0, size);
997
998         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
999         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1000                 ret_val = 5;
1001                 goto err_nomem;
1002         }
1003         memset(rxdr->desc, 0, rxdr->size);
1004         rxdr->next_to_use = rxdr->next_to_clean = 0;
1005
1006         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1007         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1008         E1000_WRITE_REG(&adapter->hw, RDBAL,
1009                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1010         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1011         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1012         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1013         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1014         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1015                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1016                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1017         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1018
1019         for(i = 0; i < rxdr->count; i++) {
1020                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1021                 struct sk_buff *skb;
1022
1023                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1024                                      GFP_KERNEL))) {
1025                         ret_val = 6;
1026                         goto err_nomem;
1027                 }
1028                 skb_reserve(skb, NET_IP_ALIGN);
1029                 rxdr->buffer_info[i].skb = skb;
1030                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1031                 rxdr->buffer_info[i].dma =
1032                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1033                                        PCI_DMA_FROMDEVICE);
1034                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1035                 memset(skb->data, 0x00, skb->len);
1036         }
1037
1038         return 0;
1039
1040 err_nomem:
1041         e1000_free_desc_rings(adapter);
1042         return ret_val;
1043 }
1044
1045 static void
1046 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1047 {
1048         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1049         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1050         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1051         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1052         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1053 }
1054
1055 static void
1056 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1057 {
1058         uint16_t phy_reg;
1059
1060         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1061          * Extended PHY Specific Control Register to 25MHz clock.  This
1062          * value defaults back to a 2.5MHz clock when the PHY is reset.
1063          */
1064         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1065         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1066         e1000_write_phy_reg(&adapter->hw,
1067                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1068
1069         /* In addition, because of the s/w reset above, we need to enable
1070          * CRS on TX.  This must be set for both full and half duplex
1071          * operation.
1072          */
1073         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1074         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1075         e1000_write_phy_reg(&adapter->hw,
1076                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1077 }
1078
1079 static int
1080 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1081 {
1082         uint32_t ctrl_reg;
1083         uint16_t phy_reg;
1084
1085         /* Setup the Device Control Register for PHY loopback test. */
1086
1087         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1088         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1089                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1090                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1091                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1092                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1093
1094         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1095
1096         /* Read the PHY Specific Control Register (0x10) */
1097         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1098
1099         /* Clear Auto-Crossover bits in PHY Specific Control Register
1100          * (bits 6:5).
1101          */
1102         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1103         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1104
1105         /* Perform software reset on the PHY */
1106         e1000_phy_reset(&adapter->hw);
1107
1108         /* Have to setup TX_CLK and TX_CRS after software reset */
1109         e1000_phy_reset_clk_and_crs(adapter);
1110
1111         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1112
1113         /* Wait for reset to complete. */
1114         udelay(500);
1115
1116         /* Have to setup TX_CLK and TX_CRS after software reset */
1117         e1000_phy_reset_clk_and_crs(adapter);
1118
