Merge to Fedora kernel-2.6.17-1.2187_FC5 patched with stable patch-2.6.17.13-vs2...
[linux-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         clear_buffer_locked(bh);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106         char b[BDEVNAME_SIZE];
107
108         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109                         bdevname(bh->b_bdev, b),
110                         (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119         if (uptodate) {
120                 set_buffer_uptodate(bh);
121         } else {
122                 /* This happens, due to failed READA attempts. */
123                 clear_buffer_uptodate(bh);
124         }
125         unlock_buffer(bh);
126         put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131         char b[BDEVNAME_SIZE];
132
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137                         buffer_io_error(bh);
138                         printk(KERN_WARNING "lost page write due to "
139                                         "I/O error on %s\n",
140                                        bdevname(bh->b_bdev, b));
141                 }
142                 set_buffer_write_io_error(bh);
143                 clear_buffer_uptodate(bh);
144         }
145         unlock_buffer(bh);
146         put_bh(bh);
147 }
148
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155         int ret = 0;
156
157         if (bdev)
158                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159         return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 static void __fsync_super(struct super_block *sb)
164 {
165         sync_inodes_sb(sb, 0);
166         DQUOT_SYNC(sb);
167         lock_super(sb);
168         if (sb->s_dirt && sb->s_op->write_super)
169                 sb->s_op->write_super(sb);
170         unlock_super(sb);
171         if (sb->s_op->sync_fs)
172                 sb->s_op->sync_fs(sb, 1);
173         sync_blockdev(sb->s_bdev);
174         sync_inodes_sb(sb, 1);
175 }
176
177 /*
178  * Write out and wait upon all dirty data associated with this
179  * superblock.  Filesystem data as well as the underlying block
180  * device.  Takes the superblock lock.
181  */
182 int fsync_super(struct super_block *sb)
183 {
184         __fsync_super(sb);
185         return sync_blockdev(sb->s_bdev);
186 }
187
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195         struct super_block *sb = get_super(bdev);
196         if (sb) {
197                 int res = fsync_super(sb);
198                 drop_super(sb);
199                 return res;
200         }
201         return sync_blockdev(bdev);
202 }
203
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:       blockdevice to lock
207  *
208  * This takes the block device bd_mount_mutex to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215         struct super_block *sb;
216
217         mutex_lock(&bdev->bd_mount_mutex);
218         sb = get_super(bdev);
219         if (sb && !(sb->s_flags & MS_RDONLY)) {
220                 sb->s_frozen = SB_FREEZE_WRITE;
221                 smp_wmb();
222
223                 __fsync_super(sb);
224
225                 sb->s_frozen = SB_FREEZE_TRANS;
226                 smp_wmb();
227
228                 sync_blockdev(sb->s_bdev);
229
230                 if (sb->s_op->write_super_lockfs)
231                         sb->s_op->write_super_lockfs(sb);
232         }
233
234         sync_blockdev(bdev);
235         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 }
237 EXPORT_SYMBOL(freeze_bdev);
238
239 /**
240  * thaw_bdev  -- unlock filesystem
241  * @bdev:       blockdevice to unlock
242  * @sb:         associated superblock
243  *
244  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245  */
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 {
248         if (sb) {
249                 BUG_ON(sb->s_bdev != bdev);
250
251                 if (sb->s_op->unlockfs)
252                         sb->s_op->unlockfs(sb);
253                 sb->s_frozen = SB_UNFROZEN;
254                 smp_wmb();
255                 wake_up(&sb->s_wait_unfrozen);
256                 drop_super(sb);
257         }
258
259         mutex_unlock(&bdev->bd_mount_mutex);
260 }
261 EXPORT_SYMBOL(thaw_bdev);
262
263 /*
264  * sync everything.  Start out by waking pdflush, because that writes back
265  * all queues in parallel.
266  */
267 static void do_sync(unsigned long wait)
268 {
269         wakeup_pdflush(0);
270         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
271         DQUOT_SYNC(NULL);
272         sync_supers();          /* Write the superblocks */
273         sync_filesystems(0);    /* Start syncing the filesystems */
274         sync_filesystems(wait); /* Waitingly sync the filesystems */
275         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
276         if (!wait)
277                 printk("Emergency Sync complete\n");
278         if (unlikely(laptop_mode))
279                 laptop_sync_completion();
280 }
281
282 asmlinkage long sys_sync(void)
283 {
284         do_sync(1);
285         return 0;
286 }
287
288 void emergency_sync(void)
289 {
290         pdflush_operation(do_sync, 0);
291 }
292
293 /*
294  * Generic function to fsync a file.
295  *
296  * filp may be NULL if called via the msync of a vma.
297  */
298  
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 {
301         struct inode * inode = dentry->d_inode;
302         struct super_block * sb;
303         int ret, err;
304
305         /* sync the inode to buffers */
306         ret = write_inode_now(inode, 0);
307
308         /* sync the superblock to buffers */
309         sb = inode->i_sb;
310         lock_super(sb);
311         if (sb->s_op->write_super)
312                 sb->s_op->write_super(sb);
313         unlock_super(sb);
314
315         /* .. finally sync the buffers to disk */
316         err = sync_blockdev(sb->s_bdev);
317         if (!ret)
318                 ret = err;
319         return ret;
320 }
321
322 long do_fsync(struct file *file, int datasync)
323 {
324         int ret;
325         int err;
326         struct address_space *mapping = file->f_mapping;
327
328         if (!file->f_op || !file->f_op->fsync) {
329                 /* Why?  We can still call filemap_fdatawrite */
330                 ret = -EINVAL;
331                 goto out;
332         }
333
334         current->flags |= PF_SYNCWRITE;
335         ret = filemap_fdatawrite(mapping);
336
337         /*
338          * We need to protect against concurrent writers, which could cause
339          * livelocks in fsync_buffers_list().
340          */
341         mutex_lock(&mapping->host->i_mutex);
342         err = file->f_op->fsync(file, file->f_dentry, datasync);
343         if (!ret)
344                 ret = err;
345         mutex_unlock(&mapping->host->i_mutex);
346         err = filemap_fdatawait(mapping);
347         if (!ret)
348                 ret = err;
349         current->flags &= ~PF_SYNCWRITE;
350 out:
351         return ret;
352 }
353
354 static long __do_fsync(unsigned int fd, int datasync)
355 {
356         struct file *file;
357         int ret = -EBADF;
358
359         file = fget(fd);
360         if (file) {
361                 ret = do_fsync(file, datasync);
362                 fput(file);
363         }
364         return ret;
365 }
366
367 asmlinkage long sys_fsync(unsigned int fd)
368 {
369         return __do_fsync(fd, 0);
370 }
371
372 asmlinkage long sys_fdatasync(unsigned int fd)
373 {
374         return __do_fsync(fd, 1);
375 }
376
377 /*
378  * Various filesystems appear to want __find_get_block to be non-blocking.
379  * But it's the page lock which protects the buffers.  To get around this,
380  * we get exclusion from try_to_free_buffers with the blockdev mapping's
381  * private_lock.
382  *
383  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384  * may be quite high.  This code could TryLock the page, and if that
385  * succeeds, there is no need to take private_lock. (But if
386  * private_lock is contended then so is mapping->tree_lock).
387  */
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
390 {
391         struct inode *bd_inode = bdev->bd_inode;
392         struct address_space *bd_mapping = bd_inode->i_mapping;
393         struct buffer_head *ret = NULL;
394         pgoff_t index;
395         struct buffer_head *bh;
396         struct buffer_head *head;
397         struct page *page;
398         int all_mapped = 1;
399
400         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401         page = find_get_page(bd_mapping, index);
402         if (!page)
403                 goto out;
404
405         spin_lock(&bd_mapping->private_lock);
406         if (!page_has_buffers(page))
407                 goto out_unlock;
408         head = page_buffers(page);
409         bh = head;
410         do {
411                 if (bh->b_blocknr == block) {
412                         ret = bh;
413                         get_bh(bh);
414                         goto out_unlock;
415                 }
416                 if (!buffer_mapped(bh))
417                         all_mapped = 0;
418                 bh = bh->b_this_page;
419         } while (bh != head);
420
421         /* we might be here because some of the buffers on this page are
422          * not mapped.  This is due to various races between
423          * file io on the block device and getblk.  It gets dealt with
424          * elsewhere, don't buffer_error if we had some unmapped buffers
425          */
426         if (all_mapped) {
427                 printk("__find_get_block_slow() failed. "
428                         "block=%llu, b_blocknr=%llu\n",
429                         (unsigned long long)block,
430                         (unsigned long long)bh->b_blocknr);
431                 printk("b_state=0x%08lx, b_size=%zu\n",
432                         bh->b_state, bh->b_size);
433                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
434         }
435 out_unlock:
436         spin_unlock(&bd_mapping->private_lock);
437         page_cache_release(page);
438 out:
439         return ret;
440 }
441
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443    of fs corruption is going on. Trashing dirty data always imply losing
444    information that was supposed to be just stored on the physical layer
445    by the user.
446
447    Thus invalidate_buffers in general usage is not allwowed to trash
448    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449    be preserved.  These buffers are simply skipped.
450   
451    We also skip buffers which are still in use.  For example this can
452    happen if a userspace program is reading the block device.
453
454    NOTE: In the case where the user removed a removable-media-disk even if
455    there's still dirty data not synced on disk (due a bug in the device driver
456    or due an error of the user), by not destroying the dirty buffers we could
457    generate corruption also on the next media inserted, thus a parameter is
458    necessary to handle this case in the most safe way possible (trying
459    to not corrupt also the new disk inserted with the data belonging to
460    the old now corrupted disk). Also for the ramdisk the natural thing
461    to do in order to release the ramdisk memory is to destroy dirty buffers.
462
463    These are two special cases. Normal usage imply the device driver
464    to issue a sync on the device (without waiting I/O completion) and
465    then an invalidate_buffers call that doesn't trash dirty buffers.
466
467    For handling cache coherency with the blkdev pagecache the 'update' case
468    is been introduced. It is needed to re-read from disk any pinned
469    buffer. NOTE: re-reading from disk is destructive so we can do it only
470    when we assume nobody is changing the buffercache under our I/O and when
471    we think the disk contains more recent information than the buffercache.
472    The update == 1 pass marks the buffers we need to update, the update == 2
473    pass does the actual I/O. */
474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
475 {
476         struct address_space *mapping = bdev->bd_inode->i_mapping;
477
478         if (mapping->nrpages == 0)
479                 return;
480
481         invalidate_bh_lrus();
482         /*
483          * FIXME: what about destroy_dirty_buffers?
484          * We really want to use invalidate_inode_pages2() for
485          * that, but not until that's cleaned up.
486          */
487         invalidate_inode_pages(mapping);
488 }
489
490 /*
491  * Kick pdflush then try to free up some ZONE_NORMAL memory.
492  */
493 static void free_more_memory(void)
494 {
495         struct zone **zones;
496         pg_data_t *pgdat;
497
498         wakeup_pdflush(1024);
499         yield();
500
501         for_each_online_pgdat(pgdat) {
502                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
503                 if (*zones)
504                         try_to_free_pages(zones, GFP_NOFS);
505         }
506 }
507
508 /*
509  * I/O completion handler for block_read_full_page() - pages
510  * which come unlocked at the end of I/O.
511  */
512 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
513 {
514         unsigned long flags;
515         struct buffer_head *first;
516         struct buffer_head *tmp;
517         struct page *page;
518         int page_uptodate = 1;
519
520         BUG_ON(!buffer_async_read(bh));
521
522         page = bh->b_page;
523         if (uptodate) {
524                 set_buffer_uptodate(bh);
525         } else {
526                 clear_buffer_uptodate(bh);
527                 if (printk_ratelimit())
528                         buffer_io_error(bh);
529                 SetPageError(page);
530         }
531
532         /*
533          * Be _very_ careful from here on. Bad things can happen if
534          * two buffer heads end IO at almost the same time and both
535          * decide that the page is now completely done.
536          */
537         first = page_buffers(page);
538         local_irq_save(flags);
539         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
540         clear_buffer_async_read(bh);
541         unlock_buffer(bh);
542         tmp = bh;
543         do {
544                 if (!buffer_uptodate(tmp))
545                         page_uptodate = 0;
546                 if (buffer_async_read(tmp)) {
547                         BUG_ON(!buffer_locked(tmp));
548                         goto still_busy;
549                 }
550                 tmp = tmp->b_this_page;
551         } while (tmp != bh);
552         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
553         local_irq_restore(flags);
554
555         /*
556          * If none of the buffers had errors and they are all
557          * uptodate then we can set the page uptodate.
