Merge to Fedora kernel-2.6.18-1.2224_FC5 patched with stable patch-2.6.18.1-vs2.0...
[linux-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev)
157                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158         return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 static void __fsync_super(struct super_block *sb)
163 {
164         sync_inodes_sb(sb, 0);
165         DQUOT_SYNC(sb);
166         lock_super(sb);
167         if (sb->s_dirt && sb->s_op->write_super)
168                 sb->s_op->write_super(sb);
169         unlock_super(sb);
170         if (sb->s_op->sync_fs)
171                 sb->s_op->sync_fs(sb, 1);
172         sync_blockdev(sb->s_bdev);
173         sync_inodes_sb(sb, 1);
174 }
175
176 /*
177  * Write out and wait upon all dirty data associated with this
178  * superblock.  Filesystem data as well as the underlying block
179  * device.  Takes the superblock lock.
180  */
181 int fsync_super(struct super_block *sb)
182 {
183         __fsync_super(sb);
184         return sync_blockdev(sb->s_bdev);
185 }
186
187 EXPORT_SYMBOL(fsync_super);
188
189 /*
190  * Write out and wait upon all dirty data associated with this
191  * device.   Filesystem data as well as the underlying block
192  * device.  Takes the superblock lock.
193  */
194 int fsync_bdev(struct block_device *bdev)
195 {
196         struct super_block *sb = get_super(bdev);
197         if (sb) {
198                 int res = fsync_super(sb);
199                 drop_super(sb);
200                 return res;
201         }
202         return sync_blockdev(bdev);
203 }
204
205 /**
206  * freeze_bdev  --  lock a filesystem and force it into a consistent state
207  * @bdev:       blockdevice to lock
208  *
209  * This takes the block device bd_mount_mutex to make sure no new mounts
210  * happen on bdev until thaw_bdev() is called.
211  * If a superblock is found on this device, we take the s_umount semaphore
212  * on it to make sure nobody unmounts until the snapshot creation is done.
213  */
214 struct super_block *freeze_bdev(struct block_device *bdev)
215 {
216         struct super_block *sb;
217
218         mutex_lock(&bdev->bd_mount_mutex);
219         sb = get_super(bdev);
220         if (sb && !(sb->s_flags & MS_RDONLY)) {
221                 sb->s_frozen = SB_FREEZE_WRITE;
222                 smp_wmb();
223
224                 __fsync_super(sb);
225
226                 sb->s_frozen = SB_FREEZE_TRANS;
227                 smp_wmb();
228
229                 sync_blockdev(sb->s_bdev);
230
231                 if (sb->s_op->write_super_lockfs)
232                         sb->s_op->write_super_lockfs(sb);
233         }
234
235         sync_blockdev(bdev);
236         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
237 }
238 EXPORT_SYMBOL(freeze_bdev);
239
240 /**
241  * thaw_bdev  -- unlock filesystem
242  * @bdev:       blockdevice to unlock
243  * @sb:         associated superblock
244  *
245  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
246  */
247 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
248 {
249         if (sb) {
250                 BUG_ON(sb->s_bdev != bdev);
251
252                 if (sb->s_op->unlockfs)
253                         sb->s_op->unlockfs(sb);
254                 sb->s_frozen = SB_UNFROZEN;
255                 smp_wmb();
256                 wake_up(&sb->s_wait_unfrozen);
257                 drop_super(sb);
258         }
259
260         mutex_unlock(&bdev->bd_mount_mutex);
261 }
262 EXPORT_SYMBOL(thaw_bdev);
263
264 /*
265  * sync everything.  Start out by waking pdflush, because that writes back
266  * all queues in parallel.
267  */
268 static void do_sync(unsigned long wait)
269 {
270         wakeup_pdflush(0);
271         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
272         DQUOT_SYNC(NULL);
273         sync_supers();          /* Write the superblocks */
274         sync_filesystems(0);    /* Start syncing the filesystems */
275         sync_filesystems(wait); /* Waitingly sync the filesystems */
276         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
277         if (!wait)
278                 printk("Emergency Sync complete\n");
279         if (unlikely(laptop_mode))
280                 laptop_sync_completion();
281 }
282
283 asmlinkage long sys_sync(void)
284 {
285         do_sync(1);
286         return 0;
287 }
288
289 void emergency_sync(void)
290 {
291         pdflush_operation(do_sync, 0);
292 }
293
294 /*
295  * Generic function to fsync a file.
296  *
297  * filp may be NULL if called via the msync of a vma.
298  */
299  
300 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
301 {
302         struct inode * inode = dentry->d_inode;
303         struct super_block * sb;
304         int ret, err;
305
306         /* sync the inode to buffers */
307         ret = write_inode_now(inode, 0);
308
309         /* sync the superblock to buffers */
310         sb = inode->i_sb;
311         lock_super(sb);
312         if (sb->s_op->write_super)
313                 sb->s_op->write_super(sb);
314         unlock_super(sb);
315
316         /* .. finally sync the buffers to disk */
317         err = sync_blockdev(sb->s_bdev);
318         if (!ret)
319                 ret = err;
320         return ret;
321 }
322
323 long do_fsync(struct file *file, int datasync)
324 {
325         int ret;
326         int err;
327         struct address_space *mapping = file->f_mapping;
328
329         if (!file->f_op || !file->f_op->fsync) {
330                 /* Why?  We can still call filemap_fdatawrite */
331                 ret = -EINVAL;
332                 goto out;
333         }
334
335         ret = filemap_fdatawrite(mapping);
336
337         /*
338          * We need to protect against concurrent writers, which could cause
339          * livelocks in fsync_buffers_list().
340          */
341         mutex_lock(&mapping->host->i_mutex);
342         err = file->f_op->fsync(file, file->f_dentry, datasync);
343         if (!ret)
344                 ret = err;
345         mutex_unlock(&mapping->host->i_mutex);
346         err = filemap_fdatawait(mapping);
347         if (!ret)
348                 ret = err;
349 out:
350         return ret;
351 }
352
353 static long __do_fsync(unsigned int fd, int datasync)
354 {
355         struct file *file;
356         int ret = -EBADF;
357
358         file = fget(fd);
359         if (file) {
360                 ret = do_fsync(file, datasync);
361                 fput(file);
362         }
363         return ret;
364 }
365
366 asmlinkage long sys_fsync(unsigned int fd)
367 {
368         return __do_fsync(fd, 0);
369 }
370
371 asmlinkage long sys_fdatasync(unsigned int fd)
372 {
373         return __do_fsync(fd, 1);
374 }
375
376 /*
377  * Various filesystems appear to want __find_get_block to be non-blocking.
378  * But it's the page lock which protects the buffers.  To get around this,
379  * we get exclusion from try_to_free_buffers with the blockdev mapping's
380  * private_lock.
381  *
382  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
383  * may be quite high.  This code could TryLock the page, and if that
384  * succeeds, there is no need to take private_lock. (But if
385  * private_lock is contended then so is mapping->tree_lock).
386  */
387 static struct buffer_head *
388 __find_get_block_slow(struct block_device *bdev, sector_t block)
389 {
390         struct inode *bd_inode = bdev->bd_inode;
391         struct address_space *bd_mapping = bd_inode->i_mapping;
392         struct buffer_head *ret = NULL;
393         pgoff_t index;
394         struct buffer_head *bh;
395         struct buffer_head *head;
396         struct page *page;
397         int all_mapped = 1;
398
399         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
400         page = find_get_page(bd_mapping, index);
401         if (!page)
402                 goto out;
403
404         spin_lock(&bd_mapping->private_lock);
405         if (!page_has_buffers(page))
406                 goto out_unlock;
407         head = page_buffers(page);
408         bh = head;
409         do {
410                 if (bh->b_blocknr == block) {
411                         ret = bh;
412                         get_bh(bh);
413                         goto out_unlock;
414                 }
415                 if (!buffer_mapped(bh))
416                         all_mapped = 0;
417                 bh = bh->b_this_page;
418         } while (bh != head);
419
420         /* we might be here because some of the buffers on this page are
421          * not mapped.  This is due to various races between
422          * file io on the block device and getblk.  It gets dealt with
423          * elsewhere, don't buffer_error if we had some unmapped buffers
424          */
425         if (all_mapped) {
426                 printk("__find_get_block_slow() failed. "
427                         "block=%llu, b_blocknr=%llu\n",
428                         (unsigned long long)block,
429                         (unsigned long long)bh->b_blocknr);
430                 printk("b_state=0x%08lx, b_size=%zu\n",
431                         bh->b_state, bh->b_size);
432                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
433         }
434 out_unlock:
435         spin_unlock(&bd_mapping->private_lock);
436         page_cache_release(page);
437 out:
438         return ret;
439 }
440
441 /* If invalidate_buffers() will trash dirty buffers, it means some kind
442    of fs corruption is going on. Trashing dirty data always imply losing
443    information that was supposed to be just stored on the physical layer
444    by the user.
445
446    Thus invalidate_buffers in general usage is not allwowed to trash
447    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
448    be preserved.  These buffers are simply skipped.
449   
450    We also skip buffers which are still in use.  For example this can
451    happen if a userspace program is reading the block device.
452
453    NOTE: In the case where the user removed a removable-media-disk even if
454    there's still dirty data not synced on disk (due a bug in the device driver
455    or due an error of the user), by not destroying the dirty buffers we could
456    generate corruption also on the next media inserted, thus a parameter is
457    necessary to handle this case in the most safe way possible (trying
458    to not corrupt also the new disk inserted with the data belonging to
459    the old now corrupted disk). Also for the ramdisk the natural thing
460    to do in order to release the ramdisk memory is to destroy dirty buffers.
461
462    These are two special cases. Normal usage imply the device driver
463    to issue a sync on the device (without waiting I/O completion) and
464    then an invalidate_buffers call that doesn't trash dirty buffers.
465
466    For handling cache coherency with the blkdev pagecache the 'update' case
467    is been introduced. It is needed to re-read from disk any pinned
468    buffer. NOTE: re-reading from disk is destructive so we can do it only
469    when we assume nobody is changing the buffercache under our I/O and when
470    we think the disk contains more recent information than the buffercache.
471    The update == 1 pass marks the buffers we need to update, the update == 2
472    pass does the actual I/O. */
473 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
474 {
475         struct address_space *mapping = bdev->bd_inode->i_mapping;
476
477         if (mapping->nrpages == 0)
478                 return;
479
480         invalidate_bh_lrus();
481         /*
482          * FIXME: what about destroy_dirty_buffers?
483          * We really want to use invalidate_inode_pages2() for
484          * that, but not until that's cleaned up.
485          */
486         invalidate_inode_pages(mapping);
487 }
488
489 /*
490  * Kick pdflush then try to free up some ZONE_NORMAL memory.
491  */
492 static void free_more_memory(void)
493 {
494         struct zone **zones;
495         pg_data_t *pgdat;
496
497         wakeup_pdflush(1024);
498         yield();
499
500         for_each_online_pgdat(pgdat) {
501                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
502                 if (*zones)
503                         try_to_free_pages(zones, GFP_NOFS);
504         }
505 }
506
507 /*
508  * I/O completion handler for block_read_full_page() - pages
509  * which come unlocked at the end of I/O.
510  */
511 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
512 {
513         unsigned long flags;
514         struct buffer_head *first;
515         struct buffer_head *tmp;
516         struct page *page;
517         int page_uptodate = 1;
518
519         BUG_ON(!buffer_async_read(bh));
520
521         page = bh->b_page;
522         if (uptodate) {
523                 set_buffer_uptodate(bh);
524         } else {
525                 clear_buffer_uptodate(bh);
526                 if (printk_ratelimit())
527                         buffer_io_error(bh);
528                 SetPageError(page);
529         }
530
531         /*
532          * Be _very_ careful from here on. Bad things can happen if
533          * two buffer heads end IO at almost the same time and both
534          * decide that the page is now completely done.
535          */
536         first = page_buffers(page);
537         local_irq_save(flags);
538         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
539         clear_buffer_async_read(bh);
540         unlock_buffer(bh);
541         tmp = bh;
542         do {
543                 if (!buffer_uptodate(tmp))
544                         page_uptodate = 0;
545                 if (buffer_async_read(tmp)) {
546                         BUG_ON(!buffer_locked(tmp));
547                         goto still_busy;
548                 }
549                 tmp = tmp->b_this_page;
550         } while (tmp != bh);
551         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
552         local_irq_restore(flags);
553
554         /*
555          * If none of the buffers had errors and they are all
556          * uptodate then we can set the page uptodate.