1119         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1120         e1000_phy_disable_receiver(adapter);
1121
1122         /* Set the loopback bit in the PHY control register. */
1123         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1124         phy_reg |= MII_CR_LOOPBACK;
1125         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1126
1127         /* Setup TX_CLK and TX_CRS one more time. */
1128         e1000_phy_reset_clk_and_crs(adapter);
1129
1130         /* Check Phy Configuration */
1131         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1132         if(phy_reg != 0x4100)
1133                  return 9;
1134
1135         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1136         if(phy_reg != 0x0070)
1137                 return 10;
1138
1139         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1140         if(phy_reg != 0x001A)
1141                 return 11;
1142
1143         return 0;
1144 }
1145
1146 static int
1147 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1148 {
1149         uint32_t ctrl_reg = 0;
1150         uint32_t stat_reg = 0;
1151
1152         adapter->hw.autoneg = FALSE;
1153
1154         if(adapter->hw.phy_type == e1000_phy_m88) {
1155                 /* Auto-MDI/MDIX Off */
1156                 e1000_write_phy_reg(&adapter->hw,
1157                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1158                 /* reset to update Auto-MDI/MDIX */
1159                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1160                 /* autoneg off */
1161                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1162         }
1163         /* force 1000, set loopback */
1164         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1165
1166         /* Now set up the MAC to the same speed/duplex as the PHY. */
1167         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1168         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1169         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1170                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1171                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1172                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1173
1174         if(adapter->hw.media_type == e1000_media_type_copper &&
1175            adapter->hw.phy_type == e1000_phy_m88) {
1176                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1177         } else {
1178                 /* Set the ILOS bit on the fiber Nic is half
1179                  * duplex link is detected. */
1180                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1181                 if((stat_reg & E1000_STATUS_FD) == 0)
1182                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1183         }
1184
1185         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1186
1187         /* Disable the receiver on the PHY so when a cable is plugged in, the
1188          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1189          */
1190         if(adapter->hw.phy_type == e1000_phy_m88)
1191                 e1000_phy_disable_receiver(adapter);
1192
1193         udelay(500);
1194
1195         return 0;
1196 }
1197
1198 static int
1199 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1200 {
1201         uint16_t phy_reg = 0;
1202         uint16_t count = 0;
1203
1204         switch (adapter->hw.mac_type) {
1205         case e1000_82543:
1206                 if(adapter->hw.media_type == e1000_media_type_copper) {
1207                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1208                          * Some PHY registers get corrupted at random, so
1209                          * attempt this 10 times.
1210                          */
1211                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1212                               count++ < 10);
1213                         if(count < 11)
1214                                 return 0;
1215                 }
1216                 break;
1217
1218         case e1000_82544:
1219         case e1000_82540:
1220         case e1000_82545:
1221         case e1000_82545_rev_3:
1222         case e1000_82546:
1223         case e1000_82546_rev_3:
1224         case e1000_82541:
1225         case e1000_82541_rev_2:
1226         case e1000_82547:
1227         case e1000_82547_rev_2:
1228                 return e1000_integrated_phy_loopback(adapter);
1229                 break;
1230
1231         default:
1232                 /* Default PHY loopback work is to read the MII
1233                  * control register and assert bit 14 (loopback mode).
1234                  */
1235                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1236                 phy_reg |= MII_CR_LOOPBACK;
1237                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1238                 return 0;
1239                 break;
1240         }
1241
1242         return 8;
1243 }
1244
1245 static int
1246 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1247 {
1248         uint32_t rctl;
1249
1250         if(adapter->hw.media_type == e1000_media_type_fiber ||
1251            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1252                 if(adapter->hw.mac_type == e1000_82545 ||
1253                    adapter->hw.mac_type == e1000_82546 ||
