This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
51 #include <linux/etherdevice.h>
52
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/tsi108.h>
56
57 #include "tsi108_eth.h"
58
59 #define MII_READ_DELAY 10000    /* max link wait time in msec */
60
61 #define TSI108_RXRING_LEN     256
62
63 /* NOTE: The driver currently does not support receiving packets
64  * larger than the buffer size, so don't decrease this (unless you
65  * want to add such support).
66  */
67 #define TSI108_RXBUF_SIZE     1536
68
69 #define TSI108_TXRING_LEN     256
70
71 #define TSI108_TX_INT_FREQ    64
72
73 /* Check the phy status every half a second. */
74 #define CHECK_PHY_INTERVAL (HZ/2)
75
76 static int tsi108_init_one(struct platform_device *pdev);
77 static int tsi108_ether_remove(struct platform_device *pdev);
78
79 struct tsi108_prv_data {
80         void  __iomem *regs;    /* Base of normal regs */
81         void  __iomem *phyregs; /* Base of register bank used for PHY access */
82
83         unsigned int phy;               /* Index of PHY for this interface */
84         unsigned int irq_num;
85         unsigned int id;
86
87         struct timer_list timer;/* Timer that triggers the check phy function */
88         unsigned int rxtail;    /* Next entry in rxring to read */
89         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
90         unsigned int rxfree;    /* Number of free, allocated RX buffers */
91
92         unsigned int rxpending; /* Non-zero if there are still descriptors
93                                  * to be processed from a previous descriptor
94                                  * interrupt condition that has been cleared */
95
96         unsigned int txtail;    /* Next TX descriptor to check status on */
97         unsigned int txhead;    /* Next TX descriptor to use */
98
99         /* Number of free TX descriptors.  This could be calculated from
100          * rxhead and rxtail if one descriptor were left unused to disambiguate
101          * full and empty conditions, but it's simpler to just keep track
102          * explicitly. */
103
104         unsigned int txfree;
105
106         unsigned int phy_ok;            /* The PHY is currently powered on. */
107
108         /* PHY status (duplex is 1 for half, 2 for full,
109          * so that the default 0 indicates that neither has
110          * yet been configured). */
111
112         unsigned int link_up;
113         unsigned int speed;
114         unsigned int duplex;
115
116         tx_desc *txring;
117         rx_desc *rxring;
118         struct sk_buff *txskbs[TSI108_TXRING_LEN];
119         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
120
121         dma_addr_t txdma, rxdma;
122
123         /* txlock nests in misclock and phy_lock */
124
125         spinlock_t txlock, misclock;
126
127         /* stats is used to hold the upper bits of each hardware counter,
128          * and tmpstats is used to hold the full values for returning
129          * to the caller of get_stats().  They must be separate in case
130          * an overflow interrupt occurs before the stats are consumed.
131          */
132
133         struct net_device_stats stats;
134         struct net_device_stats tmpstats;
135
136         /* These stats are kept separate in hardware, thus require individual
137          * fields for handling carry.  They are combined in get_stats.
138          */
139
140         unsigned long rx_fcs;   /* Add to rx_frame_errors */
141         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
142         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
143         unsigned long rx_underruns;     /* Add to rx_length_errors */
144         unsigned long rx_overruns;      /* Add to rx_length_errors */
145
146         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
147         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
148
149         unsigned long mc_hash[16];
150         u32 msg_enable;                 /* debug message level */
151         struct mii_if_info mii_if;
152         unsigned int init_media;
153 };
154
155 /* Structure for a device driver */
156
157 static struct platform_driver tsi_eth_driver = {
158         .probe = tsi108_init_one,
159         .remove = tsi108_ether_remove,
160         .driver = {
161                 .name = "tsi-ethernet",
162         },
163 };
164
165 static void tsi108_timed_checker(unsigned long dev_ptr);
166
167 static void dump_eth_one(struct net_device *dev)
168 {
169         struct tsi108_prv_data *data = netdev_priv(dev);
170
171         printk("Dumping %s...\n", dev->name);
172         printk("intstat %x intmask %x phy_ok %d"
173                " link %d speed %d duplex %d\n",
174                TSI_READ(TSI108_EC_INTSTAT),
175                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
176                data->link_up, data->speed, data->duplex);
177
178         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
179                data->txhead, data->txtail, data->txfree,
180                TSI_READ(TSI108_EC_TXSTAT),
181                TSI_READ(TSI108_EC_TXESTAT),
182                TSI_READ(TSI108_EC_TXERR));
183
184         printk("RX: head %d, tail %d, free %d, stat %x,"
185                " estat %x, err %x, pending %d\n\n",
186                data->rxhead, data->rxtail, data->rxfree,
187                TSI_READ(TSI108_EC_RXSTAT),
188                TSI_READ(TSI108_EC_RXESTAT),
189                TSI_READ(TSI108_EC_RXERR), data->rxpending);
190 }
191
192 /* Synchronization is needed between the thread and up/down events.
193  * Note that the PHY is accessed through the same registers for both
194  * interfaces, so this can't be made interface-specific.
