ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.6.tar.bz2
[linux-2.6.git] / drivers / sbus / char / bbc_envctrl.c
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2  * bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <asm/oplib.h>
11 #include <asm/ebus.h>
12 #define __KERNEL_SYSCALLS__
13 static int errno;
14 #include <asm/unistd.h>
15
16 #include "bbc_i2c.h"
17 #include "max1617.h"
18
19 #undef ENVCTRL_TRACE
20
21 /* WARNING: Making changes to this driver is very dangerous.
22  *          If you misprogram the sensor chips they can
23  *          cut the power on you instantly.
24  */
25
26 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
27  * Both are implemented using max1617 i2c devices.  Each max1617
28  * monitors 2 temperatures, one for one of the cpu dies and the other
29  * for the ambient temperature.
30  *
31  * The max1617 is capable of being programmed with power-off
32  * temperature values, one low limit and one high limit.  These
33  * can be controlled independently for the cpu or ambient temperature.
34  * If a limit is violated, the power is simply shut off.  The frequency
35  * with which the max1617 does temperature sampling can be controlled
36  * as well.
37  *
38  * Three fans exist inside the machine, all three are controlled with
39  * an i2c digital to analog converter.  There is a fan directed at the
40  * two processor slots, another for the rest of the enclosure, and the
41  * third is for the power supply.  The first two fans may be speed
42  * controlled by changing the voltage fed to them.  The third fan may
43  * only be completely off or on.  The third fan is meant to only be
44  * disabled/enabled when entering/exiting the lowest power-saving
45  * mode of the machine.
46  *
47  * An environmental control kernel thread periodically monitors all
48  * temperature sensors.  Based upon the samples it will adjust the
49  * fan speeds to try and keep the system within a certain temperature
50  * range (the goal being to make the fans as quiet as possible without
51  * allowing the system to get too hot).
52  *
53  * If the temperature begins to rise/fall outside of the acceptable
54  * operating range, a periodic warning will be sent to the kernel log.
55  * The fans will be put on full blast to attempt to deal with this
56  * situation.  After exceeding the acceptable operating range by a
57  * certain threshold, the kernel thread will shut down the system.
58  * Here, the thread is attempting to shut the machine down cleanly
59  * before the hardware based power-off event is triggered.
60  */
61
62 /* These settings are in Celsius.  We use these defaults only
63  * if we cannot interrogate the cpu-fru SEEPROM.
64  */
65 struct temp_limits {
66         s8 high_pwroff, high_shutdown, high_warn;
67         s8 low_warn, low_shutdown, low_pwroff;
68 };
69
70 static struct temp_limits cpu_temp_limits[2] = {
71         { 100, 85, 80, 5, -5, -10 },
72         { 100, 85, 80, 5, -5, -10 },
73 };
74
75 static struct temp_limits amb_temp_limits[2] = {
76         { 65, 55, 40, 5, -5, -10 },
77         { 65, 55, 40, 5, -5, -10 },
78 };
79
80 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
81
82 struct bbc_cpu_temperature {
83         struct bbc_cpu_temperature      *next;
84
85         struct bbc_i2c_client           *client;
86         int                             index;
87
88         /* Current readings, and history. */
89         s8                              curr_cpu_temp;
90         s8                              curr_amb_temp;
91         s8                              prev_cpu_temp;
92         s8                              prev_amb_temp;
93         s8                              avg_cpu_temp;
94         s8                              avg_amb_temp;
95
96         int                             sample_tick;
97
98         enum fan_action                 fan_todo[2];
99 #define FAN_AMBIENT     0
100 #define FAN_CPU         1
101 };
102
103 struct bbc_cpu_temperature *all_bbc_temps;
104
105 struct bbc_fan_control {
106         struct bbc_fan_control  *next;
107
108         struct bbc_i2c_client   *client;
109         int                     index;
110
111         int                     psupply_fan_on;
112         int                     cpu_fan_speed;
113         int                     system_fan_speed;
114 };
115
116 struct bbc_fan_control *all_bbc_fans;
117
118 #define CPU_FAN_REG     0xf0
119 #define SYS_FAN_REG     0xf2
120 #define PSUPPLY_FAN_REG 0xf4
121
122 #define FAN_SPEED_MIN   0x0c
123 #define FAN_SPEED_MAX   0x3f
124
125 #define PSUPPLY_FAN_ON  0x1f
126 #define PSUPPLY_FAN_OFF 0x00
127
128 static void set_fan_speeds(struct bbc_fan_control *fp)
129 {
130         /* Put temperatures into range so we don't mis-program
131          * the hardware.
