fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         smp_mb__before_clear_bit();
82         clear_buffer_locked(bh);
83         smp_mb__after_clear_bit();
84         wake_up_bit(&bh->b_state, BH_Lock);
85 }
86
87 /*
88  * Block until a buffer comes unlocked.  This doesn't stop it
89  * from becoming locked again - you have to lock it yourself
90  * if you want to preserve its state.
91  */
92 void __wait_on_buffer(struct buffer_head * bh)
93 {
94         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 }
96
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100         ClearPagePrivate(page);
101         set_page_private(page, 0);
102         page_cache_release(page);
103 }
104
105 static void buffer_io_error(struct buffer_head *bh)
106 {
107         char b[BDEVNAME_SIZE];
108
109         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110                         bdevname(bh->b_bdev, b),
111                         (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
116  * unlock the buffer. This is what ll_rw_block uses too.
117  */
118 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 {
120         if (uptodate) {
121                 set_buffer_uptodate(bh);
122         } else {
123                 /* This happens, due to failed READA attempts. */
124                 clear_buffer_uptodate(bh);
125         }
126         unlock_buffer(bh);
127         put_bh(bh);
128 }
129
130 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 {
132         char b[BDEVNAME_SIZE];
133
134         if (uptodate) {
135                 set_buffer_uptodate(bh);
136         } else {
137                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138                         buffer_io_error(bh);
139                         printk(KERN_WARNING "lost page write due to "
140                                         "I/O error on %s\n",
141                                        bdevname(bh->b_bdev, b));
142                 }
143                 set_buffer_write_io_error(bh);
144                 clear_buffer_uptodate(bh);
145         }
146         unlock_buffer(bh);
147         put_bh(bh);
148 }
149
150 /*
151  * Write out and wait upon all the dirty data associated with a block
152  * device via its mapping.  Does not take the superblock lock.
153  */
154 int sync_blockdev(struct block_device *bdev)
155 {
156         int ret = 0;
157
158         if (bdev)
159                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160         return ret;
161 }
162 EXPORT_SYMBOL(sync_blockdev);
163
164 EXPORT_SYMBOL(fsync_super);
165
166 /*
167  * Write out and wait upon all dirty data associated with this
168  * device.   Filesystem data as well as the underlying block
169  * device.  Takes the superblock lock.
170  */
171 int fsync_bdev(struct block_device *bdev)
172 {
173         struct super_block *sb = get_super(bdev);
174         if (sb) {
175                 int res = fsync_super(sb);
176                 drop_super(sb);
177                 return res;
178         }
179         return sync_blockdev(bdev);
180 }
181
182 /**
183  * freeze_bdev  --  lock a filesystem and force it into a consistent state
184  * @bdev:       blockdevice to lock
185  *
186  * This takes the block device bd_mount_sem to make sure no new mounts
187  * happen on bdev until thaw_bdev() is called.
188  * If a superblock is found on this device, we take the s_umount semaphore
189  * on it to make sure nobody unmounts until the snapshot creation is done.
190  */
191 struct super_block *freeze_bdev(struct block_device *bdev)
192 {
193         struct super_block *sb;
194
195         down(&bdev->bd_mount_sem);
196         sb = get_super(bdev);
197         if (sb && !(sb->s_flags & MS_RDONLY)) {
198                 sb->s_frozen = SB_FREEZE_WRITE;
199                 smp_wmb();
200
201                 __fsync_super(sb);
202
203                 sb->s_frozen = SB_FREEZE_TRANS;
204                 smp_wmb();
205
206                 sync_blockdev(sb->s_bdev);
207
208                 if (sb->s_op->write_super_lockfs)
209                         sb->s_op->write_super_lockfs(sb);
210         }
211
212         sync_blockdev(bdev);
213         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
214 }
215 EXPORT_SYMBOL(freeze_bdev);
216
217 /**
218  * thaw_bdev  -- unlock filesystem
219  * @bdev:       blockdevice to unlock
220  * @sb:         associated superblock
221  *
222  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
223  */
224 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
225 {
226         if (sb) {
227                 BUG_ON(sb->s_bdev != bdev);
228
229                 if (sb->s_op->unlockfs)
230                         sb->s_op->unlockfs(sb);
231                 sb->s_frozen = SB_UNFROZEN;
232                 smp_wmb();
233                 wake_up(&sb->s_wait_unfrozen);
234                 drop_super(sb);
235         }
236
237         up(&bdev->bd_mount_sem);
238 }
239 EXPORT_SYMBOL(thaw_bdev);
240
241 /*
242  * Various filesystems appear to want __find_get_block to be non-blocking.
243  * But it's the page lock which protects the buffers.  To get around this,
244  * we get exclusion from try_to_free_buffers with the blockdev mapping's
245  * private_lock.
246  *
247  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
248  * may be quite high.  This code could TryLock the page, and if that
249  * succeeds, there is no need to take private_lock. (But if
250  * private_lock is contended then so is mapping->tree_lock).
251  */
252 static struct buffer_head *
253 __find_get_block_slow(struct block_device *bdev, sector_t block)
254 {
255         struct inode *bd_inode = bdev->bd_inode;
256         struct address_space *bd_mapping = bd_inode->i_mapping;
257         struct buffer_head *ret = NULL;
258         pgoff_t index;
259         struct buffer_head *bh;
260         struct buffer_head *head;
261         struct page *page;
262         int all_mapped = 1;
263
264         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
265         page = find_get_page(bd_mapping, index);
266         if (!page)
267                 goto out;
268
269         spin_lock(&bd_mapping->private_lock);
270         if (!page_has_buffers(page))
271                 goto out_unlock;
272         head = page_buffers(page);
273         bh = head;
274         do {
275                 if (bh->b_blocknr == block) {
276                         ret = bh;
277                         get_bh(bh);
278                         goto out_unlock;
279                 }
280                 if (!buffer_mapped(bh))
281                         all_mapped = 0;
282                 bh = bh->b_this_page;
283         } while (bh != head);
284
285         /* we might be here because some of the buffers on this page are
286          * not mapped.  This is due to various races between
287          * file io on the block device and getblk.  It gets dealt with
288          * elsewhere, don't buffer_error if we had some unmapped buffers
289          */
290         if (all_mapped) {
291                 printk("__find_get_block_slow() failed. "
292                         "block=%llu, b_blocknr=%llu\n",
293                         (unsigned long long)block,
294                         (unsigned long long)bh->b_blocknr);
295                 printk("b_state=0x%08lx, b_size=%zu\n",
296                         bh->b_state, bh->b_size);
297                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
298         }
299 out_unlock:
300         spin_unlock(&bd_mapping->private_lock);
301         page_cache_release(page);
302 out:
303         return ret;
304 }
305
306 /* If invalidate_buffers() will trash dirty buffers, it means some kind
307    of fs corruption is going on. Trashing dirty data always imply losing
308    information that was supposed to be just stored on the physical layer
309    by the user.
310
311    Thus invalidate_buffers in general usage is not allwowed to trash
312    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
313    be preserved.  These buffers are simply skipped.
314   
315    We also skip buffers which are still in use.  For example this can
316    happen if a userspace program is reading the block device.
317
318    NOTE: In the case where the user removed a removable-media-disk even if
319    there's still dirty data not synced on disk (due a bug in the device driver
320    or due an error of the user), by not destroying the dirty buffers we could
321    generate corruption also on the next media inserted, thus a parameter is
322    necessary to handle this case in the most safe way possible (trying
323    to not corrupt also the new disk inserted with the data belonging to
324    the old now corrupted disk). Also for the ramdisk the natural thing
325    to do in order to release the ramdisk memory is to destroy dirty buffers.
326
327    These are two special cases. Normal usage imply the device driver
328    to issue a sync on the device (without waiting I/O completion) and
329    then an invalidate_buffers call that doesn't trash dirty buffers.
330
331    For handling cache coherency with the blkdev pagecache the 'update' case
332    is been introduced. It is needed to re-read from disk any pinned
333    buffer. NOTE: re-reading from disk is destructive so we can do it only
334    when we assume nobody is changing the buffercache under our I/O and when
335    we think the disk contains more recent information than the buffercache.
336    The update == 1 pass marks the buffers we need to update, the update == 2
337    pass does the actual I/O. */
338 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
339 {
340         struct address_space *mapping = bdev->bd_inode->i_mapping;
341
342         if (mapping->nrpages == 0)
343                 return;
344
345         invalidate_bh_lrus();
346         /*
347          * FIXME: what about destroy_dirty_buffers?
348          * We really want to use invalidate_inode_pages2() for
349          * that, but not until that's cleaned up.
350          */
351         invalidate_inode_pages(mapping);
352 }
353
354 /*
355  * Kick pdflush then try to free up some ZONE_NORMAL memory.
356  */
357 static void free_more_memory(void)
358 {
359         struct zone **zones;
360         pg_data_t *pgdat;
361
362         wakeup_pdflush(1024);
363         yield();
364
365         for_each_online_pgdat(pgdat) {
366                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
367                 if (*zones)
368                         try_to_free_pages(zones, GFP_NOFS);
369         }
370 }
371
372 /*
373  * I/O completion handler for block_read_full_page() - pages
374  * which come unlocked at the end of I/O.
375  */
376 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
377 {
378         unsigned long flags;
379         struct buffer_head *first;
380         struct buffer_head *tmp;
381         struct page *page;
382         int page_uptodate = 1;
383
384         BUG_ON(!buffer_async_read(bh));
385
386         page = bh->b_page;
387         if (uptodate) {
388                 set_buffer_uptodate(bh);
389         } else {
390                 clear_buffer_uptodate(bh);
391                 if (printk_ratelimit())
392                         buffer_io_error(bh);
393                 SetPageError(page);
394         }
395
396         /*
397          * Be _very_ careful from here on. Bad things can happen if
398          * two buffer heads end IO at almost the same time and both
399          * decide that the page is now completely done.
400          */
401         first = page_buffers(page);
402         local_irq_save(flags);
403         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
404         clear_buffer_async_read(bh);
405         unlock_buffer(bh);
406         tmp = bh;
407         do {
408                 if (!buffer_uptodate(tmp))
409                         page_uptodate = 0;
410                 if (buffer_async_read(tmp)) {
411                         BUG_ON(!buffer_locked(tmp));
412                         goto still_busy;
413                 }
414                 tmp = tmp->b_this_page;
415         } while (tmp != bh);
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418
419         /*
420          * If none of the buffers had errors and they are all
421          * uptodate then we can set the page uptodate.
422          */
423         if (page_uptodate && !PageError(page))
424                 SetPageUptodate(page);
425         unlock_page(page);
426         return;
427
428 still_busy:
429         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
430         local_irq_restore(flags);
431         return;
432 }
433
434 /*
435  * Completion handler for block_write_full_page() - pages which are unlocked
436  * during I/O, and which have PageWriteback cleared upon I/O completion.
437  */
438 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
439 {
440         char b[BDEVNAME_SIZE];
441         unsigned long flags;
442         struct buffer_head *first;
443         struct buffer_head *tmp;
444         struct page *page;
445
446         BUG_ON(!buffer_async_write(bh));
447
448         page = bh->b_page;
449         if (uptodate) {
450                 set_buffer_uptodate(bh);
451         } else {
452                 if (printk_ratelimit()) {
453                         buffer_io_error(bh);
454                         printk(KERN_WARNING "lost page write due to "
455                                         "I/O error on %s\n",
456                                bdevname(bh->b_bdev, b));
457                 }
458                 set_bit(AS_EIO, &page->mapping->flags);
459                 set_buffer_write_io_error(bh);
460                 clear_buffer_uptodate(bh);
461                 SetPageError(page);
462         }
463
464         first = page_buffers(page);
465         local_irq_save(flags);
466         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
467
468         clear_buffer_async_write(bh);
469         unlock_buffer(bh);
470         tmp = bh->b_this_page;
471         while (tmp != bh) {
472                 if (buffer_async_write(tmp)) {
473                         BUG_ON(!buffer_locked(tmp));
474                         goto still_busy;
475                 }
476                 tmp = tmp->b_this_page;
477         }
478         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
479         local_irq_restore(flags);
480         end_page_writeback(page);
481         return;
482
483 still_busy:
484         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
485         local_irq_restore(flags);
486         return;
487 }
488
489 /*
490  * If a page's buffers are under async readin (end_buffer_async_read
491  * completion) then there is a possibility that another thread of
492  * control could lock one of the buffers after it has completed
493  * but while some of the other buffers have not completed.  This
494  * locked buffer would confuse end_buffer_async_read() into not unlocking
495  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
496  * that this buffer is not under async I/O.