195  */
196
197 static DEFINE_SPINLOCK(phy_lock);
198
199 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
200 {
201         unsigned i;
202
203         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
204                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
205                                 (reg << TSI108_MAC_MII_ADDR_REG));
206         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
207         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
208         for (i = 0; i < 100; i++) {
209                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
210                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
211                         break;
212                 udelay(10);
213         }
214
215         if (i == 100)
216                 return 0xffff;
217         else
218                 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
219 }
220
221 static void tsi108_write_mii(struct tsi108_prv_data *data,
222                                 int reg, u16 val)
223 {
224         unsigned i = 100;
225         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
226                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
227                                 (reg << TSI108_MAC_MII_ADDR_REG));
228         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
229         while (i--) {
230                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
231                         TSI108_MAC_MII_IND_BUSY))
232                         break;
233                 udelay(10);
234         }
235 }
236
237 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
238 {
239         struct tsi108_prv_data *data = netdev_priv(dev);
240         return tsi108_read_mii(data, reg);
241 }
242
243 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
244 {
245         struct tsi108_prv_data *data = netdev_priv(dev);
246         tsi108_write_mii(data, reg, val);
247 }
248
249 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
250                                         int reg, u16 val)
251 {
252         unsigned i = 1000;
253         TSI_WRITE(TSI108_MAC_MII_ADDR,
254                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
255                              | (reg << TSI108_MAC_MII_ADDR_REG));
256         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
257         while(i--) {
258                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
259                         return;
260                 udelay(10);
261         }
262         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
263 }
264
265 static int mii_speed(struct mii_if_info *mii)
266 {
267         int advert, lpa, val, media;
268         int lpa2 = 0;
269         int speed;
270
271         if (!mii_link_ok(mii))
272                 return 0;
273
274         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
275         if ((val & BMSR_ANEGCOMPLETE) == 0)
276                 return 0;
277
278         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
279         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
280         media = mii_nway_result(advert & lpa);
281
282         if (mii->supports_gmii)
283                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
284
285         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
286                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
287         return speed;
288 }
289
290 static void tsi108_check_phy(struct net_device *dev)
291 {
292         struct tsi108_prv_data *data = netdev_priv(dev);
293         u32 mac_cfg2_reg, portctrl_reg;
294         u32 duplex;
295         u32 speed;
296         unsigned long flags;
297
298         /* Do a dummy read, as for some reason the first read
299          * after a link becomes up returns link down, even if
300          * it's been a while since the link came up.
301          */
302
303         spin_lock_irqsave(&phy_lock, flags);
304
305         if (!data->phy_ok)
306                 goto out;
307
308         tsi108_read_mii(data, MII_BMSR);
309
310         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
311         data->init_media = 0;
312
313         if (netif_carrier_ok(dev)) {
314
315                 speed = mii_speed(&data->mii_if);
316
317                 if ((speed != data->speed) || duplex) {
318
319                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
320                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
321
322                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
323
324                         if (speed == 1000) {
325                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
326                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
327                         } else {
328                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
329                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
330                         }
331
332                         data->speed = speed;
333
334                         if (data->mii_if.full_duplex) {
335                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
336                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
337                                 data->duplex = 2;
338                         } else {
339                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
340                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
341                                 data->duplex = 1;
342                         }
343
344                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
345                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
346
347                         if (data->link_up == 0) {
348                                 /* The manual says it can take 3-4 usecs for the speed change
349                                  * to take effect.
350                                  */
351                                 udelay(5);
352
353                                 spin_lock(&data->txlock);
354                                 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
355                                         netif_wake_queue(dev);
356
357                                 data->link_up = 1;
358                                 spin_unlock(&data->txlock);
359                         }
360                 }
361
362         } else {
363                 if (data->link_up == 1) {
364                         netif_stop_queue(dev);
365                         data->link_up = 0;
366                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
367                 }
368
369                 goto out;
370         }
371
372
373 out:
374         spin_unlock_irqrestore(&phy_lock, flags);
375 }
376
377 static inline void
378 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
379                       unsigned long *upper)
380 {
381         if (carry & carry_bit)
382                 *upper += carry_shift;
383 }
384
385 static void tsi108_stat_carry(struct net_device *dev)
386 {
387         struct tsi108_prv_data *data = netdev_priv(dev);
388         u32 carry1, carry2;
389
390         spin_lock_irq(&data->misclock);
391
392         carry1 = TSI_READ(TSI108_STAT_CARRY1);
393         carry2 = TSI_READ(TSI108_STAT_CARRY2);
394
395         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
396         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
397
398         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
399                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
400
401         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
402                               TSI108_STAT_RXPKTS_CARRY,
403                               &data->stats.rx_packets);
404
405         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
406                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
407
408         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
409                               TSI108_STAT_RXMCAST_CARRY,
410                               &data->stats.multicast);
411
412         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
413                               TSI108_STAT_RXALIGN_CARRY,
414                               &data->stats.rx_frame_errors);
415
416         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
417                               TSI108_STAT_RXLENGTH_CARRY,
418                               &data->stats.rx_length_errors);
419
420         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
421                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
422
423         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
424                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
425
426         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
427                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
428
429         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
430                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
431
432         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
433                               TSI108_STAT_RXDROP_CARRY,
434                               &data->stats.rx_missed_errors);
435
436         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
437                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
438
439         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
440                               TSI108_STAT_TXPKTS_CARRY,
441                               &data->stats.tx_packets);
442
443         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
444                               TSI108_STAT_TXEXDEF_CARRY,
445                               &data->stats.tx_aborted_errors);
446
447         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
448                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
449
450         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
451                               TSI108_STAT_TXTCOL_CARRY,
452                               &data->stats.collisions);
453
454         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
455                               TSI108_STAT_TXPAUSEDROP_CARRY,
456                               &data->tx_pause_drop);
457
458         spin_unlock_irq(&data->misclock);
459 }
460
461 /* Read a stat counter atomically with respect to carries.
462  * data->misclock must be held.
463  */
464 static inline unsigned long
465 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
466                  int carry_shift, unsigned long *upper)
467 {
468         int carryreg;
469         unsigned long val;
470
471         if (reg < 0xb0)
472                 carryreg = TSI108_STAT_CARRY1;
473         else
474                 carryreg = TSI108_STAT_CARRY2;
475
476       again:
477         val = TSI_READ(reg) | *upper;
478
479         /* Check to see if it overflowed, but the interrupt hasn't
480          * been serviced yet.  If so, handle the carry here, and
481          * try again.
