vserver 1.9.5.x5
[linux-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42
43 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
44 static void invalidate_bh_lrus(void);
45
46 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
47
48 inline void
49 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
50 {
51         bh->b_end_io = handler;
52         bh->b_private = private;
53 }
54
55 static int sync_buffer(void *word)
56 {
57         struct block_device *bd;
58         struct buffer_head *bh
59                 = container_of(word, struct buffer_head, b_state);
60
61         smp_mb();
62         bd = bh->b_bdev;
63         if (bd)
64                 blk_run_address_space(bd->bd_inode->i_mapping);
65         io_schedule();
66         return 0;
67 }
68
69 void fastcall __lock_buffer(struct buffer_head *bh)
70 {
71         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
72                                                         TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void fastcall unlock_buffer(struct buffer_head *bh)
77 {
78         clear_buffer_locked(bh);
79         smp_mb__after_clear_bit();
80         wake_up_bit(&bh->b_state, BH_Lock);
81 }
82
83 /*
84  * Block until a buffer comes unlocked.  This doesn't stop it
85  * from becoming locked again - you have to lock it yourself
86  * if you want to preserve its state.
87  */
88 void __wait_on_buffer(struct buffer_head * bh)
89 {
90         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
91 }
92
93 static void
94 __clear_page_buffers(struct page *page)
95 {
96         ClearPagePrivate(page);
97         page->private = 0;
98         page_cache_release(page);
99 }
100
101 static void buffer_io_error(struct buffer_head *bh)
102 {
103         char b[BDEVNAME_SIZE];
104
105         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
106                         bdevname(bh->b_bdev, b),
107                         (unsigned long long)bh->b_blocknr);
108 }
109
110 /*
111  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
112  * unlock the buffer. This is what ll_rw_block uses too.
113  */
114 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
115 {
116         if (uptodate) {
117                 set_buffer_uptodate(bh);
118         } else {
119                 /* This happens, due to failed READA attempts. */
120                 clear_buffer_uptodate(bh);
121         }
122         unlock_buffer(bh);
123         put_bh(bh);
124 }
125
126 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
127 {
128         char b[BDEVNAME_SIZE];
129
130         if (uptodate) {
131                 set_buffer_uptodate(bh);
132         } else {
133                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
134                         buffer_io_error(bh);
135                         printk(KERN_WARNING "lost page write due to "
136                                         "I/O error on %s\n",
137                                        bdevname(bh->b_bdev, b));
138                 }
139                 set_buffer_write_io_error(bh);
140                 clear_buffer_uptodate(bh);
141         }
142         unlock_buffer(bh);
143         put_bh(bh);
144 }
145
146 /*
147  * Write out and wait upon all the dirty data associated with a block
148  * device via its mapping.  Does not take the superblock lock.
149  */
150 int sync_blockdev(struct block_device *bdev)
151 {
152         int ret = 0;
153
154         if (bdev) {
155                 int err;
156
157                 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
158                 err = filemap_fdatawait(bdev->bd_inode->i_mapping);
159                 if (!ret)
160                         ret = err;
161         }
162         return ret;
163 }
164 EXPORT_SYMBOL(sync_blockdev);
165
166 /*
167  * Write out and wait upon all dirty data associated with this
168  * superblock.  Filesystem data as well as the underlying block
169  * device.  Takes the superblock lock.
170  */
171 int fsync_super(struct super_block *sb)
172 {
173         sync_inodes_sb(sb, 0);
174         DQUOT_SYNC(sb);
175         lock_super(sb);
176         if (sb->s_dirt && sb->s_op->write_super)
177                 sb->s_op->write_super(sb);
178         unlock_super(sb);
179         if (sb->s_op->sync_fs)
180                 sb->s_op->sync_fs(sb, 1);
181         sync_blockdev(sb->s_bdev);
182         sync_inodes_sb(sb, 1);
183
184         return sync_blockdev(sb->s_bdev);
185 }
186
187 /*
188  * Write out and wait upon all dirty data associated with this
189  * device.   Filesystem data as well as the underlying block
190  * device.  Takes the superblock lock.
191  */
192 int fsync_bdev(struct block_device *bdev)
193 {
194         struct super_block *sb = get_super(bdev);
195         if (sb) {
196                 int res = fsync_super(sb);
197                 drop_super(sb);
198                 return res;
199         }
200         return sync_blockdev(bdev);
201 }
202
203 /**
204  * freeze_bdev  --  lock a filesystem and force it into a consistent state
205  * @bdev:       blockdevice to lock
206  *
207  * This takes the block device bd_mount_sem to make sure no new mounts
208  * happen on bdev until thaw_bdev() is called.
209  * If a superblock is found on this device, we take the s_umount semaphore
210  * on it to make sure nobody unmounts until the snapshot creation is done.
211  */
212 struct super_block *freeze_bdev(struct block_device *bdev)
213 {
214         struct super_block *sb;
215
216         down(&bdev->bd_mount_sem);
217         sb = get_super(bdev);
218         if (sb && !(sb->s_flags & MS_RDONLY)) {
219                 sb->s_frozen = SB_FREEZE_WRITE;
220                 wmb();
221
222                 sync_inodes_sb(sb, 0);
223                 DQUOT_SYNC(sb);
224
225                 lock_super(sb);
226                 if (sb->s_dirt && sb->s_op->write_super)
227                         sb->s_op->write_super(sb);
228                 unlock_super(sb);
229
230                 if (sb->s_op->sync_fs)
231                         sb->s_op->sync_fs(sb, 1);
232
233                 sync_blockdev(sb->s_bdev);
234                 sync_inodes_sb(sb, 1);
235
236                 sb->s_frozen = SB_FREEZE_TRANS;
237                 wmb();
238
239                 sync_blockdev(sb->s_bdev);
240
241                 if (sb->s_op->write_super_lockfs)
242                         sb->s_op->write_super_lockfs(sb);
243         }
244
245         sync_blockdev(bdev);
246         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
247 }
248 EXPORT_SYMBOL(freeze_bdev);
249
250 /**
251  * thaw_bdev  -- unlock filesystem
252  * @bdev:       blockdevice to unlock
253  * @sb:         associated superblock
254  *
255  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
256  */
257 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
258 {
259         if (sb) {
260                 BUG_ON(sb->s_bdev != bdev);
261
262                 if (sb->s_op->unlockfs)
263                         sb->s_op->unlockfs(sb);
264                 sb->s_frozen = SB_UNFROZEN;
265                 wmb();
266                 wake_up(&sb->s_wait_unfrozen);
267                 drop_super(sb);
268         }
269
270         up(&bdev->bd_mount_sem);
271 }
272 EXPORT_SYMBOL(thaw_bdev);
273
274 /*
275  * sync everything.  Start out by waking pdflush, because that writes back
276  * all queues in parallel.
277  */
278 static void do_sync(unsigned long wait)
279 {
280         wakeup_bdflush(0);
281         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
282         DQUOT_SYNC(NULL);
283         sync_supers();          /* Write the superblocks */
284         sync_filesystems(0);    /* Start syncing the filesystems */
285         sync_filesystems(wait); /* Waitingly sync the filesystems */
286         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
287         if (!wait)
288                 printk("Emergency Sync complete\n");
289         if (unlikely(laptop_mode))
290                 laptop_sync_completion();
291 }
292
293 asmlinkage long sys_sync(void)
294 {
295         do_sync(1);
296         return 0;
297 }
298
299 void emergency_sync(void)
300 {
301         pdflush_operation(do_sync, 0);
302 }
303
304 /*
305  * Generic function to fsync a file.
306  *
307  * filp may be NULL if called via the msync of a vma.
308  */
309  
310 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
311 {
312         struct inode * inode = dentry->d_inode;
313         struct super_block * sb;
314         int ret, err;
315
316         /* sync the inode to buffers */
317         ret = write_inode_now(inode, 0);
318
319         /* sync the superblock to buffers */
320         sb = inode->i_sb;
321         lock_super(sb);
322         if (sb->s_op->write_super)
323                 sb->s_op->write_super(sb);
324         unlock_super(sb);
325
326         /* .. finally sync the buffers to disk */
327         err = sync_blockdev(sb->s_bdev);
328         if (!ret)
329                 ret = err;
330         return ret;
331 }
332
333 asmlinkage long sys_fsync(unsigned int fd)
334 {
335         struct file * file;
336         struct address_space *mapping;
337         int ret, err;
338
339         ret = -EBADF;
340         file = fget(fd);
341         if (!file)
342                 goto out;
343
344         mapping = file->f_mapping;
345
346         ret = -EINVAL;
347         if (!file->f_op || !file->f_op->fsync) {
348                 /* Why?  We can still call filemap_fdatawrite */
349                 goto out_putf;
350         }
351
352         current->flags |= PF_SYNCWRITE;
353         ret = filemap_fdatawrite(mapping);
354
355         /*
356          * We need to protect against concurrent writers,
357          * which could cause livelocks in fsync_buffers_list
358          */
359         down(&mapping->host->i_sem);
360         err = file->f_op->fsync(file, file->f_dentry, 0);
361         if (!ret)
362                 ret = err;
363         up(&mapping->host->i_sem);
364         err = filemap_fdatawait(mapping);
365         if (!ret)
366                 ret = err;
367         current->flags &= ~PF_SYNCWRITE;
368
369 out_putf:
370         fput(file);
371 out:
372         return ret;
373 }
374
375 asmlinkage long sys_fdatasync(unsigned int fd)
376 {
377         struct file * file;
378         struct address_space *mapping;
379         int ret, err;
380
381         ret = -EBADF;
382         file = fget(fd);
383         if (!file)
384                 goto out;
385
386         ret = -EINVAL;
387         if (!file->f_op || !file->f_op->fsync)
388                 goto out_putf;
389
390         mapping = file->f_mapping;
391
392         current->flags |= PF_SYNCWRITE;
393         ret = filemap_fdatawrite(mapping);
394         down(&mapping->host->i_sem);
395         err = file->f_op->fsync(file, file->f_dentry, 1);
396         if (!ret)
397                 ret = err;
398         up(&mapping->host->i_sem);
399         err = filemap_fdatawait(mapping);
400         if (!ret)
401                 ret = err;
402         current->flags &= ~PF_SYNCWRITE;
403
404 out_putf:
405         fput(file);
406 out:
407         return ret;
408 }
409
410 /*
411  * Various filesystems appear to want __find_get_block to be non-blocking.
412  * But it's the page lock which protects the buffers.  To get around this,
413  * we get exclusion from try_to_free_buffers with the blockdev mapping's
414  * private_lock.
415  *
416  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
417  * may be quite high.  This code could TryLock the page, and if that
418  * succeeds, there is no need to take private_lock. (But if
419  * private_lock is contended then so is mapping->tree_lock).
420  */
421 static struct buffer_head *
422 __find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
423 {
424         struct inode *bd_inode = bdev->bd_inode;
425         struct address_space *bd_mapping = bd_inode->i_mapping;
426         struct buffer_head *ret = NULL;
427         pgoff_t index;
428         struct buffer_head *bh;
429         struct buffer_head *head;
430         struct page *page;
431         int all_mapped = 1;
432
433         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
434         page = find_get_page(bd_mapping, index);
435         if (!page)
436                 goto out;
437
438         spin_lock(&bd_mapping->private_lock);
439         if (!page_has_buffers(page))
440                 goto out_unlock;
441         head = page_buffers(page);
442         bh = head;
443         do {
444                 if (bh->b_blocknr == block) {
445                         ret = bh;
446                         get_bh(bh);
447                         goto out_unlock;
448                 }
449                 if (!buffer_mapped(bh))
450                         all_mapped = 0;
451                 bh = bh->b_this_page;
452         } while (bh != head);
453
454         /* we might be here because some of the buffers on this page are
455          * not mapped.  This is due to various races between
456          * file io on the block device and getblk.  It gets dealt with
457          * elsewhere, don't buffer_error if we had some unmapped buffers
458          */
459         if (all_mapped) {
460                 printk("__find_get_block_slow() failed. "
461                         "block=%llu, b_blocknr=%llu\n",
462                         (unsigned long long)block, (unsigned long long)bh->b_blocknr);
463                 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
464                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
465         }
466 out_unlock:
467         spin_unlock(&bd_mapping->private_lock);
468         page_cache_release(page);
469 out:
470         return ret;
471 }
472
473 /* If invalidate_buffers() will trash dirty buffers, it means some kind
474    of fs corruption is going on. Trashing dirty data always imply losing
475    information that was supposed to be just stored on the physical layer
476    by the user.
