vserver 1.9.5.x5
[linux-2.6.git] / drivers / net / ibm_emac / ibm_emac_core.c
1 /*
2  * ibm_emac_core.c
3  *
4  * Ethernet driver for the built in ethernet on the IBM 4xx PowerPC
5  * processors.
6  * 
7  * (c) 2003 Benjamin Herrenschmidt <benh@kernel.crashing.org>
8  *
9  * Based on original work by
10  *
11  *      Armin Kuster <akuster@mvista.com>
12  *      Johnnie Peters <jpeters@mvista.com>
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under  the terms of  the GNU General  Public License as published by the
16  * Free Software Foundation;  either version 2 of the  License, or (at your
17  * option) any later version.
18  * TODO
19  *       - Check for races in the "remove" code path
20  *       - Add some Power Management to the MAC and the PHY
21  *       - Audit remaining of non-rewritten code (--BenH)
22  *       - Cleanup message display using msglevel mecanism
23  *       - Address all errata
24  *       - Audit all register update paths to ensure they
25  *         are being written post soft reset if required.
26  */
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/ptrace.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>
37 #include <linux/delay.h>
38 #include <linux/init.h>
39 #include <linux/types.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/bitops.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/dma.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
50 #include <asm/ocp.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/skbuff.h>
55 #include <linux/crc32.h>
56
57 #include "ibm_emac_core.h"
58
59 //#define MDIO_DEBUG(fmt) printk fmt
60 #define MDIO_DEBUG(fmt)
61
62 //#define LINK_DEBUG(fmt) printk fmt
63 #define LINK_DEBUG(fmt)
64
65 //#define PKT_DEBUG(fmt) printk fmt
66 #define PKT_DEBUG(fmt)
67
68 #define DRV_NAME        "emac"
69 #define DRV_VERSION     "2.0"
70 #define DRV_AUTHOR      "Benjamin Herrenschmidt <benh@kernel.crashing.org>"
71 #define DRV_DESC        "IBM EMAC Ethernet driver"
72
73 /*
74  * When mdio_idx >= 0, contains a list of emac ocp_devs
75  * that have had their initialization deferred until the
76  * common MDIO controller has been initialized.
77  */
78 LIST_HEAD(emac_init_list);
79
80 MODULE_AUTHOR(DRV_AUTHOR);
81 MODULE_DESCRIPTION(DRV_DESC);
82 MODULE_LICENSE("GPL");
83
84 static int skb_res = SKB_RES;
85 module_param(skb_res, int, 0444);
86 MODULE_PARM_DESC(skb_res, "Amount of data to reserve on skb buffs\n"
87                  "The 405 handles a misaligned IP header fine but\n"
88                  "this can help if you are routing to a tunnel or a\n"
89                  "device that needs aligned data. 0..2");
90
91 #define RGMII_PRIV(ocpdev) ((struct ibm_ocp_rgmii*)ocp_get_drvdata(ocpdev))
92
93 static unsigned int rgmii_enable[] = {
94         RGMII_RTBI,
95         RGMII_RGMII,
96         RGMII_TBI,
97         RGMII_GMII
98 };
99
100 static unsigned int rgmii_speed_mask[] = {
101         RGMII_MII2_SPDMASK,
102         RGMII_MII3_SPDMASK
103 };
104
105 static unsigned int rgmii_speed100[] = {
106         RGMII_MII2_100MB,
107         RGMII_MII3_100MB
108 };
109
110 static unsigned int rgmii_speed1000[] = {
111         RGMII_MII2_1000MB,
112         RGMII_MII3_1000MB
113 };
114
115 #define ZMII_PRIV(ocpdev) ((struct ibm_ocp_zmii*)ocp_get_drvdata(ocpdev))
116
117 static unsigned int zmii_enable[][4] = {
118         {ZMII_SMII0, ZMII_RMII0, ZMII_MII0,
119          ~(ZMII_MDI1 | ZMII_MDI2 | ZMII_MDI3)},
120         {ZMII_SMII1, ZMII_RMII1, ZMII_MII1,
121          ~(ZMII_MDI0 | ZMII_MDI2 | ZMII_MDI3)},
122         {ZMII_SMII2, ZMII_RMII2, ZMII_MII2,
123          ~(ZMII_MDI0 | ZMII_MDI1 | ZMII_MDI3)},
124         {ZMII_SMII3, ZMII_RMII3, ZMII_MII3, ~(ZMII_MDI0 | ZMII_MDI1 | ZMII_MDI2)}
125 };
126
127 static unsigned int mdi_enable[] = {
128         ZMII_MDI0,
129         ZMII_MDI1,
130         ZMII_MDI2,
131         ZMII_MDI3
132 };
133
134 static unsigned int zmii_speed = 0x0;
135 static unsigned int zmii_speed100[] = {
136         ZMII_MII0_100MB,
137         ZMII_MII1_100MB,
138         ZMII_MII2_100MB,
139         ZMII_MII3_100MB
140 };
141
142 /* Since multiple EMACs share MDIO lines in various ways, we need
143  * to avoid re-using the same PHY ID in cases where the arch didn't
144  * setup precise phy_map entries
145  */
146 static u32 busy_phy_map = 0;
147
148 /* If EMACs share a common MDIO device, this points to it */
149 static struct net_device *mdio_ndev = NULL;
150
151 struct emac_def_dev {
152         struct list_head link;
153         struct ocp_device *ocpdev;
154         struct ibm_ocp_mal *mal;
155 };
156
157 static struct net_device_stats *emac_stats(struct net_device *dev)
158 {
159         struct ocp_enet_private *fep = dev->priv;
160         return &fep->stats;
161 };
162
163 static int
164 emac_init_rgmii(struct ocp_device *rgmii_dev, int input, int phy_mode)
165 {
166         struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(rgmii_dev);
167         const char *mode_name[] = { "RTBI", "RGMII", "TBI", "GMII" };
168         int mode = -1;
169
170         if (!rgmii) {
171                 rgmii = kmalloc(sizeof(struct ibm_ocp_rgmii), GFP_KERNEL);
172
173                 if (rgmii == NULL) {
174                         printk(KERN_ERR
175                                "rgmii%d: Out of memory allocating RGMII structure!\n",
176                                rgmii_dev->def->index);
177                         return -ENOMEM;
178                 }
179
180                 memset(rgmii, 0, sizeof(*rgmii));
181
182                 rgmii->base =
183                     (struct rgmii_regs *)ioremap(rgmii_dev->def->paddr,
184                                                  sizeof(*rgmii->base));
185                 if (rgmii->base == NULL) {
186                         printk(KERN_ERR
187                                "rgmii%d: Cannot ioremap bridge registers!\n",
188                                rgmii_dev->def->index);
189
190                         kfree(rgmii);
191                         return -ENOMEM;
192                 }
193                 ocp_set_drvdata(rgmii_dev, rgmii);
194         }
195
196         if (phy_mode) {
197                 switch (phy_mode) {
198                 case PHY_MODE_GMII:
199                         mode = GMII;
200                         break;
201                 case PHY_MODE_TBI:
202                         mode = TBI;
203                         break;
204                 case PHY_MODE_RTBI:
205                         mode = RTBI;
206                         break;
207                 case PHY_MODE_RGMII:
208                 default:
209                         mode = RGMII;
210                 }
211                 rgmii->base->fer &= ~RGMII_FER_MASK(input);
212                 rgmii->base->fer |= rgmii_enable[mode] << (4 * input);
213         } else {
214                 switch ((rgmii->base->fer & RGMII_FER_MASK(input)) >> (4 *
215                                                                        input)) {
216                 case RGMII_RTBI:
217                         mode = RTBI;
218                         break;
219                 case RGMII_RGMII:
220                         mode = RGMII;
221                         break;
222                 case RGMII_TBI:
223                         mode = TBI;
224                         break;
225                 case RGMII_GMII:
226                         mode = GMII;
227                 }
228         }
229
230         /* Set mode to RGMII if nothing valid is detected */
231         if (mode < 0)
232                 mode = RGMII;
233
234         printk(KERN_NOTICE "rgmii%d: input %d in %s mode\n",
235                rgmii_dev->def->index, input, mode_name[mode]);
236
237         rgmii->mode[input] = mode;
238         rgmii->users++;
239
240         return 0;
241 }
242
243 static void
244 emac_rgmii_port_speed(struct ocp_device *ocpdev, int input, int speed)
245 {
246         struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(ocpdev);
247         unsigned int rgmii_speed;
248
249         rgmii_speed = in_be32(&rgmii->base->ssr);
250
251         rgmii_speed &= ~rgmii_speed_mask[input];
252
253         if (speed == 1000)
254                 rgmii_speed |= rgmii_speed1000[input];
255         else if (speed == 100)
256                 rgmii_speed |= rgmii_speed100[input];
257
258         out_be32(&rgmii->base->ssr, rgmii_speed);
259 }
260
261 static void emac_close_rgmii(struct ocp_device *ocpdev)
262 {
263         struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(ocpdev);
264         BUG_ON(!rgmii || rgmii->users == 0);
265
266         if (!--rgmii->users) {
267                 ocp_set_drvdata(ocpdev, NULL);
268                 iounmap((void *)rgmii->base);
269                 kfree(rgmii);
270         }
271 }
272
273 static int emac_init_zmii(struct ocp_device *zmii_dev, int input, int phy_mode)
274 {
275         struct ibm_ocp_zmii *zmii = ZMII_PRIV(zmii_dev);
276         const char *mode_name[] = { "SMII", "RMII", "MII" };
277         int mode = -1;
278
279         if (!zmii) {
280                 zmii = kmalloc(sizeof(struct ibm_ocp_zmii), GFP_KERNEL);
281                 if (zmii == NULL) {
282                         printk(KERN_ERR
283                                "zmii%d: Out of memory allocating ZMII structure!\n",
284                                zmii_dev->def->index);
285                         return -ENOMEM;
286                 }
287                 memset(zmii, 0, sizeof(*zmii));
288
289                 zmii->base =
290                     (struct zmii_regs *)ioremap(zmii_dev->def->paddr,