482          */
483
484         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
485                 *upper += carry_shift;
486                 TSI_WRITE(carryreg, carry_bit);
487                 goto again;
488         }
489
490         return val;
491 }
492
493 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
494 {
495         unsigned long excol;
496
497         struct tsi108_prv_data *data = netdev_priv(dev);
498         spin_lock_irq(&data->misclock);
499
500         data->tmpstats.rx_packets =
501             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
502                              TSI108_STAT_CARRY1_RXPKTS,
503                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
504
505         data->tmpstats.tx_packets =
506             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
507                              TSI108_STAT_CARRY2_TXPKTS,
508                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
509
510         data->tmpstats.rx_bytes =
511             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
512                              TSI108_STAT_CARRY1_RXBYTES,
513                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
514
515         data->tmpstats.tx_bytes =
516             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
517                              TSI108_STAT_CARRY2_TXBYTES,
518                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
519
520         data->tmpstats.multicast =
521             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
522                              TSI108_STAT_CARRY1_RXMCAST,
523                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
524
525         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
526                                  TSI108_STAT_CARRY2_TXEXCOL,
527                                  TSI108_STAT_TXEXCOL_CARRY,
528                                  &data->tx_coll_abort);
529
530         data->tmpstats.collisions =
531             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
532                              TSI108_STAT_CARRY2_TXTCOL,
533                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
534
535         data->tmpstats.collisions += excol;
536
537         data->tmpstats.rx_length_errors =
538             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
539                              TSI108_STAT_CARRY1_RXLENGTH,
540                              TSI108_STAT_RXLENGTH_CARRY,
541                              &data->stats.rx_length_errors);
542
543         data->tmpstats.rx_length_errors +=
544             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
545                              TSI108_STAT_CARRY1_RXRUNT,
546                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
547
548         data->tmpstats.rx_length_errors +=
549             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
550                              TSI108_STAT_CARRY1_RXJUMBO,
551                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
552
553         data->tmpstats.rx_frame_errors =
554             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
555                              TSI108_STAT_CARRY1_RXALIGN,
556                              TSI108_STAT_RXALIGN_CARRY,
557                              &data->stats.rx_frame_errors);
558
559         data->tmpstats.rx_frame_errors +=
560             tsi108_read_stat(data, TSI108_STAT_RXFCS,
561                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
562                              &data->rx_fcs);
563
564         data->tmpstats.rx_frame_errors +=
565             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
566                              TSI108_STAT_CARRY1_RXFRAG,
567                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
568
569         data->tmpstats.rx_missed_errors =
570             tsi108_read_stat(data, TSI108_STAT_RXDROP,
571                              TSI108_STAT_CARRY1_RXDROP,
572                              TSI108_STAT_RXDROP_CARRY,
573                              &data->stats.rx_missed_errors);
574
575         /* These three are maintained by software. */
576         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
577         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
578
579         data->tmpstats.tx_aborted_errors =
580             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
581                              TSI108_STAT_CARRY2_TXEXDEF,
582                              TSI108_STAT_TXEXDEF_CARRY,
583                              &data->stats.tx_aborted_errors);
584
585         data->tmpstats.tx_aborted_errors +=
586             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
587                              TSI108_STAT_CARRY2_TXPAUSE,
588                              TSI108_STAT_TXPAUSEDROP_CARRY,
589                              &data->tx_pause_drop);
590
591         data->tmpstats.tx_aborted_errors += excol;
592
593         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
594         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
595             data->tmpstats.rx_crc_errors +
596             data->tmpstats.rx_frame_errors +
597             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
598
599         spin_unlock_irq(&data->misclock);
600         return &data->tmpstats;
601 }
602
603 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
604 {
605         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
606                              TSI108_EC_RXQ_PTRHIGH_VALID);
607
608         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
609                              | TSI108_EC_RXCTRL_QUEUE0);
610 }
611
612 static void tsi108_restart_tx(struct tsi108_prv_data * data)
613 {
614         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
615                              TSI108_EC_TXQ_PTRHIGH_VALID);
616
617         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
618                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
619 }
620
621 /* txlock must be held by caller, with IRQs disabled, and
622  * with permission to re-enable them when the lock is dropped.
623  */
624 static void tsi108_complete_tx(struct net_device *dev)
625 {
626         struct tsi108_prv_data *data = netdev_priv(dev);
627         int tx;
628         struct sk_buff *skb;
629         int release = 0;
630
631         while (!data->txfree || data->txhead != data->txtail) {
632                 tx = data->txtail;
633
634                 if (data->txring[tx].misc & TSI108_TX_OWN)
635                         break;
636
637                 skb = data->txskbs[tx];
638
639                 if (!(data->txring[tx].misc & TSI108_TX_OK))
640                         printk("%s: bad tx packet, misc %x\n",
641                                dev->name, data->txring[tx].misc);
642
643                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
644                 data->txfree++;
645
646                 if (data->txring[tx].misc & TSI108_TX_EOF) {
647                         dev_kfree_skb_any(skb);
648                         release++;
649                 }
650         }
651
652         if (release) {
653                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
654                         netif_wake_queue(dev);
655         }
656 }
657
658 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
659 {
660         struct tsi108_prv_data *data = netdev_priv(dev);
661         int frags = skb_shinfo(skb)->nr_frags + 1;
662         int i;
663
664         if (!data->phy_ok && net_ratelimit())
665                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
666
667         if (!data->link_up) {
668                 printk(KERN_ERR "%s: Transmit while link is down!\n",
669                        dev->name);
670                 netif_stop_queue(dev);
671                 return NETDEV_TX_BUSY;
672         }
673
674         if (data->txfree < MAX_SKB_FRAGS + 1) {
675                 netif_stop_queue(dev);
676
677                 if (net_ratelimit())
678                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
679                                dev->name);
680                 return NETDEV_TX_BUSY;
681         }
682
683         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
684                 netif_stop_queue(dev);
685         }
686
687         spin_lock_irq(&data->txlock);
688
689         for (i = 0; i < frags; i++) {
690                 int misc = 0;
691                 int tx = data->txhead;
692
693                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
694                  * the interrupt bit.  TX descriptor-complete interrupts are
695                  * enabled when the queue fills up, and masked when there is
696                  * still free space.  This way, when saturating the outbound
697                  * link, the tx interrupts are kept to a reasonable level.
698                  * When the queue is not full, reclamation of skbs still occurs
699                  * as new packets are transmitted, or on a queue-empty
700                  * interrupt.