1254                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1255                    adapter->hw.mac_type == e1000_82546_rev_3)
1256                         return e1000_set_phy_loopback(adapter);
1257                 else {
1258                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1259                         rctl |= E1000_RCTL_LBM_TCVR;
1260                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1261                         return 0;
1262                 }
1263         } else if(adapter->hw.media_type == e1000_media_type_copper)
1264                 return e1000_set_phy_loopback(adapter);
1265
1266         return 7;
1267 }
1268
1269 static void
1270 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1271 {
1272         uint32_t rctl;
1273         uint16_t phy_reg;
1274
1275         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1276         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1277         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1278
1279         if(adapter->hw.media_type == e1000_media_type_copper ||
1280            ((adapter->hw.media_type == e1000_media_type_fiber ||
1281              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1282             (adapter->hw.mac_type == e1000_82545 ||
1283              adapter->hw.mac_type == e1000_82546 ||
1284              adapter->hw.mac_type == e1000_82545_rev_3 ||
1285              adapter->hw.mac_type == e1000_82546_rev_3))) {
1286                 adapter->hw.autoneg = TRUE;
1287                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1288                 if(phy_reg & MII_CR_LOOPBACK) {
1289                         phy_reg &= ~MII_CR_LOOPBACK;
1290                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1291                         e1000_phy_reset(&adapter->hw);
1292                 }
1293         }
1294 }
1295
1296 static void
1297 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1298 {
1299         memset(skb->data, 0xFF, frame_size);
1300         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1301         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1302         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1303         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1304 }
1305
1306 static int
1307 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1308 {
1309         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1310         if(*(skb->data + 3) == 0xFF) {
1311                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1312                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1313                         return 0;
1314                 }
1315         }
1316         return 13;
1317 }
1318
1319 static int
1320 e1000_run_loopback_test(struct e1000_adapter *adapter)
1321 {
1322         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1323         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1324         struct pci_dev *pdev = adapter->pdev;
1325         int i;
1326
1327         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1328
1329         for(i = 0; i < 64; i++) {
1330                 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
1331                 pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma,
1332                                             txdr->buffer_info[i].length,
1333                                             PCI_DMA_TODEVICE);
1334         }
1335         E1000_WRITE_REG(&adapter->hw, TDT, i);
1336
1337         msec_delay(200);
1338
1339         pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[0].dma,
1340                             rxdr->buffer_info[0].length, PCI_DMA_FROMDEVICE);
1341
1342         return e1000_check_lbtest_frame(rxdr->buffer_info[0].skb, 1024);
1343 }
1344
1345 static int
1346 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1347 {
1348         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1349         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1350         *data = e1000_run_loopback_test(adapter);
1351         e1000_loopback_cleanup(adapter);
1352         e1000_free_desc_rings(adapter);
1353 err_loopback:
1354         return *data;
1355 }
1356
1357 static int
1358 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1359 {
1360         *data = 0;
1361         e1000_check_for_link(&adapter->hw);
1362
1363         if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1364                 *data = 1;
1365         }
1366         return *data;
1367 }
1368
1369 static int 
1370 e1000_diag_test_count(struct net_device *netdev)
1371 {
1372         return E1000_TEST_LEN;
1373 }
1374
1375 static void
1376 e1000_diag_test(struct net_device *netdev,
1377                    struct ethtool_test *eth_test, uint64_t *data)
1378 {
1379         struct e1000_adapter *adapter = netdev->priv;
1380         boolean_t if_running = netif_running(netdev);
1381
1382         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1383                 /* Offline tests */
1384
1385                 /* save speed, duplex, autoneg settings */
1386                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1387                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1388                 uint8_t autoneg = adapter->hw.autoneg;