291                                                 sizeof(*zmii->base));
292                 if (zmii->base == NULL) {
293                         printk(KERN_ERR
294                                "zmii%d: Cannot ioremap bridge registers!\n",
295                                zmii_dev->def->index);
296
297                         kfree(zmii);
298                         return -ENOMEM;
299                 }
300                 ocp_set_drvdata(zmii_dev, zmii);
301         }
302
303         if (phy_mode) {
304                 switch (phy_mode) {
305                 case PHY_MODE_MII:
306                         mode = MII;
307                         break;
308                 case PHY_MODE_RMII:
309                         mode = RMII;
310                         break;
311                 case PHY_MODE_SMII:
312                 default:
313                         mode = SMII;
314                 }
315                 zmii->base->fer &= ~ZMII_FER_MASK(input);
316                 zmii->base->fer |= zmii_enable[input][mode];
317         } else {
318                 switch ((zmii->base->fer & ZMII_FER_MASK(input)) << (4 * input)) {
319                 case ZMII_MII0:
320                         mode = MII;
321                         break;
322                 case ZMII_RMII0:
323                         mode = RMII;
324                         break;
325                 case ZMII_SMII0:
326                         mode = SMII;
327                 }
328         }
329
330         /* Set mode to SMII if nothing valid is detected */
331         if (mode < 0)
332                 mode = SMII;
333
334         printk(KERN_NOTICE "zmii%d: input %d in %s mode\n",
335                zmii_dev->def->index, input, mode_name[mode]);
336
337         zmii->mode[input] = mode;
338         zmii->users++;
339
340         return 0;
341 }
342
343 static void emac_enable_zmii_port(struct ocp_device *ocpdev, int input)
344 {
345         u32 mask;
346         struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev);
347
348         mask = in_be32(&zmii->base->fer);
349         mask &= zmii_enable[input][MDI];        /* turn all non enabled MDI's off */
350         mask |= zmii_enable[input][zmii->mode[input]] | mdi_enable[input];
351         out_be32(&zmii->base->fer, mask);
352 }
353
354 static void
355 emac_zmii_port_speed(struct ocp_device *ocpdev, int input, int speed)
356 {
357         struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev);
358
359         if (speed == 100)
360                 zmii_speed |= zmii_speed100[input];
361         else
362                 zmii_speed &= ~zmii_speed100[input];
363
364         out_be32(&zmii->base->ssr, zmii_speed);
365 }
366
367 static void emac_close_zmii(struct ocp_device *ocpdev)
368 {
369         struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev);
370         BUG_ON(!zmii || zmii->users == 0);
371
372         if (!--zmii->users) {
373                 ocp_set_drvdata(ocpdev, NULL);
374                 iounmap((void *)zmii->base);
375                 kfree(zmii);
376         }
377 }
378
379 int emac_phy_read(struct net_device *dev, int mii_id, int reg)
380 {
381         int count;
382         uint32_t stacr;
383         struct ocp_enet_private *fep = dev->priv;
384         emac_t *emacp = fep->emacp;
385
386         MDIO_DEBUG(("%s: phy_read, id: 0x%x, reg: 0x%x\n", dev->name, mii_id,
387                     reg));
388
389         /* Enable proper ZMII port */
390         if (fep->zmii_dev)
391                 emac_enable_zmii_port(fep->zmii_dev, fep->zmii_input);
392
393         /* Use the EMAC that has the MDIO port */
394         if (fep->mdio_dev) {
395                 dev = fep->mdio_dev;
396                 fep = dev->priv;
397                 emacp = fep->emacp;
398         }
399
400         count = 0;
401         while ((((stacr = in_be32(&emacp->em0stacr)) & EMAC_STACR_OC) == 0)
402                                         && (count++ < MDIO_DELAY))
403                 udelay(1);
404         MDIO_DEBUG((" (count was %d)\n", count));
405
406         if ((stacr & EMAC_STACR_OC) == 0) {
407                 printk(KERN_WARNING "%s: PHY read timeout #1!\n", dev->name);
408                 return -1;
409         }
410
411         /* Clear the speed bits and make a read request to the PHY */
412         stacr = ((EMAC_STACR_READ | (reg & 0x1f)) & ~EMAC_STACR_CLK_100MHZ);
413         stacr |= ((mii_id & 0x1F) << 5);
414
415         out_be32(&emacp->em0stacr, stacr);
416
417         count = 0;
418         while ((((stacr = in_be32(&emacp->em0stacr)) & EMAC_STACR_OC) == 0)
419                                         && (count++ < MDIO_DELAY))
420                 udelay(1);
421         MDIO_DEBUG((" (count was %d)\n", count));
422
423         if ((stacr & EMAC_STACR_OC) == 0) {
424                 printk(KERN_WARNING "%s: PHY read timeout #2!\n", dev->name);
425                 return -1;
426         }
427
428         /* Check for a read error */
429         if (stacr & EMAC_STACR_PHYE) {
430                 MDIO_DEBUG(("EMAC MDIO PHY error !\n"));
431                 return -1;
432         }
433
434         MDIO_DEBUG((" -> 0x%x\n", stacr >> 16));
435
436         return (stacr >> 16);
437 }
438
439 void emac_phy_write(struct net_device *dev, int mii_id, int reg, int data)
440 {
441         int count;
442         uint32_t stacr;
443         struct ocp_enet_private *fep = dev->priv;
444         emac_t *emacp = fep->emacp;
445
446         MDIO_DEBUG(("%s phy_write, id: 0x%x, reg: 0x%x, data: 0x%x\n",
447                     dev->name, mii_id, reg, data));
448
449         /* Enable proper ZMII port */
450         if (fep->zmii_dev)
451                 emac_enable_zmii_port(fep->zmii_dev, fep->zmii_input);
452
453         /* Use the EMAC that has the MDIO port */
454         if (fep->mdio_dev) {
455                 dev = fep->mdio_dev;
456                 fep = dev->priv;
457                 emacp = fep->emacp;
458         }
459
460         count = 0;
461         while ((((stacr = in_be32(&emacp->em0stacr)) & EMAC_STACR_OC) == 0)
462                                         && (count++ < MDIO_DELAY))
463                 udelay(1);
464         MDIO_DEBUG((" (count was %d)\n", count));
465
466         if ((stacr & EMAC_STACR_OC) == 0) {
467                 printk(KERN_WARNING "%s: PHY write timeout #2!\n", dev->name);
468                 return;
469         }
470
471         /* Clear the speed bits and make a read request to the PHY */
472
473         stacr = ((EMAC_STACR_WRITE | (reg & 0x1f)) & ~EMAC_STACR_CLK_100MHZ);
474         stacr |= ((mii_id & 0x1f) << 5) | ((data & 0xffff) << 16);
475
476         out_be32(&emacp->em0stacr, stacr);
477
478         count = 0;
479         while ((((stacr = in_be32(&emacp->em0stacr)) & EMAC_STACR_OC) == 0)
480                                         && (count++ < MDIO_DELAY))
481                 udelay(1);
482         MDIO_DEBUG((" (count was %d)\n", count));
483
484         if ((stacr & EMAC_STACR_OC) == 0)
485                 printk(KERN_WARNING "%s: PHY write timeout #2!\n", dev->name);
486
487         /* Check for a write error */
488         if ((stacr & EMAC_STACR_PHYE) != 0) {
489                 MDIO_DEBUG(("EMAC MDIO PHY error !\n"));
490         }
491 }
492
493 static void emac_txeob_dev(void *param, u32 chanmask)
494 {
495         struct net_device *dev = param;
496         struct ocp_enet_private *fep = dev->priv;
497         unsigned long flags;
498
499         spin_lock_irqsave(&fep->lock, flags);
500
501         PKT_DEBUG(("emac_txeob_dev() entry, tx_cnt: %d\n", fep->tx_cnt));
502
503         while (fep->tx_cnt &&
504                !(fep->tx_desc[fep->ack_slot].ctrl & MAL_TX_CTRL_READY)) {
505
506                 if (fep->tx_desc[fep->ack_slot].ctrl & MAL_TX_CTRL_LAST) {
507                         /* Tell the system the transmit completed. */
508                         dma_unmap_single(&fep->ocpdev->dev,
509                                          fep->tx_desc[fep->ack_slot].data_ptr,
510                                          fep->tx_desc[fep->ack_slot].data_len,
511                                          DMA_TO_DEVICE);
512                         dev_kfree_skb_irq(fep->tx_skb[fep->ack_slot]);
513
514                         if (fep->tx_desc[fep->ack_slot].ctrl &
515                             (EMAC_TX_ST_EC | EMAC_TX_ST_MC | EMAC_TX_ST_SC))
516                                 fep->stats.collisions++;
517                 }
518
519                 fep->tx_skb[fep->ack_slot] = (struct sk_buff *)NULL;
520                 if (++fep->ack_slot == NUM_TX_BUFF)
521                         fep->ack_slot = 0;
522
523                 fep->tx_cnt--;
524         }
525         if (fep->tx_cnt < NUM_TX_BUFF)
526                 netif_wake_queue(dev);
527
528         PKT_DEBUG(("emac_txeob_dev() exit, tx_cnt: %d\n", fep->tx_cnt));
529
530         spin_unlock_irqrestore(&fep->lock, flags);
531 }
532
533 /*
534   Fill/Re-fill the rx chain with valid ctrl/ptrs.
535   This function will fill from rx_slot up to the parm end.
536   So to completely fill the chain pre-set rx_slot to 0 and
537   pass in an end of 0.
538  */
539 static void emac_rx_fill(struct net_device *dev, int end)
540 {
541         int i;
542         struct ocp_enet_private *fep = dev->priv;
543
544         i = fep->rx_slot;
545         do {
546                 /* We don't want the 16 bytes skb_reserve done by dev_alloc_skb,
547                  * it breaks our cache line alignement. However, we still allocate
548                  * +16 so that we end up allocating the exact same size as
549                  * dev_alloc_skb() would do.