557          */
558         if (page_uptodate && !PageError(page))
559                 SetPageUptodate(page);
560         unlock_page(page);
561         return;
562
563 still_busy:
564         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
565         local_irq_restore(flags);
566         return;
567 }
568
569 /*
570  * Completion handler for block_write_full_page() - pages which are unlocked
571  * during I/O, and which have PageWriteback cleared upon I/O completion.
572  */
573 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
574 {
575         char b[BDEVNAME_SIZE];
576         unsigned long flags;
577         struct buffer_head *first;
578         struct buffer_head *tmp;
579         struct page *page;
580
581         BUG_ON(!buffer_async_write(bh));
582
583         page = bh->b_page;
584         if (uptodate) {
585                 set_buffer_uptodate(bh);
586         } else {
587                 if (printk_ratelimit()) {
588                         buffer_io_error(bh);
589                         printk(KERN_WARNING "lost page write due to "
590                                         "I/O error on %s\n",
591                                bdevname(bh->b_bdev, b));
592                 }
593                 set_bit(AS_EIO, &page->mapping->flags);
594                 clear_buffer_uptodate(bh);
595                 SetPageError(page);
596         }
597
598         first = page_buffers(page);
599         local_irq_save(flags);
600         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
601
602         clear_buffer_async_write(bh);
603         unlock_buffer(bh);
604         tmp = bh->b_this_page;
605         while (tmp != bh) {
606                 if (buffer_async_write(tmp)) {
607                         BUG_ON(!buffer_locked(tmp));
608                         goto still_busy;
609                 }
610                 tmp = tmp->b_this_page;
611         }
612         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
613         local_irq_restore(flags);
614         end_page_writeback(page);
615         return;
616
617 still_busy:
618         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
619         local_irq_restore(flags);
620         return;
621 }
622
623 /*
624  * If a page's buffers are under async readin (end_buffer_async_read
625  * completion) then there is a possibility that another thread of
626  * control could lock one of the buffers after it has completed
627  * but while some of the other buffers have not completed.  This
628  * locked buffer would confuse end_buffer_async_read() into not unlocking
629  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
630  * that this buffer is not under async I/O.
631  *
632  * The page comes unlocked when it has no locked buffer_async buffers
633  * left.
634  *
635  * PageLocked prevents anyone starting new async I/O reads any of
636  * the buffers.
637  *
638  * PageWriteback is used to prevent simultaneous writeout of the same
639  * page.
640  *
641  * PageLocked prevents anyone from starting writeback of a page which is
642  * under read I/O (PageWriteback is only ever set against a locked page).
643  */
644 static void mark_buffer_async_read(struct buffer_head *bh)
645 {
646         bh->b_end_io = end_buffer_async_read;
647         set_buffer_async_read(bh);
648 }
649
650 void mark_buffer_async_write(struct buffer_head *bh)
651 {
652         bh->b_end_io = end_buffer_async_write;
653         set_buffer_async_write(bh);
654 }
655 EXPORT_SYMBOL(mark_buffer_async_write);
656
657
658 /*
659  * fs/buffer.c contains helper functions for buffer-backed address space's
660  * fsync functions.  A common requirement for buffer-based filesystems is
661  * that certain data from the backing blockdev needs to be written out for
662  * a successful fsync().  For example, ext2 indirect blocks need to be
663  * written back and waited upon before fsync() returns.
664  *
665  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
666  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
667  * management of a list of dependent buffers at ->i_mapping->private_list.
668  *
669  * Locking is a little subtle: try_to_free_buffers() will remove buffers
670  * from their controlling inode's queue when they are being freed.  But
671  * try_to_free_buffers() will be operating against the *blockdev* mapping
672  * at the time, not against the S_ISREG file which depends on those buffers.
673  * So the locking for private_list is via the private_lock in the address_space
674  * which backs the buffers.  Which is different from the address_space 
675  * against which the buffers are listed.  So for a particular address_space,
676  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
677  * mapping->private_list will always be protected by the backing blockdev's
678  * ->private_lock.
679  *
680  * Which introduces a requirement: all buffers on an address_space's
681  * ->private_list must be from the same address_space: the blockdev's.
682  *
683  * address_spaces which do not place buffers at ->private_list via these
684  * utility functions are free to use private_lock and private_list for
685  * whatever they want.  The only requirement is that list_empty(private_list)
686  * be true at clear_inode() time.
687  *
688  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
689  * filesystems should do that.  invalidate_inode_buffers() should just go
690  * BUG_ON(!list_empty).
691  *
692  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
693  * take an address_space, not an inode.  And it should be called
694  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
695  * queued up.
696  *
697  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
698  * list if it is already on a list.  Because if the buffer is on a list,
699  * it *must* already be on the right one.  If not, the filesystem is being
700  * silly.  This will save a ton of locking.  But first we have to ensure
701  * that buffers are taken *off* the old inode's list when they are freed
702  * (presumably in truncate).  That requires careful auditing of all
703  * filesystems (do it inside bforget()).  It could also be done by bringing
704  * b_inode back.
705  */
706
707 /*
708  * The buffer's backing address_space's private_lock must be held
709  */
710 static inline void __remove_assoc_queue(struct buffer_head *bh)
711 {
712         list_del_init(&bh->b_assoc_buffers);
713 }
714
715 int inode_has_buffers(struct inode *inode)
716 {
717         return !list_empty(&inode->i_data.private_list);
718 }
719
720 /*
721  * osync is designed to support O_SYNC io.  It waits synchronously for
722  * all already-submitted IO to complete, but does not queue any new
723  * writes to the disk.
724  *
725  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
726  * you dirty the buffers, and then use osync_inode_buffers to wait for
727  * completion.  Any other dirty buffers which are not yet queued for
728  * write will not be flushed to disk by the osync.
729  */
730 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
731 {
732         struct buffer_head *bh;
733         struct list_head *p;
734         int err = 0;
735
736         spin_lock(lock);
737 repeat:
738         list_for_each_prev(p, list) {
739                 bh = BH_ENTRY(p);
740                 if (buffer_locked(bh)) {
741                         get_bh(bh);
742                         spin_unlock(lock);
743                         wait_on_buffer(bh);
744                         if (!buffer_uptodate(bh))
745                                 err = -EIO;
746                         brelse(bh);
747                         spin_lock(lock);
748                         goto repeat;
749                 }
750         }
751         spin_unlock(lock);
752         return err;
753 }
754
755 /**
756  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
757  *                        buffers
758  * @mapping: the mapping which wants those buffers written
759  *
760  * Starts I/O against the buffers at mapping->private_list, and waits upon
761  * that I/O.
762  *
763  * Basically, this is a convenience function for fsync().
764  * @mapping is a file or directory which needs those buffers to be written for
765  * a successful fsync().
766  */
767 int sync_mapping_buffers(struct address_space *mapping)
768 {
769         struct address_space *buffer_mapping = mapping->assoc_mapping;
770
771         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
772                 return 0;
773
774         return fsync_buffers_list(&buffer_mapping->private_lock,
775                                         &mapping->private_list);
776 }
777 EXPORT_SYMBOL(sync_mapping_buffers);
778
779 /*
780  * Called when we've recently written block `bblock', and it is known that
781  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
782  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
783  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
784  */
785 void write_boundary_block(struct block_device *bdev,
786                         sector_t bblock, unsigned blocksize)
787 {
788         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
789         if (bh) {
790                 if (buffer_dirty(bh))
791                         ll_rw_block(WRITE, 1, &bh);
792                 put_bh(bh);
793         }
794 }
795
796 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
797 {
798         struct address_space *mapping = inode->i_mapping;
799         struct address_space *buffer_mapping = bh->b_page->mapping;
800
801         mark_buffer_dirty(bh);
802         if (!mapping->assoc_mapping) {
803                 mapping->assoc_mapping = buffer_mapping;
804         } else {
805                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
806         }
807         if (list_empty(&bh->b_assoc_buffers)) {
808                 spin_lock(&buffer_mapping->private_lock);
809                 list_move_tail(&bh->b_assoc_buffers,
810                                 &mapping->private_list);
811                 spin_unlock(&buffer_mapping->private_lock);
812         }
813 }
814 EXPORT_SYMBOL(mark_buffer_dirty_inode);
815
816 /*
817  * Add a page to the dirty page list.
818  *
819  * It is a sad fact of life that this function is called from several places
820  * deeply under spinlocking.  It may not sleep.
821  *
822  * If the page has buffers, the uptodate buffers are set dirty, to preserve
823  * dirty-state coherency between the page and the buffers.  It the page does
824  * not have buffers then when they are later attached they will all be set
825  * dirty.
826  *
827  * The buffers are dirtied before the page is dirtied.  There's a small race
828  * window in which a writepage caller may see the page cleanness but not the
829  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
830  * before the buffers, a concurrent writepage caller could clear the page dirty
831  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
832  * page on the dirty page list.
833  *
834  * We use private_lock to lock against try_to_free_buffers while using the
835  * page's buffer list.  Also use this to protect against clean buffers being
836  * added to the page after it was set dirty.
837  *
838  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
839  * address_space though.
840  */
841 int __set_page_dirty_buffers(struct page *page)
842 {
843         struct address_space * const mapping = page_mapping(page);
844
845         if (unlikely(!mapping))
846                 return !TestSetPageDirty(page);
847
848         spin_lock(&mapping->private_lock);
849         if (page_has_buffers(page)) {
850                 struct buffer_head *head = page_buffers(page);
851                 struct buffer_head *bh = head;
852
853                 do {
854                         set_buffer_dirty(bh);
855                         bh = bh->b_this_page;
856                 } while (bh != head);
857         }
858         spin_unlock(&mapping->private_lock);
859
860         if (!TestSetPageDirty(page)) {
861                 write_lock_irq(&mapping->tree_lock);
862                 if (page->mapping) {    /* Race with truncate? */
863                         if (mapping_cap_account_dirty(mapping))
864                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
865                         radix_tree_tag_set(&mapping->page_tree,
866                                                 page_index(page),
867                                                 PAGECACHE_TAG_DIRTY);
868                 }
869                 write_unlock_irq(&mapping->tree_lock);
870                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
871                 return 1;
872         }
873         return 0;
874 }
875 EXPORT_SYMBOL(__set_page_dirty_buffers);
876
877 /*
878  * Write out and wait upon a list of buffers.
879  *
880  * We have conflicting pressures: we want to make sure that all
881  * initially dirty buffers get waited on, but that any subsequently
882  * dirtied buffers don't.  After all, we don't want fsync to last
883  * forever if somebody is actively writing to the file.
884  *
885  * Do this in two main stages: first we copy dirty buffers to a
886  * temporary inode list, queueing the writes as we go.  Then we clean
887  * up, waiting for those writes to complete.
888  * 
889  * During this second stage, any subsequent updates to the file may end
890  * up refiling the buffer on the original inode's dirty list again, so
891  * there is a chance we will end up with a buffer queued for write but
892  * not yet completed on that list.  So, as a final cleanup we go through
893  * the osync code to catch these locked, dirty buffers without requeuing
894  * any newly dirty buffers for write.
895  */
896 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
897 {
898         struct buffer_head *bh;
899         struct list_head tmp;
900         int err = 0, err2;
901
902         INIT_LIST_HEAD(&tmp);
903
904         spin_lock(lock);
905         while (!list_empty(list)) {
906                 bh = BH_ENTRY(list->next);
907                 list_del_init(&bh->b_assoc_buffers);
908                 if (buffer_dirty(bh) || buffer_locked(bh)) {
909                         list_add(&bh->b_assoc_buffers, &tmp);
910                         if (buffer_dirty(bh)) {
911                                 get_bh(bh);
912                                 spin_unlock(lock);
913                                 /*
914                                  * Ensure any pending I/O completes so that
915                                  * ll_rw_block() actually writes the current
916                                  * contents - it is a noop if I/O is still in
917                                  * flight on potentially older contents.
