Merge to Fedora kernel-2.6.18-1.2239_FC5 patched with stable patch-2.6.18.2-vs2.0...
[linux-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev)
157                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158         return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 static void __fsync_super(struct super_block *sb)
163 {
164         sync_inodes_sb(sb, 0);
165         DQUOT_SYNC(sb);
166         lock_super(sb);
167         if (sb->s_dirt && sb->s_op->write_super)
168                 sb->s_op->write_super(sb);
169         unlock_super(sb);
170         if (sb->s_op->sync_fs)
171                 sb->s_op->sync_fs(sb, 1);
172         sync_blockdev(sb->s_bdev);
173         sync_inodes_sb(sb, 1);
174 }
175
176 /*
177  * Write out and wait upon all dirty data associated with this
178  * superblock.  Filesystem data as well as the underlying block
179  * device.  Takes the superblock lock.
180  */
181 int fsync_super(struct super_block *sb)
182 {
183         __fsync_super(sb);
184         return sync_blockdev(sb->s_bdev);
185 }
186
187 EXPORT_SYMBOL(fsync_super);
188
189 /*
190  * Write out and wait upon all dirty data associated with this
191  * device.   Filesystem data as well as the underlying block
192  * device.  Takes the superblock lock.
193  */
194 int fsync_bdev(struct block_device *bdev)
195 {
196         struct super_block *sb = get_super(bdev);
197         if (sb) {
198                 int res = fsync_super(sb);
199                 drop_super(sb);
200                 return res;
201         }
202         return sync_blockdev(bdev);
203 }
204
205 /**
206  * freeze_bdev  --  lock a filesystem and force it into a consistent state
207  * @bdev:       blockdevice to lock
208  *
209  * This takes the block device bd_mount_mutex to make sure no new mounts
210  * happen on bdev until thaw_bdev() is called.
211  * If a superblock is found on this device, we take the s_umount semaphore
212  * on it to make sure nobody unmounts until the snapshot creation is done.
213  */
214 struct super_block *freeze_bdev(struct block_device *bdev)
215 {
216         struct super_block *sb;
217
218         mutex_lock(&bdev->bd_mount_mutex);
219         sb = get_super(bdev);
220         if (sb && !(sb->s_flags & MS_RDONLY)) {
221                 sb->s_frozen = SB_FREEZE_WRITE;
222                 smp_wmb();
223
224                 __fsync_super(sb);
225
226                 sb->s_frozen = SB_FREEZE_TRANS;
227                 smp_wmb();
228
229                 sync_blockdev(sb->s_bdev);
230
231                 if (sb->s_op->write_super_lockfs)
232                         sb->s_op->write_super_lockfs(sb);
233         }
234
235         sync_blockdev(bdev);
236         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
237 }
238 EXPORT_SYMBOL(freeze_bdev);
239
240 /**
241  * thaw_bdev  -- unlock filesystem
242  * @bdev:       blockdevice to unlock
243  * @sb:         associated superblock
244  *
245  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
246  */
247 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
248 {
249         if (sb) {
250                 BUG_ON(sb->s_bdev != bdev);
251
252                 if (sb->s_op->unlockfs)
253                         sb->s_op->unlockfs(sb);
254                 sb->s_frozen = SB_UNFROZEN;
255                 smp_wmb();
256                 wake_up(&sb->s_wait_unfrozen);
257                 drop_super(sb);
258         }
259
260         mutex_unlock(&bdev->bd_mount_mutex);
261 }
262 EXPORT_SYMBOL(thaw_bdev);
263
264 /*
265  * sync everything.  Start out by waking pdflush, because that writes back
266  * all queues in parallel.
267  */
268 static void do_sync(unsigned long wait)
269 {
270         wakeup_pdflush(0);
271         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
272         DQUOT_SYNC(NULL);
273         sync_supers();          /* Write the superblocks */
274         sync_filesystems(0);    /* Start syncing the filesystems */
275         sync_filesystems(wait); /* Waitingly sync the filesystems */
276         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
277         if (!wait)
278                 printk("Emergency Sync complete\n");
279         if (unlikely(laptop_mode))
280                 laptop_sync_completion();
281 }
282
283 asmlinkage long sys_sync(void)
284 {
285         do_sync(1);
286         return 0;
287 }
288
289 void emergency_sync(void)
290 {
291         pdflush_operation(do_sync, 0);
292 }
293
294 /*
295  * Generic function to fsync a file.
296  *
297  * filp may be NULL if called via the msync of a vma.
298  */
299  
300 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
301 {
302         struct inode * inode = dentry->d_inode;
303         struct super_block * sb;
304         int ret, err;
305
306         /* sync the inode to buffers */
307         ret = write_inode_now(inode, 0);
308
309         /* sync the superblock to buffers */
310         sb = inode->i_sb;
311         lock_super(sb);
312         if (sb->s_op->write_super)
313                 sb->s_op->write_super(sb);
314         unlock_super(sb);
315
316         /* .. finally sync the buffers to disk */
317         err = sync_blockdev(sb->s_bdev);
318         if (!ret)
319                 ret = err;
320         return ret;
321 }
322
323 long do_fsync(struct file *file, int datasync)
324 {
325         int ret;
326         int err;
327         struct address_space *mapping = file->f_mapping;
328
329         if (!file->f_op || !file->f_op->fsync) {
330                 /* Why?  We can still call filemap_fdatawrite */
331                 ret = -EINVAL;
332                 goto out;
333         }
334
335         ret = filemap_fdatawrite(mapping);
336
337         /*
338          * We need to protect against concurrent writers, which could cause
339          * livelocks in fsync_buffers_list().
340          */
341         mutex_lock(&mapping->host->i_mutex);
342         err = file->f_op->fsync(file, file->f_dentry, datasync);
343         if (!ret)
344                 ret = err;
345         mutex_unlock(&mapping->host->i_mutex);
346         err = filemap_fdatawait(mapping);
347         if (!ret)
348                 ret = err;
349 out:
350         return ret;
351 }
352
353 static long __do_fsync(unsigned int fd, int datasync)
354 {
355         struct file *file;
356         int ret = -EBADF;
357
358         file = fget(fd);
359         if (file) {
360                 ret = do_fsync(file, datasync);
361                 fput(file);
362         }
363         return ret;
364 }
365
366 asmlinkage long sys_fsync(unsigned int fd)
367 {
368         return __do_fsync(fd, 0);
369 }
370
371 asmlinkage long sys_fdatasync(unsigned int fd)
372 {
373         return __do_fsync(fd, 1);
374 }
375
376 /*
377  * Various filesystems appear to want __find_get_block to be non-blocking.
378  * But it's the page lock which protects the buffers.  To get around this,
379  * we get exclusion from try_to_free_buffers with the blockdev mapping's
380  * private_lock.
381  *
382  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
383  * may be quite high.  This code could TryLock the page, and if that
384  * succeeds, there is no need to take private_lock. (But if
385  * private_lock is contended then so is mapping->tree_lock).
386  */
387 static struct buffer_head *
388 __find_get_block_slow(struct block_device *bdev, sector_t block)
389 {
390         struct inode *bd_inode = bdev->bd_inode;
391         struct address_space *bd_mapping = bd_inode->i_mapping;
392         struct buffer_head *ret = NULL;
393         pgoff_t index;
394         struct buffer_head *bh;
395         struct buffer_head *head;
396         struct page *page;
397         int all_mapped = 1;
398
399         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
400         page = find_get_page(bd_mapping, index);
401         if (!page)
402                 goto out;
403
404         spin_lock(&bd_mapping->private_lock);
405         if (!page_has_buffers(page))
406                 goto out_unlock;
407         head = page_buffers(page);
408         bh = head;
409         do {
410                 if (bh->b_blocknr == block) {
411                         ret = bh;
412                         get_bh(bh);
413                         goto out_unlock;
414                 }
415                 if (!buffer_mapped(bh))
416                         all_mapped = 0;
417                 bh = bh->b_this_page;
418         } while (bh != head);
419
420         /* we might be here because some of the buffers on this page are
421          * not mapped.  This is due to various races between
422          * file io on the block device and getblk.  It gets dealt with
423          * elsewhere, don't buffer_error if we had some unmapped buffers
424          */
425         if (all_mapped) {
426                 printk("__find_get_block_slow() failed. "
427                         "block=%llu, b_blocknr=%llu\n",
428                         (unsigned long long)block,
429                         (unsigned long long)bh->b_blocknr);
430                 printk("b_state=0x%08lx, b_size=%zu\n",
431                         bh->b_state, bh->b_size);
432                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
433         }
434 out_unlock:
435         spin_unlock(&bd_mapping->private_lock);
436         page_cache_release(page);
437 out:
438         return ret;
439 }
440
441 /* If invalidate_buffers() will trash dirty buffers, it means some kind
442    of fs corruption is going on. Trashing dirty data always imply losing
443    information that was supposed to be just stored on the physical layer
444    by the user.
445
446    Thus invalidate_buffers in general usage is not allwowed to trash
447    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
448    be preserved.  These buffers are simply skipped.
449   
450    We also skip buffers which are still in use.  For example this can
451    happen if a userspace program is reading the block device.
452
453    NOTE: In the case where the user removed a removable-media-disk even if
454    there's still dirty data not synced on disk (due a bug in the device driver
455    or due an error of the user), by not destroying the dirty buffers we could
456    generate corruption also on the next media inserted, thus a parameter is
457    necessary to handle this case in the most safe way possible (trying
458    to not corrupt also the new disk inserted with the data belonging to
459    the old now corrupted disk). Also for the ramdisk the natural thing
460    to do in order to release the ramdisk memory is to destroy dirty buffers.
461
462    These are two special cases. Normal usage imply the device driver
463    to issue a sync on the device (without waiting I/O completion) and
464    then an invalidate_buffers call that doesn't trash dirty buffers.
465
466    For handling cache coherency with the blkdev pagecache the 'update' case
467    is been introduced. It is needed to re-read from disk any pinned
468    buffer. NOTE: re-reading from disk is destructive so we can do it only
469    when we assume nobody is changing the buffercache under our I/O and when
470    we think the disk contains more recent information than the buffercache.
471    The update == 1 pass marks the buffers we need to update, the update == 2
472    pass does the actual I/O. */
473 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
474 {
475         struct address_space *mapping = bdev->bd_inode->i_mapping;
476
477         if (mapping->nrpages == 0)
478                 return;
479
480         invalidate_bh_lrus();
481         /*
482          * FIXME: what about destroy_dirty_buffers?
483          * We really want to use invalidate_inode_pages2() for
484          * that, but not until that's cleaned up.
485          */
486         invalidate_inode_pages(mapping);
487 }
488
489 /*
490  * Kick pdflush then try to free up some ZONE_NORMAL memory.