550                  * Also, because of the skb_res, the max DMA size we give to EMAC
551                  * is slighly wrong, causing it to potentially DMA 2 more bytes
552                  * from a broken/oversized packet. These 16 bytes will take care
553                  * that we don't walk on somebody else toes with that.
554                  */
555                 fep->rx_skb[i] =
556                     alloc_skb(fep->rx_buffer_size + 16, GFP_ATOMIC);
557
558                 if (fep->rx_skb[i] == NULL) {
559                         /* Keep rx_slot here, the next time clean/fill is called
560                          * we will try again before the MAL wraps back here
561                          * If the MAL tries to use this descriptor with
562                          * the EMPTY bit off it will cause the
563                          * rxde interrupt.  That is where we will
564                          * try again to allocate an sk_buff.
565                          */
566                         break;
567
568                 }
569
570                 if (skb_res)
571                         skb_reserve(fep->rx_skb[i], skb_res);
572
573                 /* We must NOT dma_map_single the cache line right after the
574                  * buffer, so we must crop our sync size to account for the
575                  * reserved space
576                  */
577                 fep->rx_desc[i].data_ptr =
578                     (unsigned char *)dma_map_single(&fep->ocpdev->dev,
579                                                     (void *)fep->rx_skb[i]->
580                                                     data,
581                                                     fep->rx_buffer_size -
582                                                     skb_res, DMA_FROM_DEVICE);
583
584                 /*
585                  * Some 4xx implementations use the previously
586                  * reserved bits in data_len to encode the MS
587                  * 4-bits of a 36-bit physical address (ERPN)
588                  * This must be initialized.
589                  */
590                 fep->rx_desc[i].data_len = 0;
591                 fep->rx_desc[i].ctrl = MAL_RX_CTRL_EMPTY | MAL_RX_CTRL_INTR |
592                     (i == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0);
593
594         } while ((i = (i + 1) % NUM_RX_BUFF) != end);
595
596         fep->rx_slot = i;
597 }
598
599 static void
600 emac_rx_csum(struct net_device *dev, unsigned short ctrl, struct sk_buff *skb)
601 {
602         struct ocp_enet_private *fep = dev->priv;
603
604         /* Exit if interface has no TAH engine */
605         if (!fep->tah_dev) {
606                 skb->ip_summed = CHECKSUM_NONE;
607                 return;
608         }
609
610         /* Check for TCP/UDP/IP csum error */
611         if (ctrl & EMAC_CSUM_VER_ERROR) {
612                 /* Let the stack verify checksum errors */
613                 skb->ip_summed = CHECKSUM_NONE;
614 /*              adapter->hw_csum_err++; */
615         } else {
616                 /* Csum is good */
617                 skb->ip_summed = CHECKSUM_UNNECESSARY;
618 /*              adapter->hw_csum_good++; */
619         }
620 }
621
622 static int emac_rx_clean(struct net_device *dev)
623 {
624         int i, b, bnum = 0, buf[6];
625         int error, frame_length;
626         struct ocp_enet_private *fep = dev->priv;
627         unsigned short ctrl;
628
629         i = fep->rx_slot;
630
631         PKT_DEBUG(("emac_rx_clean() entry, rx_slot: %d\n", fep->rx_slot));
632
633         do {
634                 if (fep->rx_skb[i] == NULL)
635                         continue;       /*we have already handled the packet but haved failed to alloc */
636                 /* 
637                    since rx_desc is in uncached mem we don't keep reading it directly 
638                    we pull out a local copy of ctrl and do the checks on the copy.
639                  */
640                 ctrl = fep->rx_desc[i].ctrl;
641                 if (ctrl & MAL_RX_CTRL_EMPTY)
642                         break;  /*we don't have any more ready packets */
643
644                 if (EMAC_IS_BAD_RX_PACKET(ctrl)) {
645                         fep->stats.rx_errors++;
646                         fep->stats.rx_dropped++;
647
648                         if (ctrl & EMAC_RX_ST_OE)
649                                 fep->stats.rx_fifo_errors++;
650                         if (ctrl & EMAC_RX_ST_AE)
651                                 fep->stats.rx_frame_errors++;
652                         if (ctrl & EMAC_RX_ST_BFCS)
653                                 fep->stats.rx_crc_errors++;
654                         if (ctrl & (EMAC_RX_ST_RP | EMAC_RX_ST_PTL |
655                                     EMAC_RX_ST_ORE | EMAC_RX_ST_IRE))
656                                 fep->stats.rx_length_errors++;
657                 } else {
658                         if ((ctrl & (MAL_RX_CTRL_FIRST | MAL_RX_CTRL_LAST)) ==
659                             (MAL_RX_CTRL_FIRST | MAL_RX_CTRL_LAST)) {
660                                 /* Single descriptor packet */
661                                 emac_rx_csum(dev, ctrl, fep->rx_skb[i]);
662                                 /* Send the skb up the chain. */
663                                 frame_length = fep->rx_desc[i].data_len - 4;
664                                 skb_put(fep->rx_skb[i], frame_length);
665                                 fep->rx_skb[i]->dev = dev;
666                                 fep->rx_skb[i]->protocol =
667                                     eth_type_trans(fep->rx_skb[i], dev);
668                                 error = netif_rx(fep->rx_skb[i]);
669
670                                 if ((error == NET_RX_DROP) ||
671                                     (error == NET_RX_BAD)) {
672                                         fep->stats.rx_dropped++;
673                                 } else {
674                                         fep->stats.rx_packets++;
675                                         fep->stats.rx_bytes += frame_length;
676                                 }
677                                 fep->rx_skb[i] = NULL;
678                         } else {
679                                 /* Multiple descriptor packet */
680                                 if (ctrl & MAL_RX_CTRL_FIRST) {
681                                         if (fep->rx_desc[(i + 1) % NUM_RX_BUFF].
682                                             ctrl & MAL_RX_CTRL_EMPTY)
683                                                 break;
684                                         bnum = 0;
685                                         buf[bnum] = i;
686                                         ++bnum;
687                                         continue;
688                                 }
689                                 if (((ctrl & MAL_RX_CTRL_FIRST) !=
690                                      MAL_RX_CTRL_FIRST) &&
691                                     ((ctrl & MAL_RX_CTRL_LAST) !=
692                                      MAL_RX_CTRL_LAST)) {
693                                         if (fep->rx_desc[(i + 1) %
694                                                          NUM_RX_BUFF].ctrl &
695                                             MAL_RX_CTRL_EMPTY) {
696                                                 i = buf[0];
697                                                 break;
698                                         }
699                                         buf[bnum] = i;
700                                         ++bnum;
701                                         continue;
702                                 }
703                                 if (ctrl & MAL_RX_CTRL_LAST) {
704                                         buf[bnum] = i;
705                                         ++bnum;
706                                         skb_put(fep->rx_skb[buf[0]],
707                                                 fep->rx_desc[buf[0]].data_len);
708                                         for (b = 1; b < bnum; b++) {
709                                                 /*
710                                                  * MAL is braindead, we need
711                                                  * to copy the remainder
712                                                  * of the packet from the
713                                                  * latter descriptor buffers
714                                                  * to the first skb. Then
715                                                  * dispose of the source
716                                                  * skbs.
717                                                  *
718                                                  * Once the stack is fixed
719                                                  * to handle frags on most
720                                                  * protocols we can generate
721                                                  * a fragmented skb with
722                                                  * no copies.
723                                                  */
724                                                 memcpy(fep->rx_skb[buf[0]]->
725                                                        data +
726                                                        fep->rx_skb[buf[0]]->len,
727                                                        fep->rx_skb[buf[b]]->
728                                                        data,
729                                                        fep->rx_desc[buf[b]].
730                                                        data_len);
731                                                 skb_put(fep->rx_skb[buf[0]],
732                                                         fep->rx_desc[buf[b]].
733                                                         data_len);
734                                                 dma_unmap_single(&fep->ocpdev->
735                                                                  dev,
736                                                                  fep->
737                                                                  rx_desc[buf
738                                                                          [b]].
739                                                                  data_ptr,
740                                                                  fep->
741                                                                  rx_desc[buf
742                                                                          [b]].
743                                                                  data_len,
744                                                                  DMA_FROM_DEVICE);
745                                                 dev_kfree_skb(fep->
746                                                               rx_skb[buf[b]]);
747                                         }
748                                         emac_rx_csum(dev, ctrl,
749                                                      fep->rx_skb[buf[0]]);
750
751                                         fep->rx_skb[buf[0]]->dev = dev;
752                                         fep->rx_skb[buf[0]]->protocol =
753                                             eth_type_trans(fep->rx_skb[buf[0]],
754                                                            dev);
755                                         error = netif_rx(fep->rx_skb[buf[0]]);
756
757                                         if ((error == NET_RX_DROP)
758                                             || (error == NET_RX_BAD)) {
759                                                 fep->stats.rx_dropped++;
760                                         } else {
761                                                 fep->stats.rx_packets++;
762                                                 fep->stats.rx_bytes +=
763                                                     fep->rx_skb[buf[0]]->len;
764                                         }
765                                         for (b = 0; b < bnum; b++)
766                                                 fep->rx_skb[buf[b]] = NULL;
767                                 }
768                         }
769                 }
770         } while ((i = (i + 1) % NUM_RX_BUFF) != fep->rx_slot);
771
772         PKT_DEBUG(("emac_rx_clean() exit, rx_slot: %d\n", fep->rx_slot));
773
774         return i;
775 }
776
777 static void emac_rxeob_dev(void *param, u32 chanmask)
778 {
779         struct net_device *dev = param;
780         struct ocp_enet_private *fep = dev->priv;
781         unsigned long flags;
782         int n;
783
784         spin_lock_irqsave(&fep->lock, flags);
785         if ((n = emac_rx_clean(dev)) != fep->rx_slot)
786                 emac_rx_fill(dev, n);
787         spin_unlock_irqrestore(&fep->lock, flags);
788 }
789
790 /*
791  * This interrupt should never occurr, we don't program
792  * the MAL for contiunous mode.