497  *
498  * The page comes unlocked when it has no locked buffer_async buffers
499  * left.
500  *
501  * PageLocked prevents anyone starting new async I/O reads any of
502  * the buffers.
503  *
504  * PageWriteback is used to prevent simultaneous writeout of the same
505  * page.
506  *
507  * PageLocked prevents anyone from starting writeback of a page which is
508  * under read I/O (PageWriteback is only ever set against a locked page).
509  */
510 static void mark_buffer_async_read(struct buffer_head *bh)
511 {
512         bh->b_end_io = end_buffer_async_read;
513         set_buffer_async_read(bh);
514 }
515
516 void mark_buffer_async_write(struct buffer_head *bh)
517 {
518         bh->b_end_io = end_buffer_async_write;
519         set_buffer_async_write(bh);
520 }
521 EXPORT_SYMBOL(mark_buffer_async_write);
522
523
524 /*
525  * fs/buffer.c contains helper functions for buffer-backed address space's
526  * fsync functions.  A common requirement for buffer-based filesystems is
527  * that certain data from the backing blockdev needs to be written out for
528  * a successful fsync().  For example, ext2 indirect blocks need to be
529  * written back and waited upon before fsync() returns.
530  *
531  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
532  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
533  * management of a list of dependent buffers at ->i_mapping->private_list.
534  *
535  * Locking is a little subtle: try_to_free_buffers() will remove buffers
536  * from their controlling inode's queue when they are being freed.  But
537  * try_to_free_buffers() will be operating against the *blockdev* mapping
538  * at the time, not against the S_ISREG file which depends on those buffers.
539  * So the locking for private_list is via the private_lock in the address_space
540  * which backs the buffers.  Which is different from the address_space 
541  * against which the buffers are listed.  So for a particular address_space,
542  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
543  * mapping->private_list will always be protected by the backing blockdev's
544  * ->private_lock.
545  *
546  * Which introduces a requirement: all buffers on an address_space's
547  * ->private_list must be from the same address_space: the blockdev's.
548  *
549  * address_spaces which do not place buffers at ->private_list via these
550  * utility functions are free to use private_lock and private_list for
551  * whatever they want.  The only requirement is that list_empty(private_list)
552  * be true at clear_inode() time.
553  *
554  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
555  * filesystems should do that.  invalidate_inode_buffers() should just go
556  * BUG_ON(!list_empty).
557  *
558  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
559  * take an address_space, not an inode.  And it should be called
560  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
561  * queued up.
562  *
563  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
564  * list if it is already on a list.  Because if the buffer is on a list,
565  * it *must* already be on the right one.  If not, the filesystem is being
566  * silly.  This will save a ton of locking.  But first we have to ensure
567  * that buffers are taken *off* the old inode's list when they are freed
568  * (presumably in truncate).  That requires careful auditing of all
569  * filesystems (do it inside bforget()).  It could also be done by bringing
570  * b_inode back.
571  */
572
573 /*
574  * The buffer's backing address_space's private_lock must be held
575  */
576 static inline void __remove_assoc_queue(struct buffer_head *bh)
577 {
578         list_del_init(&bh->b_assoc_buffers);
579         WARN_ON(!bh->b_assoc_map);
580         if (buffer_write_io_error(bh))
581                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
582         bh->b_assoc_map = NULL;
583 }
584
585 int inode_has_buffers(struct inode *inode)
586 {
587         return !list_empty(&inode->i_data.private_list);
588 }
589
590 /*
591  * osync is designed to support O_SYNC io.  It waits synchronously for
592  * all already-submitted IO to complete, but does not queue any new
593  * writes to the disk.
594  *
595  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
596  * you dirty the buffers, and then use osync_inode_buffers to wait for
597  * completion.  Any other dirty buffers which are not yet queued for
598  * write will not be flushed to disk by the osync.
599  */
600 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
601 {
602         struct buffer_head *bh;
603         struct list_head *p;
604         int err = 0;
605
606         spin_lock(lock);
607 repeat:
608         list_for_each_prev(p, list) {
609                 bh = BH_ENTRY(p);
610                 if (buffer_locked(bh)) {
611                         get_bh(bh);
612                         spin_unlock(lock);
613                         wait_on_buffer(bh);
614                         if (!buffer_uptodate(bh))
615                                 err = -EIO;
616                         brelse(bh);
617                         spin_lock(lock);
618                         goto repeat;
619                 }
620         }
621         spin_unlock(lock);
622         return err;
623 }
624
625 /**
626  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
627  *                        buffers
628  * @mapping: the mapping which wants those buffers written
629  *
630  * Starts I/O against the buffers at mapping->private_list, and waits upon
631  * that I/O.
632  *
633  * Basically, this is a convenience function for fsync().
634  * @mapping is a file or directory which needs those buffers to be written for
635  * a successful fsync().
636  */
637 int sync_mapping_buffers(struct address_space *mapping)
638 {
639         struct address_space *buffer_mapping = mapping->assoc_mapping;
640
641         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
642                 return 0;
643
644         return fsync_buffers_list(&buffer_mapping->private_lock,
645                                         &mapping->private_list);
646 }
647 EXPORT_SYMBOL(sync_mapping_buffers);
648
649 /*
650  * Called when we've recently written block `bblock', and it is known that
651  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
652  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
653  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
654  */
655 void write_boundary_block(struct block_device *bdev,
656                         sector_t bblock, unsigned blocksize)
657 {
658         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
659         if (bh) {
660                 if (buffer_dirty(bh))
661                         ll_rw_block(WRITE, 1, &bh);
662                 put_bh(bh);
663         }
664 }
665
666 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
667 {
668         struct address_space *mapping = inode->i_mapping;
669         struct address_space *buffer_mapping = bh->b_page->mapping;
670
671         mark_buffer_dirty(bh);
672         if (!mapping->assoc_mapping) {
673                 mapping->assoc_mapping = buffer_mapping;
674         } else {
675                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
676         }
677         if (list_empty(&bh->b_assoc_buffers)) {
678                 spin_lock(&buffer_mapping->private_lock);
679                 list_move_tail(&bh->b_assoc_buffers,
680                                 &mapping->private_list);
681                 bh->b_assoc_map = mapping;
682                 spin_unlock(&buffer_mapping->private_lock);
683         }
684 }
685 EXPORT_SYMBOL(mark_buffer_dirty_inode);
686
687 /*
688  * Add a page to the dirty page list.
689  *
690  * It is a sad fact of life that this function is called from several places
691  * deeply under spinlocking.  It may not sleep.
692  *
693  * If the page has buffers, the uptodate buffers are set dirty, to preserve
694  * dirty-state coherency between the page and the buffers.  It the page does
695  * not have buffers then when they are later attached they will all be set
696  * dirty.
697  *
698  * The buffers are dirtied before the page is dirtied.  There's a small race
699  * window in which a writepage caller may see the page cleanness but not the
700  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
701  * before the buffers, a concurrent writepage caller could clear the page dirty
702  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
703  * page on the dirty page list.
704  *
705  * We use private_lock to lock against try_to_free_buffers while using the
706  * page's buffer list.  Also use this to protect against clean buffers being
707  * added to the page after it was set dirty.
708  *
709  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
710  * address_space though.
711  */
712 int __set_page_dirty_buffers(struct page *page)
713 {
714         struct address_space * const mapping = page_mapping(page);
715
716         if (unlikely(!mapping))
717                 return !TestSetPageDirty(page);
718
719         spin_lock(&mapping->private_lock);
720         if (page_has_buffers(page)) {
721                 struct buffer_head *head = page_buffers(page);
722                 struct buffer_head *bh = head;
723
724                 do {
725                         set_buffer_dirty(bh);
726                         bh = bh->b_this_page;
727                 } while (bh != head);
728         }
729         spin_unlock(&mapping->private_lock);
730
731         if (TestSetPageDirty(page))
732                 return 0;
733
734         write_lock_irq(&mapping->tree_lock);
735         if (page->mapping) {    /* Race with truncate? */
736                 if (mapping_cap_account_dirty(mapping)) {
737                         __inc_zone_page_state(page, NR_FILE_DIRTY);
738                         task_io_account_write(PAGE_CACHE_SIZE);
739                 }
740                 radix_tree_tag_set(&mapping->page_tree,
741                                 page_index(page), PAGECACHE_TAG_DIRTY);
742         }
743         write_unlock_irq(&mapping->tree_lock);
744         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
745         return 1;
746 }
747 EXPORT_SYMBOL(__set_page_dirty_buffers);
748
749 /*
750  * Write out and wait upon a list of buffers.
751  *
752  * We have conflicting pressures: we want to make sure that all
753  * initially dirty buffers get waited on, but that any subsequently
754  * dirtied buffers don't.  After all, we don't want fsync to last
755  * forever if somebody is actively writing to the file.
756  *
757  * Do this in two main stages: first we copy dirty buffers to a
758  * temporary inode list, queueing the writes as we go.  Then we clean
759  * up, waiting for those writes to complete.
760  * 
761  * During this second stage, any subsequent updates to the file may end
762  * up refiling the buffer on the original inode's dirty list again, so
763  * there is a chance we will end up with a buffer queued for write but
764  * not yet completed on that list.  So, as a final cleanup we go through
765  * the osync code to catch these locked, dirty buffers without requeuing
766  * any newly dirty buffers for write.
767  */
768 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
769 {
770         struct buffer_head *bh;
771         struct list_head tmp;
772         int err = 0, err2;
773
774         INIT_LIST_HEAD(&tmp);
775
776         spin_lock(lock);
777         while (!list_empty(list)) {
778                 bh = BH_ENTRY(list->next);
779                 __remove_assoc_queue(bh);
780                 if (buffer_dirty(bh) || buffer_locked(bh)) {
781                         list_add(&bh->b_assoc_buffers, &tmp);
782                         if (buffer_dirty(bh)) {
783                                 get_bh(bh);
784                                 spin_unlock(lock);
785                                 /*
786                                  * Ensure any pending I/O completes so that
787                                  * ll_rw_block() actually writes the current
788                                  * contents - it is a noop if I/O is still in
789                                  * flight on potentially older contents.
790                                  */
791                                 ll_rw_block(SWRITE, 1, &bh);
792                                 brelse(bh);
793                                 spin_lock(lock);
794                         }
795                 }
796         }
797
798         while (!list_empty(&tmp)) {
799                 bh = BH_ENTRY(tmp.prev);
800                 list_del_init(&bh->b_assoc_buffers);
801                 get_bh(bh);
802                 spin_unlock(lock);
803                 wait_on_buffer(bh);
804                 if (!buffer_uptodate(bh))
805                         err = -EIO;
806                 brelse(bh);
807                 spin_lock(lock);
808         }
809         
810         spin_unlock(lock);
811         err2 = osync_buffers_list(lock, list);
812         if (err)
813                 return err;
814         else
815                 return err2;
816 }
817
818 /*
819  * Invalidate any and all dirty buffers on a given inode.  We are
820  * probably unmounting the fs, but that doesn't mean we have already
821  * done a sync().  Just drop the buffers from the inode list.
822  *
823  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
824  * assumes that all the buffers are against the blockdev.  Not true
825  * for reiserfs.