918                                  */
919                                 ll_rw_block(SWRITE, 1, &bh);
920                                 brelse(bh);
921                                 spin_lock(lock);
922                         }
923                 }
924         }
925
926         while (!list_empty(&tmp)) {
927                 bh = BH_ENTRY(tmp.prev);
928                 __remove_assoc_queue(bh);
929                 get_bh(bh);
930                 spin_unlock(lock);
931                 wait_on_buffer(bh);
932                 if (!buffer_uptodate(bh))
933                         err = -EIO;
934                 brelse(bh);
935                 spin_lock(lock);
936         }
937         
938         spin_unlock(lock);
939         err2 = osync_buffers_list(lock, list);
940         if (err)
941                 return err;
942         else
943                 return err2;
944 }
945
946 /*
947  * Invalidate any and all dirty buffers on a given inode.  We are
948  * probably unmounting the fs, but that doesn't mean we have already
949  * done a sync().  Just drop the buffers from the inode list.
950  *
951  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
952  * assumes that all the buffers are against the blockdev.  Not true
953  * for reiserfs.
954  */
955 void invalidate_inode_buffers(struct inode *inode)
956 {
957         if (inode_has_buffers(inode)) {
958                 struct address_space *mapping = &inode->i_data;
959                 struct list_head *list = &mapping->private_list;
960                 struct address_space *buffer_mapping = mapping->assoc_mapping;
961
962                 spin_lock(&buffer_mapping->private_lock);
963                 while (!list_empty(list))
964                         __remove_assoc_queue(BH_ENTRY(list->next));
965                 spin_unlock(&buffer_mapping->private_lock);
966         }
967 }
968
969 /*
970  * Remove any clean buffers from the inode's buffer list.  This is called
971  * when we're trying to free the inode itself.  Those buffers can pin it.
972  *
973  * Returns true if all buffers were removed.
974  */
975 int remove_inode_buffers(struct inode *inode)
976 {
977         int ret = 1;
978
979         if (inode_has_buffers(inode)) {
980                 struct address_space *mapping = &inode->i_data;
981                 struct list_head *list = &mapping->private_list;
982                 struct address_space *buffer_mapping = mapping->assoc_mapping;
983
984                 spin_lock(&buffer_mapping->private_lock);
985                 while (!list_empty(list)) {
986                         struct buffer_head *bh = BH_ENTRY(list->next);
987                         if (buffer_dirty(bh)) {
988                                 ret = 0;
989                                 break;
990                         }
991                         __remove_assoc_queue(bh);
992                 }
993                 spin_unlock(&buffer_mapping->private_lock);
994         }
995         return ret;
996 }
997
998 /*
999  * Create the appropriate buffers when given a page for data area and
1000  * the size of each buffer.. Use the bh->b_this_page linked list to
1001  * follow the buffers created.  Return NULL if unable to create more
1002  * buffers.
1003  *
1004  * The retry flag is used to differentiate async IO (paging, swapping)
1005  * which may not fail from ordinary buffer allocations.
1006  */
1007 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1008                 int retry)
1009 {
1010         struct buffer_head *bh, *head;
1011         long offset;
1012
1013 try_again:
1014         head = NULL;
1015         offset = PAGE_SIZE;
1016         while ((offset -= size) >= 0) {
1017                 bh = alloc_buffer_head(GFP_NOFS);
1018                 if (!bh)
1019                         goto no_grow;
1020
1021                 bh->b_bdev = NULL;
1022                 bh->b_this_page = head;
1023                 bh->b_blocknr = -1;
1024                 head = bh;
1025
1026                 bh->b_state = 0;
1027                 atomic_set(&bh->b_count, 0);
1028                 bh->b_private = NULL;
1029                 bh->b_size = size;
1030
1031                 /* Link the buffer to its page */
1032                 set_bh_page(bh, page, offset);
1033
1034                 init_buffer(bh, NULL, NULL);
1035         }
1036         return head;
1037 /*
1038  * In case anything failed, we just free everything we got.
1039  */
1040 no_grow:
1041         if (head) {
1042                 do {
1043                         bh = head;
1044                         head = head->b_this_page;
1045                         free_buffer_head(bh);
1046                 } while (head);
1047         }
1048
1049         /*
1050          * Return failure for non-async IO requests.  Async IO requests
1051          * are not allowed to fail, so we have to wait until buffer heads
1052          * become available.  But we don't want tasks sleeping with 
1053          * partially complete buffers, so all were released above.
1054          */
1055         if (!retry)
1056                 return NULL;
1057
1058         /* We're _really_ low on memory. Now we just
1059          * wait for old buffer heads to become free due to
1060          * finishing IO.  Since this is an async request and
1061          * the reserve list is empty, we're sure there are 
1062          * async buffer heads in use.
1063          */
1064         free_more_memory();
1065         goto try_again;
1066 }
1067 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1068
1069 static inline void
1070 link_dev_buffers(struct page *page, struct buffer_head *head)
1071 {
1072         struct buffer_head *bh, *tail;
1073
1074         bh = head;
1075         do {
1076                 tail = bh;
1077                 bh = bh->b_this_page;
1078         } while (bh);
1079         tail->b_this_page = head;
1080         attach_page_buffers(page, head);
1081 }
1082
1083 /*
1084  * Initialise the state of a blockdev page's buffers.
1085  */ 
1086 static void
1087 init_page_buffers(struct page *page, struct block_device *bdev,
1088                         sector_t block, int size)
1089 {
1090         struct buffer_head *head = page_buffers(page);
1091         struct buffer_head *bh = head;
1092         int uptodate = PageUptodate(page);
1093
1094         do {
1095                 if (!buffer_mapped(bh)) {
1096                         init_buffer(bh, NULL, NULL);
1097                         bh->b_bdev = bdev;
1098                         bh->b_blocknr = block;
1099                         if (uptodate)
1100                                 set_buffer_uptodate(bh);
1101                         set_buffer_mapped(bh);
1102                 }
1103                 block++;
1104                 bh = bh->b_this_page;
1105         } while (bh != head);
1106 }
1107
1108 /*
1109  * Create the page-cache page that contains the requested block.
1110  *
1111  * This is user purely for blockdev mappings.
1112  */
1113 static struct page *
1114 grow_dev_page(struct block_device *bdev, sector_t block,
1115                 pgoff_t index, int size)
1116 {
1117         struct inode *inode = bdev->bd_inode;
1118         struct page *page;
1119         struct buffer_head *bh;
1120
1121         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1122         if (!page)
1123                 return NULL;
1124
1125         BUG_ON(!PageLocked(page));
1126
1127         if (page_has_buffers(page)) {
1128                 bh = page_buffers(page);
1129                 if (bh->b_size == size) {
1130                         init_page_buffers(page, bdev, block, size);
1131                         return page;
1132                 }
1133                 if (!try_to_free_buffers(page))
1134                         goto failed;
1135         }
1136
1137         /*
1138          * Allocate some buffers for this page
1139          */
1140         bh = alloc_page_buffers(page, size, 0);
1141         if (!bh)
1142                 goto failed;
1143
1144         /*
1145          * Link the page to the buffers and initialise them.  Take the
1146          * lock to be atomic wrt __find_get_block(), which does not
1147          * run under the page lock.
1148          */
1149         spin_lock(&inode->i_mapping->private_lock);
1150         link_dev_buffers(page, bh);
1151         init_page_buffers(page, bdev, block, size);
1152         spin_unlock(&inode->i_mapping->private_lock);
1153         return page;
1154
1155 failed:
1156         BUG();
1157         unlock_page(page);
1158         page_cache_release(page);
1159         return NULL;
1160 }
1161
1162 /*
1163  * Create buffers for the specified block device block's page.  If
1164  * that page was dirty, the buffers are set dirty also.
1165  *
1166  * Except that's a bug.  Attaching dirty buffers to a dirty
1167  * blockdev's page can result in filesystem corruption, because
1168  * some of those buffers may be aliases of filesystem data.
1169  * grow_dev_page() will go BUG() if this happens.
1170  */
1171 static int
1172 grow_buffers(struct block_device *bdev, sector_t block, int size)
1173 {
1174         struct page *page;
1175         pgoff_t index;
1176         int sizebits;
1177
1178         sizebits = -1;
1179         do {
1180                 sizebits++;
1181         } while ((size << sizebits) < PAGE_SIZE);
1182
1183         index = block >> sizebits;
1184         block = index << sizebits;
1185
1186         /* Create a page with the proper size buffers.. */
1187         page = grow_dev_page(bdev, block, index, size);
1188         if (!page)
1189                 return 0;
1190         unlock_page(page);
1191         page_cache_release(page);
1192         return 1;
1193 }
1194
1195 static struct buffer_head *
1196 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1197 {
1198         /* Size must be multiple of hard sectorsize */
1199         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1200                         (size < 512 || size > PAGE_SIZE))) {
1201                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1202                                         size);
1203                 printk(KERN_ERR "hardsect size: %d\n",
1204                                         bdev_hardsect_size(bdev));
1205
1206                 dump_stack();
1207                 return NULL;
1208         }
1209
1210         for (;;) {
1211                 struct buffer_head * bh;
1212
1213                 bh = __find_get_block(bdev, block, size);
1214                 if (bh)
1215                         return bh;
1216
1217                 if (!grow_buffers(bdev, block, size))
1218                         free_more_memory();
1219         }
1220 }
1221
1222 /*
1223  * The relationship between dirty buffers and dirty pages:
1224  *
1225  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1226  * the page is tagged dirty in its radix tree.
1227  *
1228  * At all times, the dirtiness of the buffers represents the dirtiness of
1229  * subsections of the page.  If the page has buffers, the page dirty bit is
1230  * merely a hint about the true dirty state.
1231  *
1232  * When a page is set dirty in its entirety, all its buffers are marked dirty
1233  * (if the page has buffers).
1234  *
1235  * When a buffer is marked dirty, its page is dirtied, but the page's other
1236  * buffers are not.
1237  *
1238  * Also.  When blockdev buffers are explicitly read with bread(), they
1239  * individually become uptodate.  But their backing page remains not
1240  * uptodate - even if all of its buffers are uptodate.  A subsequent
1241  * block_read_full_page() against that page will discover all the uptodate
1242  * buffers, will set the page uptodate and will perform no I/O.
1243  */
1244
1245 /**
1246  * mark_buffer_dirty - mark a buffer_head as needing writeout
1247  * @bh: the buffer_head to mark dirty
1248  *
1249  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1250  * backing page dirty, then tag the page as dirty in its address_space's radix
1251  * tree and then attach the address_space's inode to its superblock's dirty
1252  * inode list.
1253  *
1254  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1255  * mapping->tree_lock and the global inode_lock.
1256  */
1257 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1258 {
1259         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1260                 __set_page_dirty_nobuffers(bh->b_page);
1261 }
1262
1263 /*
1264  * Decrement a buffer_head's reference count.  If all buffers against a page
1265  * have zero reference count, are clean and unlocked, and if the page is clean
1266  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1267  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1268  * a page but it ends up not being freed, and buffers may later be reattached).
1269  */
1270 void __brelse(struct buffer_head * buf)
1271 {
1272         if (atomic_read(&buf->b_count)) {
1273                 put_bh(buf);
1274                 return;
1275         }
1276         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1277         WARN_ON(1);
1278 }
1279
1280 /*
1281  * bforget() is like brelse(), except it discards any
1282  * potentially dirty data.
1283  */
1284 void __bforget(struct buffer_head *bh)
1285 {
1286         clear_buffer_dirty(bh);
1287         if (!list_empty(&bh->b_assoc_buffers)) {
1288                 struct address_space *buffer_mapping = bh->b_page->mapping;
1289
1290                 spin_lock(&buffer_mapping->private_lock);
1291                 list_del_init(&bh->b_assoc_buffers);
1292                 spin_unlock(&buffer_mapping->private_lock);
1293         }
1294         __brelse(bh);
1295 }
1296
1297 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1298 {
1299         lock_buffer(bh);
1300         if (buffer_uptodate(bh)) {
1301                 unlock_buffer(bh);
1302                 return bh;
1303         } else {
1304                 get_bh(bh);
1305                 bh->b_end_io = end_buffer_read_sync;
1306                 submit_bh(READ, bh);
1307                 wait_on_buffer(bh);
1308                 if (buffer_uptodate(bh))
1309                         return bh;
1310         }
1311         brelse(bh);
1312         return NULL;
1313 }
1314
1315 /*
1316  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1317  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1318  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1319  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1320  * CPU's LRUs at the same time.
1321  *
1322  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1323  * sb_find_get_block().
1324  *
1325  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1326  * a local interrupt disable for that.