793  */
794 static void emac_txde_dev(void *param, u32 chanmask)
795 {
796         struct net_device *dev = param;
797         struct ocp_enet_private *fep = dev->priv;
798
799         printk(KERN_WARNING "%s: transmit descriptor error\n", dev->name);
800
801         emac_mac_dump(dev);
802         emac_mal_dump(dev);
803
804         /* Reenable the transmit channel */
805         mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
806 }
807
808 /*
809  * This interrupt should be very rare at best.  This occurs when
810  * the hardware has a problem with the receive descriptors.  The manual
811  * states that it occurs when the hardware cannot the receive descriptor
812  * empty bit is not set.  The recovery mechanism will be to
813  * traverse through the descriptors, handle any that are marked to be
814  * handled and reinitialize each along the way.  At that point the driver
815  * will be restarted.
816  */
817 static void emac_rxde_dev(void *param, u32 chanmask)
818 {
819         struct net_device *dev = param;
820         struct ocp_enet_private *fep = dev->priv;
821         unsigned long flags;
822
823         if (net_ratelimit()) {
824                 printk(KERN_WARNING "%s: receive descriptor error\n",
825                        fep->ndev->name);
826
827                 emac_mac_dump(dev);
828                 emac_mal_dump(dev);
829                 emac_desc_dump(dev);
830         }
831
832         /* Disable RX channel */
833         spin_lock_irqsave(&fep->lock, flags);
834         mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
835
836         /* For now, charge the error against all emacs */
837         fep->stats.rx_errors++;
838
839         /* so do we have any good packets still? */
840         emac_rx_clean(dev);
841
842         /* When the interface is restarted it resets processing to the
843          *  first descriptor in the table.
844          */
845
846         fep->rx_slot = 0;
847         emac_rx_fill(dev, 0);
848
849         set_mal_dcrn(fep->mal, DCRN_MALRXEOBISR, fep->commac.rx_chan_mask);
850         set_mal_dcrn(fep->mal, DCRN_MALRXDEIR, fep->commac.rx_chan_mask);
851
852         /* Reenable the receive channels */
853         mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
854         spin_unlock_irqrestore(&fep->lock, flags);
855 }
856
857 static irqreturn_t
858 emac_mac_irq(int irq, void *dev_instance, struct pt_regs *regs)
859 {
860         struct net_device *dev = dev_instance;
861         struct ocp_enet_private *fep = dev->priv;
862         emac_t *emacp = fep->emacp;
863         unsigned long tmp_em0isr;
864
865         /* EMAC interrupt */
866         tmp_em0isr = in_be32(&emacp->em0isr);
867         if (tmp_em0isr & (EMAC_ISR_TE0 | EMAC_ISR_TE1)) {
868                 /* This error is a hard transmit error - could retransmit */
869                 fep->stats.tx_errors++;
870
871                 /* Reenable the transmit channel */
872                 mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
873
874         } else {
875                 fep->stats.rx_errors++;
876         }
877
878         if (tmp_em0isr & EMAC_ISR_RP)
879                 fep->stats.rx_length_errors++;
880         if (tmp_em0isr & EMAC_ISR_ALE)
881                 fep->stats.rx_frame_errors++;
882         if (tmp_em0isr & EMAC_ISR_BFCS)
883                 fep->stats.rx_crc_errors++;
884         if (tmp_em0isr & EMAC_ISR_PTLE)
885                 fep->stats.rx_length_errors++;
886         if (tmp_em0isr & EMAC_ISR_ORE)
887                 fep->stats.rx_length_errors++;
888         if (tmp_em0isr & EMAC_ISR_TE0)
889                 fep->stats.tx_aborted_errors++;
890
891         emac_err_dump(dev, tmp_em0isr);
892
893         out_be32(&emacp->em0isr, tmp_em0isr);
894
895         return IRQ_HANDLED;
896 }
897
898 static int emac_start_xmit(struct sk_buff *skb, struct net_device *dev)
899 {
900         unsigned short ctrl;
901         unsigned long flags;
902         struct ocp_enet_private *fep = dev->priv;
903         emac_t *emacp = fep->emacp;
904         int len = skb->len;
905         unsigned int offset = 0, size, f, tx_slot_first;
906         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
907
908         spin_lock_irqsave(&fep->lock, flags);
909
910         len -= skb->data_len;
911
912         if ((fep->tx_cnt + nr_frags + len / DESC_BUF_SIZE + 1) > NUM_TX_BUFF) {
913                 PKT_DEBUG(("emac_start_xmit() stopping queue\n"));
914                 netif_stop_queue(dev);
915                 spin_unlock_irqrestore(&fep->lock, flags);
916                 return -EBUSY;
917         }
918
919         tx_slot_first = fep->tx_slot;
920
921         while (len) {
922                 size = min(len, DESC_BUF_SIZE);
923
924                 fep->tx_desc[fep->tx_slot].data_len = (short)size;
925                 fep->tx_desc[fep->tx_slot].data_ptr =
926                     (unsigned char *)dma_map_single(&fep->ocpdev->dev,
927                                                     (void *)((unsigned int)skb->
928                                                              data + offset),
929                                                     size, DMA_TO_DEVICE);
930
931                 ctrl = EMAC_TX_CTRL_DFLT;
932                 if (fep->tx_slot != tx_slot_first)
933                         ctrl |= MAL_TX_CTRL_READY;
934                 if ((NUM_TX_BUFF - 1) == fep->tx_slot)
935                         ctrl |= MAL_TX_CTRL_WRAP;
936                 if (!nr_frags && (len == size)) {
937                         ctrl |= MAL_TX_CTRL_LAST;
938                         fep->tx_skb[fep->tx_slot] = skb;
939                 }
940                 if (skb->ip_summed == CHECKSUM_HW)
941                         ctrl |= EMAC_TX_CTRL_TAH_CSUM;
942
943                 fep->tx_desc[fep->tx_slot].ctrl = ctrl;
944
945                 len -= size;
946                 offset += size;
947
948                 /* Bump tx count */
949                 if (++fep->tx_cnt == NUM_TX_BUFF)
950                         netif_stop_queue(dev);
951
952                 /* Next descriptor */
953                 if (++fep->tx_slot == NUM_TX_BUFF)
954                         fep->tx_slot = 0;
955         }
956
957         for (f = 0; f < nr_frags; f++) {
958                 struct skb_frag_struct *frag;
959
960                 frag = &skb_shinfo(skb)->frags[f];
961                 len = frag->size;
962                 offset = 0;
963
964                 while (len) {
965                         size = min(len, DESC_BUF_SIZE);
966
967                         dma_map_page(&fep->ocpdev->dev,
968                                      frag->page,
969                                      frag->page_offset + offset,
970                                      size, DMA_TO_DEVICE);
971
972                         ctrl = EMAC_TX_CTRL_DFLT | MAL_TX_CTRL_READY;
973                         if ((NUM_TX_BUFF - 1) == fep->tx_slot)
974                                 ctrl |= MAL_TX_CTRL_WRAP;
975                         if ((f == (nr_frags - 1)) && (len == size)) {
976                                 ctrl |= MAL_TX_CTRL_LAST;
977                                 fep->tx_skb[fep->tx_slot] = skb;
978                         }
979
980                         if (skb->ip_summed == CHECKSUM_HW)
981                                 ctrl |= EMAC_TX_CTRL_TAH_CSUM;
982
983                         fep->tx_desc[fep->tx_slot].data_len = (short)size;
984                         fep->tx_desc[fep->tx_slot].data_ptr =
985                             (char *)((page_to_pfn(frag->page) << PAGE_SHIFT) +
986                                      frag->page_offset + offset);
987                         fep->tx_desc[fep->tx_slot].ctrl = ctrl;
988
989                         len -= size;
990                         offset += size;
991
992                         /* Bump tx count */
993                         if (++fep->tx_cnt == NUM_TX_BUFF)
994                                 netif_stop_queue(dev);
995
996                         /* Next descriptor */
997                         if (++fep->tx_slot == NUM_TX_BUFF)
998                                 fep->tx_slot = 0;
999                 }
1000         }
1001
1002         /*
1003          * Deferred set READY on first descriptor of packet to
1004          * avoid TX MAL race.