826  */
827 void invalidate_inode_buffers(struct inode *inode)
828 {
829         if (inode_has_buffers(inode)) {
830                 struct address_space *mapping = &inode->i_data;
831                 struct list_head *list = &mapping->private_list;
832                 struct address_space *buffer_mapping = mapping->assoc_mapping;
833
834                 spin_lock(&buffer_mapping->private_lock);
835                 while (!list_empty(list))
836                         __remove_assoc_queue(BH_ENTRY(list->next));
837                 spin_unlock(&buffer_mapping->private_lock);
838         }
839 }
840
841 /*
842  * Remove any clean buffers from the inode's buffer list.  This is called
843  * when we're trying to free the inode itself.  Those buffers can pin it.
844  *
845  * Returns true if all buffers were removed.
846  */
847 int remove_inode_buffers(struct inode *inode)
848 {
849         int ret = 1;
850
851         if (inode_has_buffers(inode)) {
852                 struct address_space *mapping = &inode->i_data;
853                 struct list_head *list = &mapping->private_list;
854                 struct address_space *buffer_mapping = mapping->assoc_mapping;
855
856                 spin_lock(&buffer_mapping->private_lock);
857                 while (!list_empty(list)) {
858                         struct buffer_head *bh = BH_ENTRY(list->next);
859                         if (buffer_dirty(bh)) {
860                                 ret = 0;
861                                 break;
862                         }
863                         __remove_assoc_queue(bh);
864                 }
865                 spin_unlock(&buffer_mapping->private_lock);
866         }
867         return ret;
868 }
869
870 /*
871  * Create the appropriate buffers when given a page for data area and
872  * the size of each buffer.. Use the bh->b_this_page linked list to
873  * follow the buffers created.  Return NULL if unable to create more
874  * buffers.
875  *
876  * The retry flag is used to differentiate async IO (paging, swapping)
877  * which may not fail from ordinary buffer allocations.
878  */
879 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
880                 int retry)
881 {
882         struct buffer_head *bh, *head;
883         long offset;
884
885 try_again:
886         head = NULL;
887         offset = PAGE_SIZE;
888         while ((offset -= size) >= 0) {
889                 bh = alloc_buffer_head(GFP_NOFS);
890                 if (!bh)
891                         goto no_grow;
892
893                 bh->b_bdev = NULL;
894                 bh->b_this_page = head;
895                 bh->b_blocknr = -1;
896                 head = bh;
897
898                 bh->b_state = 0;
899                 atomic_set(&bh->b_count, 0);
900                 bh->b_private = NULL;
901                 bh->b_size = size;
902
903                 /* Link the buffer to its page */
904                 set_bh_page(bh, page, offset);
905
906                 init_buffer(bh, NULL, NULL);
907         }
908         return head;
909 /*
910  * In case anything failed, we just free everything we got.
911  */
912 no_grow:
913         if (head) {
914                 do {
915                         bh = head;
916                         head = head->b_this_page;
917                         free_buffer_head(bh);
918                 } while (head);
919         }
920
921         /*
922          * Return failure for non-async IO requests.  Async IO requests
923          * are not allowed to fail, so we have to wait until buffer heads
924          * become available.  But we don't want tasks sleeping with 
925          * partially complete buffers, so all were released above.
926          */
927         if (!retry)
928                 return NULL;
929
930         /* We're _really_ low on memory. Now we just
931          * wait for old buffer heads to become free due to
932          * finishing IO.  Since this is an async request and
933          * the reserve list is empty, we're sure there are 
934          * async buffer heads in use.
935          */
936         free_more_memory();
937         goto try_again;
938 }
939 EXPORT_SYMBOL_GPL(alloc_page_buffers);
940
941 static inline void
942 link_dev_buffers(struct page *page, struct buffer_head *head)
943 {
944         struct buffer_head *bh, *tail;
945
946         bh = head;
947         do {
948                 tail = bh;
949                 bh = bh->b_this_page;
950         } while (bh);
951         tail->b_this_page = head;
952         attach_page_buffers(page, head);
953 }
954
955 /*
956  * Initialise the state of a blockdev page's buffers.
957  */ 
958 static void
959 init_page_buffers(struct page *page, struct block_device *bdev,
960                         sector_t block, int size)
961 {
962         struct buffer_head *head = page_buffers(page);
963         struct buffer_head *bh = head;
964         int uptodate = PageUptodate(page);
965
966         do {
967                 if (!buffer_mapped(bh)) {
968                         init_buffer(bh, NULL, NULL);
969                         bh->b_bdev = bdev;
970                         bh->b_blocknr = block;
971                         if (uptodate)
972                                 set_buffer_uptodate(bh);
973                         set_buffer_mapped(bh);
974                 }
975                 block++;
976                 bh = bh->b_this_page;
977         } while (bh != head);
978 }
979
980 /*
981  * Create the page-cache page that contains the requested block.
982  *
983  * This is user purely for blockdev mappings.
984  */
985 static struct page *
986 grow_dev_page(struct block_device *bdev, sector_t block,
987                 pgoff_t index, int size)
988 {
989         struct inode *inode = bdev->bd_inode;
990         struct page *page;
991         struct buffer_head *bh;
992
993         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
994         if (!page)
995                 return NULL;
996
997         BUG_ON(!PageLocked(page));
998
999         if (page_has_buffers(page)) {
1000                 bh = page_buffers(page);
1001                 if (bh->b_size == size) {
1002                         init_page_buffers(page, bdev, block, size);
1003                         return page;
1004                 }
1005                 if (!try_to_free_buffers(page))
1006                         goto failed;
1007         }
1008
1009         /*
1010          * Allocate some buffers for this page
1011          */
1012         bh = alloc_page_buffers(page, size, 0);
1013         if (!bh)
1014                 goto failed;
1015
1016         /*
1017          * Link the page to the buffers and initialise them.  Take the
1018          * lock to be atomic wrt __find_get_block(), which does not
1019          * run under the page lock.
1020          */
1021         spin_lock(&inode->i_mapping->private_lock);
1022         link_dev_buffers(page, bh);
1023         init_page_buffers(page, bdev, block, size);
1024         spin_unlock(&inode->i_mapping->private_lock);
1025         return page;
1026
1027 failed:
1028         BUG();
1029         unlock_page(page);
1030         page_cache_release(page);
1031         return NULL;
1032 }
1033
1034 /*
1035  * Create buffers for the specified block device block's page.  If
1036  * that page was dirty, the buffers are set dirty also.
1037  *
1038  * Except that's a bug.  Attaching dirty buffers to a dirty
1039  * blockdev's page can result in filesystem corruption, because
1040  * some of those buffers may be aliases of filesystem data.
1041  * grow_dev_page() will go BUG() if this happens.
1042  */
1043 static int
1044 grow_buffers(struct block_device *bdev, sector_t block, int size)
1045 {
1046         struct page *page;
1047         pgoff_t index;
1048         int sizebits;
1049
1050         sizebits = -1;
1051         do {
1052                 sizebits++;
1053         } while ((size << sizebits) < PAGE_SIZE);
1054
1055         index = block >> sizebits;
1056
1057         /*
1058          * Check for a block which wants to lie outside our maximum possible
1059          * pagecache index.  (this comparison is done using sector_t types).
1060          */
1061         if (unlikely(index != block >> sizebits)) {
1062                 char b[BDEVNAME_SIZE];
1063
1064                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1065                         "device %s\n",
1066                         __FUNCTION__, (unsigned long long)block,
1067                         bdevname(bdev, b));
1068                 return -EIO;
1069         }
1070         block = index << sizebits;
1071         /* Create a page with the proper size buffers.. */
1072         page = grow_dev_page(bdev, block, index, size);
1073         if (!page)
1074                 return 0;
1075         unlock_page(page);
1076         page_cache_release(page);
1077         return 1;
1078 }
1079
1080 static struct buffer_head *
1081 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1082 {
1083         /* Size must be multiple of hard sectorsize */
1084         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1085                         (size < 512 || size > PAGE_SIZE))) {
1086                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087                                         size);
1088                 printk(KERN_ERR "hardsect size: %d\n",
1089                                         bdev_hardsect_size(bdev));
1090
1091                 dump_stack();
1092                 return NULL;
1093         }
1094
1095         for (;;) {
1096                 struct buffer_head * bh;
1097                 int ret;
1098
1099                 bh = __find_get_block(bdev, block, size);
1100                 if (bh)
1101                         return bh;
1102
1103                 ret = grow_buffers(bdev, block, size);
1104                 if (ret < 0)
1105                         return NULL;
1106                 if (ret == 0)
1107                         free_more_memory();
1108         }
1109 }
1110
1111 /*
1112  * The relationship between dirty buffers and dirty pages:
1113  *
1114  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115  * the page is tagged dirty in its radix tree.
1116  *
1117  * At all times, the dirtiness of the buffers represents the dirtiness of
1118  * subsections of the page.  If the page has buffers, the page dirty bit is
1119  * merely a hint about the true dirty state.
1120  *
1121  * When a page is set dirty in its entirety, all its buffers are marked dirty
1122  * (if the page has buffers).
1123  *
1124  * When a buffer is marked dirty, its page is dirtied, but the page's other
1125  * buffers are not.
1126  *
1127  * Also.  When blockdev buffers are explicitly read with bread(), they
1128  * individually become uptodate.  But their backing page remains not
1129  * uptodate - even if all of its buffers are uptodate.  A subsequent
1130  * block_read_full_page() against that page will discover all the uptodate
1131  * buffers, will set the page uptodate and will perform no I/O.
1132  */
1133
1134 /**
1135  * mark_buffer_dirty - mark a buffer_head as needing writeout
1136  * @bh: the buffer_head to mark dirty
1137  *
1138  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139  * backing page dirty, then tag the page as dirty in its address_space's radix
1140  * tree and then attach the address_space's inode to its superblock's dirty
1141  * inode list.
1142  *
1143  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1144  * mapping->tree_lock and the global inode_lock.
1145  */
1146 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1147 {
1148         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1149                 __set_page_dirty_nobuffers(bh->b_page);
1150 }
1151
1152 /*
1153  * Decrement a buffer_head's reference count.  If all buffers against a page
1154  * have zero reference count, are clean and unlocked, and if the page is clean
1155  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1156  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1157  * a page but it ends up not being freed, and buffers may later be reattached).
1158  */
1159 void __brelse(struct buffer_head * buf)
1160 {
1161         if (atomic_read(&buf->b_count)) {
1162                 put_bh(buf);
1163                 return;
1164         }
1165         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1166         WARN_ON(1);
1167 }
1168
1169 /*
1170  * bforget() is like brelse(), except it discards any
1171  * potentially dirty data.
1172  */
1173 void __bforget(struct buffer_head *bh)
1174 {
1175         clear_buffer_dirty(bh);
1176         if (!list_empty(&bh->b_assoc_buffers)) {
1177                 struct address_space *buffer_mapping = bh->b_page->mapping;
1178
1179                 spin_lock(&buffer_mapping->private_lock);
1180                 list_del_init(&bh->b_assoc_buffers);
1181                 bh->b_assoc_map = NULL;
1182                 spin_unlock(&buffer_mapping->private_lock);
1183         }
1184         __brelse(bh);
1185 }
1186
1187 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1188 {
1189         lock_buffer(bh);
1190         if (buffer_uptodate(bh)) {
1191                 unlock_buffer(bh);
1192                 return bh;
1193         } else {
1194                 get_bh(bh);
1195                 bh->b_end_io = end_buffer_read_sync;
1196                 submit_bh(READ, bh);
1197                 wait_on_buffer(bh);
1198                 if (buffer_uptodate(bh))
1199                         return bh;
1200         }
1201         brelse(bh);
1202         return NULL;
1203 }
1204
1205 /*
1206  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1207  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1208  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1209  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1210  * CPU's LRUs at the same time.
1211  *
1212  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1213  * sb_find_get_block().
1214  *
1215  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1216  * a local interrupt disable for that.
1217  */
1218
1219 #define BH_LRU_SIZE     8
1220
1221 struct bh_lru {
1222         struct buffer_head *bhs[BH_LRU_SIZE];
1223 };
1224
1225 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1226
1227 #ifdef CONFIG_SMP
1228 #define bh_lru_lock()   local_irq_disable()
1229 #define bh_lru_unlock() local_irq_enable()
1230 #else
1231 #define bh_lru_lock()   preempt_disable()
1232 #define bh_lru_unlock() preempt_enable()
1233 #endif
1234
1235 static inline void check_irqs_on(void)
1236 {
1237 #ifdef irqs_disabled
1238         BUG_ON(irqs_disabled());
1239 #endif
1240 }
1241
1242 /*
1243  * The LRU management algorithm is dopey-but-simple.  Sorry.