1327  */
1328
1329 #define BH_LRU_SIZE     8
1330
1331 struct bh_lru {
1332         struct buffer_head *bhs[BH_LRU_SIZE];
1333 };
1334
1335 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1336
1337 #ifdef CONFIG_SMP
1338 #define bh_lru_lock()   local_irq_disable()
1339 #define bh_lru_unlock() local_irq_enable()
1340 #else
1341 #define bh_lru_lock()   preempt_disable()
1342 #define bh_lru_unlock() preempt_enable()
1343 #endif
1344
1345 static inline void check_irqs_on(void)
1346 {
1347 #ifdef irqs_disabled
1348         BUG_ON(irqs_disabled());
1349 #endif
1350 }
1351
1352 /*
1353  * The LRU management algorithm is dopey-but-simple.  Sorry.
1354  */
1355 static void bh_lru_install(struct buffer_head *bh)
1356 {
1357         struct buffer_head *evictee = NULL;
1358         struct bh_lru *lru;
1359
1360         check_irqs_on();
1361         bh_lru_lock();
1362         lru = &__get_cpu_var(bh_lrus);
1363         if (lru->bhs[0] != bh) {
1364                 struct buffer_head *bhs[BH_LRU_SIZE];
1365                 int in;
1366                 int out = 0;
1367
1368                 get_bh(bh);
1369                 bhs[out++] = bh;
1370                 for (in = 0; in < BH_LRU_SIZE; in++) {
1371                         struct buffer_head *bh2 = lru->bhs[in];
1372
1373                         if (bh2 == bh) {
1374                                 __brelse(bh2);
1375                         } else {
1376                                 if (out >= BH_LRU_SIZE) {
1377                                         BUG_ON(evictee != NULL);
1378                                         evictee = bh2;
1379                                 } else {
1380                                         bhs[out++] = bh2;
1381                                 }
1382                         }
1383                 }
1384                 while (out < BH_LRU_SIZE)
1385                         bhs[out++] = NULL;
1386                 memcpy(lru->bhs, bhs, sizeof(bhs));
1387         }
1388         bh_lru_unlock();
1389
1390         if (evictee)
1391                 __brelse(evictee);
1392 }
1393
1394 /*
1395  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1396  */
1397 static struct buffer_head *
1398 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1399 {
1400         struct buffer_head *ret = NULL;
1401         struct bh_lru *lru;
1402         int i;
1403
1404         check_irqs_on();
1405         bh_lru_lock();
1406         lru = &__get_cpu_var(bh_lrus);
1407         for (i = 0; i < BH_LRU_SIZE; i++) {
1408                 struct buffer_head *bh = lru->bhs[i];
1409
1410                 if (bh && bh->b_bdev == bdev &&
1411                                 bh->b_blocknr == block && bh->b_size == size) {
1412                         if (i) {
1413                                 while (i) {
1414                                         lru->bhs[i] = lru->bhs[i - 1];
1415                                         i--;
1416                                 }
1417                                 lru->bhs[0] = bh;
1418                         }
1419                         get_bh(bh);
1420                         ret = bh;
1421                         break;
1422                 }
1423         }
1424         bh_lru_unlock();
1425         return ret;
1426 }
1427
1428 /*
1429  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1430  * it in the LRU and mark it as accessed.  If it is not present then return
1431  * NULL
1432  */
1433 struct buffer_head *
1434 __find_get_block(struct block_device *bdev, sector_t block, int size)
1435 {
1436         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1437
1438         if (bh == NULL) {
1439                 bh = __find_get_block_slow(bdev, block);
1440                 if (bh)
1441                         bh_lru_install(bh);
1442         }
1443         if (bh)
1444                 touch_buffer(bh);
1445         return bh;
1446 }
1447 EXPORT_SYMBOL(__find_get_block);
1448
1449 /*
1450  * __getblk will locate (and, if necessary, create) the buffer_head
1451  * which corresponds to the passed block_device, block and size. The
1452  * returned buffer has its reference count incremented.
1453  *
1454  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1455  * illegal block number, __getblk() will happily return a buffer_head
1456  * which represents the non-existent block.  Very weird.
1457  *
1458  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1459  * attempt is failing.  FIXME, perhaps?
1460  */
1461 struct buffer_head *
1462 __getblk(struct block_device *bdev, sector_t block, int size)
1463 {
1464         struct buffer_head *bh = __find_get_block(bdev, block, size);
1465
1466         might_sleep();
1467         if (bh == NULL)
1468                 bh = __getblk_slow(bdev, block, size);
1469         return bh;
1470 }
1471 EXPORT_SYMBOL(__getblk);
1472
1473 /*
1474  * Do async read-ahead on a buffer..
1475  */
1476 void __breadahead(struct block_device *bdev, sector_t block, int size)
1477 {
1478         struct buffer_head *bh = __getblk(bdev, block, size);
1479         if (likely(bh)) {
1480                 ll_rw_block(READA, 1, &bh);
1481                 brelse(bh);
1482         }
1483 }
1484 EXPORT_SYMBOL(__breadahead);
1485
1486 /**
1487  *  __bread() - reads a specified block and returns the bh
1488  *  @bdev: the block_device to read from
1489  *  @block: number of block
1490  *  @size: size (in bytes) to read
1491  * 
1492  *  Reads a specified block, and returns buffer head that contains it.
1493  *  It returns NULL if the block was unreadable.
1494  */
1495 struct buffer_head *
1496 __bread(struct block_device *bdev, sector_t block, int size)
1497 {
1498         struct buffer_head *bh = __getblk(bdev, block, size);
1499
1500         if (likely(bh) && !buffer_uptodate(bh))
1501                 bh = __bread_slow(bh);
1502         return bh;
1503 }
1504 EXPORT_SYMBOL(__bread);
1505
1506 /*
1507  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1508  * This doesn't race because it runs in each cpu either in irq
1509  * or with preempt disabled.
1510  */
1511 static void invalidate_bh_lru(void *arg)
1512 {
1513         struct bh_lru *b = &get_cpu_var(bh_lrus);
1514         int i;
1515
1516         for (i = 0; i < BH_LRU_SIZE; i++) {
1517                 brelse(b->bhs[i]);
1518                 b->bhs[i] = NULL;
1519         }
1520         put_cpu_var(bh_lrus);
1521 }
1522         
1523 static void invalidate_bh_lrus(void)
1524 {
1525         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1526 }
1527
1528 void set_bh_page(struct buffer_head *bh,
1529                 struct page *page, unsigned long offset)
1530 {
1531         bh->b_page = page;
1532         BUG_ON(offset >= PAGE_SIZE);
1533         if (PageHighMem(page))
1534                 /*
1535                  * This catches illegal uses and preserves the offset:
1536                  */
1537                 bh->b_data = (char *)(0 + offset);
1538         else
1539                 bh->b_data = page_address(page) + offset;
1540 }
1541 EXPORT_SYMBOL(set_bh_page);
1542
1543 /*
1544  * Called when truncating a buffer on a page completely.
1545  */
1546 static void discard_buffer(struct buffer_head * bh)
1547 {
1548         lock_buffer(bh);
1549         clear_buffer_dirty(bh);
1550         bh->b_bdev = NULL;
1551         clear_buffer_mapped(bh);
1552         clear_buffer_req(bh);
1553         clear_buffer_new(bh);
1554         clear_buffer_delay(bh);
1555         unlock_buffer(bh);
1556 }
1557
1558 /**
1559  * try_to_release_page() - release old fs-specific metadata on a page
1560  *
1561  * @page: the page which the kernel is trying to free
1562  * @gfp_mask: memory allocation flags (and I/O mode)
1563  *
1564  * The address_space is to try to release any data against the page
1565  * (presumably at page->private).  If the release was successful, return `1'.
1566  * Otherwise return zero.
1567  *
1568  * The @gfp_mask argument specifies whether I/O may be performed to release
1569  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1570  *
1571  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1572  */
1573 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1574 {
1575         struct address_space * const mapping = page->mapping;
1576
1577         BUG_ON(!PageLocked(page));
1578         if (PageWriteback(page))
1579                 return 0;
1580         
1581         if (mapping && mapping->a_ops->releasepage)
1582                 return mapping->a_ops->releasepage(page, gfp_mask);
1583         return try_to_free_buffers(page);
1584 }
1585 EXPORT_SYMBOL(try_to_release_page);
1586
1587 /**
1588  * block_invalidatepage - invalidate part of all of a buffer-backed page
1589  *
1590  * @page: the page which is affected
1591  * @offset: the index of the truncation point
1592  *
1593  * block_invalidatepage() is called when all or part of the page has become
1594  * invalidatedby a truncate operation.
1595  *
1596  * block_invalidatepage() does not have to release all buffers, but it must
1597  * ensure that no dirty buffer is left outside @offset and that no I/O
1598  * is underway against any of the blocks which are outside the truncation
1599  * point.  Because the caller is about to free (and possibly reuse) those
1600  * blocks on-disk.
1601  */
1602 void block_invalidatepage(struct page *page, unsigned long offset)
1603 {
1604         struct buffer_head *head, *bh, *next;
1605         unsigned int curr_off = 0;
1606
1607         BUG_ON(!PageLocked(page));
1608         if (!page_has_buffers(page))
1609                 goto out;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615                 next = bh->b_this_page;
1616
1617                 /*
1618                  * is this block fully invalidated?
1619                  */
1620                 if (offset <= curr_off)
1621                         discard_buffer(bh);
1622                 curr_off = next_off;
1623                 bh = next;
1624         } while (bh != head);
1625
1626         /*
1627          * We release buffers only if the entire page is being invalidated.
1628          * The get_block cached value has been unconditionally invalidated,
1629          * so real IO is not possible anymore.
1630          */
1631         if (offset == 0)
1632                 try_to_release_page(page, 0);
1633 out:
1634         return;
1635 }
1636 EXPORT_SYMBOL(block_invalidatepage);
1637
1638 void do_invalidatepage(struct page *page, unsigned long offset)
1639 {
1640         void (*invalidatepage)(struct page *, unsigned long);
1641         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1642                 block_invalidatepage;
1643         (*invalidatepage)(page, offset);
1644 }
1645
1646 /*
1647  * We attach and possibly dirty the buffers atomically wrt
1648  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1649  * is already excluded via the page lock.
1650  */
1651 void create_empty_buffers(struct page *page,
1652                         unsigned long blocksize, unsigned long b_state)
1653 {
1654         struct buffer_head *bh, *head, *tail;
1655
1656         head = alloc_page_buffers(page, blocksize, 1);
1657         bh = head;
1658         do {
1659                 bh->b_state |= b_state;
1660                 tail = bh;
1661                 bh = bh->b_this_page;
1662         } while (bh);
1663         tail->b_this_page = head;
1664
1665         spin_lock(&page->mapping->private_lock);
1666         if (PageUptodate(page) || PageDirty(page)) {
1667                 bh = head;
1668                 do {
1669                         if (PageDirty(page))
1670                                 set_buffer_dirty(bh);
1671                         if (PageUptodate(page))
1672                                 set_buffer_uptodate(bh);
1673                         bh = bh->b_this_page;
1674                 } while (bh != head);
1675         }
1676         attach_page_buffers(page, head);
1677         spin_unlock(&page->mapping->private_lock);
1678 }
1679 EXPORT_SYMBOL(create_empty_buffers);
1680
1681 /*
1682  * We are taking a block for data and we don't want any output from any
1683  * buffer-cache aliases starting from return from that function and
1684  * until the moment when something will explicitly mark the buffer
1685  * dirty (hopefully that will not happen until we will free that block ;-)
1686  * We don't even need to mark it not-uptodate - nobody can expect
1687  * anything from a newly allocated buffer anyway. We used to used
1688  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1689  * don't want to mark the alias unmapped, for example - it would confuse
1690  * anyone who might pick it with bread() afterwards...
1691  *
1692  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1693  * be writeout I/O going on against recently-freed buffers.  We don't
1694  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1695  * only if we really need to.  That happens here.