491  */
492 static void free_more_memory(void)
493 {
494         struct zone **zones;
495         pg_data_t *pgdat;
496
497         wakeup_pdflush(1024);
498         yield();
499
500         for_each_online_pgdat(pgdat) {
501                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
502                 if (*zones)
503                         try_to_free_pages(zones, GFP_NOFS);
504         }
505 }
506
507 /*
508  * I/O completion handler for block_read_full_page() - pages
509  * which come unlocked at the end of I/O.
510  */
511 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
512 {
513         unsigned long flags;
514         struct buffer_head *first;
515         struct buffer_head *tmp;
516         struct page *page;
517         int page_uptodate = 1;
518
519         BUG_ON(!buffer_async_read(bh));
520
521         page = bh->b_page;
522         if (uptodate) {
523                 set_buffer_uptodate(bh);
524         } else {
525                 clear_buffer_uptodate(bh);
526                 if (printk_ratelimit())
527                         buffer_io_error(bh);
528                 SetPageError(page);
529         }
530
531         /*
532          * Be _very_ careful from here on. Bad things can happen if
533          * two buffer heads end IO at almost the same time and both
534          * decide that the page is now completely done.
535          */
536         first = page_buffers(page);
537         local_irq_save(flags);
538         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
539         clear_buffer_async_read(bh);
540         unlock_buffer(bh);
541         tmp = bh;
542         do {
543                 if (!buffer_uptodate(tmp))
544                         page_uptodate = 0;
545                 if (buffer_async_read(tmp)) {
546                         BUG_ON(!buffer_locked(tmp));
547                         goto still_busy;
548                 }
549                 tmp = tmp->b_this_page;
550         } while (tmp != bh);
551         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
552         local_irq_restore(flags);
553
554         /*
555          * If none of the buffers had errors and they are all
556          * uptodate then we can set the page uptodate.
557          */
558         if (page_uptodate && !PageError(page))
559                 SetPageUptodate(page);
560         unlock_page(page);
561         return;
562
563 still_busy:
564         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
565         local_irq_restore(flags);
566         return;
567 }
568
569 /*
570  * Completion handler for block_write_full_page() - pages which are unlocked
571  * during I/O, and which have PageWriteback cleared upon I/O completion.
572  */
573 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
574 {
575         char b[BDEVNAME_SIZE];
576         unsigned long flags;
577         struct buffer_head *first;
578         struct buffer_head *tmp;
579         struct page *page;
580
581         BUG_ON(!buffer_async_write(bh));
582
583         page = bh->b_page;
584         if (uptodate) {
585                 set_buffer_uptodate(bh);
586         } else {
587                 if (printk_ratelimit()) {
588                         buffer_io_error(bh);
589                         printk(KERN_WARNING "lost page write due to "
590                                         "I/O error on %s\n",
591                                bdevname(bh->b_bdev, b));
592                 }
593                 set_bit(AS_EIO, &page->mapping->flags);
594                 clear_buffer_uptodate(bh);
595                 SetPageError(page);
596         }
597
598         first = page_buffers(page);
599         local_irq_save(flags);
600         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
601
602         clear_buffer_async_write(bh);
603         unlock_buffer(bh);
604         tmp = bh->b_this_page;
605         while (tmp != bh) {
606                 if (buffer_async_write(tmp)) {
607                         BUG_ON(!buffer_locked(tmp));
608                         goto still_busy;
609                 }
610                 tmp = tmp->b_this_page;
611         }
612         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
613         local_irq_restore(flags);
614         end_page_writeback(page);
615         return;
616
617 still_busy:
618         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
619         local_irq_restore(flags);
620         return;
621 }
622
623 /*
624  * If a page's buffers are under async readin (end_buffer_async_read
625  * completion) then there is a possibility that another thread of
626  * control could lock one of the buffers after it has completed
627  * but while some of the other buffers have not completed.  This
628  * locked buffer would confuse end_buffer_async_read() into not unlocking
629  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
630  * that this buffer is not under async I/O.
631  *
632  * The page comes unlocked when it has no locked buffer_async buffers
633  * left.
634  *
635  * PageLocked prevents anyone starting new async I/O reads any of
636  * the buffers.
637  *
638  * PageWriteback is used to prevent simultaneous writeout of the same
639  * page.
640  *
641  * PageLocked prevents anyone from starting writeback of a page which is
642  * under read I/O (PageWriteback is only ever set against a locked page).
643  */
644 static void mark_buffer_async_read(struct buffer_head *bh)
645 {
646         bh->b_end_io = end_buffer_async_read;
647         set_buffer_async_read(bh);
648 }
649
650 void mark_buffer_async_write(struct buffer_head *bh)
651 {
652         bh->b_end_io = end_buffer_async_write;
653         set_buffer_async_write(bh);
654 }
655 EXPORT_SYMBOL(mark_buffer_async_write);
656
657
658 /*
659  * fs/buffer.c contains helper functions for buffer-backed address space's
660  * fsync functions.  A common requirement for buffer-based filesystems is
661  * that certain data from the backing blockdev needs to be written out for
662  * a successful fsync().  For example, ext2 indirect blocks need to be
663  * written back and waited upon before fsync() returns.
664  *
665  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
666  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
667  * management of a list of dependent buffers at ->i_mapping->private_list.
668  *
669  * Locking is a little subtle: try_to_free_buffers() will remove buffers
670  * from their controlling inode's queue when they are being freed.  But
671  * try_to_free_buffers() will be operating against the *blockdev* mapping
672  * at the time, not against the S_ISREG file which depends on those buffers.
673  * So the locking for private_list is via the private_lock in the address_space
674  * which backs the buffers.  Which is different from the address_space 
675  * against which the buffers are listed.  So for a particular address_space,
676  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
677  * mapping->private_list will always be protected by the backing blockdev's
678  * ->private_lock.
679  *
680  * Which introduces a requirement: all buffers on an address_space's
681  * ->private_list must be from the same address_space: the blockdev's.
682  *
683  * address_spaces which do not place buffers at ->private_list via these
684  * utility functions are free to use private_lock and private_list for
685  * whatever they want.  The only requirement is that list_empty(private_list)
686  * be true at clear_inode() time.
687  *
688  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
689  * filesystems should do that.  invalidate_inode_buffers() should just go
690  * BUG_ON(!list_empty).
691  *
692  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
693  * take an address_space, not an inode.  And it should be called
694  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
695  * queued up.
696  *
697  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
698  * list if it is already on a list.  Because if the buffer is on a list,
699  * it *must* already be on the right one.  If not, the filesystem is being
700  * silly.  This will save a ton of locking.  But first we have to ensure
701  * that buffers are taken *off* the old inode's list when they are freed
702  * (presumably in truncate).  That requires careful auditing of all
703  * filesystems (do it inside bforget()).  It could also be done by bringing
704  * b_inode back.
705  */
706
707 /*
708  * The buffer's backing address_space's private_lock must be held
709  */
710 static inline void __remove_assoc_queue(struct buffer_head *bh)
711 {
712         list_del_init(&bh->b_assoc_buffers);
713 }
714
715 int inode_has_buffers(struct inode *inode)
716 {
717         return !list_empty(&inode->i_data.private_list);
718 }
719
720 /*
721  * osync is designed to support O_SYNC io.  It waits synchronously for
722  * all already-submitted IO to complete, but does not queue any new
723  * writes to the disk.
724  *
725  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
726  * you dirty the buffers, and then use osync_inode_buffers to wait for
727  * completion.  Any other dirty buffers which are not yet queued for
728  * write will not be flushed to disk by the osync.
729  */
730 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
731 {
732         struct buffer_head *bh;
733         struct list_head *p;
734         int err = 0;
735
736         spin_lock(lock);
737 repeat:
738         list_for_each_prev(p, list) {
739                 bh = BH_ENTRY(p);
740                 if (buffer_locked(bh)) {
741                         get_bh(bh);
742                         spin_unlock(lock);
743                         wait_on_buffer(bh);
744                         if (!buffer_uptodate(bh))
745                                 err = -EIO;
746                         brelse(bh);
747                         spin_lock(lock);
748                         goto repeat;
749                 }
750         }
751         spin_unlock(lock);
752         return err;
753 }
754
755 /**
756  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
757  *                        buffers
758  * @mapping: the mapping which wants those buffers written
759  *
760  * Starts I/O against the buffers at mapping->private_list, and waits upon
761  * that I/O.
762  *
763  * Basically, this is a convenience function for fsync().
764  * @mapping is a file or directory which needs those buffers to be written for
765  * a successful fsync().
766  */
767 int sync_mapping_buffers(struct address_space *mapping)
768 {
769         struct address_space *buffer_mapping = mapping->assoc_mapping;
770
771         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
772                 return 0;
773
774         return fsync_buffers_list(&buffer_mapping->private_lock,
775                                         &mapping->private_list);
776 }
777 EXPORT_SYMBOL(sync_mapping_buffers);
778
779 /*
780  * Called when we've recently written block `bblock', and it is known that
781  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
782  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
783  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
784  */
785 void write_boundary_block(struct block_device *bdev,
786                         sector_t bblock, unsigned blocksize)
787 {
788         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
789         if (bh) {
790                 if (buffer_dirty(bh))
791                         ll_rw_block(WRITE, 1, &bh);
792                 put_bh(bh);
793         }
794 }
795
796 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
797 {
798         struct address_space *mapping = inode->i_mapping;
799         struct address_space *buffer_mapping = bh->b_page->mapping;
800
801         mark_buffer_dirty(bh);
802         if (!mapping->assoc_mapping) {
803                 mapping->assoc_mapping = buffer_mapping;
804         } else {
805                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
806         }
807         if (list_empty(&bh->b_assoc_buffers)) {
808                 spin_lock(&buffer_mapping->private_lock);
809                 list_move_tail(&bh->b_assoc_buffers,
810                                 &mapping->private_list);
811                 spin_unlock(&buffer_mapping->private_lock);
812         }
813 }
814 EXPORT_SYMBOL(mark_buffer_dirty_inode);
815
816 /*
817  * Add a page to the dirty page list.
818  *
819  * It is a sad fact of life that this function is called from several places
820  * deeply under spinlocking.  It may not sleep.
821  *
822  * If the page has buffers, the uptodate buffers are set dirty, to preserve
823  * dirty-state coherency between the page and the buffers.  It the page does
824  * not have buffers then when they are later attached they will all be set
825  * dirty.
826  *
827  * The buffers are dirtied before the page is dirtied.  There's a small race
828  * window in which a writepage caller may see the page cleanness but not the
829  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
830  * before the buffers, a concurrent writepage caller could clear the page dirty
831  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
832  * page on the dirty page list.