1244  */
1245 static void bh_lru_install(struct buffer_head *bh)
1246 {
1247         struct buffer_head *evictee = NULL;
1248         struct bh_lru *lru;
1249
1250         check_irqs_on();
1251         bh_lru_lock();
1252         lru = &__get_cpu_var(bh_lrus);
1253         if (lru->bhs[0] != bh) {
1254                 struct buffer_head *bhs[BH_LRU_SIZE];
1255                 int in;
1256                 int out = 0;
1257
1258                 get_bh(bh);
1259                 bhs[out++] = bh;
1260                 for (in = 0; in < BH_LRU_SIZE; in++) {
1261                         struct buffer_head *bh2 = lru->bhs[in];
1262
1263                         if (bh2 == bh) {
1264                                 __brelse(bh2);
1265                         } else {
1266                                 if (out >= BH_LRU_SIZE) {
1267                                         BUG_ON(evictee != NULL);
1268                                         evictee = bh2;
1269                                 } else {
1270                                         bhs[out++] = bh2;
1271                                 }
1272                         }
1273                 }
1274                 while (out < BH_LRU_SIZE)
1275                         bhs[out++] = NULL;
1276                 memcpy(lru->bhs, bhs, sizeof(bhs));
1277         }
1278         bh_lru_unlock();
1279
1280         if (evictee)
1281                 __brelse(evictee);
1282 }
1283
1284 /*
1285  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1286  */
1287 static struct buffer_head *
1288 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1289 {
1290         struct buffer_head *ret = NULL;
1291         struct bh_lru *lru;
1292         int i;
1293
1294         check_irqs_on();
1295         bh_lru_lock();
1296         lru = &__get_cpu_var(bh_lrus);
1297         for (i = 0; i < BH_LRU_SIZE; i++) {
1298                 struct buffer_head *bh = lru->bhs[i];
1299
1300                 if (bh && bh->b_bdev == bdev &&
1301                                 bh->b_blocknr == block && bh->b_size == size) {
1302                         if (i) {
1303                                 while (i) {
1304                                         lru->bhs[i] = lru->bhs[i - 1];
1305                                         i--;
1306                                 }
1307                                 lru->bhs[0] = bh;
1308                         }
1309                         get_bh(bh);
1310                         ret = bh;
1311                         break;
1312                 }
1313         }
1314         bh_lru_unlock();
1315         return ret;
1316 }
1317
1318 /*
1319  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1320  * it in the LRU and mark it as accessed.  If it is not present then return
1321  * NULL
1322  */
1323 struct buffer_head *
1324 __find_get_block(struct block_device *bdev, sector_t block, int size)
1325 {
1326         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1327
1328         if (bh == NULL) {
1329                 bh = __find_get_block_slow(bdev, block);
1330                 if (bh)
1331                         bh_lru_install(bh);
1332         }
1333         if (bh)
1334                 touch_buffer(bh);
1335         return bh;
1336 }
1337 EXPORT_SYMBOL(__find_get_block);
1338
1339 /*
1340  * __getblk will locate (and, if necessary, create) the buffer_head
1341  * which corresponds to the passed block_device, block and size. The
1342  * returned buffer has its reference count incremented.
1343  *
1344  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1345  * illegal block number, __getblk() will happily return a buffer_head
1346  * which represents the non-existent block.  Very weird.
1347  *
1348  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1349  * attempt is failing.  FIXME, perhaps?
1350  */
1351 struct buffer_head *
1352 __getblk(struct block_device *bdev, sector_t block, int size)
1353 {
1354         struct buffer_head *bh = __find_get_block(bdev, block, size);
1355
1356         might_sleep();
1357         if (bh == NULL)
1358                 bh = __getblk_slow(bdev, block, size);
1359         return bh;
1360 }
1361 EXPORT_SYMBOL(__getblk);
1362
1363 /*
1364  * Do async read-ahead on a buffer..
1365  */
1366 void __breadahead(struct block_device *bdev, sector_t block, int size)
1367 {
1368         struct buffer_head *bh = __getblk(bdev, block, size);
1369         if (likely(bh)) {
1370                 ll_rw_block(READA, 1, &bh);
1371                 brelse(bh);
1372         }
1373 }
1374 EXPORT_SYMBOL(__breadahead);
1375
1376 /**
1377  *  __bread() - reads a specified block and returns the bh
1378  *  @bdev: the block_device to read from
1379  *  @block: number of block
1380  *  @size: size (in bytes) to read
1381  * 
1382  *  Reads a specified block, and returns buffer head that contains it.
1383  *  It returns NULL if the block was unreadable.
1384  */
1385 struct buffer_head *
1386 __bread(struct block_device *bdev, sector_t block, int size)
1387 {
1388         struct buffer_head *bh = __getblk(bdev, block, size);
1389
1390         if (likely(bh) && !buffer_uptodate(bh))
1391                 bh = __bread_slow(bh);
1392         return bh;
1393 }
1394 EXPORT_SYMBOL(__bread);
1395
1396 /*
1397  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1398  * This doesn't race because it runs in each cpu either in irq
1399  * or with preempt disabled.
1400  */
1401 static void invalidate_bh_lru(void *arg)
1402 {
1403         struct bh_lru *b = &get_cpu_var(bh_lrus);
1404         int i;
1405
1406         for (i = 0; i < BH_LRU_SIZE; i++) {
1407                 brelse(b->bhs[i]);
1408                 b->bhs[i] = NULL;
1409         }
1410         put_cpu_var(bh_lrus);
1411 }
1412         
1413 static void invalidate_bh_lrus(void)
1414 {
1415         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1416 }
1417
1418 void set_bh_page(struct buffer_head *bh,
1419                 struct page *page, unsigned long offset)
1420 {
1421         bh->b_page = page;
1422         BUG_ON(offset >= PAGE_SIZE);
1423         if (PageHighMem(page))
1424                 /*
1425                  * This catches illegal uses and preserves the offset:
1426                  */
1427                 bh->b_data = (char *)(0 + offset);
1428         else
1429                 bh->b_data = page_address(page) + offset;
1430 }
1431 EXPORT_SYMBOL(set_bh_page);
1432
1433 /*
1434  * Called when truncating a buffer on a page completely.
1435  */
1436 static void discard_buffer(struct buffer_head * bh)
1437 {
1438         lock_buffer(bh);
1439         clear_buffer_dirty(bh);
1440         bh->b_bdev = NULL;
1441         clear_buffer_mapped(bh);
1442         clear_buffer_req(bh);
1443         clear_buffer_new(bh);
1444         clear_buffer_delay(bh);
1445         unlock_buffer(bh);
1446 }
1447
1448 /**
1449  * block_invalidatepage - invalidate part of all of a buffer-backed page
1450  *
1451  * @page: the page which is affected
1452  * @offset: the index of the truncation point
1453  *
1454  * block_invalidatepage() is called when all or part of the page has become
1455  * invalidatedby a truncate operation.
1456  *
1457  * block_invalidatepage() does not have to release all buffers, but it must
1458  * ensure that no dirty buffer is left outside @offset and that no I/O
1459  * is underway against any of the blocks which are outside the truncation
1460  * point.  Because the caller is about to free (and possibly reuse) those
1461  * blocks on-disk.
1462  */
1463 void block_invalidatepage(struct page *page, unsigned long offset)
1464 {
1465         struct buffer_head *head, *bh, *next;
1466         unsigned int curr_off = 0;
1467
1468         BUG_ON(!PageLocked(page));
1469         if (!page_has_buffers(page))
1470                 goto out;
1471
1472         head = page_buffers(page);
1473         bh = head;
1474         do {
1475                 unsigned int next_off = curr_off + bh->b_size;
1476                 next = bh->b_this_page;
1477
1478                 /*
1479                  * is this block fully invalidated?
1480                  */
1481                 if (offset <= curr_off)
1482                         discard_buffer(bh);
1483                 curr_off = next_off;
1484                 bh = next;
1485         } while (bh != head);
1486
1487         /*
1488          * We release buffers only if the entire page is being invalidated.
1489          * The get_block cached value has been unconditionally invalidated,
1490          * so real IO is not possible anymore.
1491          */
1492         if (offset == 0)
1493                 try_to_release_page(page, 0);
1494 out:
1495         return;
1496 }
1497 EXPORT_SYMBOL(block_invalidatepage);
1498
1499 /*
1500  * We attach and possibly dirty the buffers atomically wrt
1501  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1502  * is already excluded via the page lock.
1503  */
1504 void create_empty_buffers(struct page *page,
1505                         unsigned long blocksize, unsigned long b_state)
1506 {
1507         struct buffer_head *bh, *head, *tail;
1508
1509         head = alloc_page_buffers(page, blocksize, 1);
1510         bh = head;
1511         do {
1512                 bh->b_state |= b_state;
1513                 tail = bh;
1514                 bh = bh->b_this_page;
1515         } while (bh);
1516         tail->b_this_page = head;
1517
1518         spin_lock(&page->mapping->private_lock);
1519         if (PageUptodate(page) || PageDirty(page)) {
1520                 bh = head;
1521                 do {
1522                         if (PageDirty(page))
1523                                 set_buffer_dirty(bh);
1524                         if (PageUptodate(page))
1525                                 set_buffer_uptodate(bh);
1526                         bh = bh->b_this_page;
1527                 } while (bh != head);
1528         }
1529         attach_page_buffers(page, head);
1530         spin_unlock(&page->mapping->private_lock);
1531 }
1532 EXPORT_SYMBOL(create_empty_buffers);
1533
1534 /*
1535  * We are taking a block for data and we don't want any output from any
1536  * buffer-cache aliases starting from return from that function and
1537  * until the moment when something will explicitly mark the buffer
1538  * dirty (hopefully that will not happen until we will free that block ;-)
1539  * We don't even need to mark it not-uptodate - nobody can expect
1540  * anything from a newly allocated buffer anyway. We used to used
1541  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1542  * don't want to mark the alias unmapped, for example - it would confuse
1543  * anyone who might pick it with bread() afterwards...
1544  *
1545  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1546  * be writeout I/O going on against recently-freed buffers.  We don't
1547  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1548  * only if we really need to.  That happens here.
1549  */
1550 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1551 {
1552         struct buffer_head *old_bh;
1553
1554         might_sleep();
1555
1556         old_bh = __find_get_block_slow(bdev, block);
1557         if (old_bh) {
1558                 clear_buffer_dirty(old_bh);
1559                 wait_on_buffer(old_bh);
1560                 clear_buffer_req(old_bh);
1561                 __brelse(old_bh);
1562         }
1563 }
1564 EXPORT_SYMBOL(unmap_underlying_metadata);
1565
1566 /*
1567  * NOTE! All mapped/uptodate combinations are valid:
1568  *
1569  *      Mapped  Uptodate        Meaning
1570  *
1571  *      No      No              "unknown" - must do get_block()
1572  *      No      Yes             "hole" - zero-filled
1573  *      Yes     No              "allocated" - allocated on disk, not read in
1574  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1575  *
1576  * "Dirty" is valid only with the last case (mapped+uptodate).
1577  */
1578
1579 /*
1580  * While block_write_full_page is writing back the dirty buffers under
1581  * the page lock, whoever dirtied the buffers may decide to clean them
1582  * again at any time.  We handle that by only looking at the buffer
1583  * state inside lock_buffer().
1584  *
1585  * If block_write_full_page() is called for regular writeback
1586  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1587  * locked buffer.   This only can happen if someone has written the buffer
1588  * directly, with submit_bh().  At the address_space level PageWriteback
1589  * prevents this contention from occurring.