477
478    Thus invalidate_buffers in general usage is not allwowed to trash
479    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
480    be preserved.  These buffers are simply skipped.
481   
482    We also skip buffers which are still in use.  For example this can
483    happen if a userspace program is reading the block device.
484
485    NOTE: In the case where the user removed a removable-media-disk even if
486    there's still dirty data not synced on disk (due a bug in the device driver
487    or due an error of the user), by not destroying the dirty buffers we could
488    generate corruption also on the next media inserted, thus a parameter is
489    necessary to handle this case in the most safe way possible (trying
490    to not corrupt also the new disk inserted with the data belonging to
491    the old now corrupted disk). Also for the ramdisk the natural thing
492    to do in order to release the ramdisk memory is to destroy dirty buffers.
493
494    These are two special cases. Normal usage imply the device driver
495    to issue a sync on the device (without waiting I/O completion) and
496    then an invalidate_buffers call that doesn't trash dirty buffers.
497
498    For handling cache coherency with the blkdev pagecache the 'update' case
499    is been introduced. It is needed to re-read from disk any pinned
500    buffer. NOTE: re-reading from disk is destructive so we can do it only
501    when we assume nobody is changing the buffercache under our I/O and when
502    we think the disk contains more recent information than the buffercache.
503    The update == 1 pass marks the buffers we need to update, the update == 2
504    pass does the actual I/O. */
505 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
506 {
507         invalidate_bh_lrus();
508         /*
509          * FIXME: what about destroy_dirty_buffers?
510          * We really want to use invalidate_inode_pages2() for
511          * that, but not until that's cleaned up.
512          */
513         invalidate_inode_pages(bdev->bd_inode->i_mapping);
514 }
515
516 /*
517  * Kick pdflush then try to free up some ZONE_NORMAL memory.
518  */
519 static void free_more_memory(void)
520 {
521         struct zone **zones;
522         pg_data_t *pgdat;
523
524         wakeup_bdflush(1024);
525         yield();
526
527         for_each_pgdat(pgdat) {
528                 zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
529                 if (*zones)
530                         try_to_free_pages(zones, GFP_NOFS, 0);
531         }
532 }
533
534 /*
535  * I/O completion handler for block_read_full_page() - pages
536  * which come unlocked at the end of I/O.
537  */
538 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
539 {
540         static DEFINE_SPINLOCK(page_uptodate_lock);
541         unsigned long flags;
542         struct buffer_head *tmp;
543         struct page *page;
544         int page_uptodate = 1;
545
546         BUG_ON(!buffer_async_read(bh));
547
548         page = bh->b_page;
549         if (uptodate) {
550                 set_buffer_uptodate(bh);
551         } else {
552                 clear_buffer_uptodate(bh);
553                 if (printk_ratelimit())
554                         buffer_io_error(bh);
555                 SetPageError(page);
556         }
557
558         /*
559          * Be _very_ careful from here on. Bad things can happen if
560          * two buffer heads end IO at almost the same time and both
561          * decide that the page is now completely done.
562          */
563         spin_lock_irqsave(&page_uptodate_lock, flags);
564         clear_buffer_async_read(bh);
565         unlock_buffer(bh);
566         tmp = bh;
567         do {
568                 if (!buffer_uptodate(tmp))
569                         page_uptodate = 0;
570                 if (buffer_async_read(tmp)) {
571                         BUG_ON(!buffer_locked(tmp));
572                         goto still_busy;
573                 }
574                 tmp = tmp->b_this_page;
575         } while (tmp != bh);
576         spin_unlock_irqrestore(&page_uptodate_lock, flags);
577
578         /*
579          * If none of the buffers had errors and they are all
580          * uptodate then we can set the page uptodate.
581          */
582         if (page_uptodate && !PageError(page))
583                 SetPageUptodate(page);
584         unlock_page(page);
585         return;
586
587 still_busy:
588         spin_unlock_irqrestore(&page_uptodate_lock, flags);
589         return;
590 }
591
592 /*
593  * Completion handler for block_write_full_page() - pages which are unlocked
594  * during I/O, and which have PageWriteback cleared upon I/O completion.
595  */
596 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
597 {
598         char b[BDEVNAME_SIZE];
599         static DEFINE_SPINLOCK(page_uptodate_lock);
600         unsigned long flags;
601         struct buffer_head *tmp;
602         struct page *page;
603
604         BUG_ON(!buffer_async_write(bh));
605
606         page = bh->b_page;
607         if (uptodate) {
608                 set_buffer_uptodate(bh);
609         } else {
610                 if (printk_ratelimit()) {
611                         buffer_io_error(bh);
612                         printk(KERN_WARNING "lost page write due to "
613                                         "I/O error on %s\n",
614                                bdevname(bh->b_bdev, b));
615                 }
616                 set_bit(AS_EIO, &page->mapping->flags);
617                 clear_buffer_uptodate(bh);
618                 SetPageError(page);
619         }
620
621         spin_lock_irqsave(&page_uptodate_lock, flags);
622         clear_buffer_async_write(bh);
623         unlock_buffer(bh);
624         tmp = bh->b_this_page;
625         while (tmp != bh) {
626                 if (buffer_async_write(tmp)) {
627                         BUG_ON(!buffer_locked(tmp));
628                         goto still_busy;
629                 }
630                 tmp = tmp->b_this_page;
631         }
632         spin_unlock_irqrestore(&page_uptodate_lock, flags);
633         end_page_writeback(page);
634         return;
635
636 still_busy:
637         spin_unlock_irqrestore(&page_uptodate_lock, flags);
638         return;
639 }
640
641 /*
642  * If a page's buffers are under async readin (end_buffer_async_read
643  * completion) then there is a possibility that another thread of
644  * control could lock one of the buffers after it has completed
645  * but while some of the other buffers have not completed.  This
646  * locked buffer would confuse end_buffer_async_read() into not unlocking
647  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
648  * that this buffer is not under async I/O.
649  *
650  * The page comes unlocked when it has no locked buffer_async buffers
651  * left.
652  *
653  * PageLocked prevents anyone starting new async I/O reads any of
654  * the buffers.
655  *
656  * PageWriteback is used to prevent simultaneous writeout of the same
657  * page.
658  *
659  * PageLocked prevents anyone from starting writeback of a page which is
660  * under read I/O (PageWriteback is only ever set against a locked page).
661  */
662 static void mark_buffer_async_read(struct buffer_head *bh)
663 {
664         bh->b_end_io = end_buffer_async_read;
665         set_buffer_async_read(bh);
666 }
667
668 void mark_buffer_async_write(struct buffer_head *bh)
669 {
670         bh->b_end_io = end_buffer_async_write;
671         set_buffer_async_write(bh);
672 }
673 EXPORT_SYMBOL(mark_buffer_async_write);
674
675
676 /*
677  * fs/buffer.c contains helper functions for buffer-backed address space's
678  * fsync functions.  A common requirement for buffer-based filesystems is
679  * that certain data from the backing blockdev needs to be written out for
680  * a successful fsync().  For example, ext2 indirect blocks need to be
681  * written back and waited upon before fsync() returns.
682  *
683  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
684  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
685  * management of a list of dependent buffers at ->i_mapping->private_list.
686  *
687  * Locking is a little subtle: try_to_free_buffers() will remove buffers
688  * from their controlling inode's queue when they are being freed.  But
689  * try_to_free_buffers() will be operating against the *blockdev* mapping
690  * at the time, not against the S_ISREG file which depends on those buffers.
691  * So the locking for private_list is via the private_lock in the address_space
692  * which backs the buffers.  Which is different from the address_space 
693  * against which the buffers are listed.  So for a particular address_space,
694  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
695  * mapping->private_list will always be protected by the backing blockdev's
696  * ->private_lock.
697  *
698  * Which introduces a requirement: all buffers on an address_space's
699  * ->private_list must be from the same address_space: the blockdev's.
700  *
701  * address_spaces which do not place buffers at ->private_list via these
702  * utility functions are free to use private_lock and private_list for
703  * whatever they want.  The only requirement is that list_empty(private_list)
704  * be true at clear_inode() time.
705  *
706  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
707  * filesystems should do that.  invalidate_inode_buffers() should just go
708  * BUG_ON(!list_empty).
709  *
710  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
711  * take an address_space, not an inode.  And it should be called
712  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
713  * queued up.
714  *
715  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
716  * list if it is already on a list.  Because if the buffer is on a list,
717  * it *must* already be on the right one.  If not, the filesystem is being
718  * silly.  This will save a ton of locking.  But first we have to ensure
719  * that buffers are taken *off* the old inode's list when they are freed
720  * (presumably in truncate).  That requires careful auditing of all
721  * filesystems (do it inside bforget()).  It could also be done by bringing
722  * b_inode back.
723  */
724
725 /*
726  * The buffer's backing address_space's private_lock must be held
727  */
728 static inline void __remove_assoc_queue(struct buffer_head *bh)
729 {
730         list_del_init(&bh->b_assoc_buffers);
731 }
732
733 int inode_has_buffers(struct inode *inode)
734 {
735         return !list_empty(&inode->i_data.private_list);
736 }
737
738 /*
739  * osync is designed to support O_SYNC io.  It waits synchronously for
740  * all already-submitted IO to complete, but does not queue any new
741  * writes to the disk.
742  *
743  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
744  * you dirty the buffers, and then use osync_inode_buffers to wait for
745  * completion.  Any other dirty buffers which are not yet queued for
746  * write will not be flushed to disk by the osync.
747  */
748 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750         struct buffer_head *bh;
751         struct list_head *p;
752         int err = 0;
753
754         spin_lock(lock);
755 repeat:
756         list_for_each_prev(p, list) {
757                 bh = BH_ENTRY(p);
758                 if (buffer_locked(bh)) {
759                         get_bh(bh);
760                         spin_unlock(lock);
761                         wait_on_buffer(bh);
762                         if (!buffer_uptodate(bh))
763                                 err = -EIO;
764                         brelse(bh);
765                         spin_lock(lock);
766                         goto repeat;
767                 }
768         }
769         spin_unlock(lock);
770         return err;
771 }
772
773 /**
774  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
775  *                        buffers
776  * @buffer_mapping - the mapping which backs the buffers' data
777  * @mapping - the mapping which wants those buffers written
778  *
779  * Starts I/O against the buffers at mapping->private_list, and waits upon
780  * that I/O.
781  *
782  * Basically, this is a convenience function for fsync().  @buffer_mapping is
783  * the blockdev which "owns" the buffers and @mapping is a file or directory
784  * which needs those buffers to be written for a successful fsync().
785  */
786 int sync_mapping_buffers(struct address_space *mapping)
787 {
788         struct address_space *buffer_mapping = mapping->assoc_mapping;
789
790         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
791                 return 0;
792
793         return fsync_buffers_list(&buffer_mapping->private_lock,
794                                         &mapping->private_list);
795 }
796 EXPORT_SYMBOL(sync_mapping_buffers);
797
798 /*
799  * Called when we've recently written block `bblock', and it is known that
800  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
801  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
802  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
803  */
804 void write_boundary_block(struct block_device *bdev,
805                         sector_t bblock, unsigned blocksize)
806 {
807         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
808         if (bh) {
809                 if (buffer_dirty(bh))
810                         ll_rw_block(WRITE, 1, &bh);
811                 put_bh(bh);
812         }
813 }
814
815 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
816 {
817         struct address_space *mapping = inode->i_mapping;
818         struct address_space *buffer_mapping = bh->b_page->mapping;
819
820         mark_buffer_dirty(bh);
821         if (!mapping->assoc_mapping) {
822                 mapping->assoc_mapping = buffer_mapping;
823         } else {
824                 if (mapping->assoc_mapping != buffer_mapping)
825                         BUG();
826         }
827         if (list_empty(&bh->b_assoc_buffers)) {
828                 spin_lock(&buffer_mapping->private_lock);
829                 list_move_tail(&bh->b_assoc_buffers,
830                                 &mapping->private_list);
831                 spin_unlock(&buffer_mapping->private_lock);
832         }
833 }
834 EXPORT_SYMBOL(mark_buffer_dirty_inode);
835
836 /*
837  * Add a page to the dirty page list.
838  *
839  * It is a sad fact of life that this function is called from several places
840  * deeply under spinlocking.  It may not sleep.