1696  */
1697 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1698 {
1699         struct buffer_head *old_bh;
1700
1701         might_sleep();
1702
1703         old_bh = __find_get_block_slow(bdev, block);
1704         if (old_bh) {
1705                 clear_buffer_dirty(old_bh);
1706                 wait_on_buffer(old_bh);
1707                 clear_buffer_req(old_bh);
1708                 __brelse(old_bh);
1709         }
1710 }
1711 EXPORT_SYMBOL(unmap_underlying_metadata);
1712
1713 /*
1714  * NOTE! All mapped/uptodate combinations are valid:
1715  *
1716  *      Mapped  Uptodate        Meaning
1717  *
1718  *      No      No              "unknown" - must do get_block()
1719  *      No      Yes             "hole" - zero-filled
1720  *      Yes     No              "allocated" - allocated on disk, not read in
1721  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1722  *
1723  * "Dirty" is valid only with the last case (mapped+uptodate).
1724  */
1725
1726 /*
1727  * While block_write_full_page is writing back the dirty buffers under
1728  * the page lock, whoever dirtied the buffers may decide to clean them
1729  * again at any time.  We handle that by only looking at the buffer
1730  * state inside lock_buffer().
1731  *
1732  * If block_write_full_page() is called for regular writeback
1733  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1734  * locked buffer.   This only can happen if someone has written the buffer
1735  * directly, with submit_bh().  At the address_space level PageWriteback
1736  * prevents this contention from occurring.
1737  */
1738 static int __block_write_full_page(struct inode *inode, struct page *page,
1739                         get_block_t *get_block, struct writeback_control *wbc)
1740 {
1741         int err;
1742         sector_t block;
1743         sector_t last_block;
1744         struct buffer_head *bh, *head;
1745         const unsigned blocksize = 1 << inode->i_blkbits;
1746         int nr_underway = 0;
1747
1748         BUG_ON(!PageLocked(page));
1749
1750         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1751
1752         if (!page_has_buffers(page)) {
1753                 create_empty_buffers(page, blocksize,
1754                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1755         }
1756
1757         /*
1758          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1759          * here, and the (potentially unmapped) buffers may become dirty at
1760          * any time.  If a buffer becomes dirty here after we've inspected it
1761          * then we just miss that fact, and the page stays dirty.
1762          *
1763          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1764          * handle that here by just cleaning them.
1765          */
1766
1767         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1768         head = page_buffers(page);
1769         bh = head;
1770
1771         /*
1772          * Get all the dirty buffers mapped to disk addresses and
1773          * handle any aliases from the underlying blockdev's mapping.
1774          */
1775         do {
1776                 if (block > last_block) {
1777                         /*
1778                          * mapped buffers outside i_size will occur, because
1779                          * this page can be outside i_size when there is a
1780                          * truncate in progress.
1781                          */
1782                         /*
1783                          * The buffer was zeroed by block_write_full_page()
1784                          */
1785                         clear_buffer_dirty(bh);
1786                         set_buffer_uptodate(bh);
1787                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1788                         WARN_ON(bh->b_size != blocksize);
1789                         err = get_block(inode, block, bh, 1);
1790                         if (err)
1791                                 goto recover;
1792                         if (buffer_new(bh)) {
1793                                 /* blockdev mappings never come here */
1794                                 clear_buffer_new(bh);
1795                                 unmap_underlying_metadata(bh->b_bdev,
1796                                                         bh->b_blocknr);
1797                         }
1798                 }
1799                 bh = bh->b_this_page;
1800                 block++;
1801         } while (bh != head);
1802
1803         do {
1804                 if (!buffer_mapped(bh))
1805                         continue;
1806                 /*
1807                  * If it's a fully non-blocking write attempt and we cannot
1808                  * lock the buffer then redirty the page.  Note that this can
1809                  * potentially cause a busy-wait loop from pdflush and kswapd
1810                  * activity, but those code paths have their own higher-level
1811                  * throttling.
1812                  */
1813                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1814                         lock_buffer(bh);
1815                 } else if (test_set_buffer_locked(bh)) {
1816                         redirty_page_for_writepage(wbc, page);
1817                         continue;
1818                 }
1819                 if (test_clear_buffer_dirty(bh)) {
1820                         mark_buffer_async_write(bh);
1821                 } else {
1822                         unlock_buffer(bh);
1823                 }
1824         } while ((bh = bh->b_this_page) != head);
1825
1826         /*
1827          * The page and its buffers are protected by PageWriteback(), so we can
1828          * drop the bh refcounts early.
1829          */
1830         BUG_ON(PageWriteback(page));
1831         set_page_writeback(page);
1832
1833         do {
1834                 struct buffer_head *next = bh->b_this_page;
1835                 if (buffer_async_write(bh)) {
1836                         submit_bh(WRITE, bh);
1837                         nr_underway++;
1838                 }
1839                 bh = next;
1840         } while (bh != head);
1841         unlock_page(page);
1842
1843         err = 0;
1844 done:
1845         if (nr_underway == 0) {
1846                 /*
1847                  * The page was marked dirty, but the buffers were
1848                  * clean.  Someone wrote them back by hand with
1849                  * ll_rw_block/submit_bh.  A rare case.
1850                  */
1851                 int uptodate = 1;
1852                 do {
1853                         if (!buffer_uptodate(bh)) {
1854                                 uptodate = 0;
1855                                 break;
1856                         }
1857                         bh = bh->b_this_page;
1858                 } while (bh != head);
1859                 if (uptodate)
1860                         SetPageUptodate(page);
1861                 end_page_writeback(page);
1862                 /*
1863                  * The page and buffer_heads can be released at any time from
1864                  * here on.
1865                  */
1866                 wbc->pages_skipped++;   /* We didn't write this page */
1867         }
1868         return err;
1869
1870 recover:
1871         /*
1872          * ENOSPC, or some other error.  We may already have added some
1873          * blocks to the file, so we need to write these out to avoid
1874          * exposing stale data.
1875          * The page is currently locked and not marked for writeback
1876          */
1877         bh = head;
1878         /* Recovery: lock and submit the mapped buffers */
1879         do {
1880                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1881                         lock_buffer(bh);
1882                         mark_buffer_async_write(bh);
1883                 } else {
1884                         /*
1885                          * The buffer may have been set dirty during
1886                          * attachment to a dirty page.
1887                          */
1888                         clear_buffer_dirty(bh);
1889                 }
1890         } while ((bh = bh->b_this_page) != head);
1891         SetPageError(page);
1892         BUG_ON(PageWriteback(page));
1893         set_page_writeback(page);
1894         unlock_page(page);
1895         do {
1896                 struct buffer_head *next = bh->b_this_page;
1897                 if (buffer_async_write(bh)) {
1898                         clear_buffer_dirty(bh);
1899                         submit_bh(WRITE, bh);
1900                         nr_underway++;
1901                 }
1902                 bh = next;
1903         } while (bh != head);
1904         goto done;
1905 }
1906
1907 static int __block_prepare_write(struct inode *inode, struct page *page,
1908                 unsigned from, unsigned to, get_block_t *get_block)
1909 {
1910         unsigned block_start, block_end;
1911         sector_t block;
1912         int err = 0;
1913         unsigned blocksize, bbits;
1914         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1915
1916         BUG_ON(!PageLocked(page));
1917         BUG_ON(from > PAGE_CACHE_SIZE);
1918         BUG_ON(to > PAGE_CACHE_SIZE);
1919         BUG_ON(from > to);
1920
1921         blocksize = 1 << inode->i_blkbits;
1922         if (!page_has_buffers(page))
1923                 create_empty_buffers(page, blocksize, 0);
1924         head = page_buffers(page);
1925
1926         bbits = inode->i_blkbits;
1927         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1928
1929         for(bh = head, block_start = 0; bh != head || !block_start;
1930             block++, block_start=block_end, bh = bh->b_this_page) {
1931                 block_end = block_start + blocksize;
1932                 if (block_end <= from || block_start >= to) {
1933                         if (PageUptodate(page)) {
1934                                 if (!buffer_uptodate(bh))
1935                                         set_buffer_uptodate(bh);
1936                         }
1937                         continue;
1938                 }
1939                 if (buffer_new(bh))
1940                         clear_buffer_new(bh);
1941                 if (!buffer_mapped(bh)) {
1942                         WARN_ON(bh->b_size != blocksize);
1943                         err = get_block(inode, block, bh, 1);
1944                         if (err)
1945                                 break;
1946                         if (buffer_new(bh)) {
1947                                 unmap_underlying_metadata(bh->b_bdev,
1948                                                         bh->b_blocknr);
1949                                 if (PageUptodate(page)) {
1950                                         set_buffer_uptodate(bh);
1951                                         continue;
1952                                 }
1953                                 if (block_end > to || block_start < from) {
1954                                         void *kaddr;
1955
1956                                         kaddr = kmap_atomic(page, KM_USER0);
1957                                         if (block_end > to)
1958                                                 memset(kaddr+to, 0,
1959                                                         block_end-to);
1960                                         if (block_start < from)
1961                                                 memset(kaddr+block_start,
1962                                                         0, from-block_start);
1963                                         flush_dcache_page(page);
1964                                         kunmap_atomic(kaddr, KM_USER0);
1965                                 }
1966                                 continue;
1967                         }
1968                 }
1969                 if (PageUptodate(page)) {
1970                         if (!buffer_uptodate(bh))
1971                                 set_buffer_uptodate(bh);
1972                         continue; 
1973                 }
1974                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1975                      (block_start < from || block_end > to)) {
1976                         ll_rw_block(READ, 1, &bh);
1977                         *wait_bh++=bh;
1978                 }
1979         }
1980         /*
1981          * If we issued read requests - let them complete.
1982          */
1983         while(wait_bh > wait) {
1984                 wait_on_buffer(*--wait_bh);
1985                 if (!buffer_uptodate(*wait_bh))
1986                         err = -EIO;
1987         }
1988         if (!err) {
1989                 bh = head;
1990                 do {
1991                         if (buffer_new(bh))
1992                                 clear_buffer_new(bh);
1993                 } while ((bh = bh->b_this_page) != head);
1994                 return 0;
1995         }
1996         /* Error case: */
1997         /*
1998          * Zero out any newly allocated blocks to avoid exposing stale
1999          * data.  If BH_New is set, we know that the block was newly
2000          * allocated in the above loop.
2001          */
2002         bh = head;
2003         block_start = 0;
2004         do {
2005                 block_end = block_start+blocksize;
2006                 if (block_end <= from)
2007                         goto next_bh;
2008                 if (block_start >= to)
2009                         break;
2010                 if (buffer_new(bh)) {
2011                         void *kaddr;
2012
2013                         clear_buffer_new(bh);
2014                         kaddr = kmap_atomic(page, KM_USER0);
2015                         memset(kaddr+block_start, 0, bh->b_size);
2016                         kunmap_atomic(kaddr, KM_USER0);
2017                         set_buffer_uptodate(bh);
2018                         mark_buffer_dirty(bh);
2019                 }
2020 next_bh:
2021                 block_start = block_end;
2022                 bh = bh->b_this_page;
2023         } while (bh != head);
2024         return err;
2025 }
2026
2027 static int __block_commit_write(struct inode *inode, struct page *page,
2028                 unsigned from, unsigned to)
2029 {
2030         unsigned block_start, block_end;
2031         int partial = 0;
2032         unsigned blocksize;
2033         struct buffer_head *bh, *head;
2034
2035         blocksize = 1 << inode->i_blkbits;
2036
2037         for(bh = head = page_buffers(page), block_start = 0;
2038             bh != head || !block_start;
2039             block_start=block_end, bh = bh->b_this_page) {
2040                 block_end = block_start + blocksize;
2041                 if (block_end <= from || block_start >= to) {
2042                         if (!buffer_uptodate(bh))
2043                                 partial = 1;
2044                 } else {
2045                         set_buffer_uptodate(bh);
2046                         mark_buffer_dirty(bh);
2047                 }
2048         }
2049
2050         /*
2051          * If this is a partial write which happened to make all buffers
2052          * uptodate then we can optimize away a bogus readpage() for
2053          * the next read(). Here we 'discover' whether the page went
2054          * uptodate as a result of this (potentially partial) write.
2055          */
2056         if (!partial)
2057                 SetPageUptodate(page);
2058         return 0;
2059 }
2060
2061 /*
2062  * Generic "read page" function for block devices that have the normal
2063  * get_block functionality. This is most of the block device filesystems.
2064  * Reads the page asynchronously --- the unlock_buffer() and
2065  * set/clear_buffer_uptodate() functions propagate buffer state into the
2066  * page struct once IO has completed.