1590  */
1591 static int __block_write_full_page(struct inode *inode, struct page *page,
1592                         get_block_t *get_block, struct writeback_control *wbc)
1593 {
1594         int err;
1595         sector_t block;
1596         sector_t last_block;
1597         struct buffer_head *bh, *head;
1598         const unsigned blocksize = 1 << inode->i_blkbits;
1599         int nr_underway = 0;
1600
1601         BUG_ON(!PageLocked(page));
1602
1603         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1604
1605         if (!page_has_buffers(page)) {
1606                 create_empty_buffers(page, blocksize,
1607                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1608         }
1609
1610         /*
1611          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1612          * here, and the (potentially unmapped) buffers may become dirty at
1613          * any time.  If a buffer becomes dirty here after we've inspected it
1614          * then we just miss that fact, and the page stays dirty.
1615          *
1616          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1617          * handle that here by just cleaning them.
1618          */
1619
1620         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1621         head = page_buffers(page);
1622         bh = head;
1623
1624         /*
1625          * Get all the dirty buffers mapped to disk addresses and
1626          * handle any aliases from the underlying blockdev's mapping.
1627          */
1628         do {
1629                 if (block > last_block) {
1630                         /*
1631                          * mapped buffers outside i_size will occur, because
1632                          * this page can be outside i_size when there is a
1633                          * truncate in progress.
1634                          */
1635                         /*
1636                          * The buffer was zeroed by block_write_full_page()
1637                          */
1638                         clear_buffer_dirty(bh);
1639                         set_buffer_uptodate(bh);
1640                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1641                         WARN_ON(bh->b_size != blocksize);
1642                         err = get_block(inode, block, bh, 1);
1643                         if (err)
1644                                 goto recover;
1645                         if (buffer_new(bh)) {
1646                                 /* blockdev mappings never come here */
1647                                 clear_buffer_new(bh);
1648                                 unmap_underlying_metadata(bh->b_bdev,
1649                                                         bh->b_blocknr);
1650                         }
1651                 }
1652                 bh = bh->b_this_page;
1653                 block++;
1654         } while (bh != head);
1655
1656         do {
1657                 if (!buffer_mapped(bh))
1658                         continue;
1659                 /*
1660                  * If it's a fully non-blocking write attempt and we cannot
1661                  * lock the buffer then redirty the page.  Note that this can
1662                  * potentially cause a busy-wait loop from pdflush and kswapd
1663                  * activity, but those code paths have their own higher-level
1664                  * throttling.
1665                  */
1666                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1667                         lock_buffer(bh);
1668                 } else if (test_set_buffer_locked(bh)) {
1669                         redirty_page_for_writepage(wbc, page);
1670                         continue;
1671                 }
1672                 if (test_clear_buffer_dirty(bh)) {
1673                         mark_buffer_async_write(bh);
1674                 } else {
1675                         unlock_buffer(bh);
1676                 }
1677         } while ((bh = bh->b_this_page) != head);
1678
1679         /*
1680          * The page and its buffers are protected by PageWriteback(), so we can
1681          * drop the bh refcounts early.
1682          */
1683         BUG_ON(PageWriteback(page));
1684         set_page_writeback(page);
1685
1686         do {
1687                 struct buffer_head *next = bh->b_this_page;
1688                 if (buffer_async_write(bh)) {
1689                         submit_bh(WRITE, bh);
1690                         nr_underway++;
1691                 }
1692                 bh = next;
1693         } while (bh != head);
1694         unlock_page(page);
1695
1696         err = 0;
1697 done:
1698         if (nr_underway == 0) {
1699                 /*
1700                  * The page was marked dirty, but the buffers were
1701                  * clean.  Someone wrote them back by hand with
1702                  * ll_rw_block/submit_bh.  A rare case.
1703                  */
1704                 int uptodate = 1;
1705                 do {
1706                         if (!buffer_uptodate(bh)) {
1707                                 uptodate = 0;
1708                                 break;
1709                         }
1710                         bh = bh->b_this_page;
1711                 } while (bh != head);
1712                 if (uptodate)
1713                         SetPageUptodate(page);
1714                 end_page_writeback(page);
1715                 /*
1716                  * The page and buffer_heads can be released at any time from
1717                  * here on.
1718                  */
1719                 wbc->pages_skipped++;   /* We didn't write this page */
1720         }
1721         return err;
1722
1723 recover:
1724         /*
1725          * ENOSPC, or some other error.  We may already have added some
1726          * blocks to the file, so we need to write these out to avoid
1727          * exposing stale data.
1728          * The page is currently locked and not marked for writeback
1729          */
1730         bh = head;
1731         /* Recovery: lock and submit the mapped buffers */
1732         do {
1733                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1734                         lock_buffer(bh);
1735                         mark_buffer_async_write(bh);
1736                 } else {
1737                         /*
1738                          * The buffer may have been set dirty during
1739                          * attachment to a dirty page.
1740                          */
1741                         clear_buffer_dirty(bh);
1742                 }
1743         } while ((bh = bh->b_this_page) != head);
1744         SetPageError(page);
1745         BUG_ON(PageWriteback(page));
1746         set_page_writeback(page);
1747         unlock_page(page);
1748         do {
1749                 struct buffer_head *next = bh->b_this_page;
1750                 if (buffer_async_write(bh)) {
1751                         clear_buffer_dirty(bh);
1752                         submit_bh(WRITE, bh);
1753                         nr_underway++;
1754                 }
1755                 bh = next;
1756         } while (bh != head);
1757         goto done;
1758 }
1759
1760 static int __block_prepare_write(struct inode *inode, struct page *page,
1761                 unsigned from, unsigned to, get_block_t *get_block)
1762 {
1763         unsigned block_start, block_end;
1764         sector_t block;
1765         int err = 0;
1766         unsigned blocksize, bbits;
1767         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1768
1769         BUG_ON(!PageLocked(page));
1770         BUG_ON(from > PAGE_CACHE_SIZE);
1771         BUG_ON(to > PAGE_CACHE_SIZE);
1772         BUG_ON(from > to);
1773
1774         blocksize = 1 << inode->i_blkbits;
1775         if (!page_has_buffers(page))
1776                 create_empty_buffers(page, blocksize, 0);
1777         head = page_buffers(page);
1778
1779         bbits = inode->i_blkbits;
1780         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1781
1782         for(bh = head, block_start = 0; bh != head || !block_start;
1783             block++, block_start=block_end, bh = bh->b_this_page) {
1784                 block_end = block_start + blocksize;
1785                 if (block_end <= from || block_start >= to) {
1786                         if (PageUptodate(page)) {
1787                                 if (!buffer_uptodate(bh))
1788                                         set_buffer_uptodate(bh);
1789                         }
1790                         continue;
1791                 }
1792                 if (buffer_new(bh))
1793                         clear_buffer_new(bh);
1794                 if (!buffer_mapped(bh)) {
1795                         WARN_ON(bh->b_size != blocksize);
1796                         err = get_block(inode, block, bh, 1);
1797                         if (err)
1798                                 break;
1799                         if (buffer_new(bh)) {
1800                                 unmap_underlying_metadata(bh->b_bdev,
1801                                                         bh->b_blocknr);
1802                                 if (PageUptodate(page)) {
1803                                         set_buffer_uptodate(bh);
1804                                         continue;
1805                                 }
1806                                 if (block_end > to || block_start < from) {
1807                                         void *kaddr;
1808
1809                                         kaddr = kmap_atomic(page, KM_USER0);
1810                                         if (block_end > to)
1811                                                 memset(kaddr+to, 0,
1812                                                         block_end-to);
1813                                         if (block_start < from)
1814                                                 memset(kaddr+block_start,
1815                                                         0, from-block_start);
1816                                         flush_dcache_page(page);
1817                                         kunmap_atomic(kaddr, KM_USER0);
1818                                 }
1819                                 continue;
1820                         }
1821                 }
1822                 if (PageUptodate(page)) {
1823                         if (!buffer_uptodate(bh))
1824                                 set_buffer_uptodate(bh);
1825                         continue; 
1826                 }
1827                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1828                      (block_start < from || block_end > to)) {
1829                         ll_rw_block(READ, 1, &bh);
1830                         *wait_bh++=bh;
1831                 }
1832         }
1833         /*
1834          * If we issued read requests - let them complete.
1835          */
1836         while(wait_bh > wait) {
1837                 wait_on_buffer(*--wait_bh);
1838                 if (!buffer_uptodate(*wait_bh))
1839                         err = -EIO;
1840         }
1841         if (!err) {
1842                 bh = head;
1843                 do {
1844                         if (buffer_new(bh))
1845                                 clear_buffer_new(bh);
1846                 } while ((bh = bh->b_this_page) != head);
1847                 return 0;
1848         }
1849         /* Error case: */
1850         /*
1851          * Zero out any newly allocated blocks to avoid exposing stale
1852          * data.  If BH_New is set, we know that the block was newly
1853          * allocated in the above loop.
1854          */
1855         bh = head;
1856         block_start = 0;
1857         do {
1858                 block_end = block_start+blocksize;
1859                 if (block_end <= from)
1860                         goto next_bh;
1861                 if (block_start >= to)
1862                         break;
1863                 if (buffer_new(bh)) {
1864                         void *kaddr;
1865
1866                         clear_buffer_new(bh);
1867                         kaddr = kmap_atomic(page, KM_USER0);
1868                         memset(kaddr+block_start, 0, bh->b_size);
1869                         flush_dcache_page(page);
1870                         kunmap_atomic(kaddr, KM_USER0);
1871                         set_buffer_uptodate(bh);
1872                         mark_buffer_dirty(bh);
1873                 }
1874 next_bh:
1875                 block_start = block_end;
1876                 bh = bh->b_this_page;
1877         } while (bh != head);
1878         return err;
1879 }
1880
1881 static int __block_commit_write(struct inode *inode, struct page *page,
1882                 unsigned from, unsigned to)
1883 {
1884         unsigned block_start, block_end;
1885         int partial = 0;
1886         unsigned blocksize;
1887         struct buffer_head *bh, *head;
1888
1889         blocksize = 1 << inode->i_blkbits;
1890
1891         for(bh = head = page_buffers(page), block_start = 0;
1892             bh != head || !block_start;
1893             block_start=block_end, bh = bh->b_this_page) {
1894                 block_end = block_start + blocksize;
1895                 if (block_end <= from || block_start >= to) {
1896                         if (!buffer_uptodate(bh))
1897                                 partial = 1;
1898                 } else {
1899                         set_buffer_uptodate(bh);
1900                         mark_buffer_dirty(bh);
1901                 }
1902         }
1903
1904         /*
1905          * If this is a partial write which happened to make all buffers
1906          * uptodate then we can optimize away a bogus readpage() for
1907          * the next read(). Here we 'discover' whether the page went
1908          * uptodate as a result of this (potentially partial) write.
1909          */
1910         if (!partial)
1911                 SetPageUptodate(page);
1912         return 0;
1913 }
1914
1915 /*
1916  * Generic "read page" function for block devices that have the normal
1917  * get_block functionality. This is most of the block device filesystems.
1918  * Reads the page asynchronously --- the unlock_buffer() and
1919  * set/clear_buffer_uptodate() functions propagate buffer state into the
1920  * page struct once IO has completed.