833  *
834  * We use private_lock to lock against try_to_free_buffers while using the
835  * page's buffer list.  Also use this to protect against clean buffers being
836  * added to the page after it was set dirty.
837  *
838  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
839  * address_space though.
840  */
841 int __set_page_dirty_buffers(struct page *page)
842 {
843         struct address_space * const mapping = page_mapping(page);
844
845         if (unlikely(!mapping))
846                 return !TestSetPageDirty(page);
847
848         spin_lock(&mapping->private_lock);
849         if (page_has_buffers(page)) {
850                 struct buffer_head *head = page_buffers(page);
851                 struct buffer_head *bh = head;
852
853                 do {
854                         set_buffer_dirty(bh);
855                         bh = bh->b_this_page;
856                 } while (bh != head);
857         }
858         spin_unlock(&mapping->private_lock);
859
860         if (!TestSetPageDirty(page)) {
861                 write_lock_irq(&mapping->tree_lock);
862                 if (page->mapping) {    /* Race with truncate? */
863                         if (mapping_cap_account_dirty(mapping))
864                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
865                         radix_tree_tag_set(&mapping->page_tree,
866                                                 page_index(page),
867                                                 PAGECACHE_TAG_DIRTY);
868                 }
869                 write_unlock_irq(&mapping->tree_lock);
870                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
871                 return 1;
872         }
873         return 0;
874 }
875 EXPORT_SYMBOL(__set_page_dirty_buffers);
876
877 /*
878  * Write out and wait upon a list of buffers.
879  *
880  * We have conflicting pressures: we want to make sure that all
881  * initially dirty buffers get waited on, but that any subsequently
882  * dirtied buffers don't.  After all, we don't want fsync to last
883  * forever if somebody is actively writing to the file.
884  *
885  * Do this in two main stages: first we copy dirty buffers to a
886  * temporary inode list, queueing the writes as we go.  Then we clean
887  * up, waiting for those writes to complete.
888  * 
889  * During this second stage, any subsequent updates to the file may end
890  * up refiling the buffer on the original inode's dirty list again, so
891  * there is a chance we will end up with a buffer queued for write but
892  * not yet completed on that list.  So, as a final cleanup we go through
893  * the osync code to catch these locked, dirty buffers without requeuing
894  * any newly dirty buffers for write.
895  */
896 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
897 {
898         struct buffer_head *bh;
899         struct list_head tmp;
900         int err = 0, err2;
901
902         INIT_LIST_HEAD(&tmp);
903
904         spin_lock(lock);
905         while (!list_empty(list)) {
906                 bh = BH_ENTRY(list->next);
907                 list_del_init(&bh->b_assoc_buffers);
908                 if (buffer_dirty(bh) || buffer_locked(bh)) {
909                         list_add(&bh->b_assoc_buffers, &tmp);
910                         if (buffer_dirty(bh)) {
911                                 get_bh(bh);
912                                 spin_unlock(lock);
913                                 /*
914                                  * Ensure any pending I/O completes so that
915                                  * ll_rw_block() actually writes the current
916                                  * contents - it is a noop if I/O is still in
917                                  * flight on potentially older contents.
918                                  */
919                                 ll_rw_block(SWRITE, 1, &bh);
920                                 brelse(bh);
921                                 spin_lock(lock);
922                         }
923                 }
924         }
925
926         while (!list_empty(&tmp)) {
927                 bh = BH_ENTRY(tmp.prev);
928                 __remove_assoc_queue(bh);
929                 get_bh(bh);
930                 spin_unlock(lock);
931                 wait_on_buffer(bh);
932                 if (!buffer_uptodate(bh))
933                         err = -EIO;
934                 brelse(bh);
935                 spin_lock(lock);
936         }
937         
938         spin_unlock(lock);
939         err2 = osync_buffers_list(lock, list);
940         if (err)
941                 return err;
942         else
943                 return err2;
944 }
945
946 /*
947  * Invalidate any and all dirty buffers on a given inode.  We are
948  * probably unmounting the fs, but that doesn't mean we have already
949  * done a sync().  Just drop the buffers from the inode list.
950  *
951  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
952  * assumes that all the buffers are against the blockdev.  Not true
953  * for reiserfs.
954  */
955 void invalidate_inode_buffers(struct inode *inode)
956 {
957         if (inode_has_buffers(inode)) {
958                 struct address_space *mapping = &inode->i_data;
959                 struct list_head *list = &mapping->private_list;
960                 struct address_space *buffer_mapping = mapping->assoc_mapping;
961
962                 spin_lock(&buffer_mapping->private_lock);
963                 while (!list_empty(list))
964                         __remove_assoc_queue(BH_ENTRY(list->next));
965                 spin_unlock(&buffer_mapping->private_lock);
966         }
967 }
968
969 /*
970  * Remove any clean buffers from the inode's buffer list.  This is called
971  * when we're trying to free the inode itself.  Those buffers can pin it.
972  *
973  * Returns true if all buffers were removed.
974  */
975 int remove_inode_buffers(struct inode *inode)
976 {
977         int ret = 1;
978
979         if (inode_has_buffers(inode)) {
980                 struct address_space *mapping = &inode->i_data;
981                 struct list_head *list = &mapping->private_list;
982                 struct address_space *buffer_mapping = mapping->assoc_mapping;
983
984                 spin_lock(&buffer_mapping->private_lock);
985                 while (!list_empty(list)) {
986                         struct buffer_head *bh = BH_ENTRY(list->next);
987                         if (buffer_dirty(bh)) {
988                                 ret = 0;
989                                 break;
990                         }
991                         __remove_assoc_queue(bh);
992                 }
993                 spin_unlock(&buffer_mapping->private_lock);
994         }
995         return ret;
996 }
997
998 /*
999  * Create the appropriate buffers when given a page for data area and
1000  * the size of each buffer.. Use the bh->b_this_page linked list to
1001  * follow the buffers created.  Return NULL if unable to create more
1002  * buffers.
1003  *
1004  * The retry flag is used to differentiate async IO (paging, swapping)
1005  * which may not fail from ordinary buffer allocations.
1006  */
1007 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1008                 int retry)
1009 {
1010         struct buffer_head *bh, *head;
1011         long offset;
1012
1013 try_again:
1014         head = NULL;
1015         offset = PAGE_SIZE;
1016         while ((offset -= size) >= 0) {
1017                 bh = alloc_buffer_head(GFP_NOFS);
1018                 if (!bh)
1019                         goto no_grow;
1020
1021                 bh->b_bdev = NULL;
1022                 bh->b_this_page = head;
1023                 bh->b_blocknr = -1;
1024                 head = bh;
1025
1026                 bh->b_state = 0;
1027                 atomic_set(&bh->b_count, 0);
1028                 bh->b_private = NULL;
1029                 bh->b_size = size;
1030
1031                 /* Link the buffer to its page */
1032                 set_bh_page(bh, page, offset);
1033
1034                 init_buffer(bh, NULL, NULL);
1035         }
1036         return head;
1037 /*
1038  * In case anything failed, we just free everything we got.
1039  */
1040 no_grow:
1041         if (head) {
1042                 do {
1043                         bh = head;
1044                         head = head->b_this_page;
1045                         free_buffer_head(bh);
1046                 } while (head);
1047         }
1048
1049         /*
1050          * Return failure for non-async IO requests.  Async IO requests
1051          * are not allowed to fail, so we have to wait until buffer heads
1052          * become available.  But we don't want tasks sleeping with 
1053          * partially complete buffers, so all were released above.
1054          */
1055         if (!retry)
1056                 return NULL;
1057
1058         /* We're _really_ low on memory. Now we just
1059          * wait for old buffer heads to become free due to
1060          * finishing IO.  Since this is an async request and
1061          * the reserve list is empty, we're sure there are 
1062          * async buffer heads in use.
1063          */
1064         free_more_memory();
1065         goto try_again;
1066 }
1067 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1068
1069 static inline void
1070 link_dev_buffers(struct page *page, struct buffer_head *head)
1071 {
1072         struct buffer_head *bh, *tail;
1073
1074         bh = head;
1075         do {
1076                 tail = bh;
1077                 bh = bh->b_this_page;
1078         } while (bh);
1079         tail->b_this_page = head;
1080         attach_page_buffers(page, head);
1081 }
1082
1083 /*
1084  * Initialise the state of a blockdev page's buffers.
1085  */ 
1086 static void
1087 init_page_buffers(struct page *page, struct block_device *bdev,
1088                         sector_t block, int size)
1089 {
1090         struct buffer_head *head = page_buffers(page);
1091         struct buffer_head *bh = head;
1092         int uptodate = PageUptodate(page);
1093
1094         do {
1095                 if (!buffer_mapped(bh)) {
1096                         init_buffer(bh, NULL, NULL);
1097                         bh->b_bdev = bdev;
1098                         bh->b_blocknr = block;
1099                         if (uptodate)
1100                                 set_buffer_uptodate(bh);
1101                         set_buffer_mapped(bh);
1102                 }
1103                 block++;
1104                 bh = bh->b_this_page;
1105         } while (bh != head);
1106 }
1107
1108 /*
1109  * Create the page-cache page that contains the requested block.
1110  *
1111  * This is user purely for blockdev mappings.
1112  */
1113 static struct page *
1114 grow_dev_page(struct block_device *bdev, sector_t block,
1115                 pgoff_t index, int size)
1116 {
1117         struct inode *inode = bdev->bd_inode;
1118         struct page *page;
1119         struct buffer_head *bh;
1120
1121         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1122         if (!page)
1123                 return NULL;
1124
1125         BUG_ON(!PageLocked(page));
1126
1127         if (page_has_buffers(page)) {
1128                 bh = page_buffers(page);
1129                 if (bh->b_size == size) {
1130                         init_page_buffers(page, bdev, block, size);
1131                         return page;
1132                 }
1133                 if (!try_to_free_buffers(page))
1134                         goto failed;
1135         }
1136
1137         /*
1138          * Allocate some buffers for this page
1139          */
1140         bh = alloc_page_buffers(page, size, 0);
1141         if (!bh)
1142                 goto failed;
1143
1144         /*
1145          * Link the page to the buffers and initialise them.  Take the
1146          * lock to be atomic wrt __find_get_block(), which does not
1147          * run under the page lock.
1148          */
1149         spin_lock(&inode->i_mapping->private_lock);
1150         link_dev_buffers(page, bh);
1151         init_page_buffers(page, bdev, block, size);
1152         spin_unlock(&inode->i_mapping->private_lock);
1153         return page;
1154
1155 failed:
1156         BUG();
1157         unlock_page(page);
1158         page_cache_release(page);
1159         return NULL;
1160 }
1161
1162 /*
1163  * Create buffers for the specified block device block's page.  If
1164  * that page was dirty, the buffers are set dirty also.