1005          */
1006         fep->tx_desc[tx_slot_first].ctrl |= MAL_TX_CTRL_READY;
1007
1008         /* Send the packet out. */
1009         out_be32(&emacp->em0tmr0, EMAC_TMR0_XMIT);
1010
1011         fep->stats.tx_packets++;
1012         fep->stats.tx_bytes += skb->len;
1013
1014         PKT_DEBUG(("emac_start_xmit() exitn"));
1015
1016         spin_unlock_irqrestore(&fep->lock, flags);
1017
1018         return 0;
1019 }
1020
1021 static int emac_adjust_to_link(struct ocp_enet_private *fep)
1022 {
1023         emac_t *emacp = fep->emacp;
1024         unsigned long mode_reg;
1025         int full_duplex, speed;
1026
1027         full_duplex = 0;
1028         speed = SPEED_10;
1029
1030         /* set mode register 1 defaults */
1031         mode_reg = EMAC_M1_DEFAULT;
1032
1033         /* Read link mode on PHY */
1034         if (fep->phy_mii.def->ops->read_link(&fep->phy_mii) == 0) {
1035                 /* If an error occurred, we don't deal with it yet */
1036                 full_duplex = (fep->phy_mii.duplex == DUPLEX_FULL);
1037                 speed = fep->phy_mii.speed;
1038         }
1039
1040
1041         /* set speed (default is 10Mb) */
1042         switch (speed) {
1043         case SPEED_1000:
1044                 mode_reg |= EMAC_M1_JUMBO_ENABLE | EMAC_M1_RFS_16K;
1045                 if (fep->rgmii_dev) {
1046                         struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(fep->rgmii_dev);
1047
1048                         if ((rgmii->mode[fep->rgmii_input] == RTBI)
1049                             || (rgmii->mode[fep->rgmii_input] == TBI))
1050                                 mode_reg |= EMAC_M1_MF_1000GPCS;
1051                         else
1052                                 mode_reg |= EMAC_M1_MF_1000MBPS;
1053
1054                         emac_rgmii_port_speed(fep->rgmii_dev, fep->rgmii_input,
1055                                               1000);
1056                 }
1057                 break;
1058         case SPEED_100:
1059                 mode_reg |= EMAC_M1_MF_100MBPS | EMAC_M1_RFS_4K;
1060                 if (fep->rgmii_dev)
1061                         emac_rgmii_port_speed(fep->rgmii_dev, fep->rgmii_input,
1062                                               100);
1063                 if (fep->zmii_dev)
1064                         emac_zmii_port_speed(fep->zmii_dev, fep->zmii_input,
1065                                              100);
1066                 break;
1067         case SPEED_10:
1068         default:
1069                 mode_reg = (mode_reg & ~EMAC_M1_MF_100MBPS) | EMAC_M1_RFS_4K;
1070                 if (fep->rgmii_dev)
1071                         emac_rgmii_port_speed(fep->rgmii_dev, fep->rgmii_input,
1072                                               10);
1073                 if (fep->zmii_dev)
1074                         emac_zmii_port_speed(fep->zmii_dev, fep->zmii_input,
1075                                              10);
1076         }
1077
1078         if (full_duplex)
1079                 mode_reg |= EMAC_M1_FDE | EMAC_M1_EIFC | EMAC_M1_IST;
1080         else
1081                 mode_reg &= ~(EMAC_M1_FDE | EMAC_M1_EIFC | EMAC_M1_ILE);
1082
1083         LINK_DEBUG(("%s: adjust to link, speed: %d, duplex: %d, opened: %d\n",
1084                     fep->ndev->name, speed, full_duplex, fep->opened));
1085
1086         printk(KERN_INFO "%s: Speed: %d, %s duplex.\n",
1087                fep->ndev->name, speed, full_duplex ? "Full" : "Half");
1088         if (fep->opened)
1089                 out_be32(&emacp->em0mr1, mode_reg);
1090
1091         return 0;
1092 }
1093
1094 static int emac_set_mac_address(struct net_device *ndev, void *p)
1095 {
1096         struct ocp_enet_private *fep = ndev->priv;
1097         emac_t *emacp = fep->emacp;
1098         struct sockaddr *addr = p;
1099
1100         if (!is_valid_ether_addr(addr->sa_data))
1101                 return -EADDRNOTAVAIL;
1102
1103         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1104
1105         /* set the high address */
1106         out_be32(&emacp->em0iahr,
1107                  (fep->ndev->dev_addr[0] << 8) | fep->ndev->dev_addr[1]);
1108
1109         /* set the low address */
1110         out_be32(&emacp->em0ialr,
1111                  (fep->ndev->dev_addr[2] << 24) | (fep->ndev->dev_addr[3] << 16)
1112                  | (fep->ndev->dev_addr[4] << 8) | fep->ndev->dev_addr[5]);
1113
1114         return 0;
1115 }
1116
1117 static int emac_change_mtu(struct net_device *dev, int new_mtu)
1118 {
1119         struct ocp_enet_private *fep = dev->priv;
1120         int old_mtu = dev->mtu;
1121         emac_t *emacp = fep->emacp;
1122         u32 em0mr0;
1123         int i, full;
1124         unsigned long flags;
1125
1126         if ((new_mtu < EMAC_MIN_MTU) || (new_mtu > EMAC_MAX_MTU)) {
1127                 printk(KERN_ERR
1128                        "emac: Invalid MTU setting, MTU must be between %d and %d\n",
1129                        EMAC_MIN_MTU, EMAC_MAX_MTU);
1130                 return -EINVAL;
1131         }
1132
1133         if (old_mtu != new_mtu && netif_running(dev)) {
1134                 /* Stop rx engine */
1135                 em0mr0 = in_be32(&emacp->em0mr0);
1136                 out_be32(&emacp->em0mr0, em0mr0 & ~EMAC_M0_RXE);
1137
1138                 /* Wait for descriptors to be empty */
1139                 do {
1140                         full = 0;
1141                         for (i = 0; i < NUM_RX_BUFF; i++)
1142                                 if (!(fep->rx_desc[i].ctrl & MAL_RX_CTRL_EMPTY)) {
1143                                         printk(KERN_NOTICE
1144                                                "emac: RX ring is still full\n");
1145                                         full = 1;
1146                                 }
1147                 } while (full);
1148
1149                 spin_lock_irqsave(&fep->lock, flags);
1150
1151                 mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
1152
1153                 /* Destroy all old rx skbs */
1154                 for (i = 0; i < NUM_RX_BUFF; i++) {
1155                         dma_unmap_single(&fep->ocpdev->dev,
1156                                          fep->rx_desc[i].data_ptr,
1157                                          fep->rx_desc[i].data_len,
1158                                          DMA_FROM_DEVICE);
1159                         dev_kfree_skb(fep->rx_skb[i]);
1160                         fep->rx_skb[i] = NULL;
1161                 }
1162
1163                 /* Set new rx_buffer_size and advertise new mtu */
1164                 fep->rx_buffer_size =
1165                     new_mtu + ENET_HEADER_SIZE + ENET_FCS_SIZE;
1166                 dev->mtu = new_mtu;
1167
1168                 /* Re-init rx skbs */
1169                 fep->rx_slot = 0;
1170                 emac_rx_fill(dev, 0);
1171
1172                 /* Restart the rx engine */
1173                 mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
1174                 out_be32(&emacp->em0mr0, em0mr0 | EMAC_M0_RXE);
1175
1176                 spin_unlock_irqrestore(&fep->lock, flags);
1177         }
1178
1179         return 0;
1180 }
1181
1182 static void __emac_set_multicast_list(struct net_device *dev)
1183 {
1184         struct ocp_enet_private *fep = dev->priv;
1185         emac_t *emacp = fep->emacp;
1186         u32 rmr = in_be32(&emacp->em0rmr);
1187
1188         /* First clear all special bits, they can be set later */
1189         rmr &= ~(EMAC_RMR_PME | EMAC_RMR_PMME | EMAC_RMR_MAE);
1190
1191         if (dev->flags & IFF_PROMISC) {
1192                 rmr |= EMAC_RMR_PME;
1193         } else if (dev->flags & IFF_ALLMULTI || 32 < dev->mc_count) {
1194                 /*
1195                  * Must be setting up to use multicast
1196                  * Now check for promiscuous multicast
1197                  */
1198                 rmr |= EMAC_RMR_PMME;
1199         } else if (dev->flags & IFF_MULTICAST && 0 < dev->mc_count) {
1200                 unsigned short em0gaht[4] = { 0, 0, 0, 0 };
1201                 struct dev_mc_list *dmi;
1202
1203                 /* Need to hash on the multicast address. */
1204                 for (dmi = dev->mc_list; dmi; dmi = dmi->next) {
1205                         unsigned long mc_crc;
1206                         unsigned int bit_number;
1207
1208                         mc_crc = ether_crc(6, (char *)dmi->dmi_addr);
1209                         bit_number = 63 - (mc_crc >> 26);       /* MSB: 0 LSB: 63 */
1210                         em0gaht[bit_number >> 4] |=
1211                             0x8000 >> (bit_number & 0x0f);
1212                 }
1213                 emacp->em0gaht1 = em0gaht[0];
1214                 emacp->em0gaht2 = em0gaht[1];
1215                 emacp->em0gaht3 = em0gaht[2];
1216                 emacp->em0gaht4 = em0gaht[3];
1217
1218                 /* Turn on multicast addressing */
1219                 rmr |= EMAC_RMR_MAE;
1220         }
1221         out_be32(&emacp->em0rmr, rmr);
1222 }
1223
1224 static int emac_init_tah(struct ocp_enet_private *fep)
1225 {
1226         tah_t *tahp;
1227
1228         /* Initialize TAH and enable checksum verification */
1229         tahp = (tah_t *) ioremap(fep->tah_dev->def->paddr, sizeof(*tahp));
1230
1231         if (tahp == NULL) {
1232                 printk(KERN_ERR "tah%d: Cannot ioremap TAH registers!\n",
1233                        fep->tah_dev->def->index);
1234
1235                 return -ENOMEM;
1236         }
1237
1238         out_be32(&tahp->tah_mr, TAH_MR_SR);
1239
1240         /* wait for reset to complete */
1241         while (in_be32(&tahp->tah_mr) & TAH_MR_SR) ;
1242
1243         /* 10KB TAH TX FIFO accomodates the max MTU of 9000 */
1244         out_be32(&tahp->tah_mr,
1245                  TAH_MR_CVR | TAH_MR_ST_768 | TAH_MR_TFS_10KB | TAH_MR_DTFP |
1246                  TAH_MR_DIG);
1247
1248         iounmap(&tahp);
1249
1250         return 0;
1251 }
1252
1253 static void emac_init_rings(struct net_device *dev)
1254 {
1255         struct ocp_enet_private *ep = dev->priv;
1256         int loop;
1257
1258         ep->tx_desc = (struct mal_descriptor *)((char *)ep->mal->tx_virt_addr +
1259                                                 (ep->mal_tx_chan *
1260                                                  MAL_DT_ALIGN));
1261         ep->rx_desc =
1262             (struct mal_descriptor *)((char *)ep->mal->rx_virt_addr +
1263                                       (ep->mal_rx_chan * MAL_DT_ALIGN));
1264
1265         /* Fill in the transmit descriptor ring. */
1266         for (loop = 0; loop < NUM_TX_BUFF; loop++) {
1267                 if (ep->tx_skb[loop]) {
1268                         dma_unmap_single(&ep->ocpdev->dev,
1269                                          ep->tx_desc[loop].data_ptr,
1270                                          ep->tx_desc[loop].data_len,
1271                                          DMA_TO_DEVICE);
1272                         dev_kfree_skb_irq(ep->tx_skb[loop]);
1273                 }
1274                 ep->tx_skb[loop] = NULL;
1275                 ep->tx_desc[loop].ctrl = 0;
1276                 ep->tx_desc[loop].data_len = 0;
1277                 ep->tx_desc[loop].data_ptr = NULL;
1278         }
1279         ep->tx_desc[loop - 1].ctrl |= MAL_TX_CTRL_WRAP;
1280
1281         /* Format the receive descriptor ring. */
1282         ep->rx_slot = 0;
1283         /* Default is MTU=1500 + Ethernet overhead */
1284         ep->rx_buffer_size = dev->mtu + ENET_HEADER_SIZE + ENET_FCS_SIZE;
1285         emac_rx_fill(dev, 0);
1286         if (ep->rx_slot != 0) {
1287                 printk(KERN_ERR
1288                        "%s: Not enough mem for RxChain durning Open?\n",
1289                        dev->name);
1290                 /*We couldn't fill the ring at startup?