2067  */
2068 int block_read_full_page(struct page *page, get_block_t *get_block)
2069 {
2070         struct inode *inode = page->mapping->host;
2071         sector_t iblock, lblock;
2072         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2073         unsigned int blocksize;
2074         int nr, i;
2075         int fully_mapped = 1;
2076
2077         BUG_ON(!PageLocked(page));
2078         blocksize = 1 << inode->i_blkbits;
2079         if (!page_has_buffers(page))
2080                 create_empty_buffers(page, blocksize, 0);
2081         head = page_buffers(page);
2082
2083         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2084         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2085         bh = head;
2086         nr = 0;
2087         i = 0;
2088
2089         do {
2090                 if (buffer_uptodate(bh))
2091                         continue;
2092
2093                 if (!buffer_mapped(bh)) {
2094                         int err = 0;
2095
2096                         fully_mapped = 0;
2097                         if (iblock < lblock) {
2098                                 WARN_ON(bh->b_size != blocksize);
2099                                 err = get_block(inode, iblock, bh, 0);
2100                                 if (err)
2101                                         SetPageError(page);
2102                         }
2103                         if (!buffer_mapped(bh)) {
2104                                 void *kaddr = kmap_atomic(page, KM_USER0);
2105                                 memset(kaddr + i * blocksize, 0, blocksize);
2106                                 flush_dcache_page(page);
2107                                 kunmap_atomic(kaddr, KM_USER0);
2108                                 if (!err)
2109                                         set_buffer_uptodate(bh);
2110                                 continue;
2111                         }
2112                         /*
2113                          * get_block() might have updated the buffer
2114                          * synchronously
2115                          */
2116                         if (buffer_uptodate(bh))
2117                                 continue;
2118                 }
2119                 arr[nr++] = bh;
2120         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2121
2122         if (fully_mapped)
2123                 SetPageMappedToDisk(page);
2124
2125         if (!nr) {
2126                 /*
2127                  * All buffers are uptodate - we can set the page uptodate
2128                  * as well. But not if get_block() returned an error.
2129                  */
2130                 if (!PageError(page))
2131                         SetPageUptodate(page);
2132                 unlock_page(page);
2133                 return 0;
2134         }
2135
2136         /* Stage two: lock the buffers */
2137         for (i = 0; i < nr; i++) {
2138                 bh = arr[i];
2139                 lock_buffer(bh);
2140                 mark_buffer_async_read(bh);
2141         }
2142
2143         /*
2144          * Stage 3: start the IO.  Check for uptodateness
2145          * inside the buffer lock in case another process reading
2146          * the underlying blockdev brought it uptodate (the sct fix).
2147          */
2148         for (i = 0; i < nr; i++) {
2149                 bh = arr[i];
2150                 if (buffer_uptodate(bh))
2151                         end_buffer_async_read(bh, 1);
2152                 else
2153                         submit_bh(READ, bh);
2154         }
2155         return 0;
2156 }
2157
2158 /* utility function for filesystems that need to do work on expanding
2159  * truncates.  Uses prepare/commit_write to allow the filesystem to
2160  * deal with the hole.  
2161  */
2162 static int __generic_cont_expand(struct inode *inode, loff_t size,
2163                                  pgoff_t index, unsigned int offset)
2164 {
2165         struct address_space *mapping = inode->i_mapping;
2166         struct page *page;
2167         unsigned long limit;
2168         int err;
2169
2170         err = -EFBIG;
2171         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2172         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2173                 send_sig(SIGXFSZ, current, 0);
2174                 goto out;
2175         }
2176         if (size > inode->i_sb->s_maxbytes)
2177                 goto out;
2178
2179         err = -ENOMEM;
2180         page = grab_cache_page(mapping, index);
2181         if (!page)
2182                 goto out;
2183         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2184         if (err) {
2185                 /*
2186                  * ->prepare_write() may have instantiated a few blocks
2187                  * outside i_size.  Trim these off again.
2188                  */
2189                 unlock_page(page);
2190                 page_cache_release(page);
2191                 vmtruncate(inode, inode->i_size);
2192                 goto out;
2193         }
2194
2195         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2196
2197         unlock_page(page);
2198         page_cache_release(page);
2199         if (err > 0)
2200                 err = 0;
2201 out:
2202         return err;
2203 }
2204
2205 int generic_cont_expand(struct inode *inode, loff_t size)
2206 {
2207         pgoff_t index;
2208         unsigned int offset;
2209
2210         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2211
2212         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2213         ** skip the prepare.  make sure we never send an offset for the start
2214         ** of a block
2215         */
2216         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2217                 /* caller must handle this extra byte. */
2218                 offset++;
2219         }
2220         index = size >> PAGE_CACHE_SHIFT;
2221
2222         return __generic_cont_expand(inode, size, index, offset);
2223 }
2224
2225 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2226 {
2227         loff_t pos = size - 1;
2228         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2229         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2230
2231         /* prepare/commit_write can handle even if from==to==start of block. */
2232         return __generic_cont_expand(inode, size, index, offset);
2233 }
2234
2235 /*
2236  * For moronic filesystems that do not allow holes in file.
2237  * We may have to extend the file.
2238  */
2239
2240 int cont_prepare_write(struct page *page, unsigned offset,
2241                 unsigned to, get_block_t *get_block, loff_t *bytes)
2242 {
2243         struct address_space *mapping = page->mapping;
2244         struct inode *inode = mapping->host;
2245         struct page *new_page;
2246         pgoff_t pgpos;
2247         long status;
2248         unsigned zerofrom;
2249         unsigned blocksize = 1 << inode->i_blkbits;
2250         void *kaddr;
2251
2252         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2253                 status = -ENOMEM;
2254                 new_page = grab_cache_page(mapping, pgpos);
2255                 if (!new_page)
2256                         goto out;
2257                 /* we might sleep */
2258                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2259                         unlock_page(new_page);
2260                         page_cache_release(new_page);
2261                         continue;
2262                 }
2263                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2264                 if (zerofrom & (blocksize-1)) {
2265                         *bytes |= (blocksize-1);
2266                         (*bytes)++;
2267                 }
2268                 status = __block_prepare_write(inode, new_page, zerofrom,
2269                                                 PAGE_CACHE_SIZE, get_block);
2270                 if (status)
2271                         goto out_unmap;
2272                 kaddr = kmap_atomic(new_page, KM_USER0);
2273                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2274                 flush_dcache_page(new_page);
2275                 kunmap_atomic(kaddr, KM_USER0);
2276                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2277                 unlock_page(new_page);
2278                 page_cache_release(new_page);
2279         }
2280
2281         if (page->index < pgpos) {
2282                 /* completely inside the area */
2283                 zerofrom = offset;
2284         } else {
2285                 /* page covers the boundary, find the boundary offset */
2286                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2287
2288                 /* if we will expand the thing last block will be filled */
2289                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2290                         *bytes |= (blocksize-1);
2291                         (*bytes)++;
2292                 }
2293
2294                 /* starting below the boundary? Nothing to zero out */
2295                 if (offset <= zerofrom)
2296                         zerofrom = offset;
2297         }
2298         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2299         if (status)
2300                 goto out1;
2301         if (zerofrom < offset) {
2302                 kaddr = kmap_atomic(page, KM_USER0);
2303                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2304                 flush_dcache_page(page);
2305                 kunmap_atomic(kaddr, KM_USER0);
2306                 __block_commit_write(inode, page, zerofrom, offset);
2307         }
2308         return 0;
2309 out1:
2310         ClearPageUptodate(page);
2311         return status;
2312
2313 out_unmap:
2314         ClearPageUptodate(new_page);
2315         unlock_page(new_page);
2316         page_cache_release(new_page);
2317 out:
2318         return status;
2319 }
2320
2321 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2322                         get_block_t *get_block)
2323 {
2324         struct inode *inode = page->mapping->host;
2325         int err = __block_prepare_write(inode, page, from, to, get_block);
2326         if (err)
2327                 ClearPageUptodate(page);
2328         return err;
2329 }
2330
2331 int block_commit_write(struct page *page, unsigned from, unsigned to)
2332 {
2333         struct inode *inode = page->mapping->host;
2334         __block_commit_write(inode,page,from,to);
2335         return 0;
2336 }
2337
2338 int generic_commit_write(struct file *file, struct page *page,
2339                 unsigned from, unsigned to)
2340 {
2341         struct inode *inode = page->mapping->host;
2342         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2343         __block_commit_write(inode,page,from,to);
2344         /*
2345          * No need to use i_size_read() here, the i_size
2346          * cannot change under us because we hold i_mutex.
2347          */
2348         if (pos > inode->i_size) {
2349                 i_size_write(inode, pos);
2350                 mark_inode_dirty(inode);
2351         }
2352         return 0;
2353 }
2354
2355
2356 /*
2357  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2358  * immediately, while under the page lock.  So it needs a special end_io
2359  * handler which does not touch the bh after unlocking it.
2360  *
2361  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2362  * a race there is benign: unlock_buffer() only use the bh's address for
2363  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2364  * itself.
2365  */
2366 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2367 {
2368         if (uptodate) {
2369                 set_buffer_uptodate(bh);
2370         } else {
2371                 /* This happens, due to failed READA attempts. */
2372                 clear_buffer_uptodate(bh);
2373         }
2374         unlock_buffer(bh);
2375 }
2376
2377 /*
2378  * On entry, the page is fully not uptodate.
2379  * On exit the page is fully uptodate in the areas outside (from,to)
2380  */
2381 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2382                         get_block_t *get_block)
2383 {
2384         struct inode *inode = page->mapping->host;
2385         const unsigned blkbits = inode->i_blkbits;
2386         const unsigned blocksize = 1 << blkbits;
2387         struct buffer_head map_bh;
2388         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2389         unsigned block_in_page;
2390         unsigned block_start;
2391         sector_t block_in_file;
2392         char *kaddr;
2393         int nr_reads = 0;
2394         int i;
2395         int ret = 0;
2396         int is_mapped_to_disk = 1;
2397         int dirtied_it = 0;
2398
2399         if (PageMappedToDisk(page))
2400                 return 0;
2401
2402         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2403         map_bh.b_page = page;
2404
2405         /*
2406          * We loop across all blocks in the page, whether or not they are
2407          * part of the affected region.  This is so we can discover if the
2408          * page is fully mapped-to-disk.
2409          */
2410         for (block_start = 0, block_in_page = 0;
2411                   block_start < PAGE_CACHE_SIZE;
2412                   block_in_page++, block_start += blocksize) {
2413                 unsigned block_end = block_start + blocksize;
2414                 int create;
2415
2416                 map_bh.b_state = 0;
2417                 create = 1;
2418                 if (block_start >= to)
2419                         create = 0;
2420                 map_bh.b_size = blocksize;
2421                 ret = get_block(inode, block_in_file + block_in_page,
2422                                         &map_bh, create);
2423                 if (ret)
2424                         goto failed;
2425                 if (!buffer_mapped(&map_bh))
2426                         is_mapped_to_disk = 0;
2427                 if (buffer_new(&map_bh))
2428                         unmap_underlying_metadata(map_bh.b_bdev,
2429                                                         map_bh.b_blocknr);
2430                 if (PageUptodate(page))
2431                         continue;
2432                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2433                         kaddr = kmap_atomic(page, KM_USER0);
2434                         if (block_start < from) {
2435                                 memset(kaddr+block_start, 0, from-block_start);
2436                                 dirtied_it = 1;
2437                         }
2438                         if (block_end > to) {
2439                                 memset(kaddr + to, 0, block_end - to);
2440                                 dirtied_it = 1;
2441                         }
2442                         flush_dcache_page(page);
2443                         kunmap_atomic(kaddr, KM_USER0);
2444                         continue;
2445                 }
2446                 if (buffer_uptodate(&map_bh))
2447                         continue;       /* reiserfs does this */
2448                 if (block_start < from || block_end > to) {
2449                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2450
2451                         if (!bh) {
2452                                 ret = -ENOMEM;
2453                                 goto failed;
2454                         }
2455                         bh->b_state = map_bh.b_state;
2456                         atomic_set(&bh->b_count, 0);
2457                         bh->b_this_page = NULL;
2458                         bh->b_page = page;
2459                         bh->b_blocknr = map_bh.b_blocknr;
2460                         bh->b_size = blocksize;
2461                         bh->b_data = (char *)(long)block_start;
2462                         bh->b_bdev = map_bh.b_bdev;
2463                         bh->b_private = NULL;
2464                         read_bh[nr_reads++] = bh;
2465                 }
2466         }
2467
2468         if (nr_reads) {
2469                 struct buffer_head *bh;
2470
2471                 /*
2472                  * The page is locked, so these buffers are protected from
2473                  * any VM or truncate activity.  Hence we don't need to care
2474                  * for the buffer_head refcounts.