701                  */
702
703                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
704                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
705                         misc = TSI108_TX_INT;
706
707                 data->txskbs[tx] = skb;
708
709                 if (i == 0) {
710                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
711                                         skb->len - skb->data_len, DMA_TO_DEVICE);
712                         data->txring[tx].len = skb->len - skb->data_len;
713                         misc |= TSI108_TX_SOF;
714                 } else {
715                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
716
717                         data->txring[tx].buf0 =
718                             dma_map_page(NULL, frag->page, frag->page_offset,
719                                             frag->size, DMA_TO_DEVICE);
720                         data->txring[tx].len = frag->size;
721                 }
722
723                 if (i == frags - 1)
724                         misc |= TSI108_TX_EOF;
725
726                 if (netif_msg_pktdata(data)) {
727                         int i;
728                         printk("%s: Tx Frame contents (%d)\n", dev->name,
729                                skb->len);
730                         for (i = 0; i < skb->len; i++)
731                                 printk(" %2.2x", skb->data[i]);
732                         printk(".\n");
733                 }
734                 data->txring[tx].misc = misc | TSI108_TX_OWN;
735
736                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
737                 data->txfree--;
738         }
739
740         tsi108_complete_tx(dev);
741
742         /* This must be done after the check for completed tx descriptors,
743          * so that the tail pointer is correct.
744          */
745
746         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
747                 tsi108_restart_tx(data);
748
749         spin_unlock_irq(&data->txlock);
750         return NETDEV_TX_OK;
751 }
752
753 static int tsi108_complete_rx(struct net_device *dev, int budget)
754 {
755         struct tsi108_prv_data *data = netdev_priv(dev);
756         int done = 0;
757
758         while (data->rxfree && done != budget) {
759                 int rx = data->rxtail;
760                 struct sk_buff *skb;
761
762                 if (data->rxring[rx].misc & TSI108_RX_OWN)
763                         break;
764
765                 skb = data->rxskbs[rx];
766                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
767                 data->rxfree--;
768                 done++;
769
770                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
771                         spin_lock_irq(&data->misclock);
772
773                         if (data->rxring[rx].misc & TSI108_RX_CRC)
774                                 data->stats.rx_crc_errors++;
775                         if (data->rxring[rx].misc & TSI108_RX_OVER)
776                                 data->stats.rx_fifo_errors++;
777
778                         spin_unlock_irq(&data->misclock);
779
780                         dev_kfree_skb_any(skb);
781                         continue;
782                 }
783                 if (netif_msg_pktdata(data)) {
784                         int i;
785                         printk("%s: Rx Frame contents (%d)\n",
786                                dev->name, data->rxring[rx].len);
787                         for (i = 0; i < data->rxring[rx].len; i++)
788                                 printk(" %2.2x", skb->data[i]);
789                         printk(".\n");
790                 }
791
792                 skb->dev = dev;
793                 skb_put(skb, data->rxring[rx].len);
794                 skb->protocol = eth_type_trans(skb, dev);
795                 netif_receive_skb(skb);
796                 dev->last_rx = jiffies;
797         }
798
799         return done;
800 }
801
802 static int tsi108_refill_rx(struct net_device *dev, int budget)
803 {
804         struct tsi108_prv_data *data = netdev_priv(dev);
805         int done = 0;
806
807         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
808                 int rx = data->rxhead;
809                 struct sk_buff *skb;
810
811                 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
812                 if (!skb)
813                         break;
814
815                 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
816
817                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
818                                                         TSI108_RX_SKB_SIZE,
819                                                         DMA_FROM_DEVICE);
820
821                 /* Sometimes the hardware sets blen to zero after packet
822                  * reception, even though the manual says that it's only ever
823                  * modified by the driver.
824                  */
825
826                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
827                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
828
829                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
830                 data->rxfree++;
831                 done++;
832         }
833
834         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
835                            TSI108_EC_RXSTAT_QUEUE0))
836                 tsi108_restart_rx(data, dev);
837
838         return done;
839 }
840
841 static int tsi108_poll(struct net_device *dev, int *budget)
842 {
843         struct tsi108_prv_data *data = netdev_priv(dev);
844         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
845         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
846         int total_budget = min(*budget, dev->quota);
847         int num_received = 0, num_filled = 0, budget_used;
848
849         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
850             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
851
852         TSI_WRITE(TSI108_EC_RXESTAT, estat);
853         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
854
855         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
856                 num_received = tsi108_complete_rx(dev, total_budget);
857
858         /* This should normally fill no more slots than the number of
859          * packets received in tsi108_complete_rx().  The exception
860          * is when we previously ran out of memory for RX SKBs.  In that
861          * case, it's helpful to obey the budget, not only so that the
862          * CPU isn't hogged, but so that memory (which may still be low)
863          * is not hogged by one device.
864          *
865          * A work unit is considered to be two SKBs to allow us to catch
866          * up when the ring has shrunk due to out-of-memory but we're
867          * still removing the full budget's worth of packets each time.
868          */
869
870         if (data->rxfree < TSI108_RXRING_LEN)
871                 num_filled = tsi108_refill_rx(dev, total_budget * 2);
872
873         if (intstat & TSI108_INT_RXERROR) {
874                 u32 err = TSI_READ(TSI108_EC_RXERR);
875                 TSI_WRITE(TSI108_EC_RXERR, err);
876
877                 if (err) {
878                         if (net_ratelimit())
879                                 printk(KERN_DEBUG "%s: RX error %x\n",
880                                        dev->name, err);
881
882                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
883                               TSI108_EC_RXSTAT_QUEUE0))
884                                 tsi108_restart_rx(data, dev);
885                 }
886         }
887
888         if (intstat & TSI108_INT_RXOVERRUN) {
889                 spin_lock_irq(&data->misclock);
890                 data->stats.rx_fifo_errors++;
891                 spin_unlock_irq(&data->misclock);
892         }
893
894         budget_used = max(num_received, num_filled / 2);
895
896         *budget -= budget_used;
897         dev->quota -= budget_used;
898
899         if (budget_used != total_budget) {
900                 data->rxpending = 0;
901                 netif_rx_complete(dev);
902
903                 TSI_WRITE(TSI108_EC_INTMASK,
904                                      TSI_READ(TSI108_EC_INTMASK)
905                                      & ~(TSI108_INT_RXQUEUE0
906                                          | TSI108_INT_RXTHRESH |
907                                          TSI108_INT_RXOVERRUN |
908                                          TSI108_INT_RXERROR |
909                                          TSI108_INT_RXWAIT));
910
911                 /* IRQs are level-triggered, so no need to re-check */
912                 return 0;
913         } else {
914                 data->rxpending = 1;
915         }
916
917         return 1;
918 }
919
920 static void tsi108_rx_int(struct net_device *dev)
921 {
922         struct tsi108_prv_data *data = netdev_priv(dev);
923
924         /* A race could cause dev to already be scheduled, so it's not an
925          * error if that happens (and interrupts shouldn't be re-masked,
926          * because that can cause harmful races, if poll has already
927          * unmasked them but not cleared LINK_STATE_SCHED).