132          */
133         if (fp->cpu_fan_speed < FAN_SPEED_MIN)
134                 fp->cpu_fan_speed = FAN_SPEED_MIN;
135         if (fp->cpu_fan_speed > FAN_SPEED_MAX)
136                 fp->cpu_fan_speed = FAN_SPEED_MAX;
137         if (fp->system_fan_speed < FAN_SPEED_MIN)
138                 fp->system_fan_speed = FAN_SPEED_MIN;
139         if (fp->system_fan_speed > FAN_SPEED_MAX)
140                 fp->system_fan_speed = FAN_SPEED_MAX;
141 #ifdef ENVCTRL_TRACE
142         printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
143                fp->index,
144                fp->cpu_fan_speed, fp->system_fan_speed);
145 #endif
146
147         bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
148         bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
149         bbc_i2c_writeb(fp->client,
150                        (fp->psupply_fan_on ?
151                         PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
152                        PSUPPLY_FAN_REG);
153 }
154
155 static void get_current_temps(struct bbc_cpu_temperature *tp)
156 {
157         tp->prev_amb_temp = tp->curr_amb_temp;
158         bbc_i2c_readb(tp->client,
159                       (unsigned char *) &tp->curr_amb_temp,
160                       MAX1617_AMB_TEMP);
161         tp->prev_cpu_temp = tp->curr_cpu_temp;
162         bbc_i2c_readb(tp->client,
163                       (unsigned char *) &tp->curr_cpu_temp,
164                       MAX1617_CPU_TEMP);
165 #ifdef ENVCTRL_TRACE
166         printk("temp%d: cpu(%d C) amb(%d C)\n",
167                tp->index,
168                (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
169 #endif
170 }
171
172
173 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
174 {
175         static int shutting_down = 0;
176         static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
177         char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
178         char *type = "???";
179         s8 val = -1;
180
181         if (shutting_down != 0)
182                 return;
183
184         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
185             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
186                 type = "ambient";
187                 val = tp->curr_amb_temp;
188         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
189                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
190                 type = "CPU";
191                 val = tp->curr_cpu_temp;
192         }
193
194         printk(KERN_CRIT "temp%d: Outside of safe %s "
195                "operating temperature, %d C.\n",
196                tp->index, type, val);
197
198         printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
199
200         shutting_down = 1;
201         if (execve("/sbin/shutdown", argv, envp) < 0)
202                 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
203 }
204
205 #define WARN_INTERVAL   (30 * HZ)
206
207 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
208 {
209         int ret = 0;
210
211         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
212                 if (tp->curr_amb_temp >=
213                     amb_temp_limits[tp->index].high_warn) {
214                         printk(KERN_WARNING "temp%d: "
215                                "Above safe ambient operating temperature, %d C.\n",
216                                tp->index, (int) tp->curr_amb_temp);
217                         ret = 1;
218                 } else if (tp->curr_amb_temp <
219                            amb_temp_limits[tp->index].low_warn) {
220                         printk(KERN_WARNING "temp%d: "
221                                "Below safe ambient operating temperature, %d C.\n",
222                                tp->index, (int) tp->curr_amb_temp);
223                         ret = 1;
224                 }
225                 if (ret)
226                         *last_warn = jiffies;
227         } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
228                    tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
229                 ret = 1;
230
231         /* Now check the shutdown limits. */
232         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
233             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
234                 do_envctrl_shutdown(tp);
235                 ret = 1;
236         }
237
238         if (ret) {
239                 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
240         } else if ((tick & (8 - 1)) == 0) {
241                 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
242                 s8 amb_goal_lo;
243
244                 amb_goal_lo = amb_goal_hi - 3;
245
246                 /* We do not try to avoid 'too cold' events.  Basically we
247                  * only try to deal with over-heating and fan noise reduction.