841  *
842  * If the page has buffers, the uptodate buffers are set dirty, to preserve
843  * dirty-state coherency between the page and the buffers.  It the page does
844  * not have buffers then when they are later attached they will all be set
845  * dirty.
846  *
847  * The buffers are dirtied before the page is dirtied.  There's a small race
848  * window in which a writepage caller may see the page cleanness but not the
849  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
850  * before the buffers, a concurrent writepage caller could clear the page dirty
851  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
852  * page on the dirty page list.
853  *
854  * We use private_lock to lock against try_to_free_buffers while using the
855  * page's buffer list.  Also use this to protect against clean buffers being
856  * added to the page after it was set dirty.
857  *
858  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
859  * address_space though.
860  */
861 int __set_page_dirty_buffers(struct page *page)
862 {
863         struct address_space * const mapping = page->mapping;
864
865         spin_lock(&mapping->private_lock);
866         if (page_has_buffers(page)) {
867                 struct buffer_head *head = page_buffers(page);
868                 struct buffer_head *bh = head;
869
870                 do {
871                         set_buffer_dirty(bh);
872                         bh = bh->b_this_page;
873                 } while (bh != head);
874         }
875         spin_unlock(&mapping->private_lock);
876
877         if (!TestSetPageDirty(page)) {
878                 spin_lock_irq(&mapping->tree_lock);
879                 if (page->mapping) {    /* Race with truncate? */
880                         if (!mapping->backing_dev_info->memory_backed)
881                                 inc_page_state(nr_dirty);
882                         radix_tree_tag_set(&mapping->page_tree,
883                                                 page_index(page),
884                                                 PAGECACHE_TAG_DIRTY);
885                 }
886                 spin_unlock_irq(&mapping->tree_lock);
887                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
888         }
889         
890         return 0;
891 }
892 EXPORT_SYMBOL(__set_page_dirty_buffers);
893
894 /*
895  * Write out and wait upon a list of buffers.
896  *
897  * We have conflicting pressures: we want to make sure that all
898  * initially dirty buffers get waited on, but that any subsequently
899  * dirtied buffers don't.  After all, we don't want fsync to last
900  * forever if somebody is actively writing to the file.
901  *
902  * Do this in two main stages: first we copy dirty buffers to a
903  * temporary inode list, queueing the writes as we go.  Then we clean
904  * up, waiting for those writes to complete.
905  * 
906  * During this second stage, any subsequent updates to the file may end
907  * up refiling the buffer on the original inode's dirty list again, so
908  * there is a chance we will end up with a buffer queued for write but
909  * not yet completed on that list.  So, as a final cleanup we go through
910  * the osync code to catch these locked, dirty buffers without requeuing
911  * any newly dirty buffers for write.
912  */
913 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
914 {
915         struct buffer_head *bh;
916         struct list_head tmp;
917         int err = 0, err2;
918
919         INIT_LIST_HEAD(&tmp);
920
921         spin_lock(lock);
922         while (!list_empty(list)) {
923                 bh = BH_ENTRY(list->next);
924                 list_del_init(&bh->b_assoc_buffers);
925                 if (buffer_dirty(bh) || buffer_locked(bh)) {
926                         list_add(&bh->b_assoc_buffers, &tmp);
927                         if (buffer_dirty(bh)) {
928                                 get_bh(bh);
929                                 spin_unlock(lock);
930                                 /*
931                                  * Ensure any pending I/O completes so that
932                                  * ll_rw_block() actually writes the current
933                                  * contents - it is a noop if I/O is still in
934                                  * flight on potentially older contents.
935                                  */
936                                 wait_on_buffer(bh);
937                                 ll_rw_block(WRITE, 1, &bh);
938                                 brelse(bh);
939                                 spin_lock(lock);
940                         }
941                 }
942         }
943
944         while (!list_empty(&tmp)) {
945                 bh = BH_ENTRY(tmp.prev);
946                 __remove_assoc_queue(bh);
947                 get_bh(bh);
948                 spin_unlock(lock);
949                 wait_on_buffer(bh);
950                 if (!buffer_uptodate(bh))
951                         err = -EIO;
952                 brelse(bh);
953                 spin_lock(lock);
954         }
955         
956         spin_unlock(lock);
957         err2 = osync_buffers_list(lock, list);
958         if (err)
959                 return err;
960         else
961                 return err2;
962 }
963
964 /*
965  * Invalidate any and all dirty buffers on a given inode.  We are
966  * probably unmounting the fs, but that doesn't mean we have already
967  * done a sync().  Just drop the buffers from the inode list.
968  *
969  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
970  * assumes that all the buffers are against the blockdev.  Not true
971  * for reiserfs.
972  */
973 void invalidate_inode_buffers(struct inode *inode)
974 {
975         if (inode_has_buffers(inode)) {
976                 struct address_space *mapping = &inode->i_data;
977                 struct list_head *list = &mapping->private_list;
978                 struct address_space *buffer_mapping = mapping->assoc_mapping;
979
980                 spin_lock(&buffer_mapping->private_lock);
981                 while (!list_empty(list))
982                         __remove_assoc_queue(BH_ENTRY(list->next));
983                 spin_unlock(&buffer_mapping->private_lock);
984         }
985 }
986
987 /*
988  * Remove any clean buffers from the inode's buffer list.  This is called
989  * when we're trying to free the inode itself.  Those buffers can pin it.
990  *
991  * Returns true if all buffers were removed.
992  */
993 int remove_inode_buffers(struct inode *inode)
994 {
995         int ret = 1;
996
997         if (inode_has_buffers(inode)) {
998                 struct address_space *mapping = &inode->i_data;
999                 struct list_head *list = &mapping->private_list;
1000                 struct address_space *buffer_mapping = mapping->assoc_mapping;
1001
1002                 spin_lock(&buffer_mapping->private_lock);
1003                 while (!list_empty(list)) {
1004                         struct buffer_head *bh = BH_ENTRY(list->next);
1005                         if (buffer_dirty(bh)) {
1006                                 ret = 0;
1007                                 break;
1008                         }
1009                         __remove_assoc_queue(bh);
1010                 }
1011                 spin_unlock(&buffer_mapping->private_lock);
1012         }
1013         return ret;
1014 }
1015
1016 /*
1017  * Create the appropriate buffers when given a page for data area and
1018  * the size of each buffer.. Use the bh->b_this_page linked list to
1019  * follow the buffers created.  Return NULL if unable to create more
1020  * buffers.
1021  *
1022  * The retry flag is used to differentiate async IO (paging, swapping)
1023  * which may not fail from ordinary buffer allocations.
1024  */
1025 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1026                 int retry)
1027 {
1028         struct buffer_head *bh, *head;
1029         long offset;
1030
1031 try_again:
1032         head = NULL;
1033         offset = PAGE_SIZE;
1034         while ((offset -= size) >= 0) {
1035                 bh = alloc_buffer_head(GFP_NOFS);
1036                 if (!bh)
1037                         goto no_grow;
1038
1039                 bh->b_bdev = NULL;
1040                 bh->b_this_page = head;
1041                 bh->b_blocknr = -1;
1042                 head = bh;
1043
1044                 bh->b_state = 0;
1045                 atomic_set(&bh->b_count, 0);
1046                 bh->b_size = size;
1047
1048                 /* Link the buffer to its page */
1049                 set_bh_page(bh, page, offset);
1050
1051                 bh->b_end_io = NULL;
1052         }
1053         return head;
1054 /*
1055  * In case anything failed, we just free everything we got.
1056  */
1057 no_grow:
1058         if (head) {
1059                 do {
1060                         bh = head;
1061                         head = head->b_this_page;
1062                         free_buffer_head(bh);
1063                 } while (head);
1064         }
1065
1066         /*
1067          * Return failure for non-async IO requests.  Async IO requests
1068          * are not allowed to fail, so we have to wait until buffer heads
1069          * become available.  But we don't want tasks sleeping with 
1070          * partially complete buffers, so all were released above.
1071          */
1072         if (!retry)
1073                 return NULL;
1074
1075         /* We're _really_ low on memory. Now we just
1076          * wait for old buffer heads to become free due to
1077          * finishing IO.  Since this is an async request and
1078          * the reserve list is empty, we're sure there are 
1079          * async buffer heads in use.
1080          */
1081         free_more_memory();
1082         goto try_again;
1083 }
1084 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1085
1086 static inline void
1087 link_dev_buffers(struct page *page, struct buffer_head *head)
1088 {
1089         struct buffer_head *bh, *tail;
1090
1091         bh = head;
1092         do {
1093                 tail = bh;
1094                 bh = bh->b_this_page;
1095         } while (bh);
1096         tail->b_this_page = head;
1097         attach_page_buffers(page, head);
1098 }
1099
1100 /*
1101  * Initialise the state of a blockdev page's buffers.
1102  */ 
1103 static void
1104 init_page_buffers(struct page *page, struct block_device *bdev,
1105                         sector_t block, int size)
1106 {
1107         struct buffer_head *head = page_buffers(page);
1108         struct buffer_head *bh = head;
1109         int uptodate = PageUptodate(page);
1110
1111         do {
1112                 if (!buffer_mapped(bh)) {
1113                         init_buffer(bh, NULL, NULL);
1114                         bh->b_bdev = bdev;
1115                         bh->b_blocknr = block;
1116                         if (uptodate)
1117                                 set_buffer_uptodate(bh);
1118                         set_buffer_mapped(bh);
1119                 }
1120                 block++;
1121                 bh = bh->b_this_page;
1122         } while (bh != head);
1123 }
1124
1125 /*
1126  * Create the page-cache page that contains the requested block.
1127  *
1128  * This is user purely for blockdev mappings.
1129  */
1130 static struct page *
1131 grow_dev_page(struct block_device *bdev, sector_t block,
1132                 pgoff_t index, int size)
1133 {
1134         struct inode *inode = bdev->bd_inode;
1135         struct page *page;
1136         struct buffer_head *bh;
1137
1138         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1139         if (!page)
1140                 return NULL;
1141
1142         if (!PageLocked(page))
1143                 BUG();
1144
1145         if (page_has_buffers(page)) {
1146                 bh = page_buffers(page);
1147                 if (bh->b_size == size) {
1148                         init_page_buffers(page, bdev, block, size);
1149                         return page;
1150                 }
1151                 if (!try_to_free_buffers(page))
1152                         goto failed;
1153         }
1154
1155         /*
1156          * Allocate some buffers for this page
1157          */
1158         bh = alloc_page_buffers(page, size, 0);
1159         if (!bh)
1160                 goto failed;
1161
1162         /*
1163          * Link the page to the buffers and initialise them.  Take the
1164          * lock to be atomic wrt __find_get_block(), which does not
1165          * run under the page lock.
1166          */
1167         spin_lock(&inode->i_mapping->private_lock);
1168         link_dev_buffers(page, bh);
1169         init_page_buffers(page, bdev, block, size);
1170         spin_unlock(&inode->i_mapping->private_lock);
1171         return page;
1172
1173 failed:
1174         BUG();
1175         unlock_page(page);
1176         page_cache_release(page);
1177         return NULL;
1178 }
1179
1180 /*
1181  * Create buffers for the specified block device block's page.  If
1182  * that page was dirty, the buffers are set dirty also.
1183  *
1184  * Except that's a bug.  Attaching dirty buffers to a dirty
1185  * blockdev's page can result in filesystem corruption, because
1186  * some of those buffers may be aliases of filesystem data.
1187  * grow_dev_page() will go BUG() if this happens.
1188  */
1189 static inline int
1190 grow_buffers(struct block_device *bdev, sector_t block, int size)
1191 {
1192         struct page *page;
1193         pgoff_t index;
1194         int sizebits;
1195
1196         sizebits = -1;
1197         do {
1198                 sizebits++;
1199         } while ((size << sizebits) < PAGE_SIZE);
1200
1201         index = block >> sizebits;
1202         block = index << sizebits;
1203
1204         /* Create a page with the proper size buffers.. */
1205         page = grow_dev_page(bdev, block, index, size);
1206         if (!page)
1207                 return 0;
1208         unlock_page(page);
1209         page_cache_release(page);
1210         return 1;
1211 }
1212
1213 struct buffer_head *
1214 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1215 {
1216         /* Size must be multiple of hard sectorsize */
1217         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1218                         (size < 512 || size > PAGE_SIZE))) {
1219                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1220                                         size);
1221                 printk(KERN_ERR "hardsect size: %d\n",
1222                                         bdev_hardsect_size(bdev));
1223
1224                 dump_stack();
1225                 return NULL;
1226         }
1227
1228         for (;;) {
1229                 struct buffer_head * bh;
1230
1231                 bh = __find_get_block(bdev, block, size);
1232                 if (bh)
1233                         return bh;
1234
1235                 if (!grow_buffers(bdev, block, size))
1236                         free_more_memory();
1237         }
1238 }
1239
1240 /*
1241  * The relationship between dirty buffers and dirty pages:
1242  *
1243  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1244  * the page is tagged dirty in its radix tree.