2475                  */
2476                 for (i = 0; i < nr_reads; i++) {
2477                         bh = read_bh[i];
2478                         lock_buffer(bh);
2479                         bh->b_end_io = end_buffer_read_nobh;
2480                         submit_bh(READ, bh);
2481                 }
2482                 for (i = 0; i < nr_reads; i++) {
2483                         bh = read_bh[i];
2484                         wait_on_buffer(bh);
2485                         if (!buffer_uptodate(bh))
2486                                 ret = -EIO;
2487                         free_buffer_head(bh);
2488                         read_bh[i] = NULL;
2489                 }
2490                 if (ret)
2491                         goto failed;
2492         }
2493
2494         if (is_mapped_to_disk)
2495                 SetPageMappedToDisk(page);
2496         SetPageUptodate(page);
2497
2498         /*
2499          * Setting the page dirty here isn't necessary for the prepare_write
2500          * function - commit_write will do that.  But if/when this function is
2501          * used within the pagefault handler to ensure that all mmapped pages
2502          * have backing space in the filesystem, we will need to dirty the page
2503          * if its contents were altered.
2504          */
2505         if (dirtied_it)
2506                 set_page_dirty(page);
2507
2508         return 0;
2509
2510 failed:
2511         for (i = 0; i < nr_reads; i++) {
2512                 if (read_bh[i])
2513                         free_buffer_head(read_bh[i]);
2514         }
2515
2516         /*
2517          * Error recovery is pretty slack.  Clear the page and mark it dirty
2518          * so we'll later zero out any blocks which _were_ allocated.
2519          */
2520         kaddr = kmap_atomic(page, KM_USER0);
2521         memset(kaddr, 0, PAGE_CACHE_SIZE);
2522         kunmap_atomic(kaddr, KM_USER0);
2523         SetPageUptodate(page);
2524         set_page_dirty(page);
2525         return ret;
2526 }
2527 EXPORT_SYMBOL(nobh_prepare_write);
2528
2529 int nobh_commit_write(struct file *file, struct page *page,
2530                 unsigned from, unsigned to)
2531 {
2532         struct inode *inode = page->mapping->host;
2533         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2534
2535         set_page_dirty(page);
2536         if (pos > inode->i_size) {
2537                 i_size_write(inode, pos);
2538                 mark_inode_dirty(inode);
2539         }
2540         return 0;
2541 }
2542 EXPORT_SYMBOL(nobh_commit_write);
2543
2544 /*
2545  * nobh_writepage() - based on block_full_write_page() except
2546  * that it tries to operate without attaching bufferheads to
2547  * the page.
2548  */
2549 int nobh_writepage(struct page *page, get_block_t *get_block,
2550                         struct writeback_control *wbc)
2551 {
2552         struct inode * const inode = page->mapping->host;
2553         loff_t i_size = i_size_read(inode);
2554         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2555         unsigned offset;
2556         void *kaddr;
2557         int ret;
2558
2559         /* Is the page fully inside i_size? */
2560         if (page->index < end_index)
2561                 goto out;
2562
2563         /* Is the page fully outside i_size? (truncate in progress) */
2564         offset = i_size & (PAGE_CACHE_SIZE-1);
2565         if (page->index >= end_index+1 || !offset) {
2566                 /*
2567                  * The page may have dirty, unmapped buffers.  For example,
2568                  * they may have been added in ext3_writepage().  Make them
2569                  * freeable here, so the page does not leak.
2570                  */
2571 #if 0
2572                 /* Not really sure about this  - do we need this ? */
2573                 if (page->mapping->a_ops->invalidatepage)
2574                         page->mapping->a_ops->invalidatepage(page, offset);
2575 #endif
2576                 unlock_page(page);
2577                 return 0; /* don't care */
2578         }
2579
2580         /*
2581          * The page straddles i_size.  It must be zeroed out on each and every
2582          * writepage invocation because it may be mmapped.  "A file is mapped
2583          * in multiples of the page size.  For a file that is not a multiple of
2584          * the  page size, the remaining memory is zeroed when mapped, and
2585          * writes to that region are not written out to the file."
2586          */
2587         kaddr = kmap_atomic(page, KM_USER0);
2588         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2589         flush_dcache_page(page);
2590         kunmap_atomic(kaddr, KM_USER0);
2591 out:
2592         ret = mpage_writepage(page, get_block, wbc);
2593         if (ret == -EAGAIN)
2594                 ret = __block_write_full_page(inode, page, get_block, wbc);
2595         return ret;
2596 }
2597 EXPORT_SYMBOL(nobh_writepage);
2598
2599 /*
2600  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2601  */
2602 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2603 {
2604         struct inode *inode = mapping->host;
2605         unsigned blocksize = 1 << inode->i_blkbits;
2606         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2607         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2608         unsigned to;
2609         struct page *page;
2610         const struct address_space_operations *a_ops = mapping->a_ops;
2611         char *kaddr;
2612         int ret = 0;
2613
2614         if ((offset & (blocksize - 1)) == 0)
2615                 goto out;
2616
2617         ret = -ENOMEM;
2618         page = grab_cache_page(mapping, index);
2619         if (!page)
2620                 goto out;
2621
2622         to = (offset + blocksize) & ~(blocksize - 1);
2623         ret = a_ops->prepare_write(NULL, page, offset, to);
2624         if (ret == 0) {
2625                 kaddr = kmap_atomic(page, KM_USER0);
2626                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2627                 flush_dcache_page(page);
2628                 kunmap_atomic(kaddr, KM_USER0);
2629                 set_page_dirty(page);
2630         }
2631         unlock_page(page);
2632         page_cache_release(page);
2633 out:
2634         return ret;
2635 }
2636 EXPORT_SYMBOL(nobh_truncate_page);
2637
2638 int block_truncate_page(struct address_space *mapping,
2639                         loff_t from, get_block_t *get_block)
2640 {
2641         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2642         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2643         unsigned blocksize;
2644         sector_t iblock;
2645         unsigned length, pos;
2646         struct inode *inode = mapping->host;
2647         struct page *page;
2648         struct buffer_head *bh;
2649         void *kaddr;
2650         int err;
2651
2652         blocksize = 1 << inode->i_blkbits;
2653         length = offset & (blocksize - 1);
2654
2655         /* Block boundary? Nothing to do */
2656         if (!length)
2657                 return 0;
2658
2659         length = blocksize - length;
2660         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2661         
2662         page = grab_cache_page(mapping, index);
2663         err = -ENOMEM;
2664         if (!page)
2665                 goto out;
2666
2667         if (!page_has_buffers(page))
2668                 create_empty_buffers(page, blocksize, 0);
2669
2670         /* Find the buffer that contains "offset" */
2671         bh = page_buffers(page);
2672         pos = blocksize;
2673         while (offset >= pos) {
2674                 bh = bh->b_this_page;
2675                 iblock++;
2676                 pos += blocksize;
2677         }
2678
2679         err = 0;
2680         if (!buffer_mapped(bh)) {
2681                 WARN_ON(bh->b_size != blocksize);
2682                 err = get_block(inode, iblock, bh, 0);
2683                 if (err)
2684                         goto unlock;
2685                 /* unmapped? It's a hole - nothing to do */
2686                 if (!buffer_mapped(bh))
2687                         goto unlock;
2688         }
2689
2690         /* Ok, it's mapped. Make sure it's up-to-date */
2691         if (PageUptodate(page))
2692                 set_buffer_uptodate(bh);
2693
2694         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2695                 err = -EIO;
2696                 ll_rw_block(READ, 1, &bh);
2697                 wait_on_buffer(bh);
2698                 /* Uhhuh. Read error. Complain and punt. */
2699                 if (!buffer_uptodate(bh))
2700                         goto unlock;
2701         }
2702
2703         kaddr = kmap_atomic(page, KM_USER0);
2704         memset(kaddr + offset, 0, length);
2705         flush_dcache_page(page);
2706         kunmap_atomic(kaddr, KM_USER0);
2707
2708         mark_buffer_dirty(bh);
2709         err = 0;
2710
2711 unlock:
2712         unlock_page(page);
2713         page_cache_release(page);
2714 out:
2715         return err;
2716 }
2717
2718 /*
2719  * The generic ->writepage function for buffer-backed address_spaces
2720  */
2721 int block_write_full_page(struct page *page, get_block_t *get_block,
2722                         struct writeback_control *wbc)
2723 {
2724         struct inode * const inode = page->mapping->host;
2725         loff_t i_size = i_size_read(inode);
2726         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2727         unsigned offset;
2728         void *kaddr;
2729
2730         /* Is the page fully inside i_size? */
2731         if (page->index < end_index)
2732                 return __block_write_full_page(inode, page, get_block, wbc);
2733
2734         /* Is the page fully outside i_size? (truncate in progress) */
2735         offset = i_size & (PAGE_CACHE_SIZE-1);
2736         if (page->index >= end_index+1 || !offset) {
2737                 /*
2738                  * The page may have dirty, unmapped buffers.  For example,
2739                  * they may have been added in ext3_writepage().  Make them
2740                  * freeable here, so the page does not leak.
2741                  */
2742                 do_invalidatepage(page, 0);
2743                 unlock_page(page);
2744                 return 0; /* don't care */
2745         }
2746
2747         /*
2748          * The page straddles i_size.  It must be zeroed out on each and every
2749          * writepage invokation because it may be mmapped.  "A file is mapped
2750          * in multiples of the page size.  For a file that is not a multiple of
2751          * the  page size, the remaining memory is zeroed when mapped, and
2752          * writes to that region are not written out to the file."
2753          */
2754         kaddr = kmap_atomic(page, KM_USER0);
2755         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2756         flush_dcache_page(page);
2757         kunmap_atomic(kaddr, KM_USER0);
2758         return __block_write_full_page(inode, page, get_block, wbc);
2759 }
2760
2761 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2762                             get_block_t *get_block)
2763 {
2764         struct buffer_head tmp;
2765         struct inode *inode = mapping->host;
2766         tmp.b_state = 0;
2767         tmp.b_blocknr = 0;
2768         tmp.b_size = 1 << inode->i_blkbits;
2769         get_block(inode, block, &tmp, 0);
2770         return tmp.b_blocknr;
2771 }
2772
2773 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2774 {
2775         struct buffer_head *bh = bio->bi_private;
2776
2777         if (bio->bi_size)
2778                 return 1;
2779
2780         if (err == -EOPNOTSUPP) {
2781                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2782                 set_bit(BH_Eopnotsupp, &bh->b_state);
2783         }
2784
2785         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2786         bio_put(bio);
2787         return 0;
2788 }
2789
2790 int submit_bh(int rw, struct buffer_head * bh)
2791 {
2792         struct bio *bio;
2793         int ret = 0;
2794
2795         BUG_ON(!buffer_locked(bh));
2796         BUG_ON(!buffer_mapped(bh));
2797         BUG_ON(!bh->b_end_io);
2798
2799         if (buffer_ordered(bh) && (rw == WRITE))
2800                 rw = WRITE_BARRIER;
2801
2802         /*
2803          * Only clear out a write error when rewriting, should this
2804          * include WRITE_SYNC as well?
2805          */
2806         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2807                 clear_buffer_write_io_error(bh);
2808
2809         /*
2810          * from here on down, it's all bio -- do the initial mapping,
2811          * submit_bio -> generic_make_request may further map this bio around
2812          */
2813         bio = bio_alloc(GFP_NOIO, 1);
2814
2815         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2816         bio->bi_bdev = bh->b_bdev;
2817         bio->bi_io_vec[0].bv_page = bh->b_page;
2818         bio->bi_io_vec[0].bv_len = bh->b_size;
2819         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2820
2821         bio->bi_vcnt = 1;
2822         bio->bi_idx = 0;
2823         bio->bi_size = bh->b_size;
2824
2825         bio->bi_end_io = end_bio_bh_io_sync;
2826         bio->bi_private = bh;
2827
2828         bio_get(bio);
2829         submit_bio(rw, bio);
2830
2831         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2832                 ret = -EOPNOTSUPP;
2833
2834         bio_put(bio);
2835         return ret;
2836 }
2837
2838 /**
2839  * ll_rw_block: low-level access to block devices (DEPRECATED)
2840  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2841  * @nr: number of &struct buffer_heads in the array
2842  * @bhs: array of pointers to &struct buffer_head
2843  *
2844  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2845  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2846  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2847  * are sent to disk. The fourth %READA option is described in the documentation
2848  * for generic_make_request() which ll_rw_block() calls.