1389
1390                 /* Link test performed before hardware reset so autoneg doesn't
1391                  * interfere with test result */
1392                 if(e1000_link_test(adapter, &data[4]))
1393                         eth_test->flags |= ETH_TEST_FL_FAILED;
1394
1395                 if(if_running)
1396                         e1000_down(adapter);
1397                 else
1398                         e1000_reset(adapter);
1399
1400                 if(e1000_reg_test(adapter, &data[0]))
1401                         eth_test->flags |= ETH_TEST_FL_FAILED;
1402
1403                 e1000_reset(adapter);
1404                 if(e1000_eeprom_test(adapter, &data[1]))
1405                         eth_test->flags |= ETH_TEST_FL_FAILED;
1406
1407                 e1000_reset(adapter);
1408                 if(e1000_intr_test(adapter, &data[2]))
1409                         eth_test->flags |= ETH_TEST_FL_FAILED;
1410
1411                 e1000_reset(adapter);
1412                 if(e1000_loopback_test(adapter, &data[3]))
1413                         eth_test->flags |= ETH_TEST_FL_FAILED;
1414
1415                 /* restore speed, duplex, autoneg settings */
1416                 adapter->hw.autoneg_advertised = autoneg_advertised;
1417                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1418                 adapter->hw.autoneg = autoneg;
1419
1420                 e1000_reset(adapter);
1421                 if(if_running)
1422                         e1000_up(adapter);
1423         } else {
1424                 /* Online tests */
1425                 if(e1000_link_test(adapter, &data[4]))
1426                         eth_test->flags |= ETH_TEST_FL_FAILED;
1427
1428                 /* Offline tests aren't run; pass by default */
1429                 data[0] = 0;
1430                 data[1] = 0;
1431                 data[2] = 0;
1432                 data[3] = 0;
1433         }
1434 }
1435
1436 static void
1437 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1438 {
1439         struct e1000_adapter *adapter = netdev->priv;
1440         struct e1000_hw *hw = &adapter->hw;
1441
1442         switch(adapter->hw.device_id) {
1443         case E1000_DEV_ID_82542:
1444         case E1000_DEV_ID_82543GC_FIBER:
1445         case E1000_DEV_ID_82543GC_COPPER:
1446         case E1000_DEV_ID_82544EI_FIBER:
1447         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1448                 wol->supported = 0;
1449                 wol->wolopts   = 0;
1450                 return;
1451
1452         case E1000_DEV_ID_82546EB_FIBER:
1453         case E1000_DEV_ID_82546GB_FIBER:
1454                 /* Wake events only supported on port A for dual fiber */
1455                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1456                         wol->supported = 0;
1457                         wol->wolopts   = 0;
1458                         return;
1459                 }
1460                 /* Fall Through */
1461
1462         default:
1463                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1464                                  WAKE_BCAST | WAKE_MAGIC;
1465
1466                 wol->wolopts = 0;
1467                 if(adapter->wol & E1000_WUFC_EX)
1468                         wol->wolopts |= WAKE_UCAST;
1469                 if(adapter->wol & E1000_WUFC_MC)
1470                         wol->wolopts |= WAKE_MCAST;
1471                 if(adapter->wol & E1000_WUFC_BC)
1472                         wol->wolopts |= WAKE_BCAST;
1473                 if(adapter->wol & E1000_WUFC_MAG)
1474                         wol->wolopts |= WAKE_MAGIC;
1475                 return;
1476         }
1477 }
1478
1479 static int
1480 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1481 {
1482         struct e1000_adapter *adapter = netdev->priv;
1483         struct e1000_hw *hw = &adapter->hw;
1484
1485         switch(adapter->hw.device_id) {
1486         case E1000_DEV_ID_82542:
1487         case E1000_DEV_ID_82543GC_FIBER:
1488         case E1000_DEV_ID_82543GC_COPPER:
1489         case E1000_DEV_ID_82544EI_FIBER:
1490         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1491                 return wol->wolopts ? -EOPNOTSUPP : 0;
1492
1493         case E1000_DEV_ID_82546EB_FIBER:
1494         case E1000_DEV_ID_82546GB_FIBER:
1495                 /* Wake events only supported on port A for dual fiber */
1496                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1497                         return wol->wolopts ? -EOPNOTSUPP : 0;
1498                 /* Fall Through */
1499
1500         default:
1501                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1502                         return -EOPNOTSUPP;
1503
1504                 adapter->wol = 0;
1505
1506                 if(wol->wolopts & WAKE_UCAST)
1507                         adapter->wol |= E1000_WUFC_EX;
1508                 if(wol->wolopts & WAKE_MCAST)
1509                         adapter->wol |= E1000_WUFC_MC;
1510                 if(wol->wolopts & WAKE_BCAST)
1511                         adapter->wol |= E1000_WUFC_BC;
1512                 if(wol->wolopts & WAKE_MAGIC)
1513                         adapter->wol |= E1000_WUFC_MAG;
1514         }
1515
1516         return 0;
1517 }
1518
1519 /* toggle LED 4 times per second = 2 "blinks" per second */