1245  *
1246  * At all times, the dirtiness of the buffers represents the dirtiness of
1247  * subsections of the page.  If the page has buffers, the page dirty bit is
1248  * merely a hint about the true dirty state.
1249  *
1250  * When a page is set dirty in its entirety, all its buffers are marked dirty
1251  * (if the page has buffers).
1252  *
1253  * When a buffer is marked dirty, its page is dirtied, but the page's other
1254  * buffers are not.
1255  *
1256  * Also.  When blockdev buffers are explicitly read with bread(), they
1257  * individually become uptodate.  But their backing page remains not
1258  * uptodate - even if all of its buffers are uptodate.  A subsequent
1259  * block_read_full_page() against that page will discover all the uptodate
1260  * buffers, will set the page uptodate and will perform no I/O.
1261  */
1262
1263 /**
1264  * mark_buffer_dirty - mark a buffer_head as needing writeout
1265  *
1266  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1267  * backing page dirty, then tag the page as dirty in its address_space's radix
1268  * tree and then attach the address_space's inode to its superblock's dirty
1269  * inode list.
1270  *
1271  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1272  * mapping->tree_lock and the global inode_lock.
1273  */
1274 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1275 {
1276         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1277                 __set_page_dirty_nobuffers(bh->b_page);
1278 }
1279
1280 /*
1281  * Decrement a buffer_head's reference count.  If all buffers against a page
1282  * have zero reference count, are clean and unlocked, and if the page is clean
1283  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1284  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1285  * a page but it ends up not being freed, and buffers may later be reattached).
1286  */
1287 void __brelse(struct buffer_head * buf)
1288 {
1289         if (atomic_read(&buf->b_count)) {
1290                 put_bh(buf);
1291                 return;
1292         }
1293         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1294         WARN_ON(1);
1295 }
1296
1297 /*
1298  * bforget() is like brelse(), except it discards any
1299  * potentially dirty data.
1300  */
1301 void __bforget(struct buffer_head *bh)
1302 {
1303         clear_buffer_dirty(bh);
1304         if (!list_empty(&bh->b_assoc_buffers)) {
1305                 struct address_space *buffer_mapping = bh->b_page->mapping;
1306
1307                 spin_lock(&buffer_mapping->private_lock);
1308                 list_del_init(&bh->b_assoc_buffers);
1309                 spin_unlock(&buffer_mapping->private_lock);
1310         }
1311         __brelse(bh);
1312 }
1313
1314 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1315 {
1316         lock_buffer(bh);
1317         if (buffer_uptodate(bh)) {
1318                 unlock_buffer(bh);
1319                 return bh;
1320         } else {
1321                 get_bh(bh);
1322                 bh->b_end_io = end_buffer_read_sync;
1323                 submit_bh(READ, bh);
1324                 wait_on_buffer(bh);
1325                 if (buffer_uptodate(bh))
1326                         return bh;
1327         }
1328         brelse(bh);
1329         return NULL;
1330 }
1331
1332 /*
1333  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1334  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1335  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1336  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1337  * CPU's LRUs at the same time.
1338  *
1339  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1340  * sb_find_get_block().
1341  *
1342  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1343  * a local interrupt disable for that.
1344  */
1345
1346 #define BH_LRU_SIZE     8
1347
1348 struct bh_lru {
1349         struct buffer_head *bhs[BH_LRU_SIZE];
1350 };
1351
1352 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1353
1354 #ifdef CONFIG_SMP
1355 #define bh_lru_lock()   local_irq_disable()
1356 #define bh_lru_unlock() local_irq_enable()
1357 #else
1358 #define bh_lru_lock()   preempt_disable()
1359 #define bh_lru_unlock() preempt_enable()
1360 #endif
1361
1362 static inline void check_irqs_on(void)
1363 {
1364 #ifdef irqs_disabled
1365         BUG_ON(irqs_disabled());
1366 #endif
1367 }
1368
1369 /*
1370  * The LRU management algorithm is dopey-but-simple.  Sorry.
1371  */
1372 static void bh_lru_install(struct buffer_head *bh)
1373 {
1374         struct buffer_head *evictee = NULL;
1375         struct bh_lru *lru;
1376
1377         check_irqs_on();
1378         bh_lru_lock();
1379         lru = &__get_cpu_var(bh_lrus);
1380         if (lru->bhs[0] != bh) {
1381                 struct buffer_head *bhs[BH_LRU_SIZE];
1382                 int in;
1383                 int out = 0;
1384
1385                 get_bh(bh);
1386                 bhs[out++] = bh;
1387                 for (in = 0; in < BH_LRU_SIZE; in++) {
1388                         struct buffer_head *bh2 = lru->bhs[in];
1389
1390                         if (bh2 == bh) {
1391                                 __brelse(bh2);
1392                         } else {
1393                                 if (out >= BH_LRU_SIZE) {
1394                                         BUG_ON(evictee != NULL);
1395                                         evictee = bh2;
1396                                 } else {
1397                                         bhs[out++] = bh2;
1398                                 }
1399                         }
1400                 }
1401                 while (out < BH_LRU_SIZE)
1402                         bhs[out++] = NULL;
1403                 memcpy(lru->bhs, bhs, sizeof(bhs));
1404         }
1405         bh_lru_unlock();
1406
1407         if (evictee)
1408                 __brelse(evictee);
1409 }
1410
1411 /*
1412  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1413  */
1414 static inline struct buffer_head *
1415 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1416 {
1417         struct buffer_head *ret = NULL;
1418         struct bh_lru *lru;
1419         int i;
1420
1421         check_irqs_on();
1422         bh_lru_lock();
1423         lru = &__get_cpu_var(bh_lrus);
1424         for (i = 0; i < BH_LRU_SIZE; i++) {
1425                 struct buffer_head *bh = lru->bhs[i];
1426
1427                 if (bh && bh->b_bdev == bdev &&
1428                                 bh->b_blocknr == block && bh->b_size == size) {
1429                         if (i) {
1430                                 while (i) {
1431                                         lru->bhs[i] = lru->bhs[i - 1];
1432                                         i--;
1433                                 }
1434                                 lru->bhs[0] = bh;
1435                         }
1436                         get_bh(bh);
1437                         ret = bh;
1438                         break;
1439                 }
1440         }
1441         bh_lru_unlock();
1442         return ret;
1443 }
1444
1445 /*
1446  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1447  * it in the LRU and mark it as accessed.  If it is not present then return
1448  * NULL
1449  */
1450 struct buffer_head *
1451 __find_get_block(struct block_device *bdev, sector_t block, int size)
1452 {
1453         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1454
1455         if (bh == NULL) {
1456                 bh = __find_get_block_slow(bdev, block, size);
1457                 if (bh)
1458                         bh_lru_install(bh);
1459         }
1460         if (bh)
1461                 touch_buffer(bh);
1462         return bh;
1463 }
1464 EXPORT_SYMBOL(__find_get_block);
1465
1466 /*
1467  * __getblk will locate (and, if necessary, create) the buffer_head
1468  * which corresponds to the passed block_device, block and size. The
1469  * returned buffer has its reference count incremented.
1470  *
1471  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1472  * illegal block number, __getblk() will happily return a buffer_head
1473  * which represents the non-existent block.  Very weird.
1474  *
1475  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1476  * attempt is failing.  FIXME, perhaps?
1477  */
1478 struct buffer_head *
1479 __getblk(struct block_device *bdev, sector_t block, int size)
1480 {
1481         struct buffer_head *bh = __find_get_block(bdev, block, size);
1482
1483         might_sleep();
1484         if (bh == NULL)
1485                 bh = __getblk_slow(bdev, block, size);
1486         return bh;
1487 }
1488 EXPORT_SYMBOL(__getblk);
1489
1490 /*
1491  * Do async read-ahead on a buffer..
1492  */
1493 void __breadahead(struct block_device *bdev, sector_t block, int size)
1494 {
1495         struct buffer_head *bh = __getblk(bdev, block, size);
1496         ll_rw_block(READA, 1, &bh);
1497         brelse(bh);
1498 }
1499 EXPORT_SYMBOL(__breadahead);
1500
1501 /**
1502  *  __bread() - reads a specified block and returns the bh
1503  *  @block: number of block
1504  *  @size: size (in bytes) to read
1505  * 
1506  *  Reads a specified block, and returns buffer head that contains it.
1507  *  It returns NULL if the block was unreadable.
1508  */
1509 struct buffer_head *
1510 __bread(struct block_device *bdev, sector_t block, int size)
1511 {
1512         struct buffer_head *bh = __getblk(bdev, block, size);
1513
1514         if (!buffer_uptodate(bh))
1515                 bh = __bread_slow(bh);
1516         return bh;
1517 }
1518 EXPORT_SYMBOL(__bread);
1519
1520 /*
1521  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1522  * This doesn't race because it runs in each cpu either in irq
1523  * or with preempt disabled.
1524  */
1525 static void invalidate_bh_lru(void *arg)
1526 {
1527         struct bh_lru *b = &get_cpu_var(bh_lrus);
1528         int i;
1529
1530         for (i = 0; i < BH_LRU_SIZE; i++) {
1531                 brelse(b->bhs[i]);
1532                 b->bhs[i] = NULL;
1533         }
1534         put_cpu_var(bh_lrus);
1535 }
1536         
1537 static void invalidate_bh_lrus(void)
1538 {
1539         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1540 }
1541
1542 void set_bh_page(struct buffer_head *bh,
1543                 struct page *page, unsigned long offset)
1544 {
1545         bh->b_page = page;
1546         if (offset >= PAGE_SIZE)
1547                 BUG();
1548         if (PageHighMem(page))
1549                 /*
1550                  * This catches illegal uses and preserves the offset:
1551                  */
1552                 bh->b_data = (char *)(0 + offset);
1553         else
1554                 bh->b_data = page_address(page) + offset;
1555 }
1556 EXPORT_SYMBOL(set_bh_page);
1557
1558 /*
1559  * Called when truncating a buffer on a page completely.
1560  */
1561 static inline void discard_buffer(struct buffer_head * bh)
1562 {
1563         lock_buffer(bh);
1564         clear_buffer_dirty(bh);
1565         bh->b_bdev = NULL;
1566         clear_buffer_mapped(bh);
1567         clear_buffer_req(bh);
1568         clear_buffer_new(bh);
1569         clear_buffer_delay(bh);
1570         unlock_buffer(bh);
1571 }
1572
1573 /**
1574  * try_to_release_page() - release old fs-specific metadata on a page
1575  *
1576  * @page: the page which the kernel is trying to free
1577  * @gfp_mask: memory allocation flags (and I/O mode)
1578  *
1579  * The address_space is to try to release any data against the page
1580  * (presumably at page->private).  If the release was successful, return `1'.
1581  * Otherwise return zero.
1582  *
1583  * The @gfp_mask argument specifies whether I/O may be performed to release
1584  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1585  *
1586  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1587  */
1588 int try_to_release_page(struct page *page, int gfp_mask)
1589 {
1590         struct address_space * const mapping = page->mapping;
1591
1592         BUG_ON(!PageLocked(page));
1593         if (PageWriteback(page))
1594                 return 0;
1595         
1596         if (mapping && mapping->a_ops->releasepage)
1597                 return mapping->a_ops->releasepage(page, gfp_mask);
1598         return try_to_free_buffers(page);
1599 }
1600 EXPORT_SYMBOL(try_to_release_page);
1601
1602 /**
1603  * block_invalidatepage - invalidate part of all of a buffer-backed page
1604  *
1605  * @page: the page which is affected
1606  * @offset: the index of the truncation point
1607  *
1608  * block_invalidatepage() is called when all or part of the page has become
1609  * invalidatedby a truncate operation.