1165  *
1166  * Except that's a bug.  Attaching dirty buffers to a dirty
1167  * blockdev's page can result in filesystem corruption, because
1168  * some of those buffers may be aliases of filesystem data.
1169  * grow_dev_page() will go BUG() if this happens.
1170  */
1171 static int
1172 grow_buffers(struct block_device *bdev, sector_t block, int size)
1173 {
1174         struct page *page;
1175         pgoff_t index;
1176         int sizebits;
1177
1178         sizebits = -1;
1179         do {
1180                 sizebits++;
1181         } while ((size << sizebits) < PAGE_SIZE);
1182
1183         index = block >> sizebits;
1184
1185         /*
1186          * Check for a block which wants to lie outside our maximum possible
1187          * pagecache index.  (this comparison is done using sector_t types).
1188          */
1189         if (unlikely(index != block >> sizebits)) {
1190                 char b[BDEVNAME_SIZE];
1191
1192                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1193                         "device %s\n",
1194                         __FUNCTION__, (unsigned long long)block,
1195                         bdevname(bdev, b));
1196                 return -EIO;
1197         }
1198         block = index << sizebits;
1199         /* Create a page with the proper size buffers.. */
1200         page = grow_dev_page(bdev, block, index, size);
1201         if (!page)
1202                 return 0;
1203         unlock_page(page);
1204         page_cache_release(page);
1205         return 1;
1206 }
1207
1208 static struct buffer_head *
1209 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1210 {
1211         /* Size must be multiple of hard sectorsize */
1212         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1213                         (size < 512 || size > PAGE_SIZE))) {
1214                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1215                                         size);
1216                 printk(KERN_ERR "hardsect size: %d\n",
1217                                         bdev_hardsect_size(bdev));
1218
1219                 dump_stack();
1220                 return NULL;
1221         }
1222
1223         for (;;) {
1224                 struct buffer_head * bh;
1225                 int ret;
1226
1227                 bh = __find_get_block(bdev, block, size);
1228                 if (bh)
1229                         return bh;
1230
1231                 ret = grow_buffers(bdev, block, size);
1232                 if (ret < 0)
1233                         return NULL;
1234                 if (ret == 0)
1235                         free_more_memory();
1236         }
1237 }
1238
1239 /*
1240  * The relationship between dirty buffers and dirty pages:
1241  *
1242  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1243  * the page is tagged dirty in its radix tree.
1244  *
1245  * At all times, the dirtiness of the buffers represents the dirtiness of
1246  * subsections of the page.  If the page has buffers, the page dirty bit is
1247  * merely a hint about the true dirty state.
1248  *
1249  * When a page is set dirty in its entirety, all its buffers are marked dirty
1250  * (if the page has buffers).
1251  *
1252  * When a buffer is marked dirty, its page is dirtied, but the page's other
1253  * buffers are not.
1254  *
1255  * Also.  When blockdev buffers are explicitly read with bread(), they
1256  * individually become uptodate.  But their backing page remains not
1257  * uptodate - even if all of its buffers are uptodate.  A subsequent
1258  * block_read_full_page() against that page will discover all the uptodate
1259  * buffers, will set the page uptodate and will perform no I/O.
1260  */
1261
1262 /**
1263  * mark_buffer_dirty - mark a buffer_head as needing writeout
1264  * @bh: the buffer_head to mark dirty
1265  *
1266  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1267  * backing page dirty, then tag the page as dirty in its address_space's radix
1268  * tree and then attach the address_space's inode to its superblock's dirty
1269  * inode list.
1270  *
1271  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1272  * mapping->tree_lock and the global inode_lock.
1273  */
1274 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1275 {
1276         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1277                 __set_page_dirty_nobuffers(bh->b_page);
1278 }
1279
1280 /*
1281  * Decrement a buffer_head's reference count.  If all buffers against a page
1282  * have zero reference count, are clean and unlocked, and if the page is clean
1283  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1284  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1285  * a page but it ends up not being freed, and buffers may later be reattached).
1286  */
1287 void __brelse(struct buffer_head * buf)
1288 {
1289         if (atomic_read(&buf->b_count)) {
1290                 put_bh(buf);
1291                 return;
1292         }
1293         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1294         WARN_ON(1);
1295 }
1296
1297 /*
1298  * bforget() is like brelse(), except it discards any
1299  * potentially dirty data.
1300  */
1301 void __bforget(struct buffer_head *bh)
1302 {
1303         clear_buffer_dirty(bh);
1304         if (!list_empty(&bh->b_assoc_buffers)) {
1305                 struct address_space *buffer_mapping = bh->b_page->mapping;
1306
1307                 spin_lock(&buffer_mapping->private_lock);
1308                 list_del_init(&bh->b_assoc_buffers);
1309                 spin_unlock(&buffer_mapping->private_lock);
1310         }
1311         __brelse(bh);
1312 }
1313
1314 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1315 {
1316         lock_buffer(bh);
1317         if (buffer_uptodate(bh)) {
1318                 unlock_buffer(bh);
1319                 return bh;
1320         } else {
1321                 get_bh(bh);
1322                 bh->b_end_io = end_buffer_read_sync;
1323                 submit_bh(READ, bh);
1324                 wait_on_buffer(bh);
1325                 if (buffer_uptodate(bh))
1326                         return bh;
1327         }
1328         brelse(bh);
1329         return NULL;
1330 }
1331
1332 /*
1333  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1334  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1335  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1336  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1337  * CPU's LRUs at the same time.
1338  *
1339  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1340  * sb_find_get_block().
1341  *
1342  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1343  * a local interrupt disable for that.
1344  */
1345
1346 #define BH_LRU_SIZE     8
1347
1348 struct bh_lru {
1349         struct buffer_head *bhs[BH_LRU_SIZE];
1350 };
1351
1352 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1353
1354 #ifdef CONFIG_SMP
1355 #define bh_lru_lock()   local_irq_disable()
1356 #define bh_lru_unlock() local_irq_enable()
1357 #else
1358 #define bh_lru_lock()   preempt_disable()
1359 #define bh_lru_unlock() preempt_enable()
1360 #endif
1361
1362 static inline void check_irqs_on(void)
1363 {
1364 #ifdef irqs_disabled
1365         BUG_ON(irqs_disabled());
1366 #endif
1367 }
1368
1369 /*
1370  * The LRU management algorithm is dopey-but-simple.  Sorry.
1371  */
1372 static void bh_lru_install(struct buffer_head *bh)
1373 {
1374         struct buffer_head *evictee = NULL;
1375         struct bh_lru *lru;
1376
1377         check_irqs_on();
1378         bh_lru_lock();
1379         lru = &__get_cpu_var(bh_lrus);
1380         if (lru->bhs[0] != bh) {
1381                 struct buffer_head *bhs[BH_LRU_SIZE];
1382                 int in;
1383                 int out = 0;
1384
1385                 get_bh(bh);
1386                 bhs[out++] = bh;
1387                 for (in = 0; in < BH_LRU_SIZE; in++) {
1388                         struct buffer_head *bh2 = lru->bhs[in];
1389
1390                         if (bh2 == bh) {
1391                                 __brelse(bh2);
1392                         } else {
1393                                 if (out >= BH_LRU_SIZE) {
1394                                         BUG_ON(evictee != NULL);
1395                                         evictee = bh2;
1396                                 } else {
1397                                         bhs[out++] = bh2;
1398                                 }
1399                         }
1400                 }
1401                 while (out < BH_LRU_SIZE)
1402                         bhs[out++] = NULL;
1403                 memcpy(lru->bhs, bhs, sizeof(bhs));
1404         }
1405         bh_lru_unlock();
1406
1407         if (evictee)
1408                 __brelse(evictee);
1409 }
1410
1411 /*
1412  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1413  */
1414 static struct buffer_head *
1415 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1416 {
1417         struct buffer_head *ret = NULL;
1418         struct bh_lru *lru;
1419         int i;
1420
1421         check_irqs_on();
1422         bh_lru_lock();
1423         lru = &__get_cpu_var(bh_lrus);
1424         for (i = 0; i < BH_LRU_SIZE; i++) {
1425                 struct buffer_head *bh = lru->bhs[i];
1426
1427                 if (bh && bh->b_bdev == bdev &&
1428                                 bh->b_blocknr == block && bh->b_size == size) {
1429                         if (i) {
1430                                 while (i) {
1431                                         lru->bhs[i] = lru->bhs[i - 1];
1432                                         i--;
1433                                 }
1434                                 lru->bhs[0] = bh;
1435                         }
1436                         get_bh(bh);
1437                         ret = bh;
1438                         break;
1439                 }
1440         }
1441         bh_lru_unlock();
1442         return ret;
1443 }
1444
1445 /*
1446  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1447  * it in the LRU and mark it as accessed.  If it is not present then return
1448  * NULL
1449  */
1450 struct buffer_head *
1451 __find_get_block(struct block_device *bdev, sector_t block, int size)
1452 {
1453         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1454
1455         if (bh == NULL) {
1456                 bh = __find_get_block_slow(bdev, block);
1457                 if (bh)
1458                         bh_lru_install(bh);
1459         }
1460         if (bh)
1461                 touch_buffer(bh);
1462         return bh;
1463 }
1464 EXPORT_SYMBOL(__find_get_block);
1465
1466 /*
1467  * __getblk will locate (and, if necessary, create) the buffer_head
1468  * which corresponds to the passed block_device, block and size. The
1469  * returned buffer has its reference count incremented.
1470  *
1471  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1472  * illegal block number, __getblk() will happily return a buffer_head
1473  * which represents the non-existent block.  Very weird.
1474  *
1475  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1476  * attempt is failing.  FIXME, perhaps?
1477  */
1478 struct buffer_head *
1479 __getblk(struct block_device *bdev, sector_t block, int size)
1480 {
1481         struct buffer_head *bh = __find_get_block(bdev, block, size);
1482
1483         might_sleep();
1484         if (bh == NULL)
1485                 bh = __getblk_slow(bdev, block, size);
1486         return bh;
1487 }
1488 EXPORT_SYMBOL(__getblk);
1489
1490 /*
1491  * Do async read-ahead on a buffer..
1492  */
1493 void __breadahead(struct block_device *bdev, sector_t block, int size)
1494 {
1495         struct buffer_head *bh = __getblk(bdev, block, size);
1496         if (likely(bh)) {
1497                 ll_rw_block(READA, 1, &bh);
1498                 brelse(bh);
1499         }
1500 }
1501 EXPORT_SYMBOL(__breadahead);
1502
1503 /**
1504  *  __bread() - reads a specified block and returns the bh
1505  *  @bdev: the block_device to read from
1506  *  @block: number of block
1507  *  @size: size (in bytes) to read
1508  * 
1509  *  Reads a specified block, and returns buffer head that contains it.