1921  */
1922 int block_read_full_page(struct page *page, get_block_t *get_block)
1923 {
1924         struct inode *inode = page->mapping->host;
1925         sector_t iblock, lblock;
1926         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1927         unsigned int blocksize;
1928         int nr, i;
1929         int fully_mapped = 1;
1930
1931         BUG_ON(!PageLocked(page));
1932         blocksize = 1 << inode->i_blkbits;
1933         if (!page_has_buffers(page))
1934                 create_empty_buffers(page, blocksize, 0);
1935         head = page_buffers(page);
1936
1937         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1938         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1939         bh = head;
1940         nr = 0;
1941         i = 0;
1942
1943         do {
1944                 if (buffer_uptodate(bh))
1945                         continue;
1946
1947                 if (!buffer_mapped(bh)) {
1948                         int err = 0;
1949
1950                         fully_mapped = 0;
1951                         if (iblock < lblock) {
1952                                 WARN_ON(bh->b_size != blocksize);
1953                                 err = get_block(inode, iblock, bh, 0);
1954                                 if (err)
1955                                         SetPageError(page);
1956                         }
1957                         if (!buffer_mapped(bh)) {
1958                                 void *kaddr = kmap_atomic(page, KM_USER0);
1959                                 memset(kaddr + i * blocksize, 0, blocksize);
1960                                 flush_dcache_page(page);
1961                                 kunmap_atomic(kaddr, KM_USER0);
1962                                 if (!err)
1963                                         set_buffer_uptodate(bh);
1964                                 continue;
1965                         }
1966                         /*
1967                          * get_block() might have updated the buffer
1968                          * synchronously
1969                          */
1970                         if (buffer_uptodate(bh))
1971                                 continue;
1972                 }
1973                 arr[nr++] = bh;
1974         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1975
1976         if (fully_mapped)
1977                 SetPageMappedToDisk(page);
1978
1979         if (!nr) {
1980                 /*
1981                  * All buffers are uptodate - we can set the page uptodate
1982                  * as well. But not if get_block() returned an error.
1983                  */
1984                 if (!PageError(page))
1985                         SetPageUptodate(page);
1986                 unlock_page(page);
1987                 return 0;
1988         }
1989
1990         /* Stage two: lock the buffers */
1991         for (i = 0; i < nr; i++) {
1992                 bh = arr[i];
1993                 lock_buffer(bh);
1994                 mark_buffer_async_read(bh);
1995         }
1996
1997         /*
1998          * Stage 3: start the IO.  Check for uptodateness
1999          * inside the buffer lock in case another process reading
2000          * the underlying blockdev brought it uptodate (the sct fix).
2001          */
2002         for (i = 0; i < nr; i++) {
2003                 bh = arr[i];
2004                 if (buffer_uptodate(bh))
2005                         end_buffer_async_read(bh, 1);
2006                 else
2007                         submit_bh(READ, bh);
2008         }
2009         return 0;
2010 }
2011
2012 /* utility function for filesystems that need to do work on expanding
2013  * truncates.  Uses prepare/commit_write to allow the filesystem to
2014  * deal with the hole.  
2015  */
2016 static int __generic_cont_expand(struct inode *inode, loff_t size,
2017                                  pgoff_t index, unsigned int offset)
2018 {
2019         struct address_space *mapping = inode->i_mapping;
2020         struct page *page;
2021         unsigned long limit;
2022         int err;
2023
2024         err = -EFBIG;
2025         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2026         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2027                 send_sig(SIGXFSZ, current, 0);
2028                 goto out;
2029         }
2030         if (size > inode->i_sb->s_maxbytes)
2031                 goto out;
2032
2033         err = -ENOMEM;
2034         page = grab_cache_page(mapping, index);
2035         if (!page)
2036                 goto out;
2037         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2038         if (err) {
2039                 /*
2040                  * ->prepare_write() may have instantiated a few blocks
2041                  * outside i_size.  Trim these off again.
2042                  */
2043                 unlock_page(page);
2044                 page_cache_release(page);
2045                 vmtruncate(inode, inode->i_size);
2046                 goto out;
2047         }
2048
2049         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2050
2051         unlock_page(page);
2052         page_cache_release(page);
2053         if (err > 0)
2054                 err = 0;
2055 out:
2056         return err;
2057 }
2058
2059 int generic_cont_expand(struct inode *inode, loff_t size)
2060 {
2061         pgoff_t index;
2062         unsigned int offset;
2063
2064         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2065
2066         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2067         ** skip the prepare.  make sure we never send an offset for the start
2068         ** of a block
2069         */
2070         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2071                 /* caller must handle this extra byte. */
2072                 offset++;
2073         }
2074         index = size >> PAGE_CACHE_SHIFT;
2075
2076         return __generic_cont_expand(inode, size, index, offset);
2077 }
2078
2079 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2080 {
2081         loff_t pos = size - 1;
2082         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2083         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2084
2085         /* prepare/commit_write can handle even if from==to==start of block. */
2086         return __generic_cont_expand(inode, size, index, offset);
2087 }
2088
2089 /*
2090  * For moronic filesystems that do not allow holes in file.
2091  * We may have to extend the file.
2092  */
2093
2094 int cont_prepare_write(struct page *page, unsigned offset,
2095                 unsigned to, get_block_t *get_block, loff_t *bytes)
2096 {
2097         struct address_space *mapping = page->mapping;
2098         struct inode *inode = mapping->host;
2099         struct page *new_page;
2100         pgoff_t pgpos;
2101         long status;
2102         unsigned zerofrom;
2103         unsigned blocksize = 1 << inode->i_blkbits;
2104         void *kaddr;
2105
2106         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2107                 status = -ENOMEM;
2108                 new_page = grab_cache_page(mapping, pgpos);
2109                 if (!new_page)
2110                         goto out;
2111                 /* we might sleep */
2112                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2113                         unlock_page(new_page);
2114                         page_cache_release(new_page);
2115                         continue;
2116                 }
2117                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2118                 if (zerofrom & (blocksize-1)) {
2119                         *bytes |= (blocksize-1);
2120                         (*bytes)++;
2121                 }
2122                 status = __block_prepare_write(inode, new_page, zerofrom,
2123                                                 PAGE_CACHE_SIZE, get_block);
2124                 if (status)
2125                         goto out_unmap;
2126                 kaddr = kmap_atomic(new_page, KM_USER0);
2127                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2128                 flush_dcache_page(new_page);
2129                 kunmap_atomic(kaddr, KM_USER0);
2130                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2131                 unlock_page(new_page);
2132                 page_cache_release(new_page);
2133         }
2134
2135         if (page->index < pgpos) {
2136                 /* completely inside the area */
2137                 zerofrom = offset;
2138         } else {
2139                 /* page covers the boundary, find the boundary offset */
2140                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2141
2142                 /* if we will expand the thing last block will be filled */
2143                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2144                         *bytes |= (blocksize-1);
2145                         (*bytes)++;
2146                 }
2147
2148                 /* starting below the boundary? Nothing to zero out */
2149                 if (offset <= zerofrom)
2150                         zerofrom = offset;
2151         }
2152         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2153         if (status)
2154                 goto out1;
2155         if (zerofrom < offset) {
2156                 kaddr = kmap_atomic(page, KM_USER0);
2157                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2158                 flush_dcache_page(page);
2159                 kunmap_atomic(kaddr, KM_USER0);
2160                 __block_commit_write(inode, page, zerofrom, offset);
2161         }
2162         return 0;
2163 out1:
2164         ClearPageUptodate(page);
2165         return status;
2166
2167 out_unmap:
2168         ClearPageUptodate(new_page);
2169         unlock_page(new_page);
2170         page_cache_release(new_page);
2171 out:
2172         return status;
2173 }
2174
2175 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2176                         get_block_t *get_block)
2177 {
2178         struct inode *inode = page->mapping->host;
2179         int err = __block_prepare_write(inode, page, from, to, get_block);
2180         if (err)
2181                 ClearPageUptodate(page);
2182         return err;
2183 }
2184
2185 int block_commit_write(struct page *page, unsigned from, unsigned to)
2186 {
2187         struct inode *inode = page->mapping->host;
2188         __block_commit_write(inode,page,from,to);
2189         return 0;
2190 }
2191
2192 int generic_commit_write(struct file *file, struct page *page,
2193                 unsigned from, unsigned to)
2194 {
2195         struct inode *inode = page->mapping->host;
2196         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2197         __block_commit_write(inode,page,from,to);
2198         /*
2199          * No need to use i_size_read() here, the i_size
2200          * cannot change under us because we hold i_mutex.
2201          */
2202         if (pos > inode->i_size) {
2203                 i_size_write(inode, pos);
2204                 mark_inode_dirty(inode);
2205         }
2206         return 0;
2207 }
2208
2209
2210 /*
2211  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2212  * immediately, while under the page lock.  So it needs a special end_io
2213  * handler which does not touch the bh after unlocking it.
2214  *
2215  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2216  * a race there is benign: unlock_buffer() only use the bh's address for
2217  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2218  * itself.
2219  */
2220 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2221 {
2222         if (uptodate) {
2223                 set_buffer_uptodate(bh);
2224         } else {
2225                 /* This happens, due to failed READA attempts. */
2226                 clear_buffer_uptodate(bh);
2227         }
2228         unlock_buffer(bh);
2229 }
2230
2231 /*
2232  * On entry, the page is fully not uptodate.
2233  * On exit the page is fully uptodate in the areas outside (from,to)
2234  */
2235 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2236                         get_block_t *get_block)
2237 {
2238         struct inode *inode = page->mapping->host;
2239         const unsigned blkbits = inode->i_blkbits;
2240         const unsigned blocksize = 1 << blkbits;
2241         struct buffer_head map_bh;
2242         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2243         unsigned block_in_page;
2244         unsigned block_start;
2245         sector_t block_in_file;
2246         char *kaddr;
2247         int nr_reads = 0;
2248         int i;
2249         int ret = 0;
2250         int is_mapped_to_disk = 1;
2251         int dirtied_it = 0;
2252
2253         if (PageMappedToDisk(page))
2254                 return 0;
2255
2256         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2257         map_bh.b_page = page;
2258
2259         /*
2260          * We loop across all blocks in the page, whether or not they are
2261          * part of the affected region.  This is so we can discover if the
2262          * page is fully mapped-to-disk.
2263          */
2264         for (block_start = 0, block_in_page = 0;
2265                   block_start < PAGE_CACHE_SIZE;
2266                   block_in_page++, block_start += blocksize) {
2267                 unsigned block_end = block_start + blocksize;
2268                 int create;
2269
2270                 map_bh.b_state = 0;
2271                 create = 1;
2272                 if (block_start >= to)
2273                         create = 0;
2274                 map_bh.b_size = blocksize;
2275                 ret = get_block(inode, block_in_file + block_in_page,
2276                                         &map_bh, create);
2277                 if (ret)
2278                         goto failed;
2279                 if (!buffer_mapped(&map_bh))
2280                         is_mapped_to_disk = 0;
2281                 if (buffer_new(&map_bh))
2282                         unmap_underlying_metadata(map_bh.b_bdev,
2283                                                         map_bh.b_blocknr);
2284                 if (PageUptodate(page))
2285                         continue;
2286                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2287                         kaddr = kmap_atomic(page, KM_USER0);
2288                         if (block_start < from) {
2289                                 memset(kaddr+block_start, 0, from-block_start);
2290                                 dirtied_it = 1;
2291                         }
2292                         if (block_end > to) {
2293                                 memset(kaddr + to, 0, block_end - to);
2294                                 dirtied_it = 1;
2295                         }
2296                         flush_dcache_page(page);
2297                         kunmap_atomic(kaddr, KM_USER0);
2298                         continue;
2299                 }
2300                 if (buffer_uptodate(&map_bh))
2301                         continue;       /* reiserfs does this */
2302                 if (block_start < from || block_end > to) {
2303                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2304
2305                         if (!bh) {
2306                                 ret = -ENOMEM;
2307                                 goto failed;
2308                         }
2309                         bh->b_state = map_bh.b_state;
2310                         atomic_set(&bh->b_count, 0);
2311                         bh->b_this_page = NULL;
2312                         bh->b_page = page;
2313                         bh->b_blocknr = map_bh.b_blocknr;
2314                         bh->b_size = blocksize;
2315                         bh->b_data = (char *)(long)block_start;
2316                         bh->b_bdev = map_bh.b_bdev;
2317                         bh->b_private = NULL;
2318                         read_bh[nr_reads++] = bh;
2319                 }
2320         }
2321
2322         if (nr_reads) {
2323                 struct buffer_head *bh;
2324
2325                 /*
2326                  * The page is locked, so these buffers are protected from
2327                  * any VM or truncate activity.  Hence we don't need to care
2328                  * for the buffer_head refcounts.