1610  *
1611  * block_invalidatepage() does not have to release all buffers, but it must
1612  * ensure that no dirty buffer is left outside @offset and that no I/O
1613  * is underway against any of the blocks which are outside the truncation
1614  * point.  Because the caller is about to free (and possibly reuse) those
1615  * blocks on-disk.
1616  */
1617 int block_invalidatepage(struct page *page, unsigned long offset)
1618 {
1619         struct buffer_head *head, *bh, *next;
1620         unsigned int curr_off = 0;
1621         int ret = 1;
1622
1623         BUG_ON(!PageLocked(page));
1624         if (!page_has_buffers(page))
1625                 goto out;
1626
1627         head = page_buffers(page);
1628         bh = head;
1629         do {
1630                 unsigned int next_off = curr_off + bh->b_size;
1631                 next = bh->b_this_page;
1632
1633                 /*
1634                  * is this block fully invalidated?
1635                  */
1636                 if (offset <= curr_off)
1637                         discard_buffer(bh);
1638                 curr_off = next_off;
1639                 bh = next;
1640         } while (bh != head);
1641
1642         /*
1643          * We release buffers only if the entire page is being invalidated.
1644          * The get_block cached value has been unconditionally invalidated,
1645          * so real IO is not possible anymore.
1646          */
1647         if (offset == 0)
1648                 ret = try_to_release_page(page, 0);
1649 out:
1650         return ret;
1651 }
1652 EXPORT_SYMBOL(block_invalidatepage);
1653
1654 /*
1655  * We attach and possibly dirty the buffers atomically wrt
1656  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1657  * is already excluded via the page lock.
1658  */
1659 void create_empty_buffers(struct page *page,
1660                         unsigned long blocksize, unsigned long b_state)
1661 {
1662         struct buffer_head *bh, *head, *tail;
1663
1664         head = alloc_page_buffers(page, blocksize, 1);
1665         bh = head;
1666         do {
1667                 bh->b_state |= b_state;
1668                 tail = bh;
1669                 bh = bh->b_this_page;
1670         } while (bh);
1671         tail->b_this_page = head;
1672
1673         spin_lock(&page->mapping->private_lock);
1674         if (PageUptodate(page) || PageDirty(page)) {
1675                 bh = head;
1676                 do {
1677                         if (PageDirty(page))
1678                                 set_buffer_dirty(bh);
1679                         if (PageUptodate(page))
1680                                 set_buffer_uptodate(bh);
1681                         bh = bh->b_this_page;
1682                 } while (bh != head);
1683         }
1684         attach_page_buffers(page, head);
1685         spin_unlock(&page->mapping->private_lock);
1686 }
1687 EXPORT_SYMBOL(create_empty_buffers);
1688
1689 /*
1690  * We are taking a block for data and we don't want any output from any
1691  * buffer-cache aliases starting from return from that function and
1692  * until the moment when something will explicitly mark the buffer
1693  * dirty (hopefully that will not happen until we will free that block ;-)
1694  * We don't even need to mark it not-uptodate - nobody can expect
1695  * anything from a newly allocated buffer anyway. We used to used
1696  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1697  * don't want to mark the alias unmapped, for example - it would confuse
1698  * anyone who might pick it with bread() afterwards...
1699  *
1700  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1701  * be writeout I/O going on against recently-freed buffers.  We don't
1702  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1703  * only if we really need to.  That happens here.
1704  */
1705 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1706 {
1707         struct buffer_head *old_bh;
1708
1709         might_sleep();
1710
1711         old_bh = __find_get_block_slow(bdev, block, 0);
1712         if (old_bh) {
1713                 clear_buffer_dirty(old_bh);
1714                 wait_on_buffer(old_bh);
1715                 clear_buffer_req(old_bh);
1716                 __brelse(old_bh);
1717         }
1718 }
1719 EXPORT_SYMBOL(unmap_underlying_metadata);
1720
1721 /*
1722  * NOTE! All mapped/uptodate combinations are valid:
1723  *
1724  *      Mapped  Uptodate        Meaning
1725  *
1726  *      No      No              "unknown" - must do get_block()
1727  *      No      Yes             "hole" - zero-filled
1728  *      Yes     No              "allocated" - allocated on disk, not read in
1729  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1730  *
1731  * "Dirty" is valid only with the last case (mapped+uptodate).
1732  */
1733
1734 /*
1735  * While block_write_full_page is writing back the dirty buffers under
1736  * the page lock, whoever dirtied the buffers may decide to clean them
1737  * again at any time.  We handle that by only looking at the buffer
1738  * state inside lock_buffer().
1739  *
1740  * If block_write_full_page() is called for regular writeback
1741  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1742  * locked buffer.   This only can happen if someone has written the buffer
1743  * directly, with submit_bh().  At the address_space level PageWriteback
1744  * prevents this contention from occurring.
1745  */
1746 static int __block_write_full_page(struct inode *inode, struct page *page,
1747                         get_block_t *get_block, struct writeback_control *wbc)
1748 {
1749         int err;
1750         sector_t block;
1751         sector_t last_block;
1752         struct buffer_head *bh, *head;
1753         int nr_underway = 0;
1754
1755         BUG_ON(!PageLocked(page));
1756
1757         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1758
1759         if (!page_has_buffers(page)) {
1760                 create_empty_buffers(page, 1 << inode->i_blkbits,
1761                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1762         }
1763
1764         /*
1765          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1766          * here, and the (potentially unmapped) buffers may become dirty at
1767          * any time.  If a buffer becomes dirty here after we've inspected it
1768          * then we just miss that fact, and the page stays dirty.
1769          *
1770          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1771          * handle that here by just cleaning them.
1772          */
1773
1774         block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1775         head = page_buffers(page);
1776         bh = head;
1777
1778         /*
1779          * Get all the dirty buffers mapped to disk addresses and
1780          * handle any aliases from the underlying blockdev's mapping.
1781          */
1782         do {
1783                 if (block > last_block) {
1784                         /*
1785                          * mapped buffers outside i_size will occur, because
1786                          * this page can be outside i_size when there is a
1787                          * truncate in progress.
1788                          */
1789                         /*
1790                          * The buffer was zeroed by block_write_full_page()
1791                          */
1792                         clear_buffer_dirty(bh);
1793                         set_buffer_uptodate(bh);
1794                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1795                         err = get_block(inode, block, bh, 1);
1796                         if (err)
1797                                 goto recover;
1798                         if (buffer_new(bh)) {
1799                                 /* blockdev mappings never come here */
1800                                 clear_buffer_new(bh);
1801                                 unmap_underlying_metadata(bh->b_bdev,
1802                                                         bh->b_blocknr);
1803                         }
1804                 }
1805                 bh = bh->b_this_page;
1806                 block++;
1807         } while (bh != head);
1808
1809         do {
1810                 get_bh(bh);
1811                 if (!buffer_mapped(bh))
1812                         continue;
1813                 /*
1814                  * If it's a fully non-blocking write attempt and we cannot
1815                  * lock the buffer then redirty the page.  Note that this can
1816                  * potentially cause a busy-wait loop from pdflush and kswapd
1817                  * activity, but those code paths have their own higher-level
1818                  * throttling.
1819                  */
1820                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1821                         lock_buffer(bh);
1822                 } else if (test_set_buffer_locked(bh)) {
1823                         redirty_page_for_writepage(wbc, page);
1824                         continue;
1825                 }
1826                 if (test_clear_buffer_dirty(bh)) {
1827                         mark_buffer_async_write(bh);
1828                 } else {
1829                         unlock_buffer(bh);
1830                 }
1831         } while ((bh = bh->b_this_page) != head);
1832
1833         /*
1834          * The page and its buffers are protected by PageWriteback(), so we can
1835          * drop the bh refcounts early.
1836          */
1837         BUG_ON(PageWriteback(page));
1838         set_page_writeback(page);
1839         unlock_page(page);
1840
1841         do {
1842                 struct buffer_head *next = bh->b_this_page;
1843                 if (buffer_async_write(bh)) {
1844                         submit_bh(WRITE, bh);
1845                         nr_underway++;
1846                 }
1847                 put_bh(bh);
1848                 bh = next;
1849         } while (bh != head);
1850
1851         err = 0;
1852 done:
1853         if (nr_underway == 0) {
1854                 /*
1855                  * The page was marked dirty, but the buffers were
1856                  * clean.  Someone wrote them back by hand with
1857                  * ll_rw_block/submit_bh.  A rare case.
1858                  */
1859                 int uptodate = 1;
1860                 do {
1861                         if (!buffer_uptodate(bh)) {
1862                                 uptodate = 0;
1863                                 break;
1864                         }
1865                         bh = bh->b_this_page;
1866                 } while (bh != head);
1867                 if (uptodate)
1868                         SetPageUptodate(page);
1869                 end_page_writeback(page);
1870                 /*
1871                  * The page and buffer_heads can be released at any time from
1872                  * here on.
1873                  */
1874                 wbc->pages_skipped++;   /* We didn't write this page */
1875         }
1876         return err;
1877
1878 recover:
1879         /*
1880          * ENOSPC, or some other error.  We may already have added some
1881          * blocks to the file, so we need to write these out to avoid
1882          * exposing stale data.
1883          * The page is currently locked and not marked for writeback
1884          */
1885         bh = head;
1886         /* Recovery: lock and submit the mapped buffers */
1887         do {
1888                 get_bh(bh);
1889                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1890                         lock_buffer(bh);
1891                         mark_buffer_async_write(bh);
1892                 } else {
1893                         /*
1894                          * The buffer may have been set dirty during
1895                          * attachment to a dirty page.
1896                          */
1897                         clear_buffer_dirty(bh);
1898                 }
1899         } while ((bh = bh->b_this_page) != head);
1900         SetPageError(page);
1901         BUG_ON(PageWriteback(page));
1902         set_page_writeback(page);
1903         unlock_page(page);
1904         do {
1905                 struct buffer_head *next = bh->b_this_page;
1906                 if (buffer_async_write(bh)) {
1907                         clear_buffer_dirty(bh);
1908                         submit_bh(WRITE, bh);
1909                         nr_underway++;
1910                 }
1911                 put_bh(bh);
1912                 bh = next;
1913         } while (bh != head);
1914         goto done;
1915 }
1916
1917 static int __block_prepare_write(struct inode *inode, struct page *page,
1918                 unsigned from, unsigned to, get_block_t *get_block)
1919 {
1920         unsigned block_start, block_end;
1921         sector_t block;
1922         int err = 0;
1923         unsigned blocksize, bbits;
1924         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1925
1926         BUG_ON(!PageLocked(page));
1927         BUG_ON(from > PAGE_CACHE_SIZE);
1928         BUG_ON(to > PAGE_CACHE_SIZE);
1929         BUG_ON(from > to);
1930
1931         blocksize = 1 << inode->i_blkbits;
1932         if (!page_has_buffers(page))
1933                 create_empty_buffers(page, blocksize, 0);
1934         head = page_buffers(page);
1935
1936         bbits = inode->i_blkbits;
1937         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1938
1939         for(bh = head, block_start = 0; bh != head || !block_start;
1940             block++, block_start=block_end, bh = bh->b_this_page) {
1941                 block_end = block_start + blocksize;
1942                 if (block_end <= from || block_start >= to) {
1943                         if (PageUptodate(page)) {
1944                                 if (!buffer_uptodate(bh))
1945                                         set_buffer_uptodate(bh);
1946                         }
1947                         continue;
1948                 }
1949                 if (buffer_new(bh))
1950                         clear_buffer_new(bh);
1951                 if (!buffer_mapped(bh)) {
1952                         err = get_block(inode, block, bh, 1);
1953                         if (err)
1954                                 goto out;
1955                         if (buffer_new(bh)) {
1956                                 clear_buffer_new(bh);
1957                                 unmap_underlying_metadata(bh->b_bdev,
1958                                                         bh->b_blocknr);
1959                                 if (PageUptodate(page)) {
1960                                         set_buffer_uptodate(bh);
1961                                         continue;
1962                                 }
1963                                 if (block_end > to || block_start < from) {
1964                                         void *kaddr;
1965
1966                                         kaddr = kmap_atomic(page, KM_USER0);
1967                                         if (block_end > to)
1968                                                 memset(kaddr+to, 0,
1969                                                         block_end-to);
1970                                         if (block_start < from)
1971                                                 memset(kaddr+block_start,
1972                                                         0, from-block_start);
1973                                         flush_dcache_page(page);
1974                                         kunmap_atomic(kaddr, KM_USER0);
1975                                 }
1976                                 continue;
1977                         }
1978                 }
1979                 if (PageUptodate(page)) {
1980                         if (!buffer_uptodate(bh))
1981                                 set_buffer_uptodate(bh);
1982                         continue; 
1983                 }
1984                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1985                      (block_start < from || block_end > to)) {
1986                         ll_rw_block(READ, 1, &bh);
1987                         *wait_bh++=bh;
1988                 }
1989         }
1990         /*
1991          * If we issued read requests - let them complete.