558          */
559         if (page_uptodate && !PageError(page))
560                 SetPageUptodate(page);
561         unlock_page(page);
562         return;
563
564 still_busy:
565         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
566         local_irq_restore(flags);
567         return;
568 }
569
570 /*
571  * Completion handler for block_write_full_page() - pages which are unlocked
572  * during I/O, and which have PageWriteback cleared upon I/O completion.
573  */
574 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
575 {
576         char b[BDEVNAME_SIZE];
577         unsigned long flags;
578         struct buffer_head *first;
579         struct buffer_head *tmp;
580         struct page *page;
581
582         BUG_ON(!buffer_async_write(bh));
583
584         page = bh->b_page;
585         if (uptodate) {
586                 set_buffer_uptodate(bh);
587         } else {
588                 if (printk_ratelimit()) {
589                         buffer_io_error(bh);
590                         printk(KERN_WARNING "lost page write due to "
591                                         "I/O error on %s\n",
592                                bdevname(bh->b_bdev, b));
593                 }
594                 set_bit(AS_EIO, &page->mapping->flags);
595                 clear_buffer_uptodate(bh);
596                 SetPageError(page);
597         }
598
599         first = page_buffers(page);
600         local_irq_save(flags);
601         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
602
603         clear_buffer_async_write(bh);
604         unlock_buffer(bh);
605         tmp = bh->b_this_page;
606         while (tmp != bh) {
607                 if (buffer_async_write(tmp)) {
608                         BUG_ON(!buffer_locked(tmp));
609                         goto still_busy;
610                 }
611                 tmp = tmp->b_this_page;
612         }
613         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
614         local_irq_restore(flags);
615         end_page_writeback(page);
616         return;
617
618 still_busy:
619         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
620         local_irq_restore(flags);
621         return;
622 }
623
624 /*
625  * If a page's buffers are under async readin (end_buffer_async_read
626  * completion) then there is a possibility that another thread of
627  * control could lock one of the buffers after it has completed
628  * but while some of the other buffers have not completed.  This
629  * locked buffer would confuse end_buffer_async_read() into not unlocking
630  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
631  * that this buffer is not under async I/O.
632  *
633  * The page comes unlocked when it has no locked buffer_async buffers
634  * left.
635  *
636  * PageLocked prevents anyone starting new async I/O reads any of
637  * the buffers.
638  *
639  * PageWriteback is used to prevent simultaneous writeout of the same
640  * page.
641  *
642  * PageLocked prevents anyone from starting writeback of a page which is
643  * under read I/O (PageWriteback is only ever set against a locked page).
644  */
645 static void mark_buffer_async_read(struct buffer_head *bh)
646 {
647         bh->b_end_io = end_buffer_async_read;
648         set_buffer_async_read(bh);
649 }
650
651 void mark_buffer_async_write(struct buffer_head *bh)
652 {
653         bh->b_end_io = end_buffer_async_write;
654         set_buffer_async_write(bh);
655 }
656 EXPORT_SYMBOL(mark_buffer_async_write);
657
658
659 /*
660  * fs/buffer.c contains helper functions for buffer-backed address space's
661  * fsync functions.  A common requirement for buffer-based filesystems is
662  * that certain data from the backing blockdev needs to be written out for
663  * a successful fsync().  For example, ext2 indirect blocks need to be
664  * written back and waited upon before fsync() returns.
665  *
666  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
667  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
668  * management of a list of dependent buffers at ->i_mapping->private_list.
669  *
670  * Locking is a little subtle: try_to_free_buffers() will remove buffers
671  * from their controlling inode's queue when they are being freed.  But
672  * try_to_free_buffers() will be operating against the *blockdev* mapping
673  * at the time, not against the S_ISREG file which depends on those buffers.
674  * So the locking for private_list is via the private_lock in the address_space
675  * which backs the buffers.  Which is different from the address_space 
676  * against which the buffers are listed.  So for a particular address_space,
677  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
678  * mapping->private_list will always be protected by the backing blockdev's
679  * ->private_lock.
680  *
681  * Which introduces a requirement: all buffers on an address_space's
682  * ->private_list must be from the same address_space: the blockdev's.
683  *
684  * address_spaces which do not place buffers at ->private_list via these
685  * utility functions are free to use private_lock and private_list for
686  * whatever they want.  The only requirement is that list_empty(private_list)
687  * be true at clear_inode() time.
688  *
689  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
690  * filesystems should do that.  invalidate_inode_buffers() should just go
691  * BUG_ON(!list_empty).
692  *
693  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
694  * take an address_space, not an inode.  And it should be called
695  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
696  * queued up.
697  *
698  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
699  * list if it is already on a list.  Because if the buffer is on a list,
700  * it *must* already be on the right one.  If not, the filesystem is being
701  * silly.  This will save a ton of locking.  But first we have to ensure
702  * that buffers are taken *off* the old inode's list when they are freed
703  * (presumably in truncate).  That requires careful auditing of all
704  * filesystems (do it inside bforget()).  It could also be done by bringing
705  * b_inode back.
706  */
707
708 /*
709  * The buffer's backing address_space's private_lock must be held
710  */
711 static inline void __remove_assoc_queue(struct buffer_head *bh)
712 {
713         list_del_init(&bh->b_assoc_buffers);
714 }
715
716 int inode_has_buffers(struct inode *inode)
717 {
718         return !list_empty(&inode->i_data.private_list);
719 }
720
721 /*
722  * osync is designed to support O_SYNC io.  It waits synchronously for
723  * all already-submitted IO to complete, but does not queue any new
724  * writes to the disk.
725  *
726  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
727  * you dirty the buffers, and then use osync_inode_buffers to wait for
728  * completion.  Any other dirty buffers which are not yet queued for
729  * write will not be flushed to disk by the osync.
730  */
731 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
732 {
733         struct buffer_head *bh;
734         struct list_head *p;
735         int err = 0;
736
737         spin_lock(lock);
738 repeat:
739         list_for_each_prev(p, list) {
740                 bh = BH_ENTRY(p);
741                 if (buffer_locked(bh)) {
742                         get_bh(bh);
743                         spin_unlock(lock);
744                         wait_on_buffer(bh);
745                         if (!buffer_uptodate(bh))
746                                 err = -EIO;
747                         brelse(bh);
748                         spin_lock(lock);
749                         goto repeat;
750                 }
751         }
752         spin_unlock(lock);
753         return err;
754 }
755
756 /**
757  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
758  *                        buffers
759  * @mapping: the mapping which wants those buffers written
760  *
761  * Starts I/O against the buffers at mapping->private_list, and waits upon
762  * that I/O.
763  *
764  * Basically, this is a convenience function for fsync().
765  * @mapping is a file or directory which needs those buffers to be written for
766  * a successful fsync().
767  */
768 int sync_mapping_buffers(struct address_space *mapping)
769 {
770         struct address_space *buffer_mapping = mapping->assoc_mapping;
771
772         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
773                 return 0;
774
775         return fsync_buffers_list(&buffer_mapping->private_lock,
776                                         &mapping->private_list);
777 }
778 EXPORT_SYMBOL(sync_mapping_buffers);
779
780 /*
781  * Called when we've recently written block `bblock', and it is known that
782  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
783  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
784  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
785  */
786 void write_boundary_block(struct block_device *bdev,
787                         sector_t bblock, unsigned blocksize)
788 {
789         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
790         if (bh) {
791                 if (buffer_dirty(bh))
792                         ll_rw_block(WRITE, 1, &bh);
793                 put_bh(bh);
794         }
795 }
796
797 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
798 {
799         struct address_space *mapping = inode->i_mapping;
800         struct address_space *buffer_mapping = bh->b_page->mapping;
801
802         mark_buffer_dirty(bh);
803         if (!mapping->assoc_mapping) {
804                 mapping->assoc_mapping = buffer_mapping;
805         } else {
806                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
807         }
808         if (list_empty(&bh->b_assoc_buffers)) {
809                 spin_lock(&buffer_mapping->private_lock);
810                 list_move_tail(&bh->b_assoc_buffers,
811                                 &mapping->private_list);
812                 spin_unlock(&buffer_mapping->private_lock);
813         }
814 }
815 EXPORT_SYMBOL(mark_buffer_dirty_inode);
816
817 /*
818  * Add a page to the dirty page list.
819  *
820  * It is a sad fact of life that this function is called from several places
821  * deeply under spinlocking.  It may not sleep.
822  *
823  * If the page has buffers, the uptodate buffers are set dirty, to preserve
824  * dirty-state coherency between the page and the buffers.  It the page does
825  * not have buffers then when they are later attached they will all be set
826  * dirty.
827  *
828  * The buffers are dirtied before the page is dirtied.  There's a small race
829  * window in which a writepage caller may see the page cleanness but not the
830  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
831  * before the buffers, a concurrent writepage caller could clear the page dirty
832  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
833  * page on the dirty page list.
834  *
835  * We use private_lock to lock against try_to_free_buffers while using the
836  * page's buffer list.  Also use this to protect against clean buffers being
837  * added to the page after it was set dirty.
838  *
839  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
840  * address_space though.
841  */
842 int __set_page_dirty_buffers(struct page *page)
843 {
844         struct address_space * const mapping = page->mapping;
845
846         spin_lock(&mapping->private_lock);
847         if (page_has_buffers(page)) {
848                 struct buffer_head *head = page_buffers(page);
849                 struct buffer_head *bh = head;
850
851                 do {
852                         set_buffer_dirty(bh);
853                         bh = bh->b_this_page;
854                 } while (bh != head);
855         }
856         spin_unlock(&mapping->private_lock);
857
858         if (!TestSetPageDirty(page)) {
859                 write_lock_irq(&mapping->tree_lock);
860                 if (page->mapping) {    /* Race with truncate? */
861                         if (mapping_cap_account_dirty(mapping))
862                                 inc_page_state(nr_dirty);
863                         radix_tree_tag_set(&mapping->page_tree,
864                                                 page_index(page),
865                                                 PAGECACHE_TAG_DIRTY);
866                 }
867                 write_unlock_irq(&mapping->tree_lock);
868                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
869                 return 1;
870         }
871         return 0;
872 }
873 EXPORT_SYMBOL(__set_page_dirty_buffers);
874
875 /*
876  * Write out and wait upon a list of buffers.
877  *
878  * We have conflicting pressures: we want to make sure that all
879  * initially dirty buffers get waited on, but that any subsequently
880  * dirtied buffers don't.  After all, we don't want fsync to last
881  * forever if somebody is actively writing to the file.
882  *
883  * Do this in two main stages: first we copy dirty buffers to a
884  * temporary inode list, queueing the writes as we go.  Then we clean
885  * up, waiting for those writes to complete.
886  * 
887  * During this second stage, any subsequent updates to the file may end
888  * up refiling the buffer on the original inode's dirty list again, so
889  * there is a chance we will end up with a buffer queued for write but
890  * not yet completed on that list.  So, as a final cleanup we go through
891  * the osync code to catch these locked, dirty buffers without requeuing
892  * any newly dirty buffers for write.
893  */
894 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
895 {
896         struct buffer_head *bh;
897         struct list_head tmp;
898         int err = 0, err2;
899
900         INIT_LIST_HEAD(&tmp);
901
902         spin_lock(lock);
903         while (!list_empty(list)) {
904                 bh = BH_ENTRY(list->next);
905                 list_del_init(&bh->b_assoc_buffers);
906                 if (buffer_dirty(bh) || buffer_locked(bh)) {
907                         list_add(&bh->b_assoc_buffers, &tmp);
908                         if (buffer_dirty(bh)) {
909                                 get_bh(bh);
910                                 spin_unlock(lock);
911                                 /*
912                                  * Ensure any pending I/O completes so that
913                                  * ll_rw_block() actually writes the current
914                                  * contents - it is a noop if I/O is still in
915                                  * flight on potentially older contents.