2329                  */
2330                 for (i = 0; i < nr_reads; i++) {
2331                         bh = read_bh[i];
2332                         lock_buffer(bh);
2333                         bh->b_end_io = end_buffer_read_nobh;
2334                         submit_bh(READ, bh);
2335                 }
2336                 for (i = 0; i < nr_reads; i++) {
2337                         bh = read_bh[i];
2338                         wait_on_buffer(bh);
2339                         if (!buffer_uptodate(bh))
2340                                 ret = -EIO;
2341                         free_buffer_head(bh);
2342                         read_bh[i] = NULL;
2343                 }
2344                 if (ret)
2345                         goto failed;
2346         }
2347
2348         if (is_mapped_to_disk)
2349                 SetPageMappedToDisk(page);
2350         SetPageUptodate(page);
2351
2352         /*
2353          * Setting the page dirty here isn't necessary for the prepare_write
2354          * function - commit_write will do that.  But if/when this function is
2355          * used within the pagefault handler to ensure that all mmapped pages
2356          * have backing space in the filesystem, we will need to dirty the page
2357          * if its contents were altered.
2358          */
2359         if (dirtied_it)
2360                 set_page_dirty(page);
2361
2362         return 0;
2363
2364 failed:
2365         for (i = 0; i < nr_reads; i++) {
2366                 if (read_bh[i])
2367                         free_buffer_head(read_bh[i]);
2368         }
2369
2370         /*
2371          * Error recovery is pretty slack.  Clear the page and mark it dirty
2372          * so we'll later zero out any blocks which _were_ allocated.
2373          */
2374         kaddr = kmap_atomic(page, KM_USER0);
2375         memset(kaddr, 0, PAGE_CACHE_SIZE);
2376         flush_dcache_page(page);
2377         kunmap_atomic(kaddr, KM_USER0);
2378         SetPageUptodate(page);
2379         set_page_dirty(page);
2380         return ret;
2381 }
2382 EXPORT_SYMBOL(nobh_prepare_write);
2383
2384 int nobh_commit_write(struct file *file, struct page *page,
2385                 unsigned from, unsigned to)
2386 {
2387         struct inode *inode = page->mapping->host;
2388         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2389
2390         set_page_dirty(page);
2391         if (pos > inode->i_size) {
2392                 i_size_write(inode, pos);
2393                 mark_inode_dirty(inode);
2394         }
2395         return 0;
2396 }
2397 EXPORT_SYMBOL(nobh_commit_write);
2398
2399 /*
2400  * nobh_writepage() - based on block_full_write_page() except
2401  * that it tries to operate without attaching bufferheads to
2402  * the page.
2403  */
2404 int nobh_writepage(struct page *page, get_block_t *get_block,
2405                         struct writeback_control *wbc)
2406 {
2407         struct inode * const inode = page->mapping->host;
2408         loff_t i_size = i_size_read(inode);
2409         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2410         unsigned offset;
2411         void *kaddr;
2412         int ret;
2413
2414         /* Is the page fully inside i_size? */
2415         if (page->index < end_index)
2416                 goto out;
2417
2418         /* Is the page fully outside i_size? (truncate in progress) */
2419         offset = i_size & (PAGE_CACHE_SIZE-1);
2420         if (page->index >= end_index+1 || !offset) {
2421                 /*
2422                  * The page may have dirty, unmapped buffers.  For example,
2423                  * they may have been added in ext3_writepage().  Make them
2424                  * freeable here, so the page does not leak.
2425                  */
2426 #if 0
2427                 /* Not really sure about this  - do we need this ? */
2428                 if (page->mapping->a_ops->invalidatepage)
2429                         page->mapping->a_ops->invalidatepage(page, offset);
2430 #endif
2431                 unlock_page(page);
2432                 return 0; /* don't care */
2433         }
2434
2435         /*
2436          * The page straddles i_size.  It must be zeroed out on each and every
2437          * writepage invocation because it may be mmapped.  "A file is mapped
2438          * in multiples of the page size.  For a file that is not a multiple of
2439          * the  page size, the remaining memory is zeroed when mapped, and
2440          * writes to that region are not written out to the file."
2441          */
2442         kaddr = kmap_atomic(page, KM_USER0);
2443         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2444         flush_dcache_page(page);
2445         kunmap_atomic(kaddr, KM_USER0);
2446 out:
2447         ret = mpage_writepage(page, get_block, wbc);
2448         if (ret == -EAGAIN)
2449                 ret = __block_write_full_page(inode, page, get_block, wbc);
2450         return ret;
2451 }
2452 EXPORT_SYMBOL(nobh_writepage);
2453
2454 /*
2455  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2456  */
2457 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2458 {
2459         struct inode *inode = mapping->host;
2460         unsigned blocksize = 1 << inode->i_blkbits;
2461         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2462         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2463         unsigned to;
2464         struct page *page;
2465         const struct address_space_operations *a_ops = mapping->a_ops;
2466         char *kaddr;
2467         int ret = 0;
2468
2469         if ((offset & (blocksize - 1)) == 0)
2470                 goto out;
2471
2472         ret = -ENOMEM;
2473         page = grab_cache_page(mapping, index);
2474         if (!page)
2475                 goto out;
2476
2477         to = (offset + blocksize) & ~(blocksize - 1);
2478         ret = a_ops->prepare_write(NULL, page, offset, to);
2479         if (ret == 0) {
2480                 kaddr = kmap_atomic(page, KM_USER0);
2481                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2482                 flush_dcache_page(page);
2483                 kunmap_atomic(kaddr, KM_USER0);
2484                 set_page_dirty(page);
2485         }
2486         unlock_page(page);
2487         page_cache_release(page);
2488 out:
2489         return ret;
2490 }
2491 EXPORT_SYMBOL(nobh_truncate_page);
2492
2493 int block_truncate_page(struct address_space *mapping,
2494                         loff_t from, get_block_t *get_block)
2495 {
2496         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2497         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2498         unsigned blocksize;
2499         sector_t iblock;
2500         unsigned length, pos;
2501         struct inode *inode = mapping->host;
2502         struct page *page;
2503         struct buffer_head *bh;
2504         void *kaddr;
2505         int err;
2506
2507         blocksize = 1 << inode->i_blkbits;
2508         length = offset & (blocksize - 1);
2509
2510         /* Block boundary? Nothing to do */
2511         if (!length)
2512                 return 0;
2513
2514         length = blocksize - length;
2515         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2516         
2517         page = grab_cache_page(mapping, index);
2518         err = -ENOMEM;
2519         if (!page)
2520                 goto out;
2521
2522         if (!page_has_buffers(page))
2523                 create_empty_buffers(page, blocksize, 0);
2524
2525         /* Find the buffer that contains "offset" */
2526         bh = page_buffers(page);
2527         pos = blocksize;
2528         while (offset >= pos) {
2529                 bh = bh->b_this_page;
2530                 iblock++;
2531                 pos += blocksize;
2532         }
2533
2534         err = 0;
2535         if (!buffer_mapped(bh)) {
2536                 WARN_ON(bh->b_size != blocksize);
2537                 err = get_block(inode, iblock, bh, 0);
2538                 if (err)
2539                         goto unlock;
2540                 /* unmapped? It's a hole - nothing to do */
2541                 if (!buffer_mapped(bh))
2542                         goto unlock;
2543         }
2544
2545         /* Ok, it's mapped. Make sure it's up-to-date */
2546         if (PageUptodate(page))
2547                 set_buffer_uptodate(bh);
2548
2549         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2550                 err = -EIO;
2551                 ll_rw_block(READ, 1, &bh);
2552                 wait_on_buffer(bh);
2553                 /* Uhhuh. Read error. Complain and punt. */
2554                 if (!buffer_uptodate(bh))
2555                         goto unlock;
2556         }
2557
2558         kaddr = kmap_atomic(page, KM_USER0);
2559         memset(kaddr + offset, 0, length);
2560         flush_dcache_page(page);
2561         kunmap_atomic(kaddr, KM_USER0);
2562
2563         mark_buffer_dirty(bh);
2564         err = 0;
2565
2566 unlock:
2567         unlock_page(page);
2568         page_cache_release(page);
2569 out:
2570         return err;
2571 }
2572
2573 /*
2574  * The generic ->writepage function for buffer-backed address_spaces
2575  */
2576 int block_write_full_page(struct page *page, get_block_t *get_block,
2577                         struct writeback_control *wbc)
2578 {
2579         struct inode * const inode = page->mapping->host;
2580         loff_t i_size = i_size_read(inode);
2581         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2582         unsigned offset;
2583         void *kaddr;
2584
2585         /* Is the page fully inside i_size? */
2586         if (page->index < end_index)
2587                 return __block_write_full_page(inode, page, get_block, wbc);
2588
2589         /* Is the page fully outside i_size? (truncate in progress) */
2590         offset = i_size & (PAGE_CACHE_SIZE-1);
2591         if (page->index >= end_index+1 || !offset) {
2592                 /*
2593                  * The page may have dirty, unmapped buffers.  For example,
2594                  * they may have been added in ext3_writepage().  Make them
2595                  * freeable here, so the page does not leak.
2596                  */
2597                 do_invalidatepage(page, 0);
2598                 unlock_page(page);
2599                 return 0; /* don't care */
2600         }
2601
2602         /*
2603          * The page straddles i_size.  It must be zeroed out on each and every
2604          * writepage invokation because it may be mmapped.  "A file is mapped
2605          * in multiples of the page size.  For a file that is not a multiple of
2606          * the  page size, the remaining memory is zeroed when mapped, and
2607          * writes to that region are not written out to the file."
2608          */
2609         kaddr = kmap_atomic(page, KM_USER0);
2610         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2611         flush_dcache_page(page);
2612         kunmap_atomic(kaddr, KM_USER0);
2613         return __block_write_full_page(inode, page, get_block, wbc);
2614 }
2615
2616 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2617                             get_block_t *get_block)
2618 {
2619         struct buffer_head tmp;
2620         struct inode *inode = mapping->host;
2621         tmp.b_state = 0;
2622         tmp.b_blocknr = 0;
2623         tmp.b_size = 1 << inode->i_blkbits;
2624         get_block(inode, block, &tmp, 0);
2625         return tmp.b_blocknr;
2626 }
2627
2628 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2629 {
2630         struct buffer_head *bh = bio->bi_private;
2631
2632         if (bio->bi_size)
2633                 return 1;
2634
2635         if (err == -EOPNOTSUPP) {
2636                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2637                 set_bit(BH_Eopnotsupp, &bh->b_state);
2638         }
2639
2640         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2641         bio_put(bio);
2642         return 0;
2643 }
2644
2645 int submit_bh(int rw, struct buffer_head * bh)
2646 {
2647         struct bio *bio;
2648         int ret = 0;
2649
2650         BUG_ON(!buffer_locked(bh));
2651         BUG_ON(!buffer_mapped(bh));
2652         BUG_ON(!bh->b_end_io);
2653
2654         if (buffer_ordered(bh) && (rw == WRITE))
2655                 rw = WRITE_BARRIER;
2656
2657         /*
2658          * Only clear out a write error when rewriting, should this
2659          * include WRITE_SYNC as well?
2660          */
2661         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2662                 clear_buffer_write_io_error(bh);
2663
2664         /*
2665          * from here on down, it's all bio -- do the initial mapping,
2666          * submit_bio -> generic_make_request may further map this bio around
2667          */
2668         bio = bio_alloc(GFP_NOIO, 1);
2669
2670         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2671         bio->bi_bdev = bh->b_bdev;
2672         bio->bi_io_vec[0].bv_page = bh->b_page;
2673         bio->bi_io_vec[0].bv_len = bh->b_size;
2674         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2675
2676         bio->bi_vcnt = 1;
2677         bio->bi_idx = 0;
2678         bio->bi_size = bh->b_size;
2679
2680         bio->bi_end_io = end_bio_bh_io_sync;
2681         bio->bi_private = bh;
2682
2683         bio_get(bio);
2684         submit_bio(rw, bio);
2685
2686         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2687                 ret = -EOPNOTSUPP;
2688
2689         bio_put(bio);
2690         return ret;
2691 }
2692
2693 /**
2694  * ll_rw_block: low-level access to block devices (DEPRECATED)
2695  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2696  * @nr: number of &struct buffer_heads in the array
2697  * @bhs: array of pointers to &struct buffer_head
2698  *
2699  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2700  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2701  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2702  * are sent to disk. The fourth %READA option is described in the documentation
2703  * for generic_make_request() which ll_rw_block() calls.