928          *
929          * This can happen if this code races with tsi108_poll(), which masks
930          * the interrupts after tsi108_irq_one() read the mask, but before
931          * netif_rx_schedule is called.  It could also happen due to calls
932          * from tsi108_check_rxring().
933          */
934
935         if (netif_rx_schedule_prep(dev)) {
936                 /* Mask, rather than ack, the receive interrupts.  The ack
937                  * will happen in tsi108_poll().
938                  */
939
940                 TSI_WRITE(TSI108_EC_INTMASK,
941                                      TSI_READ(TSI108_EC_INTMASK) |
942                                      TSI108_INT_RXQUEUE0
943                                      | TSI108_INT_RXTHRESH |
944                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
945                                      TSI108_INT_RXWAIT);
946                 __netif_rx_schedule(dev);
947         } else {
948                 if (!netif_running(dev)) {
949                         /* This can happen if an interrupt occurs while the
950                          * interface is being brought down, as the START
951                          * bit is cleared before the stop function is called.
952                          *
953                          * In this case, the interrupts must be masked, or
954                          * they will continue indefinitely.
955                          *
956                          * There's a race here if the interface is brought down
957                          * and then up in rapid succession, as the device could
958                          * be made running after the above check and before
959                          * the masking below.  This will only happen if the IRQ
960                          * thread has a lower priority than the task brining
961                          * up the interface.  Fixing this race would likely
962                          * require changes in generic code.
963                          */
964
965                         TSI_WRITE(TSI108_EC_INTMASK,
966                                              TSI_READ
967                                              (TSI108_EC_INTMASK) |
968                                              TSI108_INT_RXQUEUE0 |
969                                              TSI108_INT_RXTHRESH |
970                                              TSI108_INT_RXOVERRUN |
971                                              TSI108_INT_RXERROR |
972                                              TSI108_INT_RXWAIT);
973                 }
974         }
975 }
976
977 /* If the RX ring has run out of memory, try periodically
978  * to allocate some more, as otherwise poll would never
979  * get called (apart from the initial end-of-queue condition).
980  *
981  * This is called once per second (by default) from the thread.
982  */
983
984 static void tsi108_check_rxring(struct net_device *dev)
985 {
986         struct tsi108_prv_data *data = netdev_priv(dev);
987
988         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
989          * directly, so as to keep the receive path single-threaded
990          * (and thus not needing a lock).
991          */
992
993         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
994                 tsi108_rx_int(dev);
995 }
996
997 static void tsi108_tx_int(struct net_device *dev)
998 {
999         struct tsi108_prv_data *data = netdev_priv(dev);
1000         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
1001
1002         TSI_WRITE(TSI108_EC_TXESTAT, estat);
1003         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
1004                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
1005         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
1006                 u32 err = TSI_READ(TSI108_EC_TXERR);
1007                 TSI_WRITE(TSI108_EC_TXERR, err);
1008
1009                 if (err && net_ratelimit())
1010                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1011         }
1012
1013         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1014                 spin_lock(&data->txlock);
1015                 tsi108_complete_tx(dev);
1016                 spin_unlock(&data->txlock);
1017         }
1018 }
1019
1020
1021 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1022 {
1023         struct net_device *dev = dev_id;
1024         struct tsi108_prv_data *data = netdev_priv(dev);
1025         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1026
1027         if (!(stat & TSI108_INT_ANY))
1028                 return IRQ_NONE;        /* Not our interrupt */
1029
1030         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1031
1032         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1033                     TSI108_INT_TXERROR))
1034                 tsi108_tx_int(dev);
1035         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1036                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1037                     TSI108_INT_RXERROR))
1038                 tsi108_rx_int(dev);
1039
1040         if (stat & TSI108_INT_SFN) {
1041                 if (net_ratelimit())
1042                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1043                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1044         }
1045
1046         if (stat & TSI108_INT_STATCARRY) {
1047                 tsi108_stat_carry(dev);
1048                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1049         }
1050
1051         return IRQ_HANDLED;
1052 }
1053
1054 static void tsi108_stop_ethernet(struct net_device *dev)
1055 {
1056         struct tsi108_prv_data *data = netdev_priv(dev);
1057         int i = 1000;
1058         /* Disable all TX and RX queues ... */
1059         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1060         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1061
1062         /* ...and wait for them to become idle */
1063         while(i--) {
1064                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1065                         break;
1066                 udelay(10);
1067         }
1068         i = 1000;
1069         while(i--){
1070                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1071                         return;
1072                 udelay(10);
1073         }
1074         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1075 }
1076
1077 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1078 {
1079         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1080         udelay(100);
1081         TSI_WRITE(TSI108_MAC_CFG1, 0);
1082
1083         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1084         udelay(100);
1085         TSI_WRITE(TSI108_EC_PORTCTRL,
1086                              TSI_READ(TSI108_EC_PORTCTRL) &
1087                              ~TSI108_EC_PORTCTRL_STATRST);
1088
1089         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1090         udelay(100);
1091         TSI_WRITE(TSI108_EC_TXCFG,
1092                              TSI_READ(TSI108_EC_TXCFG) &
1093                              ~TSI108_EC_TXCFG_RST);
1094
1095         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1096         udelay(100);
1097         TSI_WRITE(TSI108_EC_RXCFG,
1098                              TSI_READ(TSI108_EC_RXCFG) &
1099                              ~TSI108_EC_RXCFG_RST);
1100
1101         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1102                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1103                              TSI108_MAC_MII_MGMT_RST);
1104         udelay(100);
1105         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1106                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1107                              ~(TSI108_MAC_MII_MGMT_RST |
1108                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1109 }
1110
1111 static int tsi108_get_mac(struct net_device *dev)
1112 {
1113         struct tsi108_prv_data *data = netdev_priv(dev);
1114         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1115         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1116
1117         /* Note that the octets are reversed from what the manual says,
1118          * producing an even weirder ordering...