916                                  */
917                                 ll_rw_block(SWRITE, 1, &bh);
918                                 brelse(bh);
919                                 spin_lock(lock);
920                         }
921                 }
922         }
923
924         while (!list_empty(&tmp)) {
925                 bh = BH_ENTRY(tmp.prev);
926                 __remove_assoc_queue(bh);
927                 get_bh(bh);
928                 spin_unlock(lock);
929                 wait_on_buffer(bh);
930                 if (!buffer_uptodate(bh))
931                         err = -EIO;
932                 brelse(bh);
933                 spin_lock(lock);
934         }
935         
936         spin_unlock(lock);
937         err2 = osync_buffers_list(lock, list);
938         if (err)
939                 return err;
940         else
941                 return err2;
942 }
943
944 /*
945  * Invalidate any and all dirty buffers on a given inode.  We are
946  * probably unmounting the fs, but that doesn't mean we have already
947  * done a sync().  Just drop the buffers from the inode list.
948  *
949  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
950  * assumes that all the buffers are against the blockdev.  Not true
951  * for reiserfs.
952  */
953 void invalidate_inode_buffers(struct inode *inode)
954 {
955         if (inode_has_buffers(inode)) {
956                 struct address_space *mapping = &inode->i_data;
957                 struct list_head *list = &mapping->private_list;
958                 struct address_space *buffer_mapping = mapping->assoc_mapping;
959
960                 spin_lock(&buffer_mapping->private_lock);
961                 while (!list_empty(list))
962                         __remove_assoc_queue(BH_ENTRY(list->next));
963                 spin_unlock(&buffer_mapping->private_lock);
964         }
965 }
966
967 /*
968  * Remove any clean buffers from the inode's buffer list.  This is called
969  * when we're trying to free the inode itself.  Those buffers can pin it.
970  *
971  * Returns true if all buffers were removed.
972  */
973 int remove_inode_buffers(struct inode *inode)
974 {
975         int ret = 1;
976
977         if (inode_has_buffers(inode)) {
978                 struct address_space *mapping = &inode->i_data;
979                 struct list_head *list = &mapping->private_list;
980                 struct address_space *buffer_mapping = mapping->assoc_mapping;
981
982                 spin_lock(&buffer_mapping->private_lock);
983                 while (!list_empty(list)) {
984                         struct buffer_head *bh = BH_ENTRY(list->next);
985                         if (buffer_dirty(bh)) {
986                                 ret = 0;
987                                 break;
988                         }
989                         __remove_assoc_queue(bh);
990                 }
991                 spin_unlock(&buffer_mapping->private_lock);
992         }
993         return ret;
994 }
995
996 /*
997  * Create the appropriate buffers when given a page for data area and
998  * the size of each buffer.. Use the bh->b_this_page linked list to
999  * follow the buffers created.  Return NULL if unable to create more
1000  * buffers.
1001  *
1002  * The retry flag is used to differentiate async IO (paging, swapping)
1003  * which may not fail from ordinary buffer allocations.
1004  */
1005 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1006                 int retry)
1007 {
1008         struct buffer_head *bh, *head;
1009         long offset;
1010
1011 try_again:
1012         head = NULL;
1013         offset = PAGE_SIZE;
1014         while ((offset -= size) >= 0) {
1015                 bh = alloc_buffer_head(GFP_NOFS);
1016                 if (!bh)
1017                         goto no_grow;
1018
1019                 bh->b_bdev = NULL;
1020                 bh->b_this_page = head;
1021                 bh->b_blocknr = -1;
1022                 head = bh;
1023
1024                 bh->b_state = 0;
1025                 atomic_set(&bh->b_count, 0);
1026                 bh->b_private = NULL;
1027                 bh->b_size = size;
1028
1029                 /* Link the buffer to its page */
1030                 set_bh_page(bh, page, offset);
1031
1032                 init_buffer(bh, NULL, NULL);
1033         }
1034         return head;
1035 /*
1036  * In case anything failed, we just free everything we got.
1037  */
1038 no_grow:
1039         if (head) {
1040                 do {
1041                         bh = head;
1042                         head = head->b_this_page;
1043                         free_buffer_head(bh);
1044                 } while (head);
1045         }
1046
1047         /*
1048          * Return failure for non-async IO requests.  Async IO requests
1049          * are not allowed to fail, so we have to wait until buffer heads
1050          * become available.  But we don't want tasks sleeping with 
1051          * partially complete buffers, so all were released above.
1052          */
1053         if (!retry)
1054                 return NULL;
1055
1056         /* We're _really_ low on memory. Now we just
1057          * wait for old buffer heads to become free due to
1058          * finishing IO.  Since this is an async request and
1059          * the reserve list is empty, we're sure there are 
1060          * async buffer heads in use.
1061          */
1062         free_more_memory();
1063         goto try_again;
1064 }
1065 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1066
1067 static inline void
1068 link_dev_buffers(struct page *page, struct buffer_head *head)
1069 {
1070         struct buffer_head *bh, *tail;
1071
1072         bh = head;
1073         do {
1074                 tail = bh;
1075                 bh = bh->b_this_page;
1076         } while (bh);
1077         tail->b_this_page = head;
1078         attach_page_buffers(page, head);
1079 }
1080
1081 /*
1082  * Initialise the state of a blockdev page's buffers.
1083  */ 
1084 static void
1085 init_page_buffers(struct page *page, struct block_device *bdev,
1086                         sector_t block, int size)
1087 {
1088         struct buffer_head *head = page_buffers(page);
1089         struct buffer_head *bh = head;
1090         int uptodate = PageUptodate(page);
1091
1092         do {
1093                 if (!buffer_mapped(bh)) {
1094                         init_buffer(bh, NULL, NULL);
1095                         bh->b_bdev = bdev;
1096                         bh->b_blocknr = block;
1097                         if (uptodate)
1098                                 set_buffer_uptodate(bh);
1099                         set_buffer_mapped(bh);
1100                 }
1101                 block++;
1102                 bh = bh->b_this_page;
1103         } while (bh != head);
1104 }
1105
1106 /*
1107  * Create the page-cache page that contains the requested block.
1108  *
1109  * This is user purely for blockdev mappings.
1110  */
1111 static struct page *
1112 grow_dev_page(struct block_device *bdev, sector_t block,
1113                 pgoff_t index, int size)
1114 {
1115         struct inode *inode = bdev->bd_inode;
1116         struct page *page;
1117         struct buffer_head *bh;
1118
1119         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1120         if (!page)
1121                 return NULL;
1122
1123         BUG_ON(!PageLocked(page));
1124
1125         if (page_has_buffers(page)) {
1126                 bh = page_buffers(page);
1127                 if (bh->b_size == size) {
1128                         init_page_buffers(page, bdev, block, size);
1129                         return page;
1130                 }
1131                 if (!try_to_free_buffers(page))
1132                         goto failed;
1133         }
1134
1135         /*
1136          * Allocate some buffers for this page
1137          */
1138         bh = alloc_page_buffers(page, size, 0);
1139         if (!bh)
1140                 goto failed;
1141
1142         /*
1143          * Link the page to the buffers and initialise them.  Take the
1144          * lock to be atomic wrt __find_get_block(), which does not
1145          * run under the page lock.
1146          */
1147         spin_lock(&inode->i_mapping->private_lock);
1148         link_dev_buffers(page, bh);
1149         init_page_buffers(page, bdev, block, size);
1150         spin_unlock(&inode->i_mapping->private_lock);
1151         return page;
1152
1153 failed:
1154         BUG();
1155         unlock_page(page);
1156         page_cache_release(page);
1157         return NULL;
1158 }
1159
1160 /*
1161  * Create buffers for the specified block device block's page.  If
1162  * that page was dirty, the buffers are set dirty also.
1163  *
1164  * Except that's a bug.  Attaching dirty buffers to a dirty
1165  * blockdev's page can result in filesystem corruption, because
1166  * some of those buffers may be aliases of filesystem data.
1167  * grow_dev_page() will go BUG() if this happens.
1168  */
1169 static int
1170 grow_buffers(struct block_device *bdev, sector_t block, int size)
1171 {
1172         struct page *page;
1173         pgoff_t index;
1174         int sizebits;
1175
1176         sizebits = -1;
1177         do {
1178                 sizebits++;
1179         } while ((size << sizebits) < PAGE_SIZE);
1180
1181         index = block >> sizebits;
1182         block = index << sizebits;
1183
1184         /* Create a page with the proper size buffers.. */
1185         page = grow_dev_page(bdev, block, index, size);
1186         if (!page)
1187                 return 0;
1188         unlock_page(page);
1189         page_cache_release(page);
1190         return 1;
1191 }
1192
1193 static struct buffer_head *
1194 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1195 {
1196         /* Size must be multiple of hard sectorsize */
1197         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1198                         (size < 512 || size > PAGE_SIZE))) {
1199                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1200                                         size);
1201                 printk(KERN_ERR "hardsect size: %d\n",
1202                                         bdev_hardsect_size(bdev));
1203
1204                 dump_stack();
1205                 return NULL;
1206         }
1207
1208         for (;;) {
1209                 struct buffer_head * bh;
1210
1211                 bh = __find_get_block(bdev, block, size);
1212                 if (bh)
1213                         return bh;
1214
1215                 if (!grow_buffers(bdev, block, size))
1216                         free_more_memory();
1217         }
1218 }
1219
1220 /*
1221  * The relationship between dirty buffers and dirty pages:
1222  *
1223  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1224  * the page is tagged dirty in its radix tree.
1225  *
1226  * At all times, the dirtiness of the buffers represents the dirtiness of
1227  * subsections of the page.  If the page has buffers, the page dirty bit is
1228  * merely a hint about the true dirty state.
1229  *
1230  * When a page is set dirty in its entirety, all its buffers are marked dirty
1231  * (if the page has buffers).
1232  *
1233  * When a buffer is marked dirty, its page is dirtied, but the page's other
1234  * buffers are not.
1235  *
1236  * Also.  When blockdev buffers are explicitly read with bread(), they
1237  * individually become uptodate.  But their backing page remains not
1238  * uptodate - even if all of its buffers are uptodate.  A subsequent
1239  * block_read_full_page() against that page will discover all the uptodate
1240  * buffers, will set the page uptodate and will perform no I/O.
1241  */
1242
1243 /**
1244  * mark_buffer_dirty - mark a buffer_head as needing writeout
1245  * @bh: the buffer_head to mark dirty
1246  *
1247  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1248  * backing page dirty, then tag the page as dirty in its address_space's radix
1249  * tree and then attach the address_space's inode to its superblock's dirty
1250  * inode list.
1251  *
1252  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1253  * mapping->tree_lock and the global inode_lock.
1254  */
1255 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1256 {
1257         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1258                 __set_page_dirty_nobuffers(bh->b_page);
1259 }
1260
1261 /*
1262  * Decrement a buffer_head's reference count.  If all buffers against a page
1263  * have zero reference count, are clean and unlocked, and if the page is clean
1264  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1265  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1266  * a page but it ends up not being freed, and buffers may later be reattached).
1267  */
1268 void __brelse(struct buffer_head * buf)
1269 {
1270         if (atomic_read(&buf->b_count)) {
1271                 put_bh(buf);
1272                 return;
1273         }
1274         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1275         WARN_ON(1);
1276 }
1277
1278 /*
1279  * bforget() is like brelse(), except it discards any
1280  * potentially dirty data.
1281  */
1282 void __bforget(struct buffer_head *bh)
1283 {
1284         clear_buffer_dirty(bh);
1285         if (!list_empty(&bh->b_assoc_buffers)) {
1286                 struct address_space *buffer_mapping = bh->b_page->mapping;
1287
1288                 spin_lock(&buffer_mapping->private_lock);
1289                 list_del_init(&bh->b_assoc_buffers);
1290                 spin_unlock(&buffer_mapping->private_lock);
1291         }
1292         __brelse(bh);
1293 }
1294
1295 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1296 {
1297         lock_buffer(bh);
1298         if (buffer_uptodate(bh)) {
1299                 unlock_buffer(bh);
1300                 return bh;
1301         } else {
1302                 get_bh(bh);
1303                 bh->b_end_io = end_buffer_read_sync;
1304                 submit_bh(READ, bh);
1305                 wait_on_buffer(bh);
1306                 if (buffer_uptodate(bh))
1307                         return bh;
1308         }
1309         brelse(bh);
1310         return NULL;
1311 }
1312
1313 /*
1314  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1315  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1316  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1317  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1318  * CPU's LRUs at the same time.
1319  *
1320  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1321  * sb_find_get_block().
1322  *
1323  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1324  * a local interrupt disable for that.