1520 #define E1000_ID_INTERVAL       (HZ/4)
1521
1522 /* bit defines for adapter->led_status */
1523 #define E1000_LED_ON            0
1524
1525 static void
1526 e1000_led_blink_callback(unsigned long data)
1527 {
1528         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1529
1530         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1531                 e1000_led_off(&adapter->hw);
1532         else
1533                 e1000_led_on(&adapter->hw);
1534
1535         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1536 }
1537
1538 static int
1539 e1000_phys_id(struct net_device *netdev, uint32_t data)
1540 {
1541         struct e1000_adapter *adapter = netdev->priv;
1542
1543         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1544                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1545
1546         if(!adapter->blink_timer.function) {
1547                 init_timer(&adapter->blink_timer);
1548                 adapter->blink_timer.function = e1000_led_blink_callback;
1549                 adapter->blink_timer.data = (unsigned long) adapter;
1550         }
1551
1552         e1000_setup_led(&adapter->hw);
1553         mod_timer(&adapter->blink_timer, jiffies);
1554
1555         set_current_state(TASK_INTERRUPTIBLE);
1556
1557         schedule_timeout(data * HZ);
1558         del_timer_sync(&adapter->blink_timer);
1559         e1000_led_off(&adapter->hw);
1560         clear_bit(E1000_LED_ON, &adapter->led_status);
1561         e1000_cleanup_led(&adapter->hw);
1562
1563         return 0;
1564 }
1565
1566 static int
1567 e1000_nway_reset(struct net_device *netdev)
1568 {
1569         struct e1000_adapter *adapter = netdev->priv;
1570         if(netif_running(netdev)) {
1571                 e1000_down(adapter);
1572                 e1000_up(adapter);
1573         }
1574         return 0;
1575 }
1576
1577 static int 
1578 e1000_get_stats_count(struct net_device *netdev)
1579 {
1580         return E1000_STATS_LEN;
1581 }
1582
1583 static void 
1584 e1000_get_ethtool_stats(struct net_device *netdev, 
1585                 struct ethtool_stats *stats, uint64_t *data)
1586 {
1587         struct e1000_adapter *adapter = netdev->priv;
1588         int i;
1589
1590         e1000_update_stats(adapter);
1591         for(i = 0; i < E1000_STATS_LEN; i++) {
1592                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1593                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1594                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1595         }
1596 }
1597
1598 static void 
1599 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1600 {
1601         int i;
1602
1603         switch(stringset) {
1604         case ETH_SS_TEST:
1605                 memcpy(data, *e1000_gstrings_test, 
1606                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1607                 break;
1608         case ETH_SS_STATS:
1609                 for (i=0; i < E1000_STATS_LEN; i++) {
1610                         memcpy(data + i * ETH_GSTRING_LEN, 
1611                         e1000_gstrings_stats[i].stat_string,
1612                         ETH_GSTRING_LEN);
1613                 }
1614                 break;
1615         }
1616 }
1617
1618 struct ethtool_ops e1000_ethtool_ops = {
1619         .get_settings           = e1000_get_settings,
1620         .set_settings           = e1000_set_settings,
1621         .get_drvinfo            = e1000_get_drvinfo,
1622         .get_regs_len           = e1000_get_regs_len,
1623         .get_regs               = e1000_get_regs,
1624         .get_wol                = e1000_get_wol,
1625         .set_wol                = e1000_set_wol,
1626         .get_msglevel           = e1000_get_msglevel,
1627         .set_msglevel           = e1000_set_msglevel,
1628         .nway_reset             = e1000_nway_reset,
1629         .get_link               = ethtool_op_get_link,
1630         .get_eeprom_len         = e1000_get_eeprom_len,
1631         .get_eeprom             = e1000_get_eeprom,
1632         .set_eeprom             = e1000_set_eeprom,
1633         .get_ringparam          = e1000_get_ringparam,
1634         .set_ringparam          = e1000_set_ringparam,
1635         .get_pauseparam         = e1000_get_pauseparam,
1636         .set_pauseparam         = e1000_set_pauseparam,
1637         .get_rx_csum            = e1000_get_rx_csum,
1638         .set_rx_csum            = e1000_set_rx_csum,
1639         .get_tx_csum            = e1000_get_tx_csum,
1640         .set_tx_csum            = e1000_set_tx_csum,
1641         .get_sg                 = ethtool_op_get_sg,
1642         .set_sg                 = ethtool_op_set_sg,
1643 #ifdef NETIF_F_TSO
1644         .get_tso                = ethtool_op_get_tso,
1645         .set_tso                = e1000_set_tso,
1646 #endif
1647         .self_test_count        = e1000_diag_test_count,
1648         .self_test              = e1000_diag_test,
1649         .get_strings            = e1000_get_strings,
1650         .phys_id                = e1000_phys_id,
1651         .get_stats_count        = e1000_get_stats_count,
1652         .get_ethtool_stats      = e1000_get_ethtool_stats,
1653 };
1654
1655 void set_ethtool_ops(struct net_device *netdev)
1656 {
1657         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1658 }