1119          */
1120         if (word2 == 0 && word1 == 0) {
1121                 dev->dev_addr[0] = 0x00;
1122                 dev->dev_addr[1] = 0x06;
1123                 dev->dev_addr[2] = 0xd2;
1124                 dev->dev_addr[3] = 0x00;
1125                 dev->dev_addr[4] = 0x00;
1126                 if (0x8 == data->phy)
1127                         dev->dev_addr[5] = 0x01;
1128                 else
1129                         dev->dev_addr[5] = 0x02;
1130
1131                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1132
1133                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1134                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1135
1136                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1137                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1138         } else {
1139                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1140                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1141                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1142                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1143                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1144                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1145         }
1146
1147         if (!is_valid_ether_addr(dev->dev_addr)) {
1148                 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1149                 return -EINVAL;
1150         }
1151
1152         return 0;
1153 }
1154
1155 static int tsi108_set_mac(struct net_device *dev, void *addr)
1156 {
1157         struct tsi108_prv_data *data = netdev_priv(dev);
1158         u32 word1, word2;
1159         int i;
1160
1161         if (!is_valid_ether_addr(addr))
1162                 return -EINVAL;
1163
1164         for (i = 0; i < 6; i++)
1165                 /* +2 is for the offset of the HW addr type */
1166                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1167
1168         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1169
1170         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1171             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1172
1173         spin_lock_irq(&data->misclock);
1174         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1175         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1176         spin_lock(&data->txlock);
1177
1178         if (data->txfree && data->link_up)
1179                 netif_wake_queue(dev);
1180
1181         spin_unlock(&data->txlock);
1182         spin_unlock_irq(&data->misclock);
1183         return 0;
1184 }
1185
1186 /* Protected by dev->xmit_lock. */
1187 static void tsi108_set_rx_mode(struct net_device *dev)
1188 {
1189         struct tsi108_prv_data *data = netdev_priv(dev);
1190         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1191
1192         if (dev->flags & IFF_PROMISC) {
1193                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1194                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1195                 goto out;
1196         }
1197
1198         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1199
1200         if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1201                 int i;
1202                 struct dev_mc_list *mc = dev->mc_list;
1203                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1204
1205                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1206
1207                 while (mc) {
1208                         u32 hash, crc;
1209
1210                         if (mc->dmi_addrlen == 6) {
1211                                 crc = ether_crc(6, mc->dmi_addr);
1212                                 hash = crc >> 23;
1213
1214                                 __set_bit(hash, &data->mc_hash[0]);
1215                         } else {
1216                                 printk(KERN_ERR
1217                                        "%s: got multicast address of length %d "
1218                                        "instead of 6.\n", dev->name,
1219                                        mc->dmi_addrlen);
1220                         }
1221
1222                         mc = mc->next;
1223                 }
1224
1225                 TSI_WRITE(TSI108_EC_HASHADDR,
1226                                      TSI108_EC_HASHADDR_AUTOINC |
1227                                      TSI108_EC_HASHADDR_MCAST);
1228
1229                 for (i = 0; i < 16; i++) {
1230                         /* The manual says that the hardware may drop
1231                          * back-to-back writes to the data register.
1232                          */
1233                         udelay(1);
1234                         TSI_WRITE(TSI108_EC_HASHDATA,
1235                                              data->mc_hash[i]);
1236                 }
1237         }
1238
1239       out:
1240         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1241 }
1242
1243 static void tsi108_init_phy(struct net_device *dev)
1244 {
1245         struct tsi108_prv_data *data = netdev_priv(dev);
1246         u32 i = 0;
1247         u16 phyval = 0;
1248         unsigned long flags;
1249
1250         spin_lock_irqsave(&phy_lock, flags);
1251
1252         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1253         while (i--){
1254                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1255                         break;
1256                 udelay(10);
1257         }
1258         if (i == 0)
1259                 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1260
1261 #if (TSI108_PHY_TYPE == PHY_BCM54XX)    /* Broadcom BCM54xx PHY */
1262         tsi108_write_mii(data, 0x09, 0x0300);
1263         tsi108_write_mii(data, 0x10, 0x1020);
1264         tsi108_write_mii(data, 0x1c, 0x8c00);
1265 #endif
1266
1267         tsi108_write_mii(data,
1268                          MII_BMCR,
1269                          BMCR_ANENABLE | BMCR_ANRESTART);
1270         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1271                 cpu_relax();
1272
1273         /* Set G/MII mode and receive clock select in TBI control #2.  The
1274          * second port won't work if this isn't done, even though we don't
1275          * use TBI mode.
1276          */
1277
1278         tsi108_write_tbi(data, 0x11, 0x30);
1279
1280         /* FIXME: It seems to take more than 2 back-to-back reads to the
1281          * PHY_STAT register before the link up status bit is set.