1291                  *We could clean up and fail to open but right now we will try to
1292                  *carry on. It may be a sign of a bad NUM_RX_BUFF value
1293                  */
1294         }
1295
1296         ep->tx_cnt = 0;
1297         ep->tx_slot = 0;
1298         ep->ack_slot = 0;
1299 }
1300
1301 static void emac_reset_configure(struct ocp_enet_private *fep)
1302 {
1303         emac_t *emacp = fep->emacp;
1304         int i;
1305
1306         mal_disable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
1307         mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
1308
1309         /*
1310          * Check for a link, some PHYs don't provide a clock if
1311          * no link is present.  Some EMACs will not come out of
1312          * soft reset without a PHY clock present.
1313          */
1314         if (fep->phy_mii.def->ops->poll_link(&fep->phy_mii)) {
1315                 /* Reset the EMAC */
1316                 out_be32(&emacp->em0mr0, EMAC_M0_SRST);
1317                 udelay(20);
1318                 for (i = 0; i < 100; i++) {
1319                         if ((in_be32(&emacp->em0mr0) & EMAC_M0_SRST) == 0)
1320                                 break;
1321                         udelay(10);
1322                 }
1323
1324                 if (i >= 100) {
1325                         printk(KERN_ERR "%s: Cannot reset EMAC\n",
1326                                fep->ndev->name);
1327                         return;
1328                 }
1329         }
1330
1331         /* Switch IRQs off for now */
1332         out_be32(&emacp->em0iser, 0);
1333
1334         /* Configure MAL rx channel */
1335         mal_set_rcbs(fep->mal, fep->mal_rx_chan, DESC_BUF_SIZE_REG);
1336
1337         /* set the high address */
1338         out_be32(&emacp->em0iahr,
1339                  (fep->ndev->dev_addr[0] << 8) | fep->ndev->dev_addr[1]);
1340
1341         /* set the low address */
1342         out_be32(&emacp->em0ialr,
1343                  (fep->ndev->dev_addr[2] << 24) | (fep->ndev->dev_addr[3] << 16)
1344                  | (fep->ndev->dev_addr[4] << 8) | fep->ndev->dev_addr[5]);
1345
1346         /* Adjust to link */
1347         if (netif_carrier_ok(fep->ndev))
1348                 emac_adjust_to_link(fep);
1349
1350         /* enable broadcast/individual address and RX FIFO defaults */
1351         out_be32(&emacp->em0rmr, EMAC_RMR_DEFAULT);
1352
1353         /* set transmit request threshold register */
1354         out_be32(&emacp->em0trtr, EMAC_TRTR_DEFAULT);
1355
1356         /* Reconfigure multicast */
1357         __emac_set_multicast_list(fep->ndev);
1358
1359         /* Set receiver/transmitter defaults */
1360         out_be32(&emacp->em0rwmr, EMAC_RWMR_DEFAULT);
1361         out_be32(&emacp->em0tmr0, EMAC_TMR0_DEFAULT);
1362         out_be32(&emacp->em0tmr1, EMAC_TMR1_DEFAULT);
1363
1364         /* set frame gap */
1365         out_be32(&emacp->em0ipgvr, CONFIG_IBM_EMAC_FGAP);
1366         
1367         /* set VLAN Tag Protocol Identifier */
1368         out_be32(&emacp->em0vtpid, 0x8100);
1369
1370         /* Init ring buffers */
1371         emac_init_rings(fep->ndev);
1372 }
1373
1374 static void emac_kick(struct ocp_enet_private *fep)
1375 {
1376         emac_t *emacp = fep->emacp;
1377         unsigned long emac_ier;
1378
1379         emac_ier = EMAC_ISR_PP | EMAC_ISR_BP | EMAC_ISR_RP |
1380             EMAC_ISR_SE | EMAC_ISR_PTLE | EMAC_ISR_ALE |
1381             EMAC_ISR_BFCS | EMAC_ISR_ORE | EMAC_ISR_IRE;
1382
1383         out_be32(&emacp->em0iser, emac_ier);
1384
1385         /* enable all MAL transmit and receive channels */
1386         mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
1387         mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
1388
1389         /* set transmit and receive enable */
1390         out_be32(&emacp->em0mr0, EMAC_M0_TXE | EMAC_M0_RXE);
1391 }
1392
1393 static void
1394 emac_start_link(struct ocp_enet_private *fep, struct ethtool_cmd *ep)
1395 {
1396         u32 advertise;
1397         int autoneg;
1398         int forced_speed;
1399         int forced_duplex;
1400
1401         /* Default advertise */
1402         advertise = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
1403             ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |
1404             ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full;
1405         autoneg = fep->want_autoneg;
1406         forced_speed = fep->phy_mii.speed;
1407         forced_duplex = fep->phy_mii.duplex;
1408
1409         /* Setup link parameters */
1410         if (ep) {
1411                 if (ep->autoneg == AUTONEG_ENABLE) {
1412                         advertise = ep->advertising;
1413                         autoneg = 1;
1414                 } else {
1415                         autoneg = 0;
1416                         forced_speed = ep->speed;
1417                         forced_duplex = ep->duplex;
1418                 }
1419         }
1420
1421         /* Configure PHY & start aneg */
1422         fep->want_autoneg = autoneg;
1423         if (autoneg) {
1424                 LINK_DEBUG(("%s: start link aneg, advertise: 0x%x\n",
1425                             fep->ndev->name, advertise));
1426                 fep->phy_mii.def->ops->setup_aneg(&fep->phy_mii, advertise);
1427         } else {
1428                 LINK_DEBUG(("%s: start link forced, speed: %d, duplex: %d\n",
1429                             fep->ndev->name, forced_speed, forced_duplex));
1430                 fep->phy_mii.def->ops->setup_forced(&fep->phy_mii, forced_speed,
1431                                                     forced_duplex);
1432         }
1433         fep->timer_ticks = 0;
1434         mod_timer(&fep->link_timer, jiffies + HZ);
1435 }
1436
1437 static void emac_link_timer(unsigned long data)
1438 {
1439         struct ocp_enet_private *fep = (struct ocp_enet_private *)data;
1440         int link;
1441
1442         if (fep->going_away)
1443                 return;
1444
1445         spin_lock_irq(&fep->lock);
1446
1447         link = fep->phy_mii.def->ops->poll_link(&fep->phy_mii);
1448         LINK_DEBUG(("%s: poll_link: %d\n", fep->ndev->name, link));
1449
1450         if (link == netif_carrier_ok(fep->ndev)) {
1451                 if (!link && fep->want_autoneg && (++fep->timer_ticks) > 10)
1452                         emac_start_link(fep, NULL);
1453                 goto out;
1454         }
1455         printk(KERN_INFO "%s: Link is %s\n", fep->ndev->name,
1456                link ? "Up" : "Down");
1457         if (link) {
1458                 netif_carrier_on(fep->ndev);
1459                 /* Chip needs a full reset on config change. That sucks, so I
1460                  * should ultimately move that to some tasklet to limit
1461                  * latency peaks caused by this code
1462                  */
1463                 emac_reset_configure(fep);
1464                 if (fep->opened)
1465                         emac_kick(fep);
1466         } else {
1467                 fep->timer_ticks = 0;
1468                 netif_carrier_off(fep->ndev);
1469         }
1470       out:
1471         mod_timer(&fep->link_timer, jiffies + HZ);
1472         spin_unlock_irq(&fep->lock);
1473 }
1474
1475 static void emac_set_multicast_list(struct net_device *dev)
1476 {
1477         struct ocp_enet_private *fep = dev->priv;
1478
1479         spin_lock_irq(&fep->lock);
1480         __emac_set_multicast_list(dev);
1481         spin_unlock_irq(&fep->lock);
1482 }
1483
1484 static int emac_get_settings(struct net_device *ndev, struct ethtool_cmd *cmd)
1485 {
1486         struct ocp_enet_private *fep = ndev->priv;
1487
1488         cmd->supported = fep->phy_mii.def->features;
1489         cmd->port = PORT_MII;
1490         cmd->transceiver = XCVR_EXTERNAL;
1491         cmd->phy_address = fep->mii_phy_addr;
1492         spin_lock_irq(&fep->lock);
1493         cmd->autoneg = fep->want_autoneg;
1494         cmd->speed = fep->phy_mii.speed;
1495         cmd->duplex = fep->phy_mii.duplex;
1496         spin_unlock_irq(&fep->lock);
1497         return 0;
1498 }
1499
1500 static int emac_set_settings(struct net_device *ndev, struct ethtool_cmd *cmd)
1501 {
1502         struct ocp_enet_private *fep = ndev->priv;
1503         unsigned long features = fep->phy_mii.def->features;
1504
1505         if (!capable(CAP_NET_ADMIN))
1506                 return -EPERM;
1507
1508         if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
1509                 return -EINVAL;
1510         if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
1511                 return -EINVAL;
1512         if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
1513                 return -EINVAL;
1514         if (cmd->autoneg == AUTONEG_DISABLE)
1515                 switch (cmd->speed) {
1516                 case SPEED_10:
1517                         if (cmd->duplex == DUPLEX_HALF &&
1518                             (features & SUPPORTED_10baseT_Half) == 0)
1519                                 return -EINVAL;
1520                         if (cmd->duplex == DUPLEX_FULL &&
1521                             (features & SUPPORTED_10baseT_Full) == 0)
1522                                 return -EINVAL;