1325  */
1326
1327 #define BH_LRU_SIZE     8
1328
1329 struct bh_lru {
1330         struct buffer_head *bhs[BH_LRU_SIZE];
1331 };
1332
1333 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1334
1335 #ifdef CONFIG_SMP
1336 #define bh_lru_lock()   local_irq_disable()
1337 #define bh_lru_unlock() local_irq_enable()
1338 #else
1339 #define bh_lru_lock()   preempt_disable()
1340 #define bh_lru_unlock() preempt_enable()
1341 #endif
1342
1343 static inline void check_irqs_on(void)
1344 {
1345 #ifdef irqs_disabled
1346         BUG_ON(irqs_disabled());
1347 #endif
1348 }
1349
1350 /*
1351  * The LRU management algorithm is dopey-but-simple.  Sorry.
1352  */
1353 static void bh_lru_install(struct buffer_head *bh)
1354 {
1355         struct buffer_head *evictee = NULL;
1356         struct bh_lru *lru;
1357
1358         check_irqs_on();
1359         bh_lru_lock();
1360         lru = &__get_cpu_var(bh_lrus);
1361         if (lru->bhs[0] != bh) {
1362                 struct buffer_head *bhs[BH_LRU_SIZE];
1363                 int in;
1364                 int out = 0;
1365
1366                 get_bh(bh);
1367                 bhs[out++] = bh;
1368                 for (in = 0; in < BH_LRU_SIZE; in++) {
1369                         struct buffer_head *bh2 = lru->bhs[in];
1370
1371                         if (bh2 == bh) {
1372                                 __brelse(bh2);
1373                         } else {
1374                                 if (out >= BH_LRU_SIZE) {
1375                                         BUG_ON(evictee != NULL);
1376                                         evictee = bh2;
1377                                 } else {
1378                                         bhs[out++] = bh2;
1379                                 }
1380                         }
1381                 }
1382                 while (out < BH_LRU_SIZE)
1383                         bhs[out++] = NULL;
1384                 memcpy(lru->bhs, bhs, sizeof(bhs));
1385         }
1386         bh_lru_unlock();
1387
1388         if (evictee)
1389                 __brelse(evictee);
1390 }
1391
1392 /*
1393  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1394  */
1395 static struct buffer_head *
1396 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1397 {
1398         struct buffer_head *ret = NULL;
1399         struct bh_lru *lru;
1400         int i;
1401
1402         check_irqs_on();
1403         bh_lru_lock();
1404         lru = &__get_cpu_var(bh_lrus);
1405         for (i = 0; i < BH_LRU_SIZE; i++) {
1406                 struct buffer_head *bh = lru->bhs[i];
1407
1408                 if (bh && bh->b_bdev == bdev &&
1409                                 bh->b_blocknr == block && bh->b_size == size) {
1410                         if (i) {
1411                                 while (i) {
1412                                         lru->bhs[i] = lru->bhs[i - 1];
1413                                         i--;
1414                                 }
1415                                 lru->bhs[0] = bh;
1416                         }
1417                         get_bh(bh);
1418                         ret = bh;
1419                         break;
1420                 }
1421         }
1422         bh_lru_unlock();
1423         return ret;
1424 }
1425
1426 /*
1427  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1428  * it in the LRU and mark it as accessed.  If it is not present then return
1429  * NULL
1430  */
1431 struct buffer_head *
1432 __find_get_block(struct block_device *bdev, sector_t block, int size)
1433 {
1434         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1435
1436         if (bh == NULL) {
1437                 bh = __find_get_block_slow(bdev, block);
1438                 if (bh)
1439                         bh_lru_install(bh);
1440         }
1441         if (bh)
1442                 touch_buffer(bh);
1443         return bh;
1444 }
1445 EXPORT_SYMBOL(__find_get_block);
1446
1447 /*
1448  * __getblk will locate (and, if necessary, create) the buffer_head
1449  * which corresponds to the passed block_device, block and size. The
1450  * returned buffer has its reference count incremented.
1451  *
1452  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1453  * illegal block number, __getblk() will happily return a buffer_head
1454  * which represents the non-existent block.  Very weird.
1455  *
1456  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1457  * attempt is failing.  FIXME, perhaps?
1458  */
1459 struct buffer_head *
1460 __getblk(struct block_device *bdev, sector_t block, int size)
1461 {
1462         struct buffer_head *bh = __find_get_block(bdev, block, size);
1463
1464         might_sleep();
1465         if (bh == NULL)
1466                 bh = __getblk_slow(bdev, block, size);
1467         return bh;
1468 }
1469 EXPORT_SYMBOL(__getblk);
1470
1471 /*
1472  * Do async read-ahead on a buffer..
1473  */
1474 void __breadahead(struct block_device *bdev, sector_t block, int size)
1475 {
1476         struct buffer_head *bh = __getblk(bdev, block, size);
1477         if (likely(bh)) {
1478                 ll_rw_block(READA, 1, &bh);
1479                 brelse(bh);
1480         }
1481 }
1482 EXPORT_SYMBOL(__breadahead);
1483
1484 /**
1485  *  __bread() - reads a specified block and returns the bh
1486  *  @bdev: the block_device to read from
1487  *  @block: number of block
1488  *  @size: size (in bytes) to read
1489  * 
1490  *  Reads a specified block, and returns buffer head that contains it.
1491  *  It returns NULL if the block was unreadable.
1492  */
1493 struct buffer_head *
1494 __bread(struct block_device *bdev, sector_t block, int size)
1495 {
1496         struct buffer_head *bh = __getblk(bdev, block, size);
1497
1498         if (likely(bh) && !buffer_uptodate(bh))
1499                 bh = __bread_slow(bh);
1500         return bh;
1501 }
1502 EXPORT_SYMBOL(__bread);
1503
1504 /*
1505  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1506  * This doesn't race because it runs in each cpu either in irq
1507  * or with preempt disabled.
1508  */
1509 static void invalidate_bh_lru(void *arg)
1510 {
1511         struct bh_lru *b = &get_cpu_var(bh_lrus);
1512         int i;
1513
1514         for (i = 0; i < BH_LRU_SIZE; i++) {
1515                 brelse(b->bhs[i]);
1516                 b->bhs[i] = NULL;
1517         }
1518         put_cpu_var(bh_lrus);
1519 }
1520         
1521 static void invalidate_bh_lrus(void)
1522 {
1523         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1524 }
1525
1526 void set_bh_page(struct buffer_head *bh,
1527                 struct page *page, unsigned long offset)
1528 {
1529         bh->b_page = page;
1530         BUG_ON(offset >= PAGE_SIZE);
1531         if (PageHighMem(page))
1532                 /*
1533                  * This catches illegal uses and preserves the offset:
1534                  */
1535                 bh->b_data = (char *)(0 + offset);
1536         else
1537                 bh->b_data = page_address(page) + offset;
1538 }
1539 EXPORT_SYMBOL(set_bh_page);
1540
1541 /*
1542  * Called when truncating a buffer on a page completely.
1543  */
1544 static void discard_buffer(struct buffer_head * bh)
1545 {
1546         lock_buffer(bh);
1547         clear_buffer_dirty(bh);
1548         bh->b_bdev = NULL;
1549         clear_buffer_mapped(bh);
1550         clear_buffer_req(bh);
1551         clear_buffer_new(bh);
1552         clear_buffer_delay(bh);
1553         unlock_buffer(bh);
1554 }
1555
1556 /**
1557  * try_to_release_page() - release old fs-specific metadata on a page
1558  *
1559  * @page: the page which the kernel is trying to free
1560  * @gfp_mask: memory allocation flags (and I/O mode)
1561  *
1562  * The address_space is to try to release any data against the page
1563  * (presumably at page->private).  If the release was successful, return `1'.
1564  * Otherwise return zero.
1565  *
1566  * The @gfp_mask argument specifies whether I/O may be performed to release
1567  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1568  *
1569  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1570  */
1571 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1572 {
1573         struct address_space * const mapping = page->mapping;
1574
1575         BUG_ON(!PageLocked(page));
1576         if (PageWriteback(page))
1577                 return 0;
1578         
1579         if (mapping && mapping->a_ops->releasepage)
1580                 return mapping->a_ops->releasepage(page, gfp_mask);
1581         return try_to_free_buffers(page);
1582 }
1583 EXPORT_SYMBOL(try_to_release_page);
1584
1585 /**
1586  * block_invalidatepage - invalidate part of all of a buffer-backed page
1587  *
1588  * @page: the page which is affected
1589  * @offset: the index of the truncation point
1590  *
1591  * block_invalidatepage() is called when all or part of the page has become
1592  * invalidatedby a truncate operation.
1593  *
1594  * block_invalidatepage() does not have to release all buffers, but it must
1595  * ensure that no dirty buffer is left outside @offset and that no I/O
1596  * is underway against any of the blocks which are outside the truncation
1597  * point.  Because the caller is about to free (and possibly reuse) those
1598  * blocks on-disk.
1599  */
1600 void block_invalidatepage(struct page *page, unsigned long offset)
1601 {
1602         struct buffer_head *head, *bh, *next;
1603         unsigned int curr_off = 0;
1604
1605         BUG_ON(!PageLocked(page));
1606         if (!page_has_buffers(page))
1607                 goto out;
1608
1609         head = page_buffers(page);
1610         bh = head;
1611         do {
1612                 unsigned int next_off = curr_off + bh->b_size;
1613                 next = bh->b_this_page;
1614
1615                 /*
1616                  * is this block fully invalidated?
1617                  */
1618                 if (offset <= curr_off)
1619                         discard_buffer(bh);
1620                 curr_off = next_off;
1621                 bh = next;
1622         } while (bh != head);
1623
1624         /*
1625          * We release buffers only if the entire page is being invalidated.
1626          * The get_block cached value has been unconditionally invalidated,
1627          * so real IO is not possible anymore.
1628          */
1629         if (offset == 0)
1630                 try_to_release_page(page, 0);
1631 out:
1632         return;
1633 }
1634 EXPORT_SYMBOL(block_invalidatepage);
1635
1636 void do_invalidatepage(struct page *page, unsigned long offset)
1637 {
1638         void (*invalidatepage)(struct page *, unsigned long);
1639         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1640                 block_invalidatepage;
1641         (*invalidatepage)(page, offset);
1642 }
1643
1644 /*
1645  * We attach and possibly dirty the buffers atomically wrt
1646  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1647  * is already excluded via the page lock.
1648  */
1649 void create_empty_buffers(struct page *page,
1650                         unsigned long blocksize, unsigned long b_state)
1651 {
1652         struct buffer_head *bh, *head, *tail;
1653
1654         head = alloc_page_buffers(page, blocksize, 1);
1655         bh = head;
1656         do {
1657                 bh->b_state |= b_state;
1658                 tail = bh;
1659                 bh = bh->b_this_page;
1660         } while (bh);
1661         tail->b_this_page = head;
1662
1663         spin_lock(&page->mapping->private_lock);
1664         if (PageUptodate(page) || PageDirty(page)) {
1665                 bh = head;
1666                 do {
1667                         if (PageDirty(page))
1668                                 set_buffer_dirty(bh);
1669                         if (PageUptodate(page))
1670                                 set_buffer_uptodate(bh);
1671                         bh = bh->b_this_page;
1672                 } while (bh != head);
1673         }
1674         attach_page_buffers(page, head);
1675         spin_unlock(&page->mapping->private_lock);
1676 }
1677 EXPORT_SYMBOL(create_empty_buffers);
1678
1679 /*
1680  * We are taking a block for data and we don't want any output from any
1681  * buffer-cache aliases starting from return from that function and
1682  * until the moment when something will explicitly mark the buffer
1683  * dirty (hopefully that will not happen until we will free that block ;-)
1684  * We don't even need to mark it not-uptodate - nobody can expect
1685  * anything from a newly allocated buffer anyway. We used to used
1686  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1687  * don't want to mark the alias unmapped, for example - it would confuse
1688  * anyone who might pick it with bread() afterwards...
1689  *
1690  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1691  * be writeout I/O going on against recently-freed buffers.  We don't
1692  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1693  * only if we really need to.  That happens here.