248                  */
249                 if (tp->avg_amb_temp < amb_goal_hi) {
250                         if (tp->avg_amb_temp >= amb_goal_lo)
251                                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
252                         else
253                                 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
254                 } else {
255                         tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
256                 }
257         } else {
258                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
259         }
260 }
261
262 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
263 {
264         int ret = 0;
265
266         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
267                 if (tp->curr_cpu_temp >=
268                     cpu_temp_limits[tp->index].high_warn) {
269                         printk(KERN_WARNING "temp%d: "
270                                "Above safe CPU operating temperature, %d C.\n",
271                                tp->index, (int) tp->curr_cpu_temp);
272                         ret = 1;
273                 } else if (tp->curr_cpu_temp <
274                            cpu_temp_limits[tp->index].low_warn) {
275                         printk(KERN_WARNING "temp%d: "
276                                "Below safe CPU operating temperature, %d C.\n",
277                                tp->index, (int) tp->curr_cpu_temp);
278                         ret = 1;
279                 }
280                 if (ret)
281                         *last_warn = jiffies;
282         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
283                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
284                 ret = 1;
285
286         /* Now check the shutdown limits. */
287         if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
288             tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
289                 do_envctrl_shutdown(tp);
290                 ret = 1;
291         }
292
293         if (ret) {
294                 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
295         } else if ((tick & (8 - 1)) == 0) {
296                 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
297                 s8 cpu_goal_lo;
298
299                 cpu_goal_lo = cpu_goal_hi - 3;
300
301                 /* We do not try to avoid 'too cold' events.  Basically we
302                  * only try to deal with over-heating and fan noise reduction.
303                  */
304                 if (tp->avg_cpu_temp < cpu_goal_hi) {
305                         if (tp->avg_cpu_temp >= cpu_goal_lo)
306                                 tp->fan_todo[FAN_CPU] = FAN_SAME;
307                         else
308                                 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
309                 } else {
310                         tp->fan_todo[FAN_CPU] = FAN_FASTER;
311                 }
312         } else {
313                 tp->fan_todo[FAN_CPU] = FAN_SAME;
314         }
315 }
316
317 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
318 {
319         tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
320         tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
321
322         analyze_ambient_temp(tp, last_warn, tp->sample_tick);
323         analyze_cpu_temp(tp, last_warn, tp->sample_tick);
324
325         tp->sample_tick++;
326 }
327
328 static enum fan_action prioritize_fan_action(int which_fan)
329 {
330         struct bbc_cpu_temperature *tp;
331         enum fan_action decision = FAN_STATE_MAX;
332
333         /* Basically, prioritize what the temperature sensors
334          * recommend we do, and perform that action on all the
335          * fans.