1992          */
1993         while(wait_bh > wait) {
1994                 wait_on_buffer(*--wait_bh);
1995                 if (!buffer_uptodate(*wait_bh))
1996                         return -EIO;
1997         }
1998         return 0;
1999 out:
2000         /*
2001          * Zero out any newly allocated blocks to avoid exposing stale
2002          * data.  If BH_New is set, we know that the block was newly
2003          * allocated in the above loop.
2004          */
2005         bh = head;
2006         block_start = 0;
2007         do {
2008                 block_end = block_start+blocksize;
2009                 if (block_end <= from)
2010                         goto next_bh;
2011                 if (block_start >= to)
2012                         break;
2013                 if (buffer_new(bh)) {
2014                         void *kaddr;
2015
2016                         clear_buffer_new(bh);
2017                         kaddr = kmap_atomic(page, KM_USER0);
2018                         memset(kaddr+block_start, 0, bh->b_size);
2019                         kunmap_atomic(kaddr, KM_USER0);
2020                         set_buffer_uptodate(bh);
2021                         mark_buffer_dirty(bh);
2022                 }
2023 next_bh:
2024                 block_start = block_end;
2025                 bh = bh->b_this_page;
2026         } while (bh != head);
2027         return err;
2028 }
2029
2030 static int __block_commit_write(struct inode *inode, struct page *page,
2031                 unsigned from, unsigned to)
2032 {
2033         unsigned block_start, block_end;
2034         int partial = 0;
2035         unsigned blocksize;
2036         struct buffer_head *bh, *head;
2037
2038         blocksize = 1 << inode->i_blkbits;
2039
2040         for(bh = head = page_buffers(page), block_start = 0;
2041             bh != head || !block_start;
2042             block_start=block_end, bh = bh->b_this_page) {
2043                 block_end = block_start + blocksize;
2044                 if (block_end <= from || block_start >= to) {
2045                         if (!buffer_uptodate(bh))
2046                                 partial = 1;
2047                 } else {
2048                         set_buffer_uptodate(bh);
2049                         mark_buffer_dirty(bh);
2050                 }
2051         }
2052
2053         /*
2054          * If this is a partial write which happened to make all buffers
2055          * uptodate then we can optimize away a bogus readpage() for
2056          * the next read(). Here we 'discover' whether the page went
2057          * uptodate as a result of this (potentially partial) write.
2058          */
2059         if (!partial)
2060                 SetPageUptodate(page);
2061         return 0;
2062 }
2063
2064 /*
2065  * Generic "read page" function for block devices that have the normal
2066  * get_block functionality. This is most of the block device filesystems.
2067  * Reads the page asynchronously --- the unlock_buffer() and
2068  * set/clear_buffer_uptodate() functions propagate buffer state into the
2069  * page struct once IO has completed.
2070  */
2071 int block_read_full_page(struct page *page, get_block_t *get_block)
2072 {
2073         struct inode *inode = page->mapping->host;
2074         sector_t iblock, lblock;
2075         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2076         unsigned int blocksize;
2077         int nr, i;
2078         int fully_mapped = 1;
2079
2080         if (!PageLocked(page))
2081                 PAGE_BUG(page);
2082         blocksize = 1 << inode->i_blkbits;
2083         if (!page_has_buffers(page))
2084                 create_empty_buffers(page, blocksize, 0);
2085         head = page_buffers(page);
2086
2087         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2089         bh = head;
2090         nr = 0;
2091         i = 0;
2092
2093         do {
2094                 if (buffer_uptodate(bh))
2095                         continue;
2096
2097                 if (!buffer_mapped(bh)) {
2098                         fully_mapped = 0;
2099                         if (iblock < lblock) {
2100                                 if (get_block(inode, iblock, bh, 0))
2101                                         SetPageError(page);
2102                         }
2103                         if (!buffer_mapped(bh)) {
2104                                 void *kaddr = kmap_atomic(page, KM_USER0);
2105                                 memset(kaddr + i * blocksize, 0, blocksize);
2106                                 flush_dcache_page(page);
2107                                 kunmap_atomic(kaddr, KM_USER0);
2108                                 set_buffer_uptodate(bh);
2109                                 continue;
2110                         }
2111                         /*
2112                          * get_block() might have updated the buffer
2113                          * synchronously
2114                          */
2115                         if (buffer_uptodate(bh))
2116                                 continue;
2117                 }
2118                 arr[nr++] = bh;
2119         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2120
2121         if (fully_mapped)
2122                 SetPageMappedToDisk(page);
2123
2124         if (!nr) {
2125                 /*
2126                  * All buffers are uptodate - we can set the page uptodate
2127                  * as well. But not if get_block() returned an error.
2128                  */
2129                 if (!PageError(page))
2130                         SetPageUptodate(page);
2131                 unlock_page(page);
2132                 return 0;
2133         }
2134
2135         /* Stage two: lock the buffers */
2136         for (i = 0; i < nr; i++) {
2137                 bh = arr[i];
2138                 lock_buffer(bh);
2139                 mark_buffer_async_read(bh);
2140         }
2141
2142         /*
2143          * Stage 3: start the IO.  Check for uptodateness
2144          * inside the buffer lock in case another process reading
2145          * the underlying blockdev brought it uptodate (the sct fix).
2146          */
2147         for (i = 0; i < nr; i++) {
2148                 bh = arr[i];
2149                 if (buffer_uptodate(bh))
2150                         end_buffer_async_read(bh, 1);
2151                 else
2152                         submit_bh(READ, bh);
2153         }
2154         return 0;
2155 }
2156
2157 /* utility function for filesystems that need to do work on expanding
2158  * truncates.  Uses prepare/commit_write to allow the filesystem to
2159  * deal with the hole.  
2160  */
2161 int generic_cont_expand(struct inode *inode, loff_t size)
2162 {
2163         struct address_space *mapping = inode->i_mapping;
2164         struct page *page;
2165         unsigned long index, offset, limit;
2166         int err;
2167
2168         err = -EFBIG;
2169         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2170         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2171                 send_sig(SIGXFSZ, current, 0);
2172                 goto out;
2173         }
2174         if (size > inode->i_sb->s_maxbytes)
2175                 goto out;
2176
2177         offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2178
2179         /* ugh.  in prepare/commit_write, if from==to==start of block, we 
2180         ** skip the prepare.  make sure we never send an offset for the start
2181         ** of a block
2182         */
2183         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2184                 offset++;
2185         }
2186         index = size >> PAGE_CACHE_SHIFT;
2187         err = -ENOMEM;
2188         page = grab_cache_page(mapping, index);
2189         if (!page)
2190                 goto out;
2191         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2192         if (!err) {
2193                 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2194         }
2195         unlock_page(page);
2196         page_cache_release(page);
2197         if (err > 0)
2198                 err = 0;
2199 out:
2200         return err;
2201 }
2202
2203 /*
2204  * For moronic filesystems that do not allow holes in file.
2205  * We may have to extend the file.
2206  */
2207
2208 int cont_prepare_write(struct page *page, unsigned offset,
2209                 unsigned to, get_block_t *get_block, loff_t *bytes)
2210 {
2211         struct address_space *mapping = page->mapping;
2212         struct inode *inode = mapping->host;
2213         struct page *new_page;
2214         pgoff_t pgpos;
2215         long status;
2216         unsigned zerofrom;
2217         unsigned blocksize = 1 << inode->i_blkbits;
2218         void *kaddr;
2219
2220         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2221                 status = -ENOMEM;
2222                 new_page = grab_cache_page(mapping, pgpos);
2223                 if (!new_page)
2224                         goto out;
2225                 /* we might sleep */
2226                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2227                         unlock_page(new_page);
2228                         page_cache_release(new_page);
2229                         continue;
2230                 }
2231                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2232                 if (zerofrom & (blocksize-1)) {
2233                         *bytes |= (blocksize-1);
2234                         (*bytes)++;
2235                 }
2236                 status = __block_prepare_write(inode, new_page, zerofrom,
2237                                                 PAGE_CACHE_SIZE, get_block);
2238                 if (status)
2239                         goto out_unmap;
2240                 kaddr = kmap_atomic(new_page, KM_USER0);
2241                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2242                 flush_dcache_page(new_page);
2243                 kunmap_atomic(kaddr, KM_USER0);
2244                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2245                 unlock_page(new_page);
2246                 page_cache_release(new_page);
2247         }
2248
2249         if (page->index < pgpos) {
2250                 /* completely inside the area */
2251                 zerofrom = offset;
2252         } else {
2253                 /* page covers the boundary, find the boundary offset */
2254                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2255
2256                 /* if we will expand the thing last block will be filled */
2257                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2258                         *bytes |= (blocksize-1);
2259                         (*bytes)++;
2260                 }
2261
2262                 /* starting below the boundary? Nothing to zero out */
2263                 if (offset <= zerofrom)
2264                         zerofrom = offset;
2265         }
2266         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2267         if (status)
2268                 goto out1;
2269         if (zerofrom < offset) {
2270                 kaddr = kmap_atomic(page, KM_USER0);
2271                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2272                 flush_dcache_page(page);
2273                 kunmap_atomic(kaddr, KM_USER0);
2274                 __block_commit_write(inode, page, zerofrom, offset);
2275         }
2276         return 0;
2277 out1:
2278         ClearPageUptodate(page);
2279         return status;
2280
2281 out_unmap:
2282         ClearPageUptodate(new_page);
2283         unlock_page(new_page);
2284         page_cache_release(new_page);
2285 out:
2286         return status;
2287 }
2288
2289 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2290                         get_block_t *get_block)
2291 {
2292         struct inode *inode = page->mapping->host;
2293         int err = __block_prepare_write(inode, page, from, to, get_block);
2294         if (err)
2295                 ClearPageUptodate(page);
2296         return err;
2297 }
2298
2299 int block_commit_write(struct page *page, unsigned from, unsigned to)
2300 {
2301         struct inode *inode = page->mapping->host;
2302         __block_commit_write(inode,page,from,to);
2303         return 0;
2304 }
2305
2306 int generic_commit_write(struct file *file, struct page *page,
2307                 unsigned from, unsigned to)
2308 {
2309         struct inode *inode = page->mapping->host;
2310         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2311         __block_commit_write(inode,page,from,to);
2312         /*
2313          * No need to use i_size_read() here, the i_size
2314          * cannot change under us because we hold i_sem.
2315          */
2316         if (pos > inode->i_size) {
2317                 i_size_write(inode, pos);
2318                 mark_inode_dirty(inode);
2319         }
2320         return 0;
2321 }
2322
2323
2324 /*
2325  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2326  * immediately, while under the page lock.  So it needs a special end_io
2327  * handler which does not touch the bh after unlocking it.
2328  *
2329  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2330  * a race there is benign: unlock_buffer() only use the bh's address for
2331  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2332  * itself.
2333  */
2334 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2335 {
2336         if (uptodate) {
2337                 set_buffer_uptodate(bh);
2338         } else {
2339                 /* This happens, due to failed READA attempts. */
2340                 clear_buffer_uptodate(bh);
2341         }
2342         unlock_buffer(bh);
2343 }
2344
2345 /*
2346  * On entry, the page is fully not uptodate.
2347  * On exit the page is fully uptodate in the areas outside (from,to)
2348  */
2349 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2350                         get_block_t *get_block)
2351 {
2352         struct inode *inode = page->mapping->host;
2353         const unsigned blkbits = inode->i_blkbits;
2354         const unsigned blocksize = 1 << blkbits;
2355         struct buffer_head map_bh;
2356         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2357         unsigned block_in_page;
2358         unsigned block_start;
2359         sector_t block_in_file;
2360         char *kaddr;
2361         int nr_reads = 0;
2362         int i;
2363         int ret = 0;
2364         int is_mapped_to_disk = 1;
2365         int dirtied_it = 0;
2366
2367         if (PageMappedToDisk(page))
2368                 return 0;
2369
2370         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2371         map_bh.b_page = page;
2372
2373         /*
2374          * We loop across all blocks in the page, whether or not they are
2375          * part of the affected region.  This is so we can discover if the
2376          * page is fully mapped-to-disk.