1694  */
1695 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1696 {
1697         struct buffer_head *old_bh;
1698
1699         might_sleep();
1700
1701         old_bh = __find_get_block_slow(bdev, block);
1702         if (old_bh) {
1703                 clear_buffer_dirty(old_bh);
1704                 wait_on_buffer(old_bh);
1705                 clear_buffer_req(old_bh);
1706                 __brelse(old_bh);
1707         }
1708 }
1709 EXPORT_SYMBOL(unmap_underlying_metadata);
1710
1711 /*
1712  * NOTE! All mapped/uptodate combinations are valid:
1713  *
1714  *      Mapped  Uptodate        Meaning
1715  *
1716  *      No      No              "unknown" - must do get_block()
1717  *      No      Yes             "hole" - zero-filled
1718  *      Yes     No              "allocated" - allocated on disk, not read in
1719  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1720  *
1721  * "Dirty" is valid only with the last case (mapped+uptodate).
1722  */
1723
1724 /*
1725  * While block_write_full_page is writing back the dirty buffers under
1726  * the page lock, whoever dirtied the buffers may decide to clean them
1727  * again at any time.  We handle that by only looking at the buffer
1728  * state inside lock_buffer().
1729  *
1730  * If block_write_full_page() is called for regular writeback
1731  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1732  * locked buffer.   This only can happen if someone has written the buffer
1733  * directly, with submit_bh().  At the address_space level PageWriteback
1734  * prevents this contention from occurring.
1735  */
1736 static int __block_write_full_page(struct inode *inode, struct page *page,
1737                         get_block_t *get_block, struct writeback_control *wbc)
1738 {
1739         int err;
1740         sector_t block;
1741         sector_t last_block;
1742         struct buffer_head *bh, *head;
1743         const unsigned blocksize = 1 << inode->i_blkbits;
1744         int nr_underway = 0;
1745
1746         BUG_ON(!PageLocked(page));
1747
1748         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1749
1750         if (!page_has_buffers(page)) {
1751                 create_empty_buffers(page, blocksize,
1752                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1753         }
1754
1755         /*
1756          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1757          * here, and the (potentially unmapped) buffers may become dirty at
1758          * any time.  If a buffer becomes dirty here after we've inspected it
1759          * then we just miss that fact, and the page stays dirty.
1760          *
1761          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1762          * handle that here by just cleaning them.
1763          */
1764
1765         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1766         head = page_buffers(page);
1767         bh = head;
1768
1769         /*
1770          * Get all the dirty buffers mapped to disk addresses and
1771          * handle any aliases from the underlying blockdev's mapping.
1772          */
1773         do {
1774                 if (block > last_block) {
1775                         /*
1776                          * mapped buffers outside i_size will occur, because
1777                          * this page can be outside i_size when there is a
1778                          * truncate in progress.
1779                          */
1780                         /*
1781                          * The buffer was zeroed by block_write_full_page()
1782                          */
1783                         clear_buffer_dirty(bh);
1784                         set_buffer_uptodate(bh);
1785                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1786                         WARN_ON(bh->b_size != blocksize);
1787                         err = get_block(inode, block, bh, 1);
1788                         if (err)
1789                                 goto recover;
1790                         if (buffer_new(bh)) {
1791                                 /* blockdev mappings never come here */
1792                                 clear_buffer_new(bh);
1793                                 unmap_underlying_metadata(bh->b_bdev,
1794                                                         bh->b_blocknr);
1795                         }
1796                 }
1797                 bh = bh->b_this_page;
1798                 block++;
1799         } while (bh != head);
1800
1801         do {
1802                 if (!buffer_mapped(bh))
1803                         continue;
1804                 /*
1805                  * If it's a fully non-blocking write attempt and we cannot
1806                  * lock the buffer then redirty the page.  Note that this can
1807                  * potentially cause a busy-wait loop from pdflush and kswapd
1808                  * activity, but those code paths have their own higher-level
1809                  * throttling.
1810                  */
1811                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1812                         lock_buffer(bh);
1813                 } else if (test_set_buffer_locked(bh)) {
1814                         redirty_page_for_writepage(wbc, page);
1815                         continue;
1816                 }
1817                 if (test_clear_buffer_dirty(bh)) {
1818                         mark_buffer_async_write(bh);
1819                 } else {
1820                         unlock_buffer(bh);
1821                 }
1822         } while ((bh = bh->b_this_page) != head);
1823
1824         /*
1825          * The page and its buffers are protected by PageWriteback(), so we can
1826          * drop the bh refcounts early.
1827          */
1828         BUG_ON(PageWriteback(page));
1829         set_page_writeback(page);
1830
1831         do {
1832                 struct buffer_head *next = bh->b_this_page;
1833                 if (buffer_async_write(bh)) {
1834                         submit_bh(WRITE, bh);
1835                         nr_underway++;
1836                 }
1837                 bh = next;
1838         } while (bh != head);
1839         unlock_page(page);
1840
1841         err = 0;
1842 done:
1843         if (nr_underway == 0) {
1844                 /*
1845                  * The page was marked dirty, but the buffers were
1846                  * clean.  Someone wrote them back by hand with
1847                  * ll_rw_block/submit_bh.  A rare case.
1848                  */
1849                 int uptodate = 1;
1850                 do {
1851                         if (!buffer_uptodate(bh)) {
1852                                 uptodate = 0;
1853                                 break;
1854                         }
1855                         bh = bh->b_this_page;
1856                 } while (bh != head);
1857                 if (uptodate)
1858                         SetPageUptodate(page);
1859                 end_page_writeback(page);
1860                 /*
1861                  * The page and buffer_heads can be released at any time from
1862                  * here on.
1863                  */
1864                 wbc->pages_skipped++;   /* We didn't write this page */
1865         }
1866         return err;
1867
1868 recover:
1869         /*
1870          * ENOSPC, or some other error.  We may already have added some
1871          * blocks to the file, so we need to write these out to avoid
1872          * exposing stale data.
1873          * The page is currently locked and not marked for writeback
1874          */
1875         bh = head;
1876         /* Recovery: lock and submit the mapped buffers */
1877         do {
1878                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1879                         lock_buffer(bh);
1880                         mark_buffer_async_write(bh);
1881                 } else {
1882                         /*
1883                          * The buffer may have been set dirty during
1884                          * attachment to a dirty page.
1885                          */
1886                         clear_buffer_dirty(bh);
1887                 }
1888         } while ((bh = bh->b_this_page) != head);
1889         SetPageError(page);
1890         BUG_ON(PageWriteback(page));
1891         set_page_writeback(page);
1892         unlock_page(page);
1893         do {
1894                 struct buffer_head *next = bh->b_this_page;
1895                 if (buffer_async_write(bh)) {
1896                         clear_buffer_dirty(bh);
1897                         submit_bh(WRITE, bh);
1898                         nr_underway++;
1899                 }
1900                 bh = next;
1901         } while (bh != head);
1902         goto done;
1903 }
1904
1905 static int __block_prepare_write(struct inode *inode, struct page *page,
1906                 unsigned from, unsigned to, get_block_t *get_block)
1907 {
1908         unsigned block_start, block_end;
1909         sector_t block;
1910         int err = 0;
1911         unsigned blocksize, bbits;
1912         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1913
1914         BUG_ON(!PageLocked(page));
1915         BUG_ON(from > PAGE_CACHE_SIZE);
1916         BUG_ON(to > PAGE_CACHE_SIZE);
1917         BUG_ON(from > to);
1918
1919         blocksize = 1 << inode->i_blkbits;
1920         if (!page_has_buffers(page))
1921                 create_empty_buffers(page, blocksize, 0);
1922         head = page_buffers(page);
1923
1924         bbits = inode->i_blkbits;
1925         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1926
1927         for(bh = head, block_start = 0; bh != head || !block_start;
1928             block++, block_start=block_end, bh = bh->b_this_page) {
1929                 block_end = block_start + blocksize;
1930                 if (block_end <= from || block_start >= to) {
1931                         if (PageUptodate(page)) {
1932                                 if (!buffer_uptodate(bh))
1933                                         set_buffer_uptodate(bh);
1934                         }
1935                         continue;
1936                 }
1937                 if (buffer_new(bh))
1938                         clear_buffer_new(bh);
1939                 if (!buffer_mapped(bh)) {
1940                         WARN_ON(bh->b_size != blocksize);
1941                         err = get_block(inode, block, bh, 1);
1942                         if (err)
1943                                 break;
1944                         if (buffer_new(bh)) {
1945                                 unmap_underlying_metadata(bh->b_bdev,
1946                                                         bh->b_blocknr);
1947                                 if (PageUptodate(page)) {
1948                                         set_buffer_uptodate(bh);
1949                                         continue;
1950                                 }
1951                                 if (block_end > to || block_start < from) {
1952                                         void *kaddr;
1953
1954                                         kaddr = kmap_atomic(page, KM_USER0);
1955                                         if (block_end > to)
1956                                                 memset(kaddr+to, 0,
1957                                                         block_end-to);
1958                                         if (block_start < from)
1959                                                 memset(kaddr+block_start,
1960                                                         0, from-block_start);
1961                                         flush_dcache_page(page);
1962                                         kunmap_atomic(kaddr, KM_USER0);
1963                                 }
1964                                 continue;
1965                         }
1966                 }
1967                 if (PageUptodate(page)) {
1968                         if (!buffer_uptodate(bh))
1969                                 set_buffer_uptodate(bh);
1970                         continue; 
1971                 }
1972                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1973                      (block_start < from || block_end > to)) {
1974                         ll_rw_block(READ, 1, &bh);
1975                         *wait_bh++=bh;
1976                 }
1977         }
1978         /*
1979          * If we issued read requests - let them complete.
1980          */
1981         while(wait_bh > wait) {
1982                 wait_on_buffer(*--wait_bh);
1983                 if (!buffer_uptodate(*wait_bh))
1984                         err = -EIO;
1985         }
1986         if (!err) {
1987                 bh = head;
1988                 do {
1989                         if (buffer_new(bh))
1990                                 clear_buffer_new(bh);
1991                 } while ((bh = bh->b_this_page) != head);
1992                 return 0;
1993         }
1994         /* Error case: */
1995         /*
1996          * Zero out any newly allocated blocks to avoid exposing stale
1997          * data.  If BH_New is set, we know that the block was newly
1998          * allocated in the above loop.
1999          */
2000         bh = head;
2001         block_start = 0;
2002         do {
2003                 block_end = block_start+blocksize;
2004                 if (block_end <= from)
2005                         goto next_bh;
2006                 if (block_start >= to)
2007                         break;
2008                 if (buffer_new(bh)) {
2009                         void *kaddr;
2010
2011                         clear_buffer_new(bh);
2012                         kaddr = kmap_atomic(page, KM_USER0);
2013                         memset(kaddr+block_start, 0, bh->b_size);
2014                         kunmap_atomic(kaddr, KM_USER0);
2015                         set_buffer_uptodate(bh);
2016                         mark_buffer_dirty(bh);
2017                 }
2018 next_bh:
2019                 block_start = block_end;
2020                 bh = bh->b_this_page;
2021         } while (bh != head);
2022         return err;
2023 }
2024
2025 static int __block_commit_write(struct inode *inode, struct page *page,
2026                 unsigned from, unsigned to)
2027 {
2028         unsigned block_start, block_end;
2029         int partial = 0;
2030         unsigned blocksize;
2031         struct buffer_head *bh, *head;
2032
2033         blocksize = 1 << inode->i_blkbits;
2034
2035         for(bh = head = page_buffers(page), block_start = 0;
2036             bh != head || !block_start;
2037             block_start=block_end, bh = bh->b_this_page) {
2038                 block_end = block_start + blocksize;
2039                 if (block_end <= from || block_start >= to) {
2040                         if (!buffer_uptodate(bh))
2041                                 partial = 1;
2042                 } else {
2043                         set_buffer_uptodate(bh);
2044                         mark_buffer_dirty(bh);
2045                 }
2046         }
2047
2048         /*
2049          * If this is a partial write which happened to make all buffers
2050          * uptodate then we can optimize away a bogus readpage() for
2051          * the next read(). Here we 'discover' whether the page went
2052          * uptodate as a result of this (potentially partial) write.
2053          */
2054         if (!partial)
2055                 SetPageUptodate(page);
2056         return 0;
2057 }
2058
2059 /*
2060  * Generic "read page" function for block devices that have the normal
2061  * get_block functionality. This is most of the block device filesystems.
2062  * Reads the page asynchronously --- the unlock_buffer() and
2063  * set/clear_buffer_uptodate() functions propagate buffer state into the
2064  * page struct once IO has completed.