336          */
337         for (tp = all_bbc_temps; tp; tp = tp->next) {
338                 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
339                         decision = FAN_FULLBLAST;
340                         break;
341                 }
342                 if (tp->fan_todo[which_fan] == FAN_SAME &&
343                     decision != FAN_FASTER)
344                         decision = FAN_SAME;
345                 else if (tp->fan_todo[which_fan] == FAN_FASTER)
346                         decision = FAN_FASTER;
347                 else if (decision != FAN_FASTER &&
348                          decision != FAN_SAME &&
349                          tp->fan_todo[which_fan] == FAN_SLOWER)
350                         decision = FAN_SLOWER;
351         }
352         if (decision == FAN_STATE_MAX)
353                 decision = FAN_SAME;
354
355         return decision;
356 }
357
358 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
359 {
360         enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
361         int ret;
362
363         if (decision == FAN_SAME)
364                 return 0;
365
366         ret = 1;
367         if (decision == FAN_FULLBLAST) {
368                 if (fp->system_fan_speed >= FAN_SPEED_MAX)
369                         ret = 0;
370                 else
371                         fp->system_fan_speed = FAN_SPEED_MAX;
372         } else {
373                 if (decision == FAN_FASTER) {
374                         if (fp->system_fan_speed >= FAN_SPEED_MAX)
375                                 ret = 0;
376                         else
377                                 fp->system_fan_speed += 2;
378                 } else {
379                         int orig_speed = fp->system_fan_speed;
380
381                         if (orig_speed <= FAN_SPEED_MIN ||
382                             orig_speed <= (fp->cpu_fan_speed - 3))
383                                 ret = 0;
384                         else
385                                 fp->system_fan_speed -= 1;
386                 }
387         }
388
389         return ret;
390 }
391
392 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
393 {
394         enum fan_action decision = prioritize_fan_action(FAN_CPU);
395         int ret;
396
397         if (decision == FAN_SAME)
398                 return 0;
399
400         ret = 1;
401         if (decision == FAN_FULLBLAST) {
402                 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
403                         ret = 0;
404                 else
405                         fp->cpu_fan_speed = FAN_SPEED_MAX;
406         } else {
407                 if (decision == FAN_FASTER) {
408                         if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
409                                 ret = 0;
410                         else {
411                                 fp->cpu_fan_speed += 2;
412                                 if (fp->system_fan_speed <
413                                     (fp->cpu_fan_speed - 3))
414                                         fp->system_fan_speed =
415                                                 fp->cpu_fan_speed - 3;
416                         }
417                 } else {
418                         if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
419                                 ret = 0;
420                         else
421                                 fp->cpu_fan_speed -= 1;
422                 }
423         }
424
425         return ret;
426 }
427
428 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
429 {
430         int new;
431
432         new  = maybe_new_ambient_fan_speed(fp);
433         new |= maybe_new_cpu_fan_speed(fp);
434
435         if (new)
436                 set_fan_speeds(fp);
437 }
438
439 static void fans_full_blast(void)
440 {
441         struct bbc_fan_control *fp;
442
443         /* Since we will not be monitoring things anymore, put
444          * the fans on full blast.
445          */
446         for (fp = all_bbc_fans; fp; fp = fp->next) {
447                 fp->cpu_fan_speed = FAN_SPEED_MAX;
448                 fp->system_fan_speed = FAN_SPEED_MAX;
449                 fp->psupply_fan_on = 1;
450                 set_fan_speeds(fp);
451         }
452 }
453
454 #define POLL_INTERVAL   (5 * HZ)
455 static unsigned long last_warning_jiffies;
456 static struct task_struct *kenvctrld_task;
457
458 static int kenvctrld(void *__unused)
459 {
460         daemonize("kenvctrld");
461         allow_signal(SIGKILL);
462         kenvctrld_task = current;
463
464         printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
465         last_warning_jiffies = jiffies - WARN_INTERVAL;
466         for (;;) {
467                 struct bbc_cpu_temperature *tp;
468                 struct bbc_fan_control *fp;
469
470                 current->state = TASK_INTERRUPTIBLE;
471                 schedule_timeout(POLL_INTERVAL);
472                 if (signal_pending(current))
473                         break;
474
475                 for (tp = all_bbc_temps; tp; tp = tp->next) {
476                         get_current_temps(tp);
477                         analyze_temps(tp, &last_warning_jiffies);
478                 }
479                 for (fp = all_bbc_fans; fp; fp = fp->next)
480                         maybe_new_fan_speeds(fp);
481         }
482         printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
483
484         fans_full_blast();
485
486         return 0;
487 }
488
489 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
490 {
491         struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
492
493         if (!tp)
494                 return;
495         memset(tp, 0, sizeof(*tp));
496         tp->client = bbc_i2c_attach(echild);
497         if (!tp->client) {
498                 kfree(tp);
499                 return;
500         }
501
502         tp->index = temp_idx;
503         {
504                 struct bbc_cpu_temperature **tpp = &all_bbc_temps;
505                 while (*tpp)
506                         tpp = &((*tpp)->next);
507                 tp->next = NULL;
508                 *tpp = tp;
509         }
510
511         /* Tell it to convert once every 5 seconds, clear all cfg
512          * bits.