1523                         break;
1524                 case SPEED_100:
1525                         if (cmd->duplex == DUPLEX_HALF &&
1526                             (features & SUPPORTED_100baseT_Half) == 0)
1527                                 return -EINVAL;
1528                         if (cmd->duplex == DUPLEX_FULL &&
1529                             (features & SUPPORTED_100baseT_Full) == 0)
1530                                 return -EINVAL;
1531                         break;
1532                 case SPEED_1000:
1533                         if (cmd->duplex == DUPLEX_HALF &&
1534                             (features & SUPPORTED_1000baseT_Half) == 0)
1535                                 return -EINVAL;
1536                         if (cmd->duplex == DUPLEX_FULL &&
1537                             (features & SUPPORTED_1000baseT_Full) == 0)
1538                                 return -EINVAL;
1539                         break;
1540                 default:
1541                         return -EINVAL;
1542         } else if ((features & SUPPORTED_Autoneg) == 0)
1543                 return -EINVAL;
1544         spin_lock_irq(&fep->lock);
1545         emac_start_link(fep, cmd);
1546         spin_unlock_irq(&fep->lock);
1547         return 0;
1548 }
1549
1550 static void
1551 emac_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1552 {
1553         struct ocp_enet_private *fep = ndev->priv;
1554
1555         strcpy(info->driver, DRV_NAME);
1556         strcpy(info->version, DRV_VERSION);
1557         info->fw_version[0] = '\0';
1558         sprintf(info->bus_info, "IBM EMAC %d", fep->ocpdev->def->index);
1559         info->regdump_len = 0;
1560 }
1561
1562 static int emac_nway_reset(struct net_device *ndev)
1563 {
1564         struct ocp_enet_private *fep = ndev->priv;
1565
1566         if (!fep->want_autoneg)
1567                 return -EINVAL;
1568         spin_lock_irq(&fep->lock);
1569         emac_start_link(fep, NULL);
1570         spin_unlock_irq(&fep->lock);
1571         return 0;
1572 }
1573
1574 static u32 emac_get_link(struct net_device *ndev)
1575 {
1576         return netif_carrier_ok(ndev);
1577 }
1578
1579 static struct ethtool_ops emac_ethtool_ops = {
1580         .get_settings = emac_get_settings,
1581         .set_settings = emac_set_settings,
1582         .get_drvinfo = emac_get_drvinfo,
1583         .nway_reset = emac_nway_reset,
1584         .get_link = emac_get_link
1585 };
1586
1587 static int emac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1588 {
1589         struct ocp_enet_private *fep = dev->priv;
1590         uint *data = (uint *) & rq->ifr_ifru;
1591
1592         switch (cmd) {
1593         case SIOCGMIIPHY:
1594                 data[0] = fep->mii_phy_addr;
1595                 /* Fall through */
1596         case SIOCGMIIREG:
1597                 data[3] = emac_phy_read(dev, fep->mii_phy_addr, data[1]);
1598                 return 0;
1599         case SIOCSMIIREG:
1600                 if (!capable(CAP_NET_ADMIN))
1601                         return -EPERM;
1602
1603                 emac_phy_write(dev, fep->mii_phy_addr, data[1], data[2]);
1604                 return 0;
1605         default:
1606                 return -EOPNOTSUPP;
1607         }
1608 }
1609
1610 static int emac_open(struct net_device *dev)
1611 {
1612         struct ocp_enet_private *fep = dev->priv;
1613         int rc;
1614
1615         spin_lock_irq(&fep->lock);
1616
1617         fep->opened = 1;
1618         netif_carrier_off(dev);
1619
1620         /* Reset & configure the chip */
1621         emac_reset_configure(fep);
1622
1623         spin_unlock_irq(&fep->lock);
1624
1625         /* Request our interrupt lines */
1626         rc = request_irq(dev->irq, emac_mac_irq, 0, "IBM EMAC MAC", dev);
1627         if (rc != 0) {
1628                 printk("dev->irq %d failed\n", dev->irq);
1629                 goto bail;
1630         }
1631         /* Kick the chip rx & tx channels into life */
1632         spin_lock_irq(&fep->lock);
1633         emac_kick(fep);
1634         spin_unlock_irq(&fep->lock);
1635
1636         netif_start_queue(dev);
1637       bail:
1638         return rc;
1639 }
1640
1641 static int emac_close(struct net_device *dev)
1642 {
1643         struct ocp_enet_private *fep = dev->priv;
1644         emac_t *emacp = fep->emacp;
1645
1646         /* XXX Stop IRQ emitting here */
1647         spin_lock_irq(&fep->lock);
1648         fep->opened = 0;
1649         mal_disable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
1650         mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
1651         netif_carrier_off(dev);
1652         netif_stop_queue(dev);
1653
1654         /*
1655          * Check for a link, some PHYs don't provide a clock if
1656          * no link is present.  Some EMACs will not come out of
1657          * soft reset without a PHY clock present.
1658          */
1659         if (fep->phy_mii.def->ops->poll_link(&fep->phy_mii)) {
1660                 out_be32(&emacp->em0mr0, EMAC_M0_SRST);
1661                 udelay(10);
1662
1663                 if (emacp->em0mr0 & EMAC_M0_SRST) {
1664                         /*not sure what to do here hopefully it clears before another open */
1665                         printk(KERN_ERR
1666                                "%s: Phy SoftReset didn't clear, no link?\n",
1667                                dev->name);
1668                 }
1669         }
1670
1671         /* Free the irq's */
1672         free_irq(dev->irq, dev);
1673
1674         spin_unlock_irq(&fep->lock);
1675
1676         return 0;
1677 }
1678
1679 static void emac_remove(struct ocp_device *ocpdev)
1680 {
1681         struct net_device *dev = ocp_get_drvdata(ocpdev);
1682         struct ocp_enet_private *ep = dev->priv;
1683
1684         /* FIXME: locking, races, ... */
1685         ep->going_away = 1;
1686         ocp_set_drvdata(ocpdev, NULL);
1687         if (ep->rgmii_dev)
1688                 emac_close_rgmii(ep->rgmii_dev);
1689         if (ep->zmii_dev)
1690                 emac_close_zmii(ep->zmii_dev);
1691
1692         unregister_netdev(dev);
1693         del_timer_sync(&ep->link_timer);
1694         mal_unregister_commac(ep->mal, &ep->commac);
1695         iounmap((void *)ep->emacp);
1696         kfree(dev);
1697 }
1698
1699 struct mal_commac_ops emac_commac_ops = {
1700         .txeob = &emac_txeob_dev,
1701         .txde = &emac_txde_dev,
1702         .rxeob = &emac_rxeob_dev,
1703         .rxde = &emac_rxde_dev,
1704 };
1705
1706 #ifdef CONFIG_NET_POLL_CONTROLLER
1707 static int emac_netpoll(struct net_device *ndev)
1708 {
1709         emac_rxeob_dev((void *)ndev, 0);
1710         emac_txeob_dev((void *)ndev, 0);
1711         return 0;
1712 }
1713 #endif
1714
1715 static int emac_init_device(struct ocp_device *ocpdev, struct ibm_ocp_mal *mal)
1716 {
1717         int deferred_init = 0;
1718         int rc = 0, i;
1719         struct net_device *ndev;
1720         struct ocp_enet_private *ep;
1721         struct ocp_func_emac_data *emacdata;
1722         int commac_reg = 0;
1723         u32 phy_map;
1724
1725         emacdata = (struct ocp_func_emac_data *)ocpdev->def->additions;
1726         if (!emacdata) {
1727                 printk(KERN_ERR "emac%d: Missing additional data!\n",
1728                        ocpdev->def->index);
1729                 return -ENODEV;
1730         }
1731
1732         /* Allocate our net_device structure */
1733         ndev = alloc_etherdev(sizeof(struct ocp_enet_private));
1734         if (ndev == NULL) {
1735                 printk(KERN_ERR
1736                        "emac%d: Could not allocate ethernet device.\n",
1737                        ocpdev->def->index);
1738                 return -ENOMEM;
1739         }
1740         ep = ndev->priv;
1741         ep->ndev = ndev;
1742         ep->ocpdev = ocpdev;
1743         ndev->irq = ocpdev->def->irq;
1744         ep->wol_irq = emacdata->wol_irq;
1745         if (emacdata->mdio_idx >= 0) {
1746                 if (emacdata->mdio_idx == ocpdev->def->index) {
1747                         /* Set the common MDIO net_device */
1748                         mdio_ndev = ndev;
1749                         deferred_init = 1;
1750                 }
1751                 ep->mdio_dev = mdio_ndev;
1752         } else {
1753                 ep->mdio_dev = ndev;
1754         }
1755
1756         ocp_set_drvdata(ocpdev, ndev);
1757
1758         spin_lock_init(&ep->lock);
1759
1760         /* Fill out MAL informations and register commac */
1761         ep->mal = mal;
1762         ep->mal_tx_chan = emacdata->mal_tx_chan;
1763         ep->mal_rx_chan = emacdata->mal_rx_chan;
1764         ep->commac.ops = &emac_commac_ops;
1765         ep->commac.dev = ndev;
1766         ep->commac.tx_chan_mask = MAL_CHAN_MASK(ep->mal_tx_chan);
1767         ep->commac.rx_chan_mask = MAL_CHAN_MASK(ep->mal_rx_chan);
1768         rc = mal_register_commac(ep->mal, &ep->commac);
1769         if (rc != 0)
1770                 goto bail;
1771         commac_reg = 1;
1772
1773         /* Map our MMIOs */
1774         ep->emacp = (emac_t *) ioremap(ocpdev->def->paddr, sizeof(emac_t));
1775
1776         /* Check if we need to attach to a ZMII */
1777         if (emacdata->zmii_idx >= 0) {