2065  */
2066 int block_read_full_page(struct page *page, get_block_t *get_block)
2067 {
2068         struct inode *inode = page->mapping->host;
2069         sector_t iblock, lblock;
2070         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2071         unsigned int blocksize;
2072         int nr, i;
2073         int fully_mapped = 1;
2074
2075         BUG_ON(!PageLocked(page));
2076         blocksize = 1 << inode->i_blkbits;
2077         if (!page_has_buffers(page))
2078                 create_empty_buffers(page, blocksize, 0);
2079         head = page_buffers(page);
2080
2081         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2083         bh = head;
2084         nr = 0;
2085         i = 0;
2086
2087         do {
2088                 if (buffer_uptodate(bh))
2089                         continue;
2090
2091                 if (!buffer_mapped(bh)) {
2092                         int err = 0;
2093
2094                         fully_mapped = 0;
2095                         if (iblock < lblock) {
2096                                 WARN_ON(bh->b_size != blocksize);
2097                                 err = get_block(inode, iblock, bh, 0);
2098                                 if (err)
2099                                         SetPageError(page);
2100                         }
2101                         if (!buffer_mapped(bh)) {
2102                                 void *kaddr = kmap_atomic(page, KM_USER0);
2103                                 memset(kaddr + i * blocksize, 0, blocksize);
2104                                 flush_dcache_page(page);
2105                                 kunmap_atomic(kaddr, KM_USER0);
2106                                 if (!err)
2107                                         set_buffer_uptodate(bh);
2108                                 continue;
2109                         }
2110                         /*
2111                          * get_block() might have updated the buffer
2112                          * synchronously
2113                          */
2114                         if (buffer_uptodate(bh))
2115                                 continue;
2116                 }
2117                 arr[nr++] = bh;
2118         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2119
2120         if (fully_mapped)
2121                 SetPageMappedToDisk(page);
2122
2123         if (!nr) {
2124                 /*
2125                  * All buffers are uptodate - we can set the page uptodate
2126                  * as well. But not if get_block() returned an error.
2127                  */
2128                 if (!PageError(page))
2129                         SetPageUptodate(page);
2130                 unlock_page(page);
2131                 return 0;
2132         }
2133
2134         /* Stage two: lock the buffers */
2135         for (i = 0; i < nr; i++) {
2136                 bh = arr[i];
2137                 lock_buffer(bh);
2138                 mark_buffer_async_read(bh);
2139         }
2140
2141         /*
2142          * Stage 3: start the IO.  Check for uptodateness
2143          * inside the buffer lock in case another process reading
2144          * the underlying blockdev brought it uptodate (the sct fix).
2145          */
2146         for (i = 0; i < nr; i++) {
2147                 bh = arr[i];
2148                 if (buffer_uptodate(bh))
2149                         end_buffer_async_read(bh, 1);
2150                 else
2151                         submit_bh(READ, bh);
2152         }
2153         return 0;
2154 }
2155
2156 /* utility function for filesystems that need to do work on expanding
2157  * truncates.  Uses prepare/commit_write to allow the filesystem to
2158  * deal with the hole.  
2159  */
2160 static int __generic_cont_expand(struct inode *inode, loff_t size,
2161                                  pgoff_t index, unsigned int offset)
2162 {
2163         struct address_space *mapping = inode->i_mapping;
2164         struct page *page;
2165         unsigned long limit;
2166         int err;
2167
2168         err = -EFBIG;
2169         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2170         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2171                 send_sig(SIGXFSZ, current, 0);
2172                 goto out;
2173         }
2174         if (size > inode->i_sb->s_maxbytes)
2175                 goto out;
2176
2177         err = -ENOMEM;
2178         page = grab_cache_page(mapping, index);
2179         if (!page)
2180                 goto out;
2181         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2182         if (err) {
2183                 /*
2184                  * ->prepare_write() may have instantiated a few blocks
2185                  * outside i_size.  Trim these off again.
2186                  */
2187                 unlock_page(page);
2188                 page_cache_release(page);
2189                 vmtruncate(inode, inode->i_size);
2190                 goto out;
2191         }
2192
2193         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2194
2195         unlock_page(page);
2196         page_cache_release(page);
2197         if (err > 0)
2198                 err = 0;
2199 out:
2200         return err;
2201 }
2202
2203 int generic_cont_expand(struct inode *inode, loff_t size)
2204 {
2205         pgoff_t index;
2206         unsigned int offset;
2207
2208         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2209
2210         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2211         ** skip the prepare.  make sure we never send an offset for the start
2212         ** of a block
2213         */
2214         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2215                 /* caller must handle this extra byte. */
2216                 offset++;
2217         }
2218         index = size >> PAGE_CACHE_SHIFT;
2219
2220         return __generic_cont_expand(inode, size, index, offset);
2221 }
2222
2223 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2224 {
2225         loff_t pos = size - 1;
2226         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2227         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2228
2229         /* prepare/commit_write can handle even if from==to==start of block. */
2230         return __generic_cont_expand(inode, size, index, offset);
2231 }
2232
2233 /*
2234  * For moronic filesystems that do not allow holes in file.
2235  * We may have to extend the file.
2236  */
2237
2238 int cont_prepare_write(struct page *page, unsigned offset,
2239                 unsigned to, get_block_t *get_block, loff_t *bytes)
2240 {
2241         struct address_space *mapping = page->mapping;
2242         struct inode *inode = mapping->host;
2243         struct page *new_page;
2244         pgoff_t pgpos;
2245         long status;
2246         unsigned zerofrom;
2247         unsigned blocksize = 1 << inode->i_blkbits;
2248         void *kaddr;
2249
2250         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2251                 status = -ENOMEM;
2252                 new_page = grab_cache_page(mapping, pgpos);
2253                 if (!new_page)
2254                         goto out;
2255                 /* we might sleep */
2256                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2257                         unlock_page(new_page);
2258                         page_cache_release(new_page);
2259                         continue;
2260                 }
2261                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2262                 if (zerofrom & (blocksize-1)) {
2263                         *bytes |= (blocksize-1);
2264                         (*bytes)++;
2265                 }
2266                 status = __block_prepare_write(inode, new_page, zerofrom,
2267                                                 PAGE_CACHE_SIZE, get_block);
2268                 if (status)
2269                         goto out_unmap;
2270                 kaddr = kmap_atomic(new_page, KM_USER0);
2271                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2272                 flush_dcache_page(new_page);
2273                 kunmap_atomic(kaddr, KM_USER0);
2274                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2275                 unlock_page(new_page);
2276                 page_cache_release(new_page);
2277         }
2278
2279         if (page->index < pgpos) {
2280                 /* completely inside the area */
2281                 zerofrom = offset;
2282         } else {
2283                 /* page covers the boundary, find the boundary offset */
2284                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2285
2286                 /* if we will expand the thing last block will be filled */
2287                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2288                         *bytes |= (blocksize-1);
2289                         (*bytes)++;
2290                 }
2291
2292                 /* starting below the boundary? Nothing to zero out */
2293                 if (offset <= zerofrom)
2294                         zerofrom = offset;
2295         }
2296         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2297         if (status)
2298                 goto out1;
2299         if (zerofrom < offset) {
2300                 kaddr = kmap_atomic(page, KM_USER0);
2301                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2302                 flush_dcache_page(page);
2303                 kunmap_atomic(kaddr, KM_USER0);
2304                 __block_commit_write(inode, page, zerofrom, offset);
2305         }
2306         return 0;
2307 out1:
2308         ClearPageUptodate(page);
2309         return status;
2310
2311 out_unmap:
2312         ClearPageUptodate(new_page);
2313         unlock_page(new_page);
2314         page_cache_release(new_page);
2315 out:
2316         return status;
2317 }
2318
2319 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2320                         get_block_t *get_block)
2321 {
2322         struct inode *inode = page->mapping->host;
2323         int err = __block_prepare_write(inode, page, from, to, get_block);
2324         if (err)
2325                 ClearPageUptodate(page);
2326         return err;
2327 }
2328
2329 int block_commit_write(struct page *page, unsigned from, unsigned to)
2330 {
2331         struct inode *inode = page->mapping->host;
2332         __block_commit_write(inode,page,from,to);
2333         return 0;
2334 }
2335
2336 int generic_commit_write(struct file *file, struct page *page,
2337                 unsigned from, unsigned to)
2338 {
2339         struct inode *inode = page->mapping->host;
2340         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2341         __block_commit_write(inode,page,from,to);
2342         /*
2343          * No need to use i_size_read() here, the i_size
2344          * cannot change under us because we hold i_mutex.
2345          */
2346         if (pos > inode->i_size) {
2347                 i_size_write(inode, pos);
2348                 mark_inode_dirty(inode);
2349         }
2350         return 0;
2351 }
2352
2353
2354 /*
2355  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2356  * immediately, while under the page lock.  So it needs a special end_io
2357  * handler which does not touch the bh after unlocking it.
2358  *
2359  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2360  * a race there is benign: unlock_buffer() only use the bh's address for
2361  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2362  * itself.
2363  */
2364 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2365 {
2366         if (uptodate) {
2367                 set_buffer_uptodate(bh);
2368         } else {
2369                 /* This happens, due to failed READA attempts. */
2370                 clear_buffer_uptodate(bh);
2371         }
2372         unlock_buffer(bh);
2373 }
2374
2375 /*
2376  * On entry, the page is fully not uptodate.
2377  * On exit the page is fully uptodate in the areas outside (from,to)
2378  */
2379 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2380                         get_block_t *get_block)
2381 {
2382         struct inode *inode = page->mapping->host;
2383         const unsigned blkbits = inode->i_blkbits;
2384         const unsigned blocksize = 1 << blkbits;
2385         struct buffer_head map_bh;
2386         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2387         unsigned block_in_page;
2388         unsigned block_start;
2389         sector_t block_in_file;
2390         char *kaddr;
2391         int nr_reads = 0;
2392         int i;
2393         int ret = 0;
2394         int is_mapped_to_disk = 1;
2395         int dirtied_it = 0;
2396
2397         if (PageMappedToDisk(page))
2398                 return 0;
2399
2400         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2401         map_bh.b_page = page;
2402
2403         /*
2404          * We loop across all blocks in the page, whether or not they are
2405          * part of the affected region.  This is so we can discover if the
2406          * page is fully mapped-to-disk.
2407          */
2408         for (block_start = 0, block_in_page = 0;
2409                   block_start < PAGE_CACHE_SIZE;
2410                   block_in_page++, block_start += blocksize) {
2411                 unsigned block_end = block_start + blocksize;
2412                 int create;
2413
2414                 map_bh.b_state = 0;
2415                 create = 1;
2416                 if (block_start >= to)
2417                         create = 0;
2418                 map_bh.b_size = blocksize;
2419                 ret = get_block(inode, block_in_file + block_in_page,
2420                                         &map_bh, create);
2421                 if (ret)
2422                         goto failed;
2423                 if (!buffer_mapped(&map_bh))
2424                         is_mapped_to_disk = 0;
2425                 if (buffer_new(&map_bh))
2426                         unmap_underlying_metadata(map_bh.b_bdev,
2427                                                         map_bh.b_blocknr);
2428                 if (PageUptodate(page))
2429                         continue;
2430                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2431                         kaddr = kmap_atomic(page, KM_USER0);
2432                         if (block_start < from) {
2433                                 memset(kaddr+block_start, 0, from-block_start);
2434                                 dirtied_it = 1;
2435                         }
2436                         if (block_end > to) {
2437                                 memset(kaddr + to, 0, block_end - to);
2438                                 dirtied_it = 1;
2439                         }
2440                         flush_dcache_page(page);
2441                         kunmap_atomic(kaddr, KM_USER0);
2442                         continue;
2443                 }
2444                 if (buffer_uptodate(&map_bh))
2445                         continue;       /* reiserfs does this */
2446                 if (block_start < from || block_end > to) {
2447                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2448
2449                         if (!bh) {
2450                                 ret = -ENOMEM;
2451                                 goto failed;
2452                         }
2453                         bh->b_state = map_bh.b_state;
2454                         atomic_set(&bh->b_count, 0);
2455                         bh->b_this_page = NULL;
2456                         bh->b_page = page;
2457                         bh->b_blocknr = map_bh.b_blocknr;
2458                         bh->b_size = blocksize;
2459                         bh->b_data = (char *)(long)block_start;
2460                         bh->b_bdev = map_bh.b_bdev;
2461                         bh->b_private = NULL;
2462                         read_bh[nr_reads++] = bh;
2463                 }
2464         }
2465
2466         if (nr_reads) {
2467                 struct buffer_head *bh;
2468
2469                 /*
2470                  * The page is locked, so these buffers are protected from
2471                  * any VM or truncate activity.  Hence we don't need to care
2472                  * for the buffer_head refcounts.