1510  *  It returns NULL if the block was unreadable.
1511  */
1512 struct buffer_head *
1513 __bread(struct block_device *bdev, sector_t block, int size)
1514 {
1515         struct buffer_head *bh = __getblk(bdev, block, size);
1516
1517         if (likely(bh) && !buffer_uptodate(bh))
1518                 bh = __bread_slow(bh);
1519         return bh;
1520 }
1521 EXPORT_SYMBOL(__bread);
1522
1523 /*
1524  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1525  * This doesn't race because it runs in each cpu either in irq
1526  * or with preempt disabled.
1527  */
1528 static void invalidate_bh_lru(void *arg)
1529 {
1530         struct bh_lru *b = &get_cpu_var(bh_lrus);
1531         int i;
1532
1533         for (i = 0; i < BH_LRU_SIZE; i++) {
1534                 brelse(b->bhs[i]);
1535                 b->bhs[i] = NULL;
1536         }
1537         put_cpu_var(bh_lrus);
1538 }
1539         
1540 static void invalidate_bh_lrus(void)
1541 {
1542         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1543 }
1544
1545 void set_bh_page(struct buffer_head *bh,
1546                 struct page *page, unsigned long offset)
1547 {
1548         bh->b_page = page;
1549         BUG_ON(offset >= PAGE_SIZE);
1550         if (PageHighMem(page))
1551                 /*
1552                  * This catches illegal uses and preserves the offset:
1553                  */
1554                 bh->b_data = (char *)(0 + offset);
1555         else
1556                 bh->b_data = page_address(page) + offset;
1557 }
1558 EXPORT_SYMBOL(set_bh_page);
1559
1560 /*
1561  * Called when truncating a buffer on a page completely.
1562  */
1563 static void discard_buffer(struct buffer_head * bh)
1564 {
1565         lock_buffer(bh);
1566         clear_buffer_dirty(bh);
1567         bh->b_bdev = NULL;
1568         clear_buffer_mapped(bh);
1569         clear_buffer_req(bh);
1570         clear_buffer_new(bh);
1571         clear_buffer_delay(bh);
1572         unlock_buffer(bh);
1573 }
1574
1575 /**
1576  * try_to_release_page() - release old fs-specific metadata on a page
1577  *
1578  * @page: the page which the kernel is trying to free
1579  * @gfp_mask: memory allocation flags (and I/O mode)
1580  *
1581  * The address_space is to try to release any data against the page
1582  * (presumably at page->private).  If the release was successful, return `1'.
1583  * Otherwise return zero.
1584  *
1585  * The @gfp_mask argument specifies whether I/O may be performed to release
1586  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1587  *
1588  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1589  */
1590 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1591 {
1592         struct address_space * const mapping = page->mapping;
1593
1594         BUG_ON(!PageLocked(page));
1595         if (PageWriteback(page))
1596                 return 0;
1597         
1598         if (mapping && mapping->a_ops->releasepage)
1599                 return mapping->a_ops->releasepage(page, gfp_mask);
1600         return try_to_free_buffers(page);
1601 }
1602 EXPORT_SYMBOL(try_to_release_page);
1603
1604 /**
1605  * block_invalidatepage - invalidate part of all of a buffer-backed page
1606  *
1607  * @page: the page which is affected
1608  * @offset: the index of the truncation point
1609  *
1610  * block_invalidatepage() is called when all or part of the page has become
1611  * invalidatedby a truncate operation.
1612  *
1613  * block_invalidatepage() does not have to release all buffers, but it must
1614  * ensure that no dirty buffer is left outside @offset and that no I/O
1615  * is underway against any of the blocks which are outside the truncation
1616  * point.  Because the caller is about to free (and possibly reuse) those
1617  * blocks on-disk.
1618  */
1619 void block_invalidatepage(struct page *page, unsigned long offset)
1620 {
1621         struct buffer_head *head, *bh, *next;
1622         unsigned int curr_off = 0;
1623
1624         BUG_ON(!PageLocked(page));
1625         if (!page_has_buffers(page))
1626                 goto out;
1627
1628         head = page_buffers(page);
1629         bh = head;
1630         do {
1631                 unsigned int next_off = curr_off + bh->b_size;
1632                 next = bh->b_this_page;
1633
1634                 /*
1635                  * is this block fully invalidated?
1636                  */
1637                 if (offset <= curr_off)
1638                         discard_buffer(bh);
1639                 curr_off = next_off;
1640                 bh = next;
1641         } while (bh != head);
1642
1643         /*
1644          * We release buffers only if the entire page is being invalidated.
1645          * The get_block cached value has been unconditionally invalidated,
1646          * so real IO is not possible anymore.
1647          */
1648         if (offset == 0)
1649                 try_to_release_page(page, 0);
1650 out:
1651         return;
1652 }
1653 EXPORT_SYMBOL(block_invalidatepage);
1654
1655 void do_invalidatepage(struct page *page, unsigned long offset)
1656 {
1657         void (*invalidatepage)(struct page *, unsigned long);
1658         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1659                 block_invalidatepage;
1660         (*invalidatepage)(page, offset);
1661 }
1662
1663 /*
1664  * We attach and possibly dirty the buffers atomically wrt
1665  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1666  * is already excluded via the page lock.
1667  */
1668 void create_empty_buffers(struct page *page,
1669                         unsigned long blocksize, unsigned long b_state)
1670 {
1671         struct buffer_head *bh, *head, *tail;
1672
1673         head = alloc_page_buffers(page, blocksize, 1);
1674         bh = head;
1675         do {
1676                 bh->b_state |= b_state;
1677                 tail = bh;
1678                 bh = bh->b_this_page;
1679         } while (bh);
1680         tail->b_this_page = head;
1681
1682         spin_lock(&page->mapping->private_lock);
1683         if (PageUptodate(page) || PageDirty(page)) {
1684                 bh = head;
1685                 do {
1686                         if (PageDirty(page))
1687                                 set_buffer_dirty(bh);
1688                         if (PageUptodate(page))
1689                                 set_buffer_uptodate(bh);
1690                         bh = bh->b_this_page;
1691                 } while (bh != head);
1692         }
1693         attach_page_buffers(page, head);
1694         spin_unlock(&page->mapping->private_lock);
1695 }
1696 EXPORT_SYMBOL(create_empty_buffers);
1697
1698 /*
1699  * We are taking a block for data and we don't want any output from any
1700  * buffer-cache aliases starting from return from that function and
1701  * until the moment when something will explicitly mark the buffer
1702  * dirty (hopefully that will not happen until we will free that block ;-)
1703  * We don't even need to mark it not-uptodate - nobody can expect
1704  * anything from a newly allocated buffer anyway. We used to used
1705  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1706  * don't want to mark the alias unmapped, for example - it would confuse
1707  * anyone who might pick it with bread() afterwards...
1708  *
1709  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1710  * be writeout I/O going on against recently-freed buffers.  We don't
1711  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1712  * only if we really need to.  That happens here.
1713  */
1714 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1715 {
1716         struct buffer_head *old_bh;
1717
1718         might_sleep();
1719
1720         old_bh = __find_get_block_slow(bdev, block);
1721         if (old_bh) {
1722                 clear_buffer_dirty(old_bh);
1723                 wait_on_buffer(old_bh);
1724                 clear_buffer_req(old_bh);
1725                 __brelse(old_bh);
1726         }
1727 }
1728 EXPORT_SYMBOL(unmap_underlying_metadata);
1729
1730 /*
1731  * NOTE! All mapped/uptodate combinations are valid:
1732  *
1733  *      Mapped  Uptodate        Meaning
1734  *
1735  *      No      No              "unknown" - must do get_block()
1736  *      No      Yes             "hole" - zero-filled
1737  *      Yes     No              "allocated" - allocated on disk, not read in
1738  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1739  *
1740  * "Dirty" is valid only with the last case (mapped+uptodate).
1741  */
1742
1743 /*
1744  * While block_write_full_page is writing back the dirty buffers under
1745  * the page lock, whoever dirtied the buffers may decide to clean them
1746  * again at any time.  We handle that by only looking at the buffer
1747  * state inside lock_buffer().
1748  *
1749  * If block_write_full_page() is called for regular writeback
1750  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1751  * locked buffer.   This only can happen if someone has written the buffer
1752  * directly, with submit_bh().  At the address_space level PageWriteback
1753  * prevents this contention from occurring.
1754  */
1755 static int __block_write_full_page(struct inode *inode, struct page *page,
1756                         get_block_t *get_block, struct writeback_control *wbc)
1757 {
1758         int err;
1759         sector_t block;
1760         sector_t last_block;
1761         struct buffer_head *bh, *head;
1762         const unsigned blocksize = 1 << inode->i_blkbits;
1763         int nr_underway = 0;
1764
1765         BUG_ON(!PageLocked(page));
1766
1767         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1768
1769         if (!page_has_buffers(page)) {
1770                 create_empty_buffers(page, blocksize,
1771                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1772         }
1773
1774         /*
1775          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1776          * here, and the (potentially unmapped) buffers may become dirty at
1777          * any time.  If a buffer becomes dirty here after we've inspected it
1778          * then we just miss that fact, and the page stays dirty.
1779          *
1780          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1781          * handle that here by just cleaning them.
1782          */
1783
1784         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1785         head = page_buffers(page);
1786         bh = head;
1787
1788         /*
1789          * Get all the dirty buffers mapped to disk addresses and
1790          * handle any aliases from the underlying blockdev's mapping.
1791          */
1792         do {
1793                 if (block > last_block) {
1794                         /*
1795                          * mapped buffers outside i_size will occur, because
1796                          * this page can be outside i_size when there is a
1797                          * truncate in progress.
1798                          */
1799                         /*
1800                          * The buffer was zeroed by block_write_full_page()
1801                          */
1802                         clear_buffer_dirty(bh);
1803                         set_buffer_uptodate(bh);
1804                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1805                         WARN_ON(bh->b_size != blocksize);
1806                         err = get_block(inode, block, bh, 1);
1807                         if (err)
1808                                 goto recover;
1809                         if (buffer_new(bh)) {
1810                                 /* blockdev mappings never come here */
1811                                 clear_buffer_new(bh);
1812                                 unmap_underlying_metadata(bh->b_bdev,
1813                                                         bh->b_blocknr);
1814                         }
1815                 }
1816                 bh = bh->b_this_page;
1817                 block++;
1818         } while (bh != head);
1819
1820         do {
1821                 if (!buffer_mapped(bh))
1822                         continue;
1823                 /*
1824                  * If it's a fully non-blocking write attempt and we cannot
1825                  * lock the buffer then redirty the page.  Note that this can
1826                  * potentially cause a busy-wait loop from pdflush and kswapd
1827                  * activity, but those code paths have their own higher-level
1828                  * throttling.