2849  *
2850  * This function drops any buffer that it cannot get a lock on (with the
2851  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2852  * clean when doing a write request, and any buffer that appears to be
2853  * up-to-date when doing read request.  Further it marks as clean buffers that
2854  * are processed for writing (the buffer cache won't assume that they are
2855  * actually clean until the buffer gets unlocked).
2856  *
2857  * ll_rw_block sets b_end_io to simple completion handler that marks
2858  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2859  * any waiters. 
2860  *
2861  * All of the buffers must be for the same device, and must also be a
2862  * multiple of the current approved size for the device.
2863  */
2864 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2865 {
2866         int i;
2867
2868         for (i = 0; i < nr; i++) {
2869                 struct buffer_head *bh = bhs[i];
2870
2871                 if (rw == SWRITE)
2872                         lock_buffer(bh);
2873                 else if (test_set_buffer_locked(bh))
2874                         continue;
2875
2876                 if (rw == WRITE || rw == SWRITE) {
2877                         if (test_clear_buffer_dirty(bh)) {
2878                                 bh->b_end_io = end_buffer_write_sync;
2879                                 get_bh(bh);
2880                                 submit_bh(WRITE, bh);
2881                                 continue;
2882                         }
2883                 } else {
2884                         if (!buffer_uptodate(bh)) {
2885                                 bh->b_end_io = end_buffer_read_sync;
2886                                 get_bh(bh);
2887                                 submit_bh(rw, bh);
2888                                 continue;
2889                         }
2890                 }
2891                 unlock_buffer(bh);
2892         }
2893 }
2894
2895 /*
2896  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2897  * and then start new I/O and then wait upon it.  The caller must have a ref on
2898  * the buffer_head.
2899  */
2900 int sync_dirty_buffer(struct buffer_head *bh)
2901 {
2902         int ret = 0;
2903
2904         WARN_ON(atomic_read(&bh->b_count) < 1);
2905         lock_buffer(bh);
2906         if (test_clear_buffer_dirty(bh)) {
2907                 get_bh(bh);
2908                 bh->b_end_io = end_buffer_write_sync;
2909                 ret = submit_bh(WRITE, bh);
2910                 wait_on_buffer(bh);
2911                 if (buffer_eopnotsupp(bh)) {
2912                         clear_buffer_eopnotsupp(bh);
2913                         ret = -EOPNOTSUPP;
2914                 }
2915                 if (!ret && !buffer_uptodate(bh))
2916                         ret = -EIO;
2917         } else {
2918                 unlock_buffer(bh);
2919         }
2920         return ret;
2921 }
2922
2923 /*
2924  * try_to_free_buffers() checks if all the buffers on this particular page
2925  * are unused, and releases them if so.
2926  *
2927  * Exclusion against try_to_free_buffers may be obtained by either
2928  * locking the page or by holding its mapping's private_lock.
2929  *
2930  * If the page is dirty but all the buffers are clean then we need to
2931  * be sure to mark the page clean as well.  This is because the page
2932  * may be against a block device, and a later reattachment of buffers
2933  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2934  * filesystem data on the same device.
2935  *
2936  * The same applies to regular filesystem pages: if all the buffers are
2937  * clean then we set the page clean and proceed.  To do that, we require
2938  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2939  * private_lock.
2940  *
2941  * try_to_free_buffers() is non-blocking.
2942  */
2943 static inline int buffer_busy(struct buffer_head *bh)
2944 {
2945         return atomic_read(&bh->b_count) |
2946                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2947 }
2948
2949 static int
2950 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2951 {
2952         struct buffer_head *head = page_buffers(page);
2953         struct buffer_head *bh;
2954
2955         bh = head;
2956         do {
2957                 if (buffer_write_io_error(bh) && page->mapping)
2958                         set_bit(AS_EIO, &page->mapping->flags);
2959                 if (buffer_busy(bh))
2960                         goto failed;
2961                 bh = bh->b_this_page;
2962         } while (bh != head);
2963
2964         do {
2965                 struct buffer_head *next = bh->b_this_page;
2966
2967                 if (!list_empty(&bh->b_assoc_buffers))
2968                         __remove_assoc_queue(bh);
2969                 bh = next;
2970         } while (bh != head);
2971         *buffers_to_free = head;
2972         __clear_page_buffers(page);
2973         return 1;
2974 failed:
2975         return 0;
2976 }
2977
2978 int try_to_free_buffers(struct page *page)
2979 {
2980         struct address_space * const mapping = page->mapping;
2981         struct buffer_head *buffers_to_free = NULL;
2982         int ret = 0;
2983
2984         BUG_ON(!PageLocked(page));
2985         if (PageWriteback(page))
2986                 return 0;
2987
2988         if (mapping == NULL) {          /* can this still happen? */
2989                 ret = drop_buffers(page, &buffers_to_free);
2990                 goto out;
2991         }
2992
2993         spin_lock(&mapping->private_lock);
2994         ret = drop_buffers(page, &buffers_to_free);
2995         spin_unlock(&mapping->private_lock);
2996         if (ret) {
2997                 /*
2998                  * If the filesystem writes its buffers by hand (eg ext3)
2999                  * then we can have clean buffers against a dirty page.  We
3000                  * clean the page here; otherwise later reattachment of buffers
3001                  * could encounter a non-uptodate page, which is unresolvable.
3002                  * This only applies in the rare case where try_to_free_buffers
3003                  * succeeds but the page is not freed.
3004                  */
3005                 clear_page_dirty(page);
3006         }
3007 out:
3008         if (buffers_to_free) {
3009                 struct buffer_head *bh = buffers_to_free;
3010
3011                 do {
3012                         struct buffer_head *next = bh->b_this_page;
3013                         free_buffer_head(bh);
3014                         bh = next;
3015                 } while (bh != buffers_to_free);
3016         }
3017         return ret;
3018 }
3019 EXPORT_SYMBOL(try_to_free_buffers);
3020
3021 void block_sync_page(struct page *page)
3022 {
3023         struct address_space *mapping;
3024
3025         smp_mb();
3026         mapping = page_mapping(page);
3027         if (mapping)
3028                 blk_run_backing_dev(mapping->backing_dev_info, page);
3029 }
3030
3031 /*
3032  * There are no bdflush tunables left.  But distributions are
3033  * still running obsolete flush daemons, so we terminate them here.
3034  *
3035  * Use of bdflush() is deprecated and will be removed in a future kernel.
3036  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3037  */
3038 asmlinkage long sys_bdflush(int func, long data)
3039 {
3040         static int msg_count;
3041
3042         if (!capable(CAP_SYS_ADMIN))
3043                 return -EPERM;
3044
3045         if (msg_count < 5) {
3046                 msg_count++;
3047                 printk(KERN_INFO
3048                         "warning: process `%s' used the obsolete bdflush"
3049                         " system call\n", current->comm);
3050                 printk(KERN_INFO "Fix your initscripts?\n");
3051         }
3052
3053         if (func == 1)
3054                 do_exit(0);
3055         return 0;
3056 }
3057
3058 /*
3059  * Buffer-head allocation
3060  */
3061 static kmem_cache_t *bh_cachep;
3062
3063 /*
3064  * Once the number of bh's in the machine exceeds this level, we start
3065  * stripping them in writeback.
3066  */
3067 static int max_buffer_heads;
3068
3069 int buffer_heads_over_limit;
3070
3071 struct bh_accounting {
3072         int nr;                 /* Number of live bh's */
3073         int ratelimit;          /* Limit cacheline bouncing */
3074 };
3075
3076 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3077
3078 static void recalc_bh_state(void)
3079 {
3080         int i;
3081         int tot = 0;
3082
3083         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3084                 return;
3085         __get_cpu_var(bh_accounting).ratelimit = 0;
3086         for_each_online_cpu(i)
3087                 tot += per_cpu(bh_accounting, i).nr;
3088         buffer_heads_over_limit = (tot > max_buffer_heads);
3089 }
3090         
3091 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3092 {
3093         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3094         if (ret) {
3095                 get_cpu_var(bh_accounting).nr++;
3096                 recalc_bh_state();
3097                 put_cpu_var(bh_accounting);
3098         }
3099         return ret;
3100 }
3101 EXPORT_SYMBOL(alloc_buffer_head);
3102
3103 void free_buffer_head(struct buffer_head *bh)
3104 {
3105         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3106         kmem_cache_free(bh_cachep, bh);
3107         get_cpu_var(bh_accounting).nr--;
3108         recalc_bh_state();
3109         put_cpu_var(bh_accounting);
3110 }
3111 EXPORT_SYMBOL(free_buffer_head);
3112
3113 static void
3114 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3115 {
3116         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3117                             SLAB_CTOR_CONSTRUCTOR) {
3118                 struct buffer_head * bh = (struct buffer_head *)data;
3119
3120                 memset(bh, 0, sizeof(*bh));
3121                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3122         }
3123 }
3124
3125 #ifdef CONFIG_HOTPLUG_CPU
3126 static void buffer_exit_cpu(int cpu)
3127 {
3128         int i;
3129         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3130
3131         for (i = 0; i < BH_LRU_SIZE; i++) {
3132                 brelse(b->bhs[i]);
3133                 b->bhs[i] = NULL;
3134         }
3135         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3136         per_cpu(bh_accounting, cpu).nr = 0;
3137         put_cpu_var(bh_accounting);
3138 }
3139
3140 static int buffer_cpu_notify(struct notifier_block *self,
3141                               unsigned long action, void *hcpu)
3142 {
3143         if (action == CPU_DEAD)
3144                 buffer_exit_cpu((unsigned long)hcpu);
3145         return NOTIFY_OK;
3146 }
3147 #endif /* CONFIG_HOTPLUG_CPU */
3148
3149 void __init buffer_init(void)
3150 {
3151         int nrpages;
3152
3153         bh_cachep = kmem_cache_create("buffer_head",
3154                                         sizeof(struct buffer_head), 0,
3155                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3156                                         SLAB_MEM_SPREAD),
3157                                         init_buffer_head,
3158                                         NULL);
3159
3160         /*
3161          * Limit the bh occupancy to 10% of ZONE_NORMAL
3162          */
3163         nrpages = (nr_free_buffer_pages() * 10) / 100;
3164         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3165         hotcpu_notifier(buffer_cpu_notify, 0);
3166 }
3167
3168 EXPORT_SYMBOL(__bforget);
3169 EXPORT_SYMBOL(__brelse);
3170 EXPORT_SYMBOL(__wait_on_buffer);
3171 EXPORT_SYMBOL(block_commit_write);
3172 EXPORT_SYMBOL(block_prepare_write);
3173 EXPORT_SYMBOL(block_read_full_page);
3174 EXPORT_SYMBOL(block_sync_page);
3175 EXPORT_SYMBOL(block_truncate_page);
3176 EXPORT_SYMBOL(block_write_full_page);
3177 EXPORT_SYMBOL(cont_prepare_write);
3178 EXPORT_SYMBOL(end_buffer_read_sync);
3179 EXPORT_SYMBOL(end_buffer_write_sync);
3180 EXPORT_SYMBOL(file_fsync);
3181 EXPORT_SYMBOL(fsync_bdev);
3182 EXPORT_SYMBOL(generic_block_bmap);
3183 EXPORT_SYMBOL(generic_commit_write);
3184 EXPORT_SYMBOL(generic_cont_expand);
3185 EXPORT_SYMBOL(generic_cont_expand_simple);
3186 EXPORT_SYMBOL(init_buffer);
3187 EXPORT_SYMBOL(invalidate_bdev);
3188 EXPORT_SYMBOL(ll_rw_block);
3189 EXPORT_SYMBOL(mark_buffer_dirty);
3190 EXPORT_SYMBOL(submit_bh);
3191 EXPORT_SYMBOL(sync_dirty_buffer);
3192 EXPORT_SYMBOL(unlock_buffer);