1778                 ep->zmii_input = emacdata->zmii_mux;
1779                 ep->zmii_dev =
1780                     ocp_find_device(OCP_ANY_ID, OCP_FUNC_ZMII,
1781                                     emacdata->zmii_idx);
1782                 if (ep->zmii_dev == NULL)
1783                         printk(KERN_WARNING
1784                                "emac%d: ZMII %d requested but not found !\n",
1785                                ocpdev->def->index, emacdata->zmii_idx);
1786                 else if ((rc =
1787                           emac_init_zmii(ep->zmii_dev, ep->zmii_input,
1788                                          emacdata->phy_mode)) != 0)
1789                         goto bail;
1790         }
1791
1792         /* Check if we need to attach to a RGMII */
1793         if (emacdata->rgmii_idx >= 0) {
1794                 ep->rgmii_input = emacdata->rgmii_mux;
1795                 ep->rgmii_dev =
1796                     ocp_find_device(OCP_ANY_ID, OCP_FUNC_RGMII,
1797                                     emacdata->rgmii_idx);
1798                 if (ep->rgmii_dev == NULL)
1799                         printk(KERN_WARNING
1800                                "emac%d: RGMII %d requested but not found !\n",
1801                                ocpdev->def->index, emacdata->rgmii_idx);
1802                 else if ((rc =
1803                           emac_init_rgmii(ep->rgmii_dev, ep->rgmii_input,
1804                                           emacdata->phy_mode)) != 0)
1805                         goto bail;
1806         }
1807
1808         /* Check if we need to attach to a TAH */
1809         if (emacdata->tah_idx >= 0) {
1810                 ep->tah_dev =
1811                     ocp_find_device(OCP_ANY_ID, OCP_FUNC_TAH,
1812                                     emacdata->tah_idx);
1813                 if (ep->tah_dev == NULL)
1814                         printk(KERN_WARNING
1815                                "emac%d: TAH %d requested but not found !\n",
1816                                ocpdev->def->index, emacdata->tah_idx);
1817                 else if ((rc = emac_init_tah(ep)) != 0)
1818                         goto bail;
1819         }
1820
1821         if (deferred_init) {
1822                 if (!list_empty(&emac_init_list)) {
1823                         struct list_head *entry;
1824                         struct emac_def_dev *ddev;
1825
1826                         list_for_each(entry, &emac_init_list) {
1827                                 ddev =
1828                                     list_entry(entry, struct emac_def_dev,
1829                                                link);
1830                                 emac_init_device(ddev->ocpdev, ddev->mal);
1831                         }
1832                 }
1833         }
1834
1835         /* Init link monitoring timer */
1836         init_timer(&ep->link_timer);
1837         ep->link_timer.function = emac_link_timer;
1838         ep->link_timer.data = (unsigned long)ep;
1839         ep->timer_ticks = 0;
1840
1841         /* Fill up the mii_phy structure */
1842         ep->phy_mii.dev = ndev;
1843         ep->phy_mii.mdio_read = emac_phy_read;
1844         ep->phy_mii.mdio_write = emac_phy_write;
1845         ep->phy_mii.mode = emacdata->phy_mode;
1846
1847         /* Find PHY */
1848         phy_map = emacdata->phy_map | busy_phy_map;
1849         for (i = 0; i <= 0x1f; i++, phy_map >>= 1) {
1850                 if ((phy_map & 0x1) == 0) {
1851                         int val = emac_phy_read(ndev, i, MII_BMCR);
1852                         if (val != 0xffff && val != -1)
1853                                 break;
1854                 }
1855         }
1856         if (i == 0x20) {
1857                 printk(KERN_WARNING "emac%d: Can't find PHY.\n",
1858                        ocpdev->def->index);
1859                 rc = -ENODEV;
1860                 goto bail;
1861         }
1862         busy_phy_map |= 1 << i;
1863         ep->mii_phy_addr = i;
1864         rc = mii_phy_probe(&ep->phy_mii, i);
1865         if (rc) {
1866                 printk(KERN_WARNING "emac%d: Failed to probe PHY type.\n",
1867                        ocpdev->def->index);
1868                 rc = -ENODEV;
1869                 goto bail;
1870         }
1871
1872         /* Setup initial PHY config & startup aneg */
1873         if (ep->phy_mii.def->ops->init)
1874                 ep->phy_mii.def->ops->init(&ep->phy_mii);
1875         netif_carrier_off(ndev);
1876         if (ep->phy_mii.def->features & SUPPORTED_Autoneg)
1877                 ep->want_autoneg = 1;
1878         emac_start_link(ep, NULL);
1879
1880         /* read the MAC Address */
1881         for (i = 0; i < 6; i++)
1882                 ndev->dev_addr[i] = emacdata->mac_addr[i];
1883
1884         /* Fill in the driver function table */
1885         ndev->open = &emac_open;
1886         ndev->hard_start_xmit = &emac_start_xmit;
1887         ndev->stop = &emac_close;
1888         ndev->get_stats = &emac_stats;
1889         if (emacdata->jumbo)
1890                 ndev->change_mtu = &emac_change_mtu;
1891         ndev->set_mac_address = &emac_set_mac_address;
1892         ndev->set_multicast_list = &emac_set_multicast_list;
1893         ndev->do_ioctl = &emac_ioctl;
1894         SET_ETHTOOL_OPS(ndev, &emac_ethtool_ops);
1895         if (emacdata->tah_idx >= 0)
1896                 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG;
1897 #ifdef CONFIG_NET_POLL_CONTROLLER
1898         ndev->poll_controller = emac_netpoll;
1899 #endif
1900
1901         SET_MODULE_OWNER(ndev);
1902
1903         rc = register_netdev(ndev);
1904         if (rc != 0)
1905                 goto bail;
1906
1907         printk("%s: IBM emac, MAC %02x:%02x:%02x:%02x:%02x:%02x\n",
1908                ndev->name,
1909                ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1910                ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1911         printk(KERN_INFO "%s: Found %s PHY (0x%02x)\n",
1912                ndev->name, ep->phy_mii.def->name, ep->mii_phy_addr);
1913
1914       bail:
1915         if (rc && commac_reg)
1916                 mal_unregister_commac(ep->mal, &ep->commac);
1917         if (rc && ndev)
1918                 kfree(ndev);
1919
1920         return rc;
1921 }
1922
1923 static int emac_probe(struct ocp_device *ocpdev)
1924 {
1925         struct ocp_device *maldev;
1926         struct ibm_ocp_mal *mal;
1927         struct ocp_func_emac_data *emacdata;
1928
1929         emacdata = (struct ocp_func_emac_data *)ocpdev->def->additions;
1930         if (emacdata == NULL) {
1931                 printk(KERN_ERR "emac%d: Missing additional datas !\n",
1932                        ocpdev->def->index);
1933                 return -ENODEV;
1934         }
1935
1936         /* Get the MAL device  */
1937         maldev = ocp_find_device(OCP_ANY_ID, OCP_FUNC_MAL, emacdata->mal_idx);
1938         if (maldev == NULL) {
1939                 printk("No maldev\n");
1940                 return -ENODEV;
1941         }
1942         /*
1943          * Get MAL driver data, it must be here due to link order.
1944          * When the driver is modularized, symbol dependencies will
1945          * ensure the MAL driver is already present if built as a
1946          * module.
1947          */
1948         mal = (struct ibm_ocp_mal *)ocp_get_drvdata(maldev);
1949         if (mal == NULL) {
1950                 printk("No maldrv\n");
1951                 return -ENODEV;
1952         }
1953
1954         /* If we depend on another EMAC for MDIO, wait for it to show up */
1955         if (emacdata->mdio_idx >= 0 &&
1956             (emacdata->mdio_idx != ocpdev->def->index) && !mdio_ndev) {
1957                 struct emac_def_dev *ddev;
1958                 /* Add this index to the deferred init table */
1959                 ddev = kmalloc(sizeof(struct emac_def_dev), GFP_KERNEL);
1960                 ddev->ocpdev = ocpdev;
1961                 ddev->mal = mal;
1962                 list_add_tail(&ddev->link, &emac_init_list);
1963         } else {
1964                 emac_init_device(ocpdev, mal);
1965         }
1966
1967         return 0;
1968 }
1969
1970 /* Structure for a device driver */
1971 static struct ocp_device_id emac_ids[] = {
1972         {.vendor = OCP_ANY_ID,.function = OCP_FUNC_EMAC},
1973         {.vendor = OCP_VENDOR_INVALID}
1974 };
1975
1976 static struct ocp_driver emac_driver = {
1977         .name = "emac",
1978         .id_table = emac_ids,
1979
1980         .probe = emac_probe,
1981         .remove = emac_remove,
1982 };
1983
1984 static int __init emac_init(void)
1985 {
1986         printk(KERN_INFO DRV_NAME ": " DRV_DESC ", version " DRV_VERSION "\n");
1987         printk(KERN_INFO "Maintained by " DRV_AUTHOR "\n");
1988
1989         if (skb_res > 2) {
1990                 printk(KERN_WARNING "Invalid skb_res: %d, cropping to 2\n",
1991                        skb_res);
1992                 skb_res = 2;
1993         }
1994
1995         return ocp_register_driver(&emac_driver);
1996 }
1997
1998 static void __exit emac_exit(void)
1999 {
2000         ocp_unregister_driver(&emac_driver);
2001 }
2002
2003 module_init(emac_init);
2004 module_exit(emac_exit);