2377          */
2378         for (block_start = 0, block_in_page = 0;
2379                   block_start < PAGE_CACHE_SIZE;
2380                   block_in_page++, block_start += blocksize) {
2381                 unsigned block_end = block_start + blocksize;
2382                 int create;
2383
2384                 map_bh.b_state = 0;
2385                 create = 1;
2386                 if (block_start >= to)
2387                         create = 0;
2388                 ret = get_block(inode, block_in_file + block_in_page,
2389                                         &map_bh, create);
2390                 if (ret)
2391                         goto failed;
2392                 if (!buffer_mapped(&map_bh))
2393                         is_mapped_to_disk = 0;
2394                 if (buffer_new(&map_bh))
2395                         unmap_underlying_metadata(map_bh.b_bdev,
2396                                                         map_bh.b_blocknr);
2397                 if (PageUptodate(page))
2398                         continue;
2399                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2400                         kaddr = kmap_atomic(page, KM_USER0);
2401                         if (block_start < from) {
2402                                 memset(kaddr+block_start, 0, from-block_start);
2403                                 dirtied_it = 1;
2404                         }
2405                         if (block_end > to) {
2406                                 memset(kaddr + to, 0, block_end - to);
2407                                 dirtied_it = 1;
2408                         }
2409                         flush_dcache_page(page);
2410                         kunmap_atomic(kaddr, KM_USER0);
2411                         continue;
2412                 }
2413                 if (buffer_uptodate(&map_bh))
2414                         continue;       /* reiserfs does this */
2415                 if (block_start < from || block_end > to) {
2416                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2417
2418                         if (!bh) {
2419                                 ret = -ENOMEM;
2420                                 goto failed;
2421                         }
2422                         bh->b_state = map_bh.b_state;
2423                         atomic_set(&bh->b_count, 0);
2424                         bh->b_this_page = NULL;
2425                         bh->b_page = page;
2426                         bh->b_blocknr = map_bh.b_blocknr;
2427                         bh->b_size = blocksize;
2428                         bh->b_data = (char *)(long)block_start;
2429                         bh->b_bdev = map_bh.b_bdev;
2430                         bh->b_private = NULL;
2431                         read_bh[nr_reads++] = bh;
2432                 }
2433         }
2434
2435         if (nr_reads) {
2436                 struct buffer_head *bh;
2437
2438                 /*
2439                  * The page is locked, so these buffers are protected from
2440                  * any VM or truncate activity.  Hence we don't need to care
2441                  * for the buffer_head refcounts.
2442                  */
2443                 for (i = 0; i < nr_reads; i++) {
2444                         bh = read_bh[i];
2445                         lock_buffer(bh);
2446                         bh->b_end_io = end_buffer_read_nobh;
2447                         submit_bh(READ, bh);
2448                 }
2449                 for (i = 0; i < nr_reads; i++) {
2450                         bh = read_bh[i];
2451                         wait_on_buffer(bh);
2452                         if (!buffer_uptodate(bh))
2453                                 ret = -EIO;
2454                         free_buffer_head(bh);
2455                         read_bh[i] = NULL;
2456                 }
2457                 if (ret)
2458                         goto failed;
2459         }
2460
2461         if (is_mapped_to_disk)
2462                 SetPageMappedToDisk(page);
2463         SetPageUptodate(page);
2464
2465         /*
2466          * Setting the page dirty here isn't necessary for the prepare_write
2467          * function - commit_write will do that.  But if/when this function is
2468          * used within the pagefault handler to ensure that all mmapped pages
2469          * have backing space in the filesystem, we will need to dirty the page
2470          * if its contents were altered.
2471          */
2472         if (dirtied_it)
2473                 set_page_dirty(page);
2474
2475         return 0;
2476
2477 failed:
2478         for (i = 0; i < nr_reads; i++) {
2479                 if (read_bh[i])
2480                         free_buffer_head(read_bh[i]);
2481         }
2482
2483         /*
2484          * Error recovery is pretty slack.  Clear the page and mark it dirty
2485          * so we'll later zero out any blocks which _were_ allocated.
2486          */
2487         kaddr = kmap_atomic(page, KM_USER0);
2488         memset(kaddr, 0, PAGE_CACHE_SIZE);
2489         kunmap_atomic(kaddr, KM_USER0);
2490         SetPageUptodate(page);
2491         set_page_dirty(page);
2492         return ret;
2493 }
2494 EXPORT_SYMBOL(nobh_prepare_write);
2495
2496 int nobh_commit_write(struct file *file, struct page *page,
2497                 unsigned from, unsigned to)
2498 {
2499         struct inode *inode = page->mapping->host;
2500         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2501
2502         set_page_dirty(page);
2503         if (pos > inode->i_size) {
2504                 i_size_write(inode, pos);
2505                 mark_inode_dirty(inode);
2506         }
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(nobh_commit_write);
2510
2511 /*
2512  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2513  */
2514 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2515 {
2516         struct inode *inode = mapping->host;
2517         unsigned blocksize = 1 << inode->i_blkbits;
2518         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2519         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2520         unsigned to;
2521         struct page *page;
2522         struct address_space_operations *a_ops = mapping->a_ops;
2523         char *kaddr;
2524         int ret = 0;
2525
2526         if ((offset & (blocksize - 1)) == 0)
2527                 goto out;
2528
2529         ret = -ENOMEM;
2530         page = grab_cache_page(mapping, index);
2531         if (!page)
2532                 goto out;
2533
2534         to = (offset + blocksize) & ~(blocksize - 1);
2535         ret = a_ops->prepare_write(NULL, page, offset, to);
2536         if (ret == 0) {
2537                 kaddr = kmap_atomic(page, KM_USER0);
2538                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2539                 flush_dcache_page(page);
2540                 kunmap_atomic(kaddr, KM_USER0);
2541                 set_page_dirty(page);
2542         }
2543         unlock_page(page);
2544         page_cache_release(page);
2545 out:
2546         return ret;
2547 }
2548 EXPORT_SYMBOL(nobh_truncate_page);
2549
2550 int block_truncate_page(struct address_space *mapping,
2551                         loff_t from, get_block_t *get_block)
2552 {
2553         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2554         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2555         unsigned blocksize;
2556         pgoff_t iblock;
2557         unsigned length, pos;
2558         struct inode *inode = mapping->host;
2559         struct page *page;
2560         struct buffer_head *bh;
2561         void *kaddr;
2562         int err;
2563
2564         blocksize = 1 << inode->i_blkbits;
2565         length = offset & (blocksize - 1);
2566
2567         /* Block boundary? Nothing to do */
2568         if (!length)
2569                 return 0;
2570
2571         length = blocksize - length;
2572         iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2573         
2574         page = grab_cache_page(mapping, index);
2575         err = -ENOMEM;
2576         if (!page)
2577                 goto out;
2578
2579         if (!page_has_buffers(page))
2580                 create_empty_buffers(page, blocksize, 0);
2581
2582         /* Find the buffer that contains "offset" */
2583         bh = page_buffers(page);
2584         pos = blocksize;
2585         while (offset >= pos) {
2586                 bh = bh->b_this_page;
2587                 iblock++;
2588                 pos += blocksize;
2589         }
2590
2591         err = 0;
2592         if (!buffer_mapped(bh)) {
2593                 err = get_block(inode, iblock, bh, 0);
2594                 if (err)
2595                         goto unlock;
2596                 /* unmapped? It's a hole - nothing to do */
2597                 if (!buffer_mapped(bh))
2598                         goto unlock;
2599         }
2600
2601         /* Ok, it's mapped. Make sure it's up-to-date */
2602         if (PageUptodate(page))
2603                 set_buffer_uptodate(bh);
2604
2605         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2606                 err = -EIO;
2607                 ll_rw_block(READ, 1, &bh);
2608                 wait_on_buffer(bh);
2609                 /* Uhhuh. Read error. Complain and punt. */
2610                 if (!buffer_uptodate(bh))
2611                         goto unlock;
2612         }
2613
2614         kaddr = kmap_atomic(page, KM_USER0);
2615         memset(kaddr + offset, 0, length);
2616         flush_dcache_page(page);
2617         kunmap_atomic(kaddr, KM_USER0);
2618
2619         mark_buffer_dirty(bh);
2620         err = 0;
2621
2622 unlock:
2623         unlock_page(page);
2624         page_cache_release(page);
2625 out:
2626         return err;
2627 }
2628
2629 /*
2630  * The generic ->writepage function for buffer-backed address_spaces
2631  */
2632 int block_write_full_page(struct page *page, get_block_t *get_block,
2633                         struct writeback_control *wbc)
2634 {
2635         struct inode * const inode = page->mapping->host;
2636         loff_t i_size = i_size_read(inode);
2637         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2638         unsigned offset;
2639         void *kaddr;
2640
2641         /* Is the page fully inside i_size? */
2642         if (page->index < end_index)
2643                 return __block_write_full_page(inode, page, get_block, wbc);
2644
2645         /* Is the page fully outside i_size? (truncate in progress) */
2646         offset = i_size & (PAGE_CACHE_SIZE-1);
2647         if (page->index >= end_index+1 || !offset) {
2648                 /*
2649                  * The page may have dirty, unmapped buffers.  For example,
2650                  * they may have been added in ext3_writepage().  Make them
2651                  * freeable here, so the page does not leak.
2652                  */
2653                 block_invalidatepage(page, 0);
2654                 unlock_page(page);
2655                 return 0; /* don't care */
2656         }
2657
2658         /*
2659          * The page straddles i_size.  It must be zeroed out on each and every
2660          * writepage invokation because it may be mmapped.  "A file is mapped
2661          * in multiples of the page size.  For a file that is not a multiple of
2662          * the  page size, the remaining memory is zeroed when mapped, and
2663          * writes to that region are not written out to the file."
2664          */
2665         kaddr = kmap_atomic(page, KM_USER0);
2666         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2667         flush_dcache_page(page);
2668         kunmap_atomic(kaddr, KM_USER0);
2669         return __block_write_full_page(inode, page, get_block, wbc);
2670 }
2671
2672 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2673                             get_block_t *get_block)
2674 {
2675         struct buffer_head tmp;
2676         struct inode *inode = mapping->host;
2677         tmp.b_state = 0;
2678         tmp.b_blocknr = 0;
2679         get_block(inode, block, &tmp, 0);
2680         return tmp.b_blocknr;
2681 }
2682
2683 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2684 {
2685         struct buffer_head *bh = bio->bi_private;
2686
2687         if (bio->bi_size)
2688                 return 1;
2689
2690         if (err == -EOPNOTSUPP) {
2691                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2692                 set_bit(BH_Eopnotsupp, &bh->b_state);
2693         }
2694
2695         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2696         bio_put(bio);
2697         return 0;
2698 }
2699
2700 int submit_bh(int rw, struct buffer_head * bh)
2701 {
2702         struct bio *bio;
2703         int ret = 0;
2704
2705         BUG_ON(!buffer_locked(bh));
2706         BUG_ON(!buffer_mapped(bh));
2707         BUG_ON(!bh->b_end_io);
2708
2709         if (buffer_ordered(bh) && (rw == WRITE))
2710                 rw = WRITE_BARRIER;
2711
2712         /*
2713          * Only clear out a write error when rewriting, should this
2714          * include WRITE_SYNC as well?
2715          */
2716         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2717                 clear_buffer_write_io_error(bh);
2718
2719         /*
2720          * from here on down, it's all bio -- do the initial mapping,
2721          * submit_bio -> generic_make_request may further map this bio around
2722          */
2723         bio = bio_alloc(GFP_NOIO, 1);
2724
2725         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2726         bio->bi_bdev = bh->b_bdev;
2727         bio->bi_io_vec[0].bv_page = bh->b_page;
2728         bio->bi_io_vec[0].bv_len = bh->b_size;
2729         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2730
2731         bio->bi_vcnt = 1;
2732         bio->bi_idx = 0;
2733         bio->bi_size = bh->b_size;
2734
2735         bio->bi_end_io = end_bio_bh_io_sync;
2736         bio->bi_private = bh;
2737
2738         bio_get(bio);
2739         submit_bio(rw, bio);
2740
2741         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2742                 ret = -EOPNOTSUPP;
2743
2744         bio_put(bio);
2745         return ret;
2746 }
2747
2748 /**
2749  * ll_rw_block: low-level access to block devices (DEPRECATED)
2750  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2751  * @nr: number of &struct buffer_heads in the array
2752  * @bhs: array of pointers to &struct buffer_head
2753  *
2754  * ll_rw_block() takes an array of pointers to &struct buffer_heads,
2755  * and requests an I/O operation on them, either a %READ or a %WRITE.