1282          */
1283
1284         data->link_up = 1;
1285
1286         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1287                  BMSR_LSTATUS)) {
1288                 if (i++ > (MII_READ_DELAY / 10)) {
1289                         data->link_up = 0;
1290                         break;
1291                 }
1292                 spin_unlock_irqrestore(&phy_lock, flags);
1293                 msleep(10);
1294                 spin_lock_irqsave(&phy_lock, flags);
1295         }
1296
1297         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1298         data->phy_ok = 1;
1299         data->init_media = 1;
1300         spin_unlock_irqrestore(&phy_lock, flags);
1301 }
1302
1303 static void tsi108_kill_phy(struct net_device *dev)
1304 {
1305         struct tsi108_prv_data *data = netdev_priv(dev);
1306         unsigned long flags;
1307
1308         spin_lock_irqsave(&phy_lock, flags);
1309         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1310         data->phy_ok = 0;
1311         spin_unlock_irqrestore(&phy_lock, flags);
1312 }
1313
1314 static int tsi108_open(struct net_device *dev)
1315 {
1316         int i;
1317         struct tsi108_prv_data *data = netdev_priv(dev);
1318         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1319         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1320
1321         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1322         if (i != 0) {
1323                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1324                        data->id, data->irq_num);
1325                 return i;
1326         } else {
1327                 dev->irq = data->irq_num;
1328                 printk(KERN_NOTICE
1329                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1330                        data->id, dev->irq, dev->name);
1331         }
1332
1333         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1334                         &data->rxdma, GFP_KERNEL);
1335
1336         if (!data->rxring) {
1337                 printk(KERN_DEBUG
1338                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1339                 return -ENOMEM;
1340         } else {
1341                 memset(data->rxring, 0, rxring_size);
1342         }
1343
1344         data->txring = dma_alloc_coherent(NULL, txring_size,
1345                         &data->txdma, GFP_KERNEL);
1346
1347         if (!data->txring) {
1348                 printk(KERN_DEBUG
1349                        "TSI108_ETH: failed to allocate memory for txring!\n");
1350                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1351                 return -ENOMEM;
1352         } else {
1353                 memset(data->txring, 0, txring_size);
1354         }
1355
1356         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1357                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1358                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1359                 data->rxring[i].vlan = 0;
1360         }
1361
1362         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1363
1364         data->rxtail = 0;
1365         data->rxhead = 0;
1366
1367         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1368                 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1369
1370                 if (!skb) {
1371                         /* Bah.  No memory for now, but maybe we'll get
1372                          * some more later.
1373                          * For now, we'll live with the smaller ring.
1374                          */
1375                         printk(KERN_WARNING
1376                                "%s: Could only allocate %d receive skb(s).\n",
1377                                dev->name, i);
1378                         data->rxhead = i;
1379                         break;
1380                 }
1381
1382                 data->rxskbs[i] = skb;
1383                 /* Align the payload on a 4-byte boundary */
1384                 skb_reserve(skb, 2);
1385                 data->rxskbs[i] = skb;
1386                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1387                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1388         }
1389
1390         data->rxfree = i;
1391         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1392
1393         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1394                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1395                 data->txring[i].misc = 0;
1396         }
1397
1398         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1399         data->txtail = 0;
1400         data->txhead = 0;
1401         data->txfree = TSI108_TXRING_LEN;
1402         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1403         tsi108_init_phy(dev);
1404
1405         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1406         mod_timer(&data->timer, jiffies + 1);
1407
1408         tsi108_restart_rx(data, dev);
1409
1410         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1411
1412         TSI_WRITE(TSI108_EC_INTMASK,
1413                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1414                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1415                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1416                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1417
1418         TSI_WRITE(TSI108_MAC_CFG1,
1419                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1420         netif_start_queue(dev);
1421         return 0;
1422 }
1423
1424 static int tsi108_close(struct net_device *dev)
1425 {
1426         struct tsi108_prv_data *data = netdev_priv(dev);
1427
1428         netif_stop_queue(dev);
1429
1430         del_timer_sync(&data->timer);
1431
1432         tsi108_stop_ethernet(dev);
1433         tsi108_kill_phy(dev);
1434         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1435         TSI_WRITE(TSI108_MAC_CFG1, 0);
1436
1437         /* Check for any pending TX packets, and drop them. */
1438
1439         while (!data->txfree || data->txhead != data->txtail) {
1440                 int tx = data->txtail;
1441                 struct sk_buff *skb;
1442                 skb = data->txskbs[tx];
1443                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1444                 data->txfree++;
1445                 dev_kfree_skb(skb);
1446         }
1447
1448         synchronize_irq(data->irq_num);
1449         free_irq(data->irq_num, dev);
1450
1451         /* Discard the RX ring. */
1452
1453         while (data->rxfree) {
1454                 int rx = data->rxtail;
1455                 struct sk_buff *skb;
1456
1457                 skb = data->rxskbs[rx];
1458                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1459                 data->rxfree--;
1460                 dev_kfree_skb(skb);
1461         }
1462
1463         dma_free_coherent(0,
1464                             TSI108_RXRING_LEN * sizeof(rx_desc),
1465                             data->rxring, data->rxdma);
1466         dma_free_coherent(0,
1467                             TSI108_TXRING_LEN * sizeof(tx_desc),
1468                             data->txring, data->txdma);
1469
1470         return 0;
1471 }
1472
1473 static void tsi108_init_mac(struct net_device *dev)
1474 {
1475         struct tsi108_prv_data *data = netdev_priv(dev);
1476
1477         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1478                              TSI108_MAC_CFG2_PADCRC);
1479
1480         TSI_WRITE(TSI108_EC_TXTHRESH,
1481                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1482                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1483
1484         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1485                              ~(TSI108_STAT_CARRY1_RXBYTES |
1486                                TSI108_STAT_CARRY1_RXPKTS |
1487                                TSI108_STAT_CARRY1_RXFCS |
1488                                TSI108_STAT_CARRY1_RXMCAST |
1489                                TSI108_STAT_CARRY1_RXALIGN |
1490                                TSI108_STAT_CARRY1_RXLENGTH |
1491                                TSI108_STAT_CARRY1_RXRUNT |
1492                                TSI108_STAT_CARRY1_RXJUMBO |