513          */
514         bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
515         bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
516
517         /* Program the hard temperature limits into the chip. */
518         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
519                        MAX1617_WR_AMB_HIGHLIM);
520         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
521                        MAX1617_WR_AMB_LOWLIM);
522         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
523                        MAX1617_WR_CPU_HIGHLIM);
524         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
525                        MAX1617_WR_CPU_LOWLIM);
526
527         get_current_temps(tp);
528         tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
529         tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
530
531         tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
532         tp->fan_todo[FAN_CPU] = FAN_SAME;
533 }
534
535 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
536 {
537         struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
538
539         if (!fp)
540                 return;
541         memset(fp, 0, sizeof(*fp));
542         fp->client = bbc_i2c_attach(echild);
543         if (!fp->client) {
544                 kfree(fp);
545                 return;
546         }
547
548         fp->index = fan_idx;
549
550         {
551                 struct bbc_fan_control **fpp = &all_bbc_fans;
552                 while (*fpp)
553                         fpp = &((*fpp)->next);
554                 fp->next = NULL;
555                 *fpp = fp;
556         }
557
558         /* The i2c device controlling the fans is write-only.
559          * So the only way to keep track of the current power
560          * level fed to the fans is via software.  Choose half
561          * power for cpu/system and 'on' fo the powersupply fan
562          * and set it now.
563          */
564         fp->psupply_fan_on = 1;
565         fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
566         fp->cpu_fan_speed += FAN_SPEED_MIN;
567         fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
568         fp->system_fan_speed += FAN_SPEED_MIN;
569
570         set_fan_speeds(fp);
571 }
572
573 int bbc_envctrl_init(void)
574 {
575         struct linux_ebus_child *echild;
576         int temp_index = 0;
577         int fan_index = 0;
578         int devidx = 0;
579         int err = 0;
580
581         while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
582                 if (!strcmp(echild->prom_name, "temperature"))
583                         attach_one_temp(echild, temp_index++);
584                 if (!strcmp(echild->prom_name, "fan-control"))
585                         attach_one_fan(echild, fan_index++);
586         }
587         if (temp_index != 0 && fan_index != 0)
588                 err = kernel_thread(kenvctrld, NULL, CLONE_FS | CLONE_FILES);
589         return err;
590 }
591
592 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
593 {
594         bbc_i2c_detach(tp->client);
595         kfree(tp);
596 }
597
598 static void destroy_one_fan(struct bbc_fan_control *fp)
599 {
600         bbc_i2c_detach(fp->client);
601         kfree(fp);
602 }
603
604 void bbc_envctrl_cleanup(void)
605 {
606         struct bbc_cpu_temperature *tp;
607         struct bbc_fan_control *fp;
608
609         if (kenvctrld_task != NULL) {
610                 force_sig(SIGKILL, kenvctrld_task);
611                 for (;;) {
612                         struct task_struct *p;
613                         int found = 0;
614
615                         read_lock(&tasklist_lock);
616                         for_each_process(p) {
617                                 if (p == kenvctrld_task) {
618                                         found = 1;
619                                         break;
620                                 }
621                         }
622                         read_unlock(&tasklist_lock);
623                         if (!found)
624                                 break;
625                         current->state = TASK_INTERRUPTIBLE;
626                         schedule_timeout(HZ);
627                         current->state = TASK_RUNNING;
628                 }
629                 kenvctrld_task = NULL;
630         }
631
632         tp = all_bbc_temps;
633         while (tp != NULL) {
634                 struct bbc_cpu_temperature *next = tp->next;
635                 destroy_one_temp(tp);
636                 tp = next;
637         }
638         all_bbc_temps = NULL;
639
640         fp = all_bbc_fans;
641         while (fp != NULL) {
642                 struct bbc_fan_control *next = fp->next;
643                 destroy_one_fan(fp);
644                 fp = next;
645         }
646         all_bbc_fans = NULL;
647 }