1829                  */
1830                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1831                         lock_buffer(bh);
1832                 } else if (test_set_buffer_locked(bh)) {
1833                         redirty_page_for_writepage(wbc, page);
1834                         continue;
1835                 }
1836                 if (test_clear_buffer_dirty(bh)) {
1837                         mark_buffer_async_write(bh);
1838                 } else {
1839                         unlock_buffer(bh);
1840                 }
1841         } while ((bh = bh->b_this_page) != head);
1842
1843         /*
1844          * The page and its buffers are protected by PageWriteback(), so we can
1845          * drop the bh refcounts early.
1846          */
1847         BUG_ON(PageWriteback(page));
1848         set_page_writeback(page);
1849
1850         do {
1851                 struct buffer_head *next = bh->b_this_page;
1852                 if (buffer_async_write(bh)) {
1853                         submit_bh(WRITE, bh);
1854                         nr_underway++;
1855                 }
1856                 bh = next;
1857         } while (bh != head);
1858         unlock_page(page);
1859
1860         err = 0;
1861 done:
1862         if (nr_underway == 0) {
1863                 /*
1864                  * The page was marked dirty, but the buffers were
1865                  * clean.  Someone wrote them back by hand with
1866                  * ll_rw_block/submit_bh.  A rare case.
1867                  */
1868                 int uptodate = 1;
1869                 do {
1870                         if (!buffer_uptodate(bh)) {
1871                                 uptodate = 0;
1872                                 break;
1873                         }
1874                         bh = bh->b_this_page;
1875                 } while (bh != head);
1876                 if (uptodate)
1877                         SetPageUptodate(page);
1878                 end_page_writeback(page);
1879                 /*
1880                  * The page and buffer_heads can be released at any time from
1881                  * here on.
1882                  */
1883                 wbc->pages_skipped++;   /* We didn't write this page */
1884         }
1885         return err;
1886
1887 recover:
1888         /*
1889          * ENOSPC, or some other error.  We may already have added some
1890          * blocks to the file, so we need to write these out to avoid
1891          * exposing stale data.
1892          * The page is currently locked and not marked for writeback
1893          */
1894         bh = head;
1895         /* Recovery: lock and submit the mapped buffers */
1896         do {
1897                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1898                         lock_buffer(bh);
1899                         mark_buffer_async_write(bh);
1900                 } else {
1901                         /*
1902                          * The buffer may have been set dirty during
1903                          * attachment to a dirty page.
1904                          */
1905                         clear_buffer_dirty(bh);
1906                 }
1907         } while ((bh = bh->b_this_page) != head);
1908         SetPageError(page);
1909         BUG_ON(PageWriteback(page));
1910         set_page_writeback(page);
1911         unlock_page(page);
1912         do {
1913                 struct buffer_head *next = bh->b_this_page;
1914                 if (buffer_async_write(bh)) {
1915                         clear_buffer_dirty(bh);
1916                         submit_bh(WRITE, bh);
1917                         nr_underway++;
1918                 }
1919                 bh = next;
1920         } while (bh != head);
1921         goto done;
1922 }
1923
1924 static int __block_prepare_write(struct inode *inode, struct page *page,
1925                 unsigned from, unsigned to, get_block_t *get_block)
1926 {
1927         unsigned block_start, block_end;
1928         sector_t block;
1929         int err = 0;
1930         unsigned blocksize, bbits;
1931         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1932
1933         BUG_ON(!PageLocked(page));
1934         BUG_ON(from > PAGE_CACHE_SIZE);
1935         BUG_ON(to > PAGE_CACHE_SIZE);
1936         BUG_ON(from > to);
1937
1938         blocksize = 1 << inode->i_blkbits;
1939         if (!page_has_buffers(page))
1940                 create_empty_buffers(page, blocksize, 0);
1941         head = page_buffers(page);
1942
1943         bbits = inode->i_blkbits;
1944         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1945
1946         for(bh = head, block_start = 0; bh != head || !block_start;
1947             block++, block_start=block_end, bh = bh->b_this_page) {
1948                 block_end = block_start + blocksize;
1949                 if (block_end <= from || block_start >= to) {
1950                         if (PageUptodate(page)) {
1951                                 if (!buffer_uptodate(bh))
1952                                         set_buffer_uptodate(bh);
1953                         }
1954                         continue;
1955                 }
1956                 if (buffer_new(bh))
1957                         clear_buffer_new(bh);
1958                 if (!buffer_mapped(bh)) {
1959                         WARN_ON(bh->b_size != blocksize);
1960                         err = get_block(inode, block, bh, 1);
1961                         if (err)
1962                                 break;
1963                         if (buffer_new(bh)) {
1964                                 unmap_underlying_metadata(bh->b_bdev,
1965                                                         bh->b_blocknr);
1966                                 if (PageUptodate(page)) {
1967                                         set_buffer_uptodate(bh);
1968                                         continue;
1969                                 }
1970                                 if (block_end > to || block_start < from) {
1971                                         void *kaddr;
1972
1973                                         kaddr = kmap_atomic(page, KM_USER0);
1974                                         if (block_end > to)
1975                                                 memset(kaddr+to, 0,
1976                                                         block_end-to);
1977                                         if (block_start < from)
1978                                                 memset(kaddr+block_start,
1979                                                         0, from-block_start);
1980                                         flush_dcache_page(page);
1981                                         kunmap_atomic(kaddr, KM_USER0);
1982                                 }
1983                                 continue;
1984                         }
1985                 }
1986                 if (PageUptodate(page)) {
1987                         if (!buffer_uptodate(bh))
1988                                 set_buffer_uptodate(bh);
1989                         continue; 
1990                 }
1991                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1992                      (block_start < from || block_end > to)) {
1993                         ll_rw_block(READ, 1, &bh);
1994                         *wait_bh++=bh;
1995                 }
1996         }
1997         /*
1998          * If we issued read requests - let them complete.
1999          */
2000         while(wait_bh > wait) {
2001                 wait_on_buffer(*--wait_bh);
2002                 if (!buffer_uptodate(*wait_bh))
2003                         err = -EIO;
2004         }
2005         if (!err) {
2006                 bh = head;
2007                 do {
2008                         if (buffer_new(bh))
2009                                 clear_buffer_new(bh);
2010                 } while ((bh = bh->b_this_page) != head);
2011                 return 0;
2012         }
2013         /* Error case: */
2014         /*
2015          * Zero out any newly allocated blocks to avoid exposing stale
2016          * data.  If BH_New is set, we know that the block was newly
2017          * allocated in the above loop.
2018          */
2019         bh = head;
2020         block_start = 0;
2021         do {
2022                 block_end = block_start+blocksize;
2023                 if (block_end <= from)
2024                         goto next_bh;
2025                 if (block_start >= to)
2026                         break;
2027                 if (buffer_new(bh)) {
2028                         void *kaddr;
2029
2030                         clear_buffer_new(bh);
2031                         kaddr = kmap_atomic(page, KM_USER0);
2032                         memset(kaddr+block_start, 0, bh->b_size);
2033                         kunmap_atomic(kaddr, KM_USER0);
2034                         set_buffer_uptodate(bh);
2035                         mark_buffer_dirty(bh);
2036                 }
2037 next_bh:
2038                 block_start = block_end;
2039                 bh = bh->b_this_page;
2040         } while (bh != head);
2041         return err;
2042 }
2043
2044 static int __block_commit_write(struct inode *inode, struct page *page,
2045                 unsigned from, unsigned to)
2046 {
2047         unsigned block_start, block_end;
2048         int partial = 0;
2049         unsigned blocksize;
2050         struct buffer_head *bh, *head;
2051
2052         blocksize = 1 << inode->i_blkbits;
2053
2054         for(bh = head = page_buffers(page), block_start = 0;
2055             bh != head || !block_start;
2056             block_start=block_end, bh = bh->b_this_page) {
2057                 block_end = block_start + blocksize;
2058                 if (block_end <= from || block_start >= to) {
2059                         if (!buffer_uptodate(bh))
2060                                 partial = 1;
2061                 } else {
2062                         set_buffer_uptodate(bh);
2063                         mark_buffer_dirty(bh);
2064                 }
2065         }
2066
2067         /*
2068          * If this is a partial write which happened to make all buffers
2069          * uptodate then we can optimize away a bogus readpage() for
2070          * the next read(). Here we 'discover' whether the page went
2071          * uptodate as a result of this (potentially partial) write.
2072          */
2073         if (!partial)
2074                 SetPageUptodate(page);
2075         return 0;
2076 }
2077
2078 /*
2079  * Generic "read page" function for block devices that have the normal
2080  * get_block functionality. This is most of the block device filesystems.
2081  * Reads the page asynchronously --- the unlock_buffer() and
2082  * set/clear_buffer_uptodate() functions propagate buffer state into the
2083  * page struct once IO has completed.
2084  */
2085 int block_read_full_page(struct page *page, get_block_t *get_block)
2086 {
2087         struct inode *inode = page->mapping->host;
2088         sector_t iblock, lblock;
2089         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2090         unsigned int blocksize;
2091         int nr, i;
2092         int fully_mapped = 1;
2093
2094         BUG_ON(!PageLocked(page));
2095         blocksize = 1 << inode->i_blkbits;
2096         if (!page_has_buffers(page))
2097                 create_empty_buffers(page, blocksize, 0);
2098         head = page_buffers(page);
2099
2100         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2101         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2102         bh = head;
2103         nr = 0;
2104         i = 0;
2105
2106         do {
2107                 if (buffer_uptodate(bh))
2108                         continue;
2109
2110                 if (!buffer_mapped(bh)) {
2111                         int err = 0;
2112
2113                         fully_mapped = 0;
2114                         if (iblock < lblock) {
2115                                 WARN_ON(bh->b_size != blocksize);
2116                                 err = get_block(inode, iblock, bh, 0);
2117                                 if (err)
2118                                         SetPageError(page);
2119                         }
2120                         if (!buffer_mapped(bh)) {
2121                                 void *kaddr = kmap_atomic(page, KM_USER0);
2122                                 memset(kaddr + i * blocksize, 0, blocksize);
2123                                 flush_dcache_page(page);
2124                                 kunmap_atomic(kaddr, KM_USER0);
2125                                 if (!err)
2126                                         set_buffer_uptodate(bh);
2127                                 continue;
2128                         }
2129                         /*
2130                          * get_block() might have updated the buffer
2131                          * synchronously
2132                          */
2133                         if (buffer_uptodate(bh))
2134                                 continue;
2135                 }
2136                 arr[nr++] = bh;
2137         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2138
2139         if (fully_mapped)
2140                 SetPageMappedToDisk(page);
2141
2142         if (!nr) {
2143                 /*
2144                  * All buffers are uptodate - we can set the page uptodate
2145                  * as well. But not if get_block() returned an error.