1493                                TSI108_STAT_CARRY1_RXFRAG |
1494                                TSI108_STAT_CARRY1_RXJABBER |
1495                                TSI108_STAT_CARRY1_RXDROP));
1496
1497         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1498                              ~(TSI108_STAT_CARRY2_TXBYTES |
1499                                TSI108_STAT_CARRY2_TXPKTS |
1500                                TSI108_STAT_CARRY2_TXEXDEF |
1501                                TSI108_STAT_CARRY2_TXEXCOL |
1502                                TSI108_STAT_CARRY2_TXTCOL |
1503                                TSI108_STAT_CARRY2_TXPAUSE));
1504
1505         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1506         TSI_WRITE(TSI108_MAC_CFG1, 0);
1507
1508         TSI_WRITE(TSI108_EC_RXCFG,
1509                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1510
1511         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1512                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1513                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1514                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1515
1516         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1517                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1518                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1519                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1520
1521         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1522                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1523                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1524                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1525
1526         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1527                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1528                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1529                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1530
1531         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1532 }
1533
1534 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1535 {
1536         struct tsi108_prv_data *data = netdev_priv(dev);
1537         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1538 }
1539
1540 static int
1541 tsi108_init_one(struct platform_device *pdev)
1542 {
1543         struct net_device *dev = NULL;
1544         struct tsi108_prv_data *data = NULL;
1545         hw_info *einfo;
1546         int err = 0;
1547
1548         einfo = pdev->dev.platform_data;
1549
1550         if (NULL == einfo) {
1551                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1552                        pdev->id);
1553                 return -ENODEV;
1554         }
1555
1556         /* Create an ethernet device instance */
1557
1558         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1559         if (!dev) {
1560                 printk("tsi108_eth: Could not allocate a device structure\n");
1561                 return -ENOMEM;
1562         }
1563
1564         printk("tsi108_eth%d: probe...\n", pdev->id);
1565         data = netdev_priv(dev);
1566
1567         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1568                         pdev->id, einfo->regs, einfo->phyregs,
1569                         einfo->phy, einfo->irq_num);
1570
1571         data->regs = ioremap(einfo->regs, 0x400);
1572         if (NULL == data->regs) {
1573                 err = -ENOMEM;
1574                 goto regs_fail;
1575         }
1576
1577         data->phyregs = ioremap(einfo->phyregs, 0x400);
1578         if (NULL == data->phyregs) {
1579                 err = -ENOMEM;
1580                 goto regs_fail;
1581         }
1582 /* MII setup */
1583         data->mii_if.dev = dev;
1584         data->mii_if.mdio_read = tsi108_mdio_read;
1585         data->mii_if.mdio_write = tsi108_mdio_write;
1586         data->mii_if.phy_id = einfo->phy;
1587         data->mii_if.phy_id_mask = 0x1f;
1588         data->mii_if.reg_num_mask = 0x1f;
1589         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1590
1591         data->phy = einfo->phy;
1592         data->irq_num = einfo->irq_num;
1593         data->id = pdev->id;
1594         dev->open = tsi108_open;
1595         dev->stop = tsi108_close;
1596         dev->hard_start_xmit = tsi108_send_packet;
1597         dev->set_mac_address = tsi108_set_mac;
1598         dev->set_multicast_list = tsi108_set_rx_mode;
1599         dev->get_stats = tsi108_get_stats;
1600         dev->poll = tsi108_poll;
1601         dev->do_ioctl = tsi108_do_ioctl;
1602         dev->weight = 64;  /* 64 is more suitable for GigE interface - klai */
1603
1604         /* Apparently, the Linux networking code won't use scatter-gather
1605          * if the hardware doesn't do checksums.  However, it's faster
1606          * to checksum in place and use SG, as (among other reasons)
1607          * the cache won't be dirtied (which then has to be flushed
1608          * before DMA).  The checksumming is done by the driver (via
1609          * a new function skb_csum_dev() in net/core/skbuff.c).
1610          */
1611
1612         dev->features = NETIF_F_HIGHDMA;
1613         SET_MODULE_OWNER(dev);
1614
1615         spin_lock_init(&data->txlock);
1616         spin_lock_init(&data->misclock);
1617
1618         tsi108_reset_ether(data);
1619         tsi108_kill_phy(dev);
1620
1621         if ((err = tsi108_get_mac(dev)) != 0) {
1622                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1623                        dev->name);
1624                 goto register_fail;
1625         }
1626
1627         tsi108_init_mac(dev);
1628         err = register_netdev(dev);
1629         if (err) {
1630                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1631                                 dev->name);
1632                 goto register_fail;
1633         }
1634
1635         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: "
1636                "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
1637                dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1638                dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1639 #ifdef DEBUG
1640         data->msg_enable = DEBUG;
1641         dump_eth_one(dev);
1642 #endif
1643
1644         return 0;
1645
1646 register_fail:
1647         iounmap(data->regs);
1648         iounmap(data->phyregs);
1649
1650 regs_fail:
1651         free_netdev(dev);
1652         return err;
1653 }
1654
1655 /* There's no way to either get interrupts from the PHY when
1656  * something changes, or to have the Tsi108 automatically communicate
1657  * with the PHY to reconfigure itself.
1658  *
1659  * Thus, we have to do it using a timer.
1660  */
1661
1662 static void tsi108_timed_checker(unsigned long dev_ptr)
1663 {
1664         struct net_device *dev = (struct net_device *)dev_ptr;
1665         struct tsi108_prv_data *data = netdev_priv(dev);
1666
1667         tsi108_check_phy(dev);
1668         tsi108_check_rxring(dev);
1669         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1670 }
1671
1672 static int tsi108_ether_init(void)
1673 {
1674         int ret;
1675         ret = platform_driver_register (&tsi_eth_driver);
1676         if (ret < 0){
1677                 printk("tsi108_ether_init: error initializing ethernet "
1678                        "device\n");
1679                 return ret;
1680         }
1681         return 0;
1682 }
1683
1684 static int tsi108_ether_remove(struct platform_device *pdev)
1685 {
1686         struct net_device *dev = platform_get_drvdata(pdev);
1687         struct tsi108_prv_data *priv = netdev_priv(dev);
1688
1689         unregister_netdev(dev);
1690         tsi108_stop_ethernet(dev);
1691         platform_set_drvdata(pdev, NULL);
1692         iounmap(priv->regs);
1693         iounmap(priv->phyregs);
1694         free_netdev(dev);
1695
1696         return 0;
1697 }
1698 static void tsi108_ether_exit(void)
1699 {
1700         platform_driver_unregister(&tsi_eth_driver);
1701 }
1702
1703 module_init(tsi108_ether_init);
1704 module_exit(tsi108_ether_exit);
1705
1706 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1707 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1708 MODULE_LICENSE("GPL");