2756  * The third %READA option is described in the documentation for
2757  * generic_make_request() which ll_rw_block() calls.
2758  *
2759  * This function drops any buffer that it cannot get a lock on (with the
2760  * BH_Lock state bit), any buffer that appears to be clean when doing a
2761  * write request, and any buffer that appears to be up-to-date when doing
2762  * read request.  Further it marks as clean buffers that are processed for
2763  * writing (the buffer cache won't assume that they are actually clean until
2764  * the buffer gets unlocked).
2765  *
2766  * ll_rw_block sets b_end_io to simple completion handler that marks
2767  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2768  * any waiters. 
2769  *
2770  * All of the buffers must be for the same device, and must also be a
2771  * multiple of the current approved size for the device.
2772  */
2773 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2774 {
2775         int i;
2776
2777         for (i = 0; i < nr; i++) {
2778                 struct buffer_head *bh = bhs[i];
2779
2780                 if (test_set_buffer_locked(bh))
2781                         continue;
2782
2783                 get_bh(bh);
2784                 if (rw == WRITE) {
2785                         bh->b_end_io = end_buffer_write_sync;
2786                         if (test_clear_buffer_dirty(bh)) {
2787                                 submit_bh(WRITE, bh);
2788                                 continue;
2789                         }
2790                 } else {
2791                         bh->b_end_io = end_buffer_read_sync;
2792                         if (!buffer_uptodate(bh)) {
2793                                 submit_bh(rw, bh);
2794                                 continue;
2795                         }
2796                 }
2797                 unlock_buffer(bh);
2798                 put_bh(bh);
2799         }
2800 }
2801
2802 /*
2803  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2804  * and then start new I/O and then wait upon it.  The caller must have a ref on
2805  * the buffer_head.
2806  */
2807 int sync_dirty_buffer(struct buffer_head *bh)
2808 {
2809         int ret = 0;
2810
2811         WARN_ON(atomic_read(&bh->b_count) < 1);
2812         lock_buffer(bh);
2813         if (test_clear_buffer_dirty(bh)) {
2814                 get_bh(bh);
2815                 bh->b_end_io = end_buffer_write_sync;
2816                 ret = submit_bh(WRITE, bh);
2817                 wait_on_buffer(bh);
2818                 if (buffer_eopnotsupp(bh)) {
2819                         clear_buffer_eopnotsupp(bh);
2820                         ret = -EOPNOTSUPP;
2821                 }
2822                 if (!ret && !buffer_uptodate(bh))
2823                         ret = -EIO;
2824         } else {
2825                 unlock_buffer(bh);
2826         }
2827         return ret;
2828 }
2829
2830 /*
2831  * try_to_free_buffers() checks if all the buffers on this particular page
2832  * are unused, and releases them if so.
2833  *
2834  * Exclusion against try_to_free_buffers may be obtained by either
2835  * locking the page or by holding its mapping's private_lock.
2836  *
2837  * If the page is dirty but all the buffers are clean then we need to
2838  * be sure to mark the page clean as well.  This is because the page
2839  * may be against a block device, and a later reattachment of buffers
2840  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2841  * filesystem data on the same device.
2842  *
2843  * The same applies to regular filesystem pages: if all the buffers are
2844  * clean then we set the page clean and proceed.  To do that, we require
2845  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2846  * private_lock.
2847  *
2848  * try_to_free_buffers() is non-blocking.
2849  */
2850 static inline int buffer_busy(struct buffer_head *bh)
2851 {
2852         return atomic_read(&bh->b_count) |
2853                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2854 }
2855
2856 static int
2857 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2858 {
2859         struct buffer_head *head = page_buffers(page);
2860         struct buffer_head *bh;
2861
2862         bh = head;
2863         do {
2864                 if (buffer_write_io_error(bh))
2865                         set_bit(AS_EIO, &page->mapping->flags);
2866                 if (buffer_busy(bh))
2867                         goto failed;
2868                 bh = bh->b_this_page;
2869         } while (bh != head);
2870
2871         do {
2872                 struct buffer_head *next = bh->b_this_page;
2873
2874                 if (!list_empty(&bh->b_assoc_buffers))
2875                         __remove_assoc_queue(bh);
2876                 bh = next;
2877         } while (bh != head);
2878         *buffers_to_free = head;
2879         __clear_page_buffers(page);
2880         return 1;
2881 failed:
2882         return 0;
2883 }
2884
2885 int try_to_free_buffers(struct page *page)
2886 {
2887         struct address_space * const mapping = page->mapping;
2888         struct buffer_head *buffers_to_free = NULL;
2889         int ret = 0;
2890
2891         BUG_ON(!PageLocked(page));
2892         if (PageWriteback(page))
2893                 return 0;
2894
2895         if (mapping == NULL) {          /* can this still happen? */
2896                 ret = drop_buffers(page, &buffers_to_free);
2897                 goto out;
2898         }
2899
2900         spin_lock(&mapping->private_lock);
2901         ret = drop_buffers(page, &buffers_to_free);
2902         if (ret) {
2903                 /*
2904                  * If the filesystem writes its buffers by hand (eg ext3)
2905                  * then we can have clean buffers against a dirty page.  We
2906                  * clean the page here; otherwise later reattachment of buffers
2907                  * could encounter a non-uptodate page, which is unresolvable.
2908                  * This only applies in the rare case where try_to_free_buffers
2909                  * succeeds but the page is not freed.
2910                  */
2911                 clear_page_dirty(page);
2912         }
2913         spin_unlock(&mapping->private_lock);
2914 out:
2915         if (buffers_to_free) {
2916                 struct buffer_head *bh = buffers_to_free;
2917
2918                 do {
2919                         struct buffer_head *next = bh->b_this_page;
2920                         free_buffer_head(bh);
2921                         bh = next;
2922                 } while (bh != buffers_to_free);
2923         }
2924         return ret;
2925 }
2926 EXPORT_SYMBOL(try_to_free_buffers);
2927
2928 int block_sync_page(struct page *page)
2929 {
2930         struct address_space *mapping;
2931
2932         smp_mb();
2933         mapping = page_mapping(page);
2934         if (mapping)
2935                 blk_run_backing_dev(mapping->backing_dev_info, page);
2936         return 0;
2937 }
2938
2939 /*
2940  * There are no bdflush tunables left.  But distributions are
2941  * still running obsolete flush daemons, so we terminate them here.
2942  *
2943  * Use of bdflush() is deprecated and will be removed in a future kernel.
2944  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2945  */
2946 asmlinkage long sys_bdflush(int func, long data)
2947 {
2948         static int msg_count;
2949
2950         if (!capable(CAP_SYS_ADMIN))
2951                 return -EPERM;
2952
2953         if (msg_count < 5) {
2954                 msg_count++;
2955                 printk(KERN_INFO
2956                         "warning: process `%s' used the obsolete bdflush"
2957                         " system call\n", current->comm);
2958                 printk(KERN_INFO "Fix your initscripts?\n");
2959         }
2960
2961         if (func == 1)
2962                 do_exit(0);
2963         return 0;
2964 }
2965
2966 /*
2967  * Buffer-head allocation
2968  */
2969 static kmem_cache_t *bh_cachep;
2970
2971 /*
2972  * Once the number of bh's in the machine exceeds this level, we start
2973  * stripping them in writeback.
2974  */
2975 static int max_buffer_heads;
2976
2977 int buffer_heads_over_limit;
2978
2979 struct bh_accounting {
2980         int nr;                 /* Number of live bh's */
2981         int ratelimit;          /* Limit cacheline bouncing */
2982 };
2983
2984 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2985
2986 static void recalc_bh_state(void)
2987 {
2988         int i;
2989         int tot = 0;
2990
2991         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2992                 return;
2993         __get_cpu_var(bh_accounting).ratelimit = 0;
2994         for_each_cpu(i)
2995                 tot += per_cpu(bh_accounting, i).nr;
2996         buffer_heads_over_limit = (tot > max_buffer_heads);
2997 }
2998         
2999 struct buffer_head *alloc_buffer_head(int gfp_flags)
3000 {
3001         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3002         if (ret) {
3003                 preempt_disable();
3004                 __get_cpu_var(bh_accounting).nr++;
3005                 recalc_bh_state();
3006                 preempt_enable();
3007         }
3008         return ret;
3009 }
3010 EXPORT_SYMBOL(alloc_buffer_head);
3011
3012 void free_buffer_head(struct buffer_head *bh)
3013 {
3014         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3015         kmem_cache_free(bh_cachep, bh);
3016         preempt_disable();
3017         __get_cpu_var(bh_accounting).nr--;
3018         recalc_bh_state();
3019         preempt_enable();
3020 }
3021 EXPORT_SYMBOL(free_buffer_head);
3022
3023 static void
3024 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3025 {
3026         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3027                             SLAB_CTOR_CONSTRUCTOR) {
3028                 struct buffer_head * bh = (struct buffer_head *)data;
3029
3030                 memset(bh, 0, sizeof(*bh));
3031                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3032         }
3033 }
3034
3035 #ifdef CONFIG_HOTPLUG_CPU
3036 static void buffer_exit_cpu(int cpu)
3037 {
3038         int i;
3039         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3040
3041         for (i = 0; i < BH_LRU_SIZE; i++) {
3042                 brelse(b->bhs[i]);
3043                 b->bhs[i] = NULL;
3044         }
3045 }
3046
3047 static int buffer_cpu_notify(struct notifier_block *self,
3048                               unsigned long action, void *hcpu)
3049 {
3050         if (action == CPU_DEAD)
3051                 buffer_exit_cpu((unsigned long)hcpu);
3052         return NOTIFY_OK;
3053 }
3054 #endif /* CONFIG_HOTPLUG_CPU */
3055
3056 void __init buffer_init(void)
3057 {
3058         int nrpages;
3059
3060         bh_cachep = kmem_cache_create("buffer_head",
3061                         sizeof(struct buffer_head), 0,
3062                         SLAB_PANIC, init_buffer_head, NULL);
3063
3064         /*
3065          * Limit the bh occupancy to 10% of ZONE_NORMAL
3066          */
3067         nrpages = (nr_free_buffer_pages() * 10) / 100;
3068         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3069         hotcpu_notifier(buffer_cpu_notify, 0);
3070 }
3071
3072 EXPORT_SYMBOL(__bforget);
3073 EXPORT_SYMBOL(__brelse);
3074 EXPORT_SYMBOL(__wait_on_buffer);
3075 EXPORT_SYMBOL(block_commit_write);
3076 EXPORT_SYMBOL(block_prepare_write);
3077 EXPORT_SYMBOL(block_read_full_page);
3078 EXPORT_SYMBOL(block_sync_page);
3079 EXPORT_SYMBOL(block_truncate_page);
3080 EXPORT_SYMBOL(block_write_full_page);
3081 EXPORT_SYMBOL(cont_prepare_write);
3082 EXPORT_SYMBOL(end_buffer_async_write);
3083 EXPORT_SYMBOL(end_buffer_read_sync);
3084 EXPORT_SYMBOL(end_buffer_write_sync);
3085 EXPORT_SYMBOL(file_fsync);
3086 EXPORT_SYMBOL(fsync_bdev);
3087 EXPORT_SYMBOL(generic_block_bmap);
3088 EXPORT_SYMBOL(generic_commit_write);
3089 EXPORT_SYMBOL(generic_cont_expand);
3090 EXPORT_SYMBOL(init_buffer);
3091 EXPORT_SYMBOL(invalidate_bdev);
3092 EXPORT_SYMBOL(ll_rw_block);
3093 EXPORT_SYMBOL(mark_buffer_dirty);
3094 EXPORT_SYMBOL(submit_bh);
3095 EXPORT_SYMBOL(sync_dirty_buffer);
3096 EXPORT_SYMBOL(unlock_buffer);