2146                  */
2147                 if (!PageError(page))
2148                         SetPageUptodate(page);
2149                 unlock_page(page);
2150                 return 0;
2151         }
2152
2153         /* Stage two: lock the buffers */
2154         for (i = 0; i < nr; i++) {
2155                 bh = arr[i];
2156                 lock_buffer(bh);
2157                 mark_buffer_async_read(bh);
2158         }
2159
2160         /*
2161          * Stage 3: start the IO.  Check for uptodateness
2162          * inside the buffer lock in case another process reading
2163          * the underlying blockdev brought it uptodate (the sct fix).
2164          */
2165         for (i = 0; i < nr; i++) {
2166                 bh = arr[i];
2167                 if (buffer_uptodate(bh))
2168                         end_buffer_async_read(bh, 1);
2169                 else
2170                         submit_bh(READ, bh);
2171         }
2172         return 0;
2173 }
2174
2175 /* utility function for filesystems that need to do work on expanding
2176  * truncates.  Uses prepare/commit_write to allow the filesystem to
2177  * deal with the hole.  
2178  */
2179 static int __generic_cont_expand(struct inode *inode, loff_t size,
2180                                  pgoff_t index, unsigned int offset)
2181 {
2182         struct address_space *mapping = inode->i_mapping;
2183         struct page *page;
2184         unsigned long limit;
2185         int err;
2186
2187         err = -EFBIG;
2188         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2189         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2190                 send_sig(SIGXFSZ, current, 0);
2191                 goto out;
2192         }
2193         if (size > inode->i_sb->s_maxbytes)
2194                 goto out;
2195
2196         err = -ENOMEM;
2197         page = grab_cache_page(mapping, index);
2198         if (!page)
2199                 goto out;
2200         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2201         if (err) {
2202                 /*
2203                  * ->prepare_write() may have instantiated a few blocks
2204                  * outside i_size.  Trim these off again.
2205                  */
2206                 unlock_page(page);
2207                 page_cache_release(page);
2208                 vmtruncate(inode, inode->i_size);
2209                 goto out;
2210         }
2211
2212         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2213
2214         unlock_page(page);
2215         page_cache_release(page);
2216         if (err > 0)
2217                 err = 0;
2218 out:
2219         return err;
2220 }
2221
2222 int generic_cont_expand(struct inode *inode, loff_t size)
2223 {
2224         pgoff_t index;
2225         unsigned int offset;
2226
2227         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2228
2229         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2230         ** skip the prepare.  make sure we never send an offset for the start
2231         ** of a block
2232         */
2233         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2234                 /* caller must handle this extra byte. */
2235                 offset++;
2236         }
2237         index = size >> PAGE_CACHE_SHIFT;
2238
2239         return __generic_cont_expand(inode, size, index, offset);
2240 }
2241
2242 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2243 {
2244         loff_t pos = size - 1;
2245         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2246         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2247
2248         /* prepare/commit_write can handle even if from==to==start of block. */
2249         return __generic_cont_expand(inode, size, index, offset);
2250 }
2251
2252 /*
2253  * For moronic filesystems that do not allow holes in file.
2254  * We may have to extend the file.
2255  */
2256
2257 int cont_prepare_write(struct page *page, unsigned offset,
2258                 unsigned to, get_block_t *get_block, loff_t *bytes)
2259 {
2260         struct address_space *mapping = page->mapping;
2261         struct inode *inode = mapping->host;
2262         struct page *new_page;
2263         pgoff_t pgpos;
2264         long status;
2265         unsigned zerofrom;
2266         unsigned blocksize = 1 << inode->i_blkbits;
2267         void *kaddr;
2268
2269         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2270                 status = -ENOMEM;
2271                 new_page = grab_cache_page(mapping, pgpos);
2272                 if (!new_page)
2273                         goto out;
2274                 /* we might sleep */
2275                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2276                         unlock_page(new_page);
2277                         page_cache_release(new_page);
2278                         continue;
2279                 }
2280                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2281                 if (zerofrom & (blocksize-1)) {
2282                         *bytes |= (blocksize-1);
2283                         (*bytes)++;
2284                 }
2285                 status = __block_prepare_write(inode, new_page, zerofrom,
2286                                                 PAGE_CACHE_SIZE, get_block);
2287                 if (status)
2288                         goto out_unmap;
2289                 kaddr = kmap_atomic(new_page, KM_USER0);
2290                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2291                 flush_dcache_page(new_page);
2292                 kunmap_atomic(kaddr, KM_USER0);
2293                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2294                 unlock_page(new_page);
2295                 page_cache_release(new_page);
2296         }
2297
2298         if (page->index < pgpos) {
2299                 /* completely inside the area */
2300                 zerofrom = offset;
2301         } else {
2302                 /* page covers the boundary, find the boundary offset */
2303                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2304
2305                 /* if we will expand the thing last block will be filled */
2306                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2307                         *bytes |= (blocksize-1);
2308                         (*bytes)++;
2309                 }
2310
2311                 /* starting below the boundary? Nothing to zero out */
2312                 if (offset <= zerofrom)
2313                         zerofrom = offset;
2314         }
2315         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2316         if (status)
2317                 goto out1;
2318         if (zerofrom < offset) {
2319                 kaddr = kmap_atomic(page, KM_USER0);
2320                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2321                 flush_dcache_page(page);
2322                 kunmap_atomic(kaddr, KM_USER0);
2323                 __block_commit_write(inode, page, zerofrom, offset);
2324         }
2325         return 0;
2326 out1:
2327         ClearPageUptodate(page);
2328         return status;
2329
2330 out_unmap:
2331         ClearPageUptodate(new_page);
2332         unlock_page(new_page);
2333         page_cache_release(new_page);
2334 out:
2335         return status;
2336 }
2337
2338 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2339                         get_block_t *get_block)
2340 {
2341         struct inode *inode = page->mapping->host;
2342         int err = __block_prepare_write(inode, page, from, to, get_block);
2343         if (err)
2344                 ClearPageUptodate(page);
2345         return err;
2346 }
2347
2348 int block_commit_write(struct page *page, unsigned from, unsigned to)
2349 {
2350         struct inode *inode = page->mapping->host;
2351         __block_commit_write(inode,page,from,to);
2352         return 0;
2353 }
2354
2355 int generic_commit_write(struct file *file, struct page *page,
2356                 unsigned from, unsigned to)
2357 {
2358         struct inode *inode = page->mapping->host;
2359         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2360         __block_commit_write(inode,page,from,to);
2361         /*
2362          * No need to use i_size_read() here, the i_size
2363          * cannot change under us because we hold i_mutex.
2364          */
2365         if (pos > inode->i_size) {
2366                 i_size_write(inode, pos);
2367                 mark_inode_dirty(inode);
2368         }
2369         return 0;
2370 }
2371
2372
2373 /*
2374  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2375  * immediately, while under the page lock.  So it needs a special end_io
2376  * handler which does not touch the bh after unlocking it.
2377  *
2378  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2379  * a race there is benign: unlock_buffer() only use the bh's address for
2380  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2381  * itself.
2382  */
2383 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2384 {
2385         if (uptodate) {
2386                 set_buffer_uptodate(bh);
2387         } else {
2388                 /* This happens, due to failed READA attempts. */
2389                 clear_buffer_uptodate(bh);
2390         }
2391         unlock_buffer(bh);
2392 }
2393
2394 /*
2395  * On entry, the page is fully not uptodate.
2396  * On exit the page is fully uptodate in the areas outside (from,to)
2397  */
2398 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2399                         get_block_t *get_block)
2400 {
2401         struct inode *inode = page->mapping->host;
2402         const unsigned blkbits = inode->i_blkbits;
2403         const unsigned blocksize = 1 << blkbits;
2404         struct buffer_head map_bh;
2405         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2406         unsigned block_in_page;
2407         unsigned block_start;
2408         sector_t block_in_file;
2409         char *kaddr;
2410         int nr_reads = 0;
2411         int i;
2412         int ret = 0;
2413         int is_mapped_to_disk = 1;
2414         int dirtied_it = 0;
2415
2416         if (PageMappedToDisk(page))
2417                 return 0;
2418
2419         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2420         map_bh.b_page = page;
2421
2422         /*
2423          * We loop across all blocks in the page, whether or not they are
2424          * part of the affected region.  This is so we can discover if the
2425          * page is fully mapped-to-disk.
2426          */
2427         for (block_start = 0, block_in_page = 0;
2428                   block_start < PAGE_CACHE_SIZE;
2429                   block_in_page++, block_start += blocksize) {
2430                 unsigned block_end = block_start + blocksize;
2431                 int create;
2432
2433                 map_bh.b_state = 0;
2434                 create = 1;
2435                 if (block_start >= to)
2436                         create = 0;
2437                 map_bh.b_size = blocksize;
2438                 ret = get_block(inode, block_in_file + block_in_page,
2439                                         &map_bh, create);
2440                 if (ret)
2441                         goto failed;
2442                 if (!buffer_mapped(&map_bh))
2443                         is_mapped_to_disk = 0;
2444                 if (buffer_new(&map_bh))
2445                         unmap_underlying_metadata(map_bh.b_bdev,
2446                                                         map_bh.b_blocknr);
2447                 if (PageUptodate(page))
2448                         continue;
2449                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2450                         kaddr = kmap_atomic(page, KM_USER0);
2451                         if (block_start < from) {
2452                                 memset(kaddr+block_start, 0, from-block_start);
2453                                 dirtied_it = 1;
2454                         }
2455                         if (block_end > to) {
2456                                 memset(kaddr + to, 0, block_end - to);
2457                                 dirtied_it = 1;
2458                         }
2459                         flush_dcache_page(page);
2460                         kunmap_atomic(kaddr, KM_USER0);
2461                         continue;
2462                 }
2463                 if (buffer_uptodate(&map_bh))
2464                         continue;       /* reiserfs does this */
2465                 if (block_start < from || block_end > to) {
2466                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2467
2468                         if (!bh) {
2469                                 ret = -ENOMEM;
2470                                 goto failed;
2471                         }
2472                         bh->b_state = map_bh.b_state;
2473                         atomic_set(&bh->b_count, 0);
2474                         bh->b_this_page = NULL;
2475                         bh->b_page = page;
2476                         bh->b_blocknr = map_bh.b_blocknr;
2477                         bh->b_size = blocksize;
2478                         bh->b_data = (char *)(long)block_start;
2479                         bh->b_bdev = map_bh.b_bdev;
2480                         bh->b_private = NULL;
2481                         read_bh[nr_reads++] = bh;
2482                 }
2483         }
2484
2485         if (nr_reads) {
2486                 struct buffer_head *bh;
2487
2488                 /*
2489                  * The page is locked, so these buffers are protected from
2490                  * any VM or truncate activity.  Hence we don't need to care
2491                  * for the buffer_head refcounts.