2473                  */
2474                 for (i = 0; i < nr_reads; i++) {
2475                         bh = read_bh[i];
2476                         lock_buffer(bh);
2477                         bh->b_end_io = end_buffer_read_nobh;
2478                         submit_bh(READ, bh);
2479                 }
2480                 for (i = 0; i < nr_reads; i++) {
2481                         bh = read_bh[i];
2482                         wait_on_buffer(bh);
2483                         if (!buffer_uptodate(bh))
2484                                 ret = -EIO;
2485                         free_buffer_head(bh);
2486                         read_bh[i] = NULL;
2487                 }
2488                 if (ret)
2489                         goto failed;
2490         }
2491
2492         if (is_mapped_to_disk)
2493                 SetPageMappedToDisk(page);
2494         SetPageUptodate(page);
2495
2496         /*
2497          * Setting the page dirty here isn't necessary for the prepare_write
2498          * function - commit_write will do that.  But if/when this function is
2499          * used within the pagefault handler to ensure that all mmapped pages
2500          * have backing space in the filesystem, we will need to dirty the page
2501          * if its contents were altered.
2502          */
2503         if (dirtied_it)
2504                 set_page_dirty(page);
2505
2506         return 0;
2507
2508 failed:
2509         for (i = 0; i < nr_reads; i++) {
2510                 if (read_bh[i])
2511                         free_buffer_head(read_bh[i]);
2512         }
2513
2514         /*
2515          * Error recovery is pretty slack.  Clear the page and mark it dirty
2516          * so we'll later zero out any blocks which _were_ allocated.
2517          */
2518         kaddr = kmap_atomic(page, KM_USER0);
2519         memset(kaddr, 0, PAGE_CACHE_SIZE);
2520         kunmap_atomic(kaddr, KM_USER0);
2521         SetPageUptodate(page);
2522         set_page_dirty(page);
2523         return ret;
2524 }
2525 EXPORT_SYMBOL(nobh_prepare_write);
2526
2527 int nobh_commit_write(struct file *file, struct page *page,
2528                 unsigned from, unsigned to)
2529 {
2530         struct inode *inode = page->mapping->host;
2531         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2532
2533         set_page_dirty(page);
2534         if (pos > inode->i_size) {
2535                 i_size_write(inode, pos);
2536                 mark_inode_dirty(inode);
2537         }
2538         return 0;
2539 }
2540 EXPORT_SYMBOL(nobh_commit_write);
2541
2542 /*
2543  * nobh_writepage() - based on block_full_write_page() except
2544  * that it tries to operate without attaching bufferheads to
2545  * the page.
2546  */
2547 int nobh_writepage(struct page *page, get_block_t *get_block,
2548                         struct writeback_control *wbc)
2549 {
2550         struct inode * const inode = page->mapping->host;
2551         loff_t i_size = i_size_read(inode);
2552         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2553         unsigned offset;
2554         void *kaddr;
2555         int ret;
2556
2557         /* Is the page fully inside i_size? */
2558         if (page->index < end_index)
2559                 goto out;
2560
2561         /* Is the page fully outside i_size? (truncate in progress) */
2562         offset = i_size & (PAGE_CACHE_SIZE-1);
2563         if (page->index >= end_index+1 || !offset) {
2564                 /*
2565                  * The page may have dirty, unmapped buffers.  For example,
2566                  * they may have been added in ext3_writepage().  Make them
2567                  * freeable here, so the page does not leak.
2568                  */
2569 #if 0
2570                 /* Not really sure about this  - do we need this ? */
2571                 if (page->mapping->a_ops->invalidatepage)
2572                         page->mapping->a_ops->invalidatepage(page, offset);
2573 #endif
2574                 unlock_page(page);
2575                 return 0; /* don't care */
2576         }
2577
2578         /*
2579          * The page straddles i_size.  It must be zeroed out on each and every
2580          * writepage invocation because it may be mmapped.  "A file is mapped
2581          * in multiples of the page size.  For a file that is not a multiple of
2582          * the  page size, the remaining memory is zeroed when mapped, and
2583          * writes to that region are not written out to the file."
2584          */
2585         kaddr = kmap_atomic(page, KM_USER0);
2586         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2587         flush_dcache_page(page);
2588         kunmap_atomic(kaddr, KM_USER0);
2589 out:
2590         ret = mpage_writepage(page, get_block, wbc);
2591         if (ret == -EAGAIN)
2592                 ret = __block_write_full_page(inode, page, get_block, wbc);
2593         return ret;
2594 }
2595 EXPORT_SYMBOL(nobh_writepage);
2596
2597 /*
2598  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2599  */
2600 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2601 {
2602         struct inode *inode = mapping->host;
2603         unsigned blocksize = 1 << inode->i_blkbits;
2604         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2605         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2606         unsigned to;
2607         struct page *page;
2608         struct address_space_operations *a_ops = mapping->a_ops;
2609         char *kaddr;
2610         int ret = 0;
2611
2612         if ((offset & (blocksize - 1)) == 0)
2613                 goto out;
2614
2615         ret = -ENOMEM;
2616         page = grab_cache_page(mapping, index);
2617         if (!page)
2618                 goto out;
2619
2620         to = (offset + blocksize) & ~(blocksize - 1);
2621         ret = a_ops->prepare_write(NULL, page, offset, to);
2622         if (ret == 0) {
2623                 kaddr = kmap_atomic(page, KM_USER0);
2624                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2625                 flush_dcache_page(page);
2626                 kunmap_atomic(kaddr, KM_USER0);
2627                 set_page_dirty(page);
2628         }
2629         unlock_page(page);
2630         page_cache_release(page);
2631 out:
2632         return ret;
2633 }
2634 EXPORT_SYMBOL(nobh_truncate_page);
2635
2636 int block_truncate_page(struct address_space *mapping,
2637                         loff_t from, get_block_t *get_block)
2638 {
2639         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2640         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2641         unsigned blocksize;
2642         sector_t iblock;
2643         unsigned length, pos;
2644         struct inode *inode = mapping->host;
2645         struct page *page;
2646         struct buffer_head *bh;
2647         void *kaddr;
2648         int err;
2649
2650         blocksize = 1 << inode->i_blkbits;
2651         length = offset & (blocksize - 1);
2652
2653         /* Block boundary? Nothing to do */
2654         if (!length)
2655                 return 0;
2656
2657         length = blocksize - length;
2658         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2659         
2660         page = grab_cache_page(mapping, index);
2661         err = -ENOMEM;
2662         if (!page)
2663                 goto out;
2664
2665         if (!page_has_buffers(page))
2666                 create_empty_buffers(page, blocksize, 0);
2667
2668         /* Find the buffer that contains "offset" */
2669         bh = page_buffers(page);
2670         pos = blocksize;
2671         while (offset >= pos) {
2672                 bh = bh->b_this_page;
2673                 iblock++;
2674                 pos += blocksize;
2675         }
2676
2677         err = 0;
2678         if (!buffer_mapped(bh)) {
2679                 WARN_ON(bh->b_size != blocksize);
2680                 err = get_block(inode, iblock, bh, 0);
2681                 if (err)
2682                         goto unlock;
2683                 /* unmapped? It's a hole - nothing to do */
2684                 if (!buffer_mapped(bh))
2685                         goto unlock;
2686         }
2687
2688         /* Ok, it's mapped. Make sure it's up-to-date */
2689         if (PageUptodate(page))
2690                 set_buffer_uptodate(bh);
2691
2692         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2693                 err = -EIO;
2694                 ll_rw_block(READ, 1, &bh);
2695                 wait_on_buffer(bh);
2696                 /* Uhhuh. Read error. Complain and punt. */
2697                 if (!buffer_uptodate(bh))
2698                         goto unlock;
2699         }
2700
2701         kaddr = kmap_atomic(page, KM_USER0);
2702         memset(kaddr + offset, 0, length);
2703         flush_dcache_page(page);
2704         kunmap_atomic(kaddr, KM_USER0);
2705
2706         mark_buffer_dirty(bh);
2707         err = 0;
2708
2709 unlock:
2710         unlock_page(page);
2711         page_cache_release(page);
2712 out:
2713         return err;
2714 }
2715
2716 /*
2717  * The generic ->writepage function for buffer-backed address_spaces
2718  */
2719 int block_write_full_page(struct page *page, get_block_t *get_block,
2720                         struct writeback_control *wbc)
2721 {
2722         struct inode * const inode = page->mapping->host;
2723         loff_t i_size = i_size_read(inode);
2724         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2725         unsigned offset;
2726         void *kaddr;
2727
2728         /* Is the page fully inside i_size? */
2729         if (page->index < end_index)
2730                 return __block_write_full_page(inode, page, get_block, wbc);
2731
2732         /* Is the page fully outside i_size? (truncate in progress) */
2733         offset = i_size & (PAGE_CACHE_SIZE-1);
2734         if (page->index >= end_index+1 || !offset) {
2735                 /*
2736                  * The page may have dirty, unmapped buffers.  For example,
2737                  * they may have been added in ext3_writepage().  Make them
2738                  * freeable here, so the page does not leak.
2739                  */
2740                 do_invalidatepage(page, 0);
2741                 unlock_page(page);
2742                 return 0; /* don't care */
2743         }
2744
2745         /*
2746          * The page straddles i_size.  It must be zeroed out on each and every
2747          * writepage invokation because it may be mmapped.  "A file is mapped
2748          * in multiples of the page size.  For a file that is not a multiple of
2749          * the  page size, the remaining memory is zeroed when mapped, and
2750          * writes to that region are not written out to the file."
2751          */
2752         kaddr = kmap_atomic(page, KM_USER0);
2753         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2754         flush_dcache_page(page);
2755         kunmap_atomic(kaddr, KM_USER0);
2756         return __block_write_full_page(inode, page, get_block, wbc);
2757 }
2758
2759 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2760                             get_block_t *get_block)
2761 {
2762         struct buffer_head tmp;
2763         struct inode *inode = mapping->host;
2764         tmp.b_state = 0;
2765         tmp.b_blocknr = 0;
2766         tmp.b_size = 1 << inode->i_blkbits;
2767         get_block(inode, block, &tmp, 0);
2768         return tmp.b_blocknr;
2769 }
2770
2771 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2772 {
2773         struct buffer_head *bh = bio->bi_private;
2774
2775         if (bio->bi_size)
2776                 return 1;
2777
2778         if (err == -EOPNOTSUPP) {
2779                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2780                 set_bit(BH_Eopnotsupp, &bh->b_state);
2781         }
2782
2783         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2784         bio_put(bio);
2785         return 0;
2786 }
2787
2788 int submit_bh(int rw, struct buffer_head * bh)
2789 {
2790         struct bio *bio;
2791         int ret = 0;
2792
2793         BUG_ON(!buffer_locked(bh));
2794         BUG_ON(!buffer_mapped(bh));
2795         BUG_ON(!bh->b_end_io);
2796
2797         if (buffer_ordered(bh) && (rw == WRITE))
2798                 rw = WRITE_BARRIER;
2799
2800         /*
2801          * Only clear out a write error when rewriting, should this
2802          * include WRITE_SYNC as well?
2803          */
2804         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2805                 clear_buffer_write_io_error(bh);
2806
2807         /*
2808          * from here on down, it's all bio -- do the initial mapping,
2809          * submit_bio -> generic_make_request may further map this bio around
2810          */
2811         bio = bio_alloc(GFP_NOIO, 1);
2812
2813         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2814         bio->bi_bdev = bh->b_bdev;
2815         bio->bi_io_vec[0].bv_page = bh->b_page;
2816         bio->bi_io_vec[0].bv_len = bh->b_size;
2817         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2818
2819         bio->bi_vcnt = 1;
2820         bio->bi_idx = 0;
2821         bio->bi_size = bh->b_size;
2822
2823         bio->bi_end_io = end_bio_bh_io_sync;
2824         bio->bi_private = bh;
2825
2826         bio_get(bio);
2827         submit_bio(rw, bio);
2828
2829         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2830                 ret = -EOPNOTSUPP;
2831
2832         bio_put(bio);
2833         return ret;
2834 }
2835
2836 /**
2837  * ll_rw_block: low-level access to block devices (DEPRECATED)
2838  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2839  * @nr: number of &struct buffer_heads in the array
2840  * @bhs: array of pointers to &struct buffer_head
2841  *
2842  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2843  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2844  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2845  * are sent to disk. The fourth %READA option is described in the documentation
2846  * for generic_make_request() which ll_rw_block() calls.