2704  *
2705  * This function drops any buffer that it cannot get a lock on (with the
2706  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2707  * clean when doing a write request, and any buffer that appears to be
2708  * up-to-date when doing read request.  Further it marks as clean buffers that
2709  * are processed for writing (the buffer cache won't assume that they are
2710  * actually clean until the buffer gets unlocked).
2711  *
2712  * ll_rw_block sets b_end_io to simple completion handler that marks
2713  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2714  * any waiters. 
2715  *
2716  * All of the buffers must be for the same device, and must also be a
2717  * multiple of the current approved size for the device.
2718  */
2719 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2720 {
2721         int i;
2722
2723         for (i = 0; i < nr; i++) {
2724                 struct buffer_head *bh = bhs[i];
2725
2726                 if (rw == SWRITE)
2727                         lock_buffer(bh);
2728                 else if (test_set_buffer_locked(bh))
2729                         continue;
2730
2731                 if (rw == WRITE || rw == SWRITE) {
2732                         if (test_clear_buffer_dirty(bh)) {
2733                                 bh->b_end_io = end_buffer_write_sync;
2734                                 get_bh(bh);
2735                                 submit_bh(WRITE, bh);
2736                                 continue;
2737                         }
2738                 } else {
2739                         if (!buffer_uptodate(bh)) {
2740                                 bh->b_end_io = end_buffer_read_sync;
2741                                 get_bh(bh);
2742                                 submit_bh(rw, bh);
2743                                 continue;
2744                         }
2745                 }
2746                 unlock_buffer(bh);
2747         }
2748 }
2749
2750 /*
2751  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2752  * and then start new I/O and then wait upon it.  The caller must have a ref on
2753  * the buffer_head.
2754  */
2755 int sync_dirty_buffer(struct buffer_head *bh)
2756 {
2757         int ret = 0;
2758
2759         WARN_ON(atomic_read(&bh->b_count) < 1);
2760         lock_buffer(bh);
2761         if (test_clear_buffer_dirty(bh)) {
2762                 get_bh(bh);
2763                 bh->b_end_io = end_buffer_write_sync;
2764                 ret = submit_bh(WRITE, bh);
2765                 wait_on_buffer(bh);
2766                 if (buffer_eopnotsupp(bh)) {
2767                         clear_buffer_eopnotsupp(bh);
2768                         ret = -EOPNOTSUPP;
2769                 }
2770                 if (!ret && !buffer_uptodate(bh))
2771                         ret = -EIO;
2772         } else {
2773                 unlock_buffer(bh);
2774         }
2775         return ret;
2776 }
2777
2778 /*
2779  * try_to_free_buffers() checks if all the buffers on this particular page
2780  * are unused, and releases them if so.
2781  *
2782  * Exclusion against try_to_free_buffers may be obtained by either
2783  * locking the page or by holding its mapping's private_lock.
2784  *
2785  * If the page is dirty but all the buffers are clean then we need to
2786  * be sure to mark the page clean as well.  This is because the page
2787  * may be against a block device, and a later reattachment of buffers
2788  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2789  * filesystem data on the same device.
2790  *
2791  * The same applies to regular filesystem pages: if all the buffers are
2792  * clean then we set the page clean and proceed.  To do that, we require
2793  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2794  * private_lock.
2795  *
2796  * try_to_free_buffers() is non-blocking.
2797  */
2798 static inline int buffer_busy(struct buffer_head *bh)
2799 {
2800         return atomic_read(&bh->b_count) |
2801                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2802 }
2803
2804 static int
2805 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2806 {
2807         struct buffer_head *head = page_buffers(page);
2808         struct buffer_head *bh;
2809
2810         bh = head;
2811         do {
2812                 if (buffer_write_io_error(bh) && page->mapping)
2813                         set_bit(AS_EIO, &page->mapping->flags);
2814                 if (buffer_busy(bh))
2815                         goto failed;
2816                 bh = bh->b_this_page;
2817         } while (bh != head);
2818
2819         do {
2820                 struct buffer_head *next = bh->b_this_page;
2821
2822                 if (!list_empty(&bh->b_assoc_buffers))
2823                         __remove_assoc_queue(bh);
2824                 bh = next;
2825         } while (bh != head);
2826         *buffers_to_free = head;
2827         __clear_page_buffers(page);
2828         return 1;
2829 failed:
2830         return 0;
2831 }
2832
2833 int try_to_free_buffers(struct page *page)
2834 {
2835         struct address_space * const mapping = page->mapping;
2836         struct buffer_head *buffers_to_free = NULL;
2837         int ret = 0;
2838
2839         BUG_ON(!PageLocked(page));
2840         if (PageWriteback(page))
2841                 return 0;
2842
2843         if (mapping == NULL) {          /* can this still happen? */
2844                 ret = drop_buffers(page, &buffers_to_free);
2845                 goto out;
2846         }
2847
2848         spin_lock(&mapping->private_lock);
2849         ret = drop_buffers(page, &buffers_to_free);
2850
2851         /*
2852          * If the filesystem writes its buffers by hand (eg ext3)
2853          * then we can have clean buffers against a dirty page.  We
2854          * clean the page here; otherwise the VM will never notice
2855          * that the filesystem did any IO at all.
2856          *
2857          * Also, during truncate, discard_buffer will have marked all
2858          * the page's buffers clean.  We discover that here and clean
2859          * the page also.
2860          *
2861          * private_lock must be held over this entire operation in order
2862          * to synchronise against __set_page_dirty_buffers and prevent the
2863          * dirty bit from being lost.
2864          */
2865         if (ret)
2866                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2867         spin_unlock(&mapping->private_lock);
2868 out:
2869         if (buffers_to_free) {
2870                 struct buffer_head *bh = buffers_to_free;
2871
2872                 do {
2873                         struct buffer_head *next = bh->b_this_page;
2874                         free_buffer_head(bh);
2875                         bh = next;
2876                 } while (bh != buffers_to_free);
2877         }
2878         return ret;
2879 }
2880 EXPORT_SYMBOL(try_to_free_buffers);
2881
2882 void block_sync_page(struct page *page)
2883 {
2884         struct address_space *mapping;
2885
2886         smp_mb();
2887         mapping = page_mapping(page);
2888         if (mapping)
2889                 blk_run_backing_dev(mapping->backing_dev_info, page);
2890 }
2891
2892 /*
2893  * There are no bdflush tunables left.  But distributions are
2894  * still running obsolete flush daemons, so we terminate them here.
2895  *
2896  * Use of bdflush() is deprecated and will be removed in a future kernel.
2897  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2898  */
2899 asmlinkage long sys_bdflush(int func, long data)
2900 {
2901         static int msg_count;
2902
2903         if (!capable(CAP_SYS_ADMIN))
2904                 return -EPERM;
2905
2906         if (msg_count < 5) {
2907                 msg_count++;
2908                 printk(KERN_INFO
2909                         "warning: process `%s' used the obsolete bdflush"
2910                         " system call\n", current->comm);
2911                 printk(KERN_INFO "Fix your initscripts?\n");
2912         }
2913
2914         if (func == 1)
2915                 do_exit(0);
2916         return 0;
2917 }
2918
2919 /*
2920  * Buffer-head allocation
2921  */
2922 static struct kmem_cache *bh_cachep;
2923
2924 /*
2925  * Once the number of bh's in the machine exceeds this level, we start
2926  * stripping them in writeback.
2927  */
2928 static int max_buffer_heads;
2929
2930 int buffer_heads_over_limit;
2931
2932 struct bh_accounting {
2933         int nr;                 /* Number of live bh's */
2934         int ratelimit;          /* Limit cacheline bouncing */
2935 };
2936
2937 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2938
2939 static void recalc_bh_state(void)
2940 {
2941         int i;
2942         int tot = 0;
2943
2944         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2945                 return;
2946         __get_cpu_var(bh_accounting).ratelimit = 0;
2947         for_each_online_cpu(i)
2948                 tot += per_cpu(bh_accounting, i).nr;
2949         buffer_heads_over_limit = (tot > max_buffer_heads);
2950 }
2951         
2952 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2953 {
2954         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2955         if (ret) {
2956                 get_cpu_var(bh_accounting).nr++;
2957                 recalc_bh_state();
2958                 put_cpu_var(bh_accounting);
2959         }
2960         return ret;
2961 }
2962 EXPORT_SYMBOL(alloc_buffer_head);
2963
2964 void free_buffer_head(struct buffer_head *bh)
2965 {
2966         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2967         kmem_cache_free(bh_cachep, bh);
2968         get_cpu_var(bh_accounting).nr--;
2969         recalc_bh_state();
2970         put_cpu_var(bh_accounting);
2971 }
2972 EXPORT_SYMBOL(free_buffer_head);
2973
2974 static void
2975 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2976 {
2977         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2978                             SLAB_CTOR_CONSTRUCTOR) {
2979                 struct buffer_head * bh = (struct buffer_head *)data;
2980
2981                 memset(bh, 0, sizeof(*bh));
2982                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2983         }
2984 }
2985
2986 static void buffer_exit_cpu(int cpu)
2987 {
2988         int i;
2989         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2990
2991         for (i = 0; i < BH_LRU_SIZE; i++) {
2992                 brelse(b->bhs[i]);
2993                 b->bhs[i] = NULL;
2994         }
2995         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2996         per_cpu(bh_accounting, cpu).nr = 0;
2997         put_cpu_var(bh_accounting);
2998 }
2999
3000 static int buffer_cpu_notify(struct notifier_block *self,
3001                               unsigned long action, void *hcpu)
3002 {
3003         if (action == CPU_DEAD)
3004                 buffer_exit_cpu((unsigned long)hcpu);
3005         return NOTIFY_OK;
3006 }
3007
3008 void __init buffer_init(void)
3009 {
3010         int nrpages;
3011
3012         bh_cachep = kmem_cache_create("buffer_head",
3013                                         sizeof(struct buffer_head), 0,
3014                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3015                                         SLAB_MEM_SPREAD),
3016                                         init_buffer_head,
3017                                         NULL);
3018
3019         /*
3020          * Limit the bh occupancy to 10% of ZONE_NORMAL
3021          */
3022         nrpages = (nr_free_buffer_pages() * 10) / 100;
3023         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3024         hotcpu_notifier(buffer_cpu_notify, 0);
3025 }
3026
3027 EXPORT_SYMBOL(__bforget);
3028 EXPORT_SYMBOL(__brelse);
3029 EXPORT_SYMBOL(__wait_on_buffer);
3030 EXPORT_SYMBOL(block_commit_write);
3031 EXPORT_SYMBOL(block_prepare_write);
3032 EXPORT_SYMBOL(block_read_full_page);
3033 EXPORT_SYMBOL(block_sync_page);
3034 EXPORT_SYMBOL(block_truncate_page);
3035 EXPORT_SYMBOL(block_write_full_page);
3036 EXPORT_SYMBOL(cont_prepare_write);
3037 EXPORT_SYMBOL(end_buffer_read_sync);
3038 EXPORT_SYMBOL(end_buffer_write_sync);
3039 EXPORT_SYMBOL(file_fsync);
3040 EXPORT_SYMBOL(fsync_bdev);
3041 EXPORT_SYMBOL(generic_block_bmap);
3042 EXPORT_SYMBOL(generic_commit_write);
3043 EXPORT_SYMBOL(generic_cont_expand);
3044 EXPORT_SYMBOL(generic_cont_expand_simple);
3045 EXPORT_SYMBOL(init_buffer);
3046 EXPORT_SYMBOL(invalidate_bdev);
3047 EXPORT_SYMBOL(ll_rw_block);
3048 EXPORT_SYMBOL(mark_buffer_dirty);
3049 EXPORT_SYMBOL(submit_bh);
3050 EXPORT_SYMBOL(sync_dirty_buffer);
3051 EXPORT_SYMBOL(unlock_buffer);