2492                  */
2493                 for (i = 0; i < nr_reads; i++) {
2494                         bh = read_bh[i];
2495                         lock_buffer(bh);
2496                         bh->b_end_io = end_buffer_read_nobh;
2497                         submit_bh(READ, bh);
2498                 }
2499                 for (i = 0; i < nr_reads; i++) {
2500                         bh = read_bh[i];
2501                         wait_on_buffer(bh);
2502                         if (!buffer_uptodate(bh))
2503                                 ret = -EIO;
2504                         free_buffer_head(bh);
2505                         read_bh[i] = NULL;
2506                 }
2507                 if (ret)
2508                         goto failed;
2509         }
2510
2511         if (is_mapped_to_disk)
2512                 SetPageMappedToDisk(page);
2513         SetPageUptodate(page);
2514
2515         /*
2516          * Setting the page dirty here isn't necessary for the prepare_write
2517          * function - commit_write will do that.  But if/when this function is
2518          * used within the pagefault handler to ensure that all mmapped pages
2519          * have backing space in the filesystem, we will need to dirty the page
2520          * if its contents were altered.
2521          */
2522         if (dirtied_it)
2523                 set_page_dirty(page);
2524
2525         return 0;
2526
2527 failed:
2528         for (i = 0; i < nr_reads; i++) {
2529                 if (read_bh[i])
2530                         free_buffer_head(read_bh[i]);
2531         }
2532
2533         /*
2534          * Error recovery is pretty slack.  Clear the page and mark it dirty
2535          * so we'll later zero out any blocks which _were_ allocated.
2536          */
2537         kaddr = kmap_atomic(page, KM_USER0);
2538         memset(kaddr, 0, PAGE_CACHE_SIZE);
2539         kunmap_atomic(kaddr, KM_USER0);
2540         SetPageUptodate(page);
2541         set_page_dirty(page);
2542         return ret;
2543 }
2544 EXPORT_SYMBOL(nobh_prepare_write);
2545
2546 int nobh_commit_write(struct file *file, struct page *page,
2547                 unsigned from, unsigned to)
2548 {
2549         struct inode *inode = page->mapping->host;
2550         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2551
2552         set_page_dirty(page);
2553         if (pos > inode->i_size) {
2554                 i_size_write(inode, pos);
2555                 mark_inode_dirty(inode);
2556         }
2557         return 0;
2558 }
2559 EXPORT_SYMBOL(nobh_commit_write);
2560
2561 /*
2562  * nobh_writepage() - based on block_full_write_page() except
2563  * that it tries to operate without attaching bufferheads to
2564  * the page.
2565  */
2566 int nobh_writepage(struct page *page, get_block_t *get_block,
2567                         struct writeback_control *wbc)
2568 {
2569         struct inode * const inode = page->mapping->host;
2570         loff_t i_size = i_size_read(inode);
2571         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2572         unsigned offset;
2573         void *kaddr;
2574         int ret;
2575
2576         /* Is the page fully inside i_size? */
2577         if (page->index < end_index)
2578                 goto out;
2579
2580         /* Is the page fully outside i_size? (truncate in progress) */
2581         offset = i_size & (PAGE_CACHE_SIZE-1);
2582         if (page->index >= end_index+1 || !offset) {
2583                 /*
2584                  * The page may have dirty, unmapped buffers.  For example,
2585                  * they may have been added in ext3_writepage().  Make them
2586                  * freeable here, so the page does not leak.
2587                  */
2588 #if 0
2589                 /* Not really sure about this  - do we need this ? */
2590                 if (page->mapping->a_ops->invalidatepage)
2591                         page->mapping->a_ops->invalidatepage(page, offset);
2592 #endif
2593                 unlock_page(page);
2594                 return 0; /* don't care */
2595         }
2596
2597         /*
2598          * The page straddles i_size.  It must be zeroed out on each and every
2599          * writepage invocation because it may be mmapped.  "A file is mapped
2600          * in multiples of the page size.  For a file that is not a multiple of
2601          * the  page size, the remaining memory is zeroed when mapped, and
2602          * writes to that region are not written out to the file."
2603          */
2604         kaddr = kmap_atomic(page, KM_USER0);
2605         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2606         flush_dcache_page(page);
2607         kunmap_atomic(kaddr, KM_USER0);
2608 out:
2609         ret = mpage_writepage(page, get_block, wbc);
2610         if (ret == -EAGAIN)
2611                 ret = __block_write_full_page(inode, page, get_block, wbc);
2612         return ret;
2613 }
2614 EXPORT_SYMBOL(nobh_writepage);
2615
2616 /*
2617  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2618  */
2619 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2620 {
2621         struct inode *inode = mapping->host;
2622         unsigned blocksize = 1 << inode->i_blkbits;
2623         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2624         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2625         unsigned to;
2626         struct page *page;
2627         const struct address_space_operations *a_ops = mapping->a_ops;
2628         char *kaddr;
2629         int ret = 0;
2630
2631         if ((offset & (blocksize - 1)) == 0)
2632                 goto out;
2633
2634         ret = -ENOMEM;
2635         page = grab_cache_page(mapping, index);
2636         if (!page)
2637                 goto out;
2638
2639         to = (offset + blocksize) & ~(blocksize - 1);
2640         ret = a_ops->prepare_write(NULL, page, offset, to);
2641         if (ret == 0) {
2642                 kaddr = kmap_atomic(page, KM_USER0);
2643                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2644                 flush_dcache_page(page);
2645                 kunmap_atomic(kaddr, KM_USER0);
2646                 set_page_dirty(page);
2647         }
2648         unlock_page(page);
2649         page_cache_release(page);
2650 out:
2651         return ret;
2652 }
2653 EXPORT_SYMBOL(nobh_truncate_page);
2654
2655 int block_truncate_page(struct address_space *mapping,
2656                         loff_t from, get_block_t *get_block)
2657 {
2658         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2659         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2660         unsigned blocksize;
2661         sector_t iblock;
2662         unsigned length, pos;
2663         struct inode *inode = mapping->host;
2664         struct page *page;
2665         struct buffer_head *bh;
2666         void *kaddr;
2667         int err;
2668
2669         blocksize = 1 << inode->i_blkbits;
2670         length = offset & (blocksize - 1);
2671
2672         /* Block boundary? Nothing to do */
2673         if (!length)
2674                 return 0;
2675
2676         length = blocksize - length;
2677         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2678         
2679         page = grab_cache_page(mapping, index);
2680         err = -ENOMEM;
2681         if (!page)
2682                 goto out;
2683
2684         if (!page_has_buffers(page))
2685                 create_empty_buffers(page, blocksize, 0);
2686
2687         /* Find the buffer that contains "offset" */
2688         bh = page_buffers(page);
2689         pos = blocksize;
2690         while (offset >= pos) {
2691                 bh = bh->b_this_page;
2692                 iblock++;
2693                 pos += blocksize;
2694         }
2695
2696         err = 0;
2697         if (!buffer_mapped(bh)) {
2698                 WARN_ON(bh->b_size != blocksize);
2699                 err = get_block(inode, iblock, bh, 0);
2700                 if (err)
2701                         goto unlock;
2702                 /* unmapped? It's a hole - nothing to do */
2703                 if (!buffer_mapped(bh))
2704                         goto unlock;
2705         }
2706
2707         /* Ok, it's mapped. Make sure it's up-to-date */
2708         if (PageUptodate(page))
2709                 set_buffer_uptodate(bh);
2710
2711         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2712                 err = -EIO;
2713                 ll_rw_block(READ, 1, &bh);
2714                 wait_on_buffer(bh);
2715                 /* Uhhuh. Read error. Complain and punt. */
2716                 if (!buffer_uptodate(bh))
2717                         goto unlock;
2718         }
2719
2720         kaddr = kmap_atomic(page, KM_USER0);
2721         memset(kaddr + offset, 0, length);
2722         flush_dcache_page(page);
2723         kunmap_atomic(kaddr, KM_USER0);
2724
2725         mark_buffer_dirty(bh);
2726         err = 0;
2727
2728 unlock:
2729         unlock_page(page);
2730         page_cache_release(page);
2731 out:
2732         return err;
2733 }
2734
2735 /*
2736  * The generic ->writepage function for buffer-backed address_spaces
2737  */
2738 int block_write_full_page(struct page *page, get_block_t *get_block,
2739                         struct writeback_control *wbc)
2740 {
2741         struct inode * const inode = page->mapping->host;
2742         loff_t i_size = i_size_read(inode);
2743         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2744         unsigned offset;
2745         void *kaddr;
2746
2747         /* Is the page fully inside i_size? */
2748         if (page->index < end_index)
2749                 return __block_write_full_page(inode, page, get_block, wbc);
2750
2751         /* Is the page fully outside i_size? (truncate in progress) */
2752         offset = i_size & (PAGE_CACHE_SIZE-1);
2753         if (page->index >= end_index+1 || !offset) {
2754                 /*
2755                  * The page may have dirty, unmapped buffers.  For example,
2756                  * they may have been added in ext3_writepage().  Make them
2757                  * freeable here, so the page does not leak.
2758                  */
2759                 do_invalidatepage(page, 0);
2760                 unlock_page(page);
2761                 return 0; /* don't care */
2762         }
2763
2764         /*
2765          * The page straddles i_size.  It must be zeroed out on each and every
2766          * writepage invokation because it may be mmapped.  "A file is mapped
2767          * in multiples of the page size.  For a file that is not a multiple of
2768          * the  page size, the remaining memory is zeroed when mapped, and
2769          * writes to that region are not written out to the file."
2770          */
2771         kaddr = kmap_atomic(page, KM_USER0);
2772         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2773         flush_dcache_page(page);
2774         kunmap_atomic(kaddr, KM_USER0);
2775         return __block_write_full_page(inode, page, get_block, wbc);
2776 }
2777
2778 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2779                             get_block_t *get_block)
2780 {
2781         struct buffer_head tmp;
2782         struct inode *inode = mapping->host;
2783         tmp.b_state = 0;
2784         tmp.b_blocknr = 0;
2785         tmp.b_size = 1 << inode->i_blkbits;
2786         get_block(inode, block, &tmp, 0);
2787         return