2847  *
2848  * This function drops any buffer that it cannot get a lock on (with the
2849  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2850  * clean when doing a write request, and any buffer that appears to be
2851  * up-to-date when doing read request.  Further it marks as clean buffers that
2852  * are processed for writing (the buffer cache won't assume that they are
2853  * actually clean until the buffer gets unlocked).
2854  *
2855  * ll_rw_block sets b_end_io to simple completion handler that marks
2856  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2857  * any waiters. 
2858  *
2859  * All of the buffers must be for the same device, and must also be a
2860  * multiple of the current approved size for the device.
2861  */
2862 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2863 {
2864         int i;
2865
2866         for (i = 0; i < nr; i++) {
2867                 struct buffer_head *bh = bhs[i];
2868
2869                 if (rw == SWRITE)
2870                         lock_buffer(bh);
2871                 else if (test_set_buffer_locked(bh))
2872                         continue;
2873
2874                 if (rw == WRITE || rw == SWRITE) {
2875                         if (test_clear_buffer_dirty(bh)) {
2876                                 bh->b_end_io = end_buffer_write_sync;
2877                                 get_bh(bh);
2878                                 submit_bh(WRITE, bh);
2879                                 continue;
2880                         }
2881                 } else {
2882                         if (!buffer_uptodate(bh)) {
2883                                 bh->b_end_io = end_buffer_read_sync;
2884                                 get_bh(bh);
2885                                 submit_bh(rw, bh);
2886                                 continue;
2887                         }
2888                 }
2889                 unlock_buffer(bh);
2890         }
2891 }
2892
2893 /*
2894  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2895  * and then start new I/O and then wait upon it.  The caller must have a ref on
2896  * the buffer_head.
2897  */
2898 int sync_dirty_buffer(struct buffer_head *bh)
2899 {
2900         int ret = 0;
2901
2902         WARN_ON(atomic_read(&bh->b_count) < 1);
2903         lock_buffer(bh);
2904         if (test_clear_buffer_dirty(bh)) {
2905                 get_bh(bh);
2906                 bh->b_end_io = end_buffer_write_sync;
2907                 ret = submit_bh(WRITE, bh);
2908                 wait_on_buffer(bh);
2909                 if (buffer_eopnotsupp(bh)) {
2910                         clear_buffer_eopnotsupp(bh);
2911                         ret = -EOPNOTSUPP;
2912                 }
2913                 if (!ret && !buffer_uptodate(bh))
2914                         ret = -EIO;
2915         } else {
2916                 unlock_buffer(bh);
2917         }
2918         return ret;
2919 }
2920
2921 /*
2922  * try_to_free_buffers() checks if all the buffers on this particular page
2923  * are unused, and releases them if so.
2924  *
2925  * Exclusion against try_to_free_buffers may be obtained by either
2926  * locking the page or by holding its mapping's private_lock.
2927  *
2928  * If the page is dirty but all the buffers are clean then we need to
2929  * be sure to mark the page clean as well.  This is because the page
2930  * may be against a block device, and a later reattachment of buffers
2931  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2932  * filesystem data on the same device.
2933  *
2934  * The same applies to regular filesystem pages: if all the buffers are
2935  * clean then we set the page clean and proceed.  To do that, we require
2936  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2937  * private_lock.
2938  *
2939  * try_to_free_buffers() is non-blocking.
2940  */
2941 static inline int buffer_busy(struct buffer_head *bh)
2942 {
2943         return atomic_read(&bh->b_count) |
2944                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2945 }
2946
2947 static int
2948 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2949 {
2950         struct buffer_head *head = page_buffers(page);
2951         struct buffer_head *bh;
2952
2953         bh = head;
2954         do {
2955                 if (buffer_write_io_error(bh) && page->mapping)
2956                         set_bit(AS_EIO, &page->mapping->flags);
2957                 if (buffer_busy(bh))
2958                         goto failed;
2959                 bh = bh->b_this_page;
2960         } while (bh != head);
2961
2962         do {
2963                 struct buffer_head *next = bh->b_this_page;
2964
2965                 if (!list_empty(&bh->b_assoc_buffers))
2966                         __remove_assoc_queue(bh);
2967                 bh = next;
2968         } while (bh != head);
2969         *buffers_to_free = head;
2970         __clear_page_buffers(page);
2971         return 1;
2972 failed:
2973         return 0;
2974 }
2975
2976 int try_to_free_buffers(struct page *page)
2977 {
2978         struct address_space * const mapping = page->mapping;
2979         struct buffer_head *buffers_to_free = NULL;
2980         int ret = 0;
2981
2982         BUG_ON(!PageLocked(page));
2983         if (PageWriteback(page))
2984                 return 0;
2985
2986         if (mapping == NULL) {          /* can this still happen? */
2987                 ret = drop_buffers(page, &buffers_to_free);
2988                 goto out;
2989         }
2990
2991         spin_lock(&mapping->private_lock);
2992         ret = drop_buffers(page, &buffers_to_free);
2993         if (ret) {
2994                 /*
2995                  * If the filesystem writes its buffers by hand (eg ext3)
2996                  * then we can have clean buffers against a dirty page.  We
2997                  * clean the page here; otherwise later reattachment of buffers
2998                  * could encounter a non-uptodate page, which is unresolvable.
2999                  * This only applies in the rare case where try_to_free_buffers
3000                  * succeeds but the page is not freed.
3001                  */
3002                 clear_page_dirty(page);
3003         }
3004         spin_unlock(&mapping->private_lock);
3005 out:
3006         if (buffers_to_free) {
3007                 struct buffer_head *bh = buffers_to_free;
3008
3009                 do {
3010                         struct buffer_head *next = bh->b_this_page;
3011                         free_buffer_head(bh);
3012                         bh = next;
3013                 } while (bh != buffers_to_free);
3014         }
3015         return ret;
3016 }
3017 EXPORT_SYMBOL(try_to_free_buffers);
3018
3019 void block_sync_page(struct page *page)
3020 {
3021         struct address_space *mapping;
3022
3023         smp_mb();
3024         mapping = page_mapping(page);
3025         if (mapping)
3026                 blk_run_backing_dev(mapping->backing_dev_info, page);
3027 }
3028
3029 /*
3030  * There are no bdflush tunables left.  But distributions are
3031  * still running obsolete flush daemons, so we terminate them here.
3032  *
3033  * Use of bdflush() is deprecated and will be removed in a future kernel.
3034  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3035  */
3036 asmlinkage long sys_bdflush(int func, long data)
3037 {
3038         static int msg_count;
3039
3040         if (!capable(CAP_SYS_ADMIN))
3041                 return -EPERM;
3042
3043         if (msg_count < 5) {
3044                 msg_count++;
3045                 printk(KERN_INFO
3046                         "warning: process `%s' used the obsolete bdflush"
3047                         " system call\n", current->comm);
3048                 printk(KERN_INFO "Fix your initscripts?\n");
3049         }
3050
3051         if (func == 1)
3052                 do_exit(0);
3053         return 0;
3054 }
3055
3056 /*
3057  * Buffer-head allocation
3058  */
3059 static kmem_cache_t *bh_cachep;
3060
3061 /*
3062  * Once the number of bh's in the machine exceeds this level, we start
3063  * stripping them in writeback.
3064  */
3065 static int max_buffer_heads;
3066
3067 int buffer_heads_over_limit;
3068
3069 struct bh_accounting {
3070         int nr;                 /* Number of live bh's */
3071         int ratelimit;          /* Limit cacheline bouncing */
3072 };
3073
3074 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3075
3076 static void recalc_bh_state(void)
3077 {
3078         int i;
3079         int tot = 0;
3080
3081         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3082                 return;
3083         __get_cpu_var(bh_accounting).ratelimit = 0;
3084         for_each_online_cpu(i)
3085                 tot += per_cpu(bh_accounting, i).nr;
3086         buffer_heads_over_limit = (tot > max_buffer_heads);
3087 }
3088         
3089 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3090 {
3091         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3092         if (ret) {
3093                 get_cpu_var(bh_accounting).nr++;
3094                 recalc_bh_state();
3095                 put_cpu_var(bh_accounting);
3096         }
3097         return ret;
3098 }
3099 EXPORT_SYMBOL(alloc_buffer_head);
3100
3101 void free_buffer_head(struct buffer_head *bh)
3102 {
3103         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3104         kmem_cache_free(bh_cachep, bh);
3105         get_cpu_var(bh_accounting).nr--;
3106         recalc_bh_state();
3107         put_cpu_var(bh_accounting);
3108 }
3109 EXPORT_SYMBOL(free_buffer_head);
3110
3111 static void
3112 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3113 {
3114         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3115                             SLAB_CTOR_CONSTRUCTOR) {
3116                 struct buffer_head * bh = (struct buffer_head *)data;
3117
3118                 memset(bh, 0, sizeof(*bh));
3119                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3120         }
3121 }
3122
3123 #ifdef CONFIG_HOTPLUG_CPU
3124 static void buffer_exit_cpu(int cpu)
3125 {
3126         int i;
3127         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3128
3129         for (i = 0; i < BH_LRU_SIZE; i++) {
3130                 brelse(b->bhs[i]);
3131                 b->bhs[i] = NULL;
3132         }
3133         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3134         per_cpu(bh_accounting, cpu).nr = 0;
3135         put_cpu_var(bh_accounting);
3136 }
3137
3138 static int buffer_cpu_notify(struct notifier_block *self,
3139                               unsigned long action, void *hcpu)
3140 {
3141         if (action == CPU_DEAD)
3142                 buffer_exit_cpu((unsigned long)hcpu);
3143         return NOTIFY_OK;
3144 }
3145 #endif /* CONFIG_HOTPLUG_CPU */
3146
3147 void __init buffer_init(void)
3148 {
3149         int nrpages;
3150
3151         bh_cachep = kmem_cache_create("buffer_head",
3152                                         sizeof(struct buffer_head), 0,
3153                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3154                                         SLAB_MEM_SPREAD),
3155                                         init_buffer_head,
3156                                         NULL);
3157
3158         /*
3159          * Limit the bh occupancy to 10% of ZONE_NORMAL
3160          */
3161         nrpages = (nr_free_buffer_pages() * 10) / 100;
3162         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3163         hotcpu_notifier(buffer_cpu_notify, 0);
3164 }
3165
3166 EXPORT_SYMBOL(__bforget);
3167 EXPORT_SYMBOL(__brelse);
3168 EXPORT_SYMBOL(__wait_on_buffer);
3169 EXPORT_SYMBOL(block_commit_write);
3170 EXPORT_SYMBOL(block_prepare_write);
3171 EXPORT_SYMBOL(block_read_full_page);
3172 EXPORT_SYMBOL(block_sync_page);
3173 EXPORT_SYMBOL(block_truncate_page);
3174 EXPORT_SYMBOL(block_write_full_page);
3175 EXPORT_SYMBOL(cont_prepare_write);
3176 EXPORT_SYMBOL(end_buffer_async_write);
3177 EXPORT_SYMBOL(end_buffer_read_sync);
3178 EXPORT_SYMBOL(end_buffer_write_sync);
3179 EXPORT_SYMBOL(file_fsync);
3180 EXPORT_SYMBOL(fsync_bdev);
3181 EXPORT_SYMBOL(generic_block_bmap);
3182 EXPORT_SYMBOL(generic_commit_write);
3183 EXPORT_SYMBOL(generic_cont_expand);
3184 EXPORT_SYMBOL(generic_cont_expand_simple);
3185 EXPORT_SYMBOL(init_buffer);
3186 EXPORT_SYMBOL(invalidate_bdev);
3187 EXPORT_SYMBOL(ll_rw_block);
3188 EXPORT_SYMBOL(mark_buffer_dirty);
3189 EXPORT_SYMBOL(submit_bh);
3190 EXPORT_SYMBOL(sync_dirty_buffer);
3191 EXPORT_SYMBOL(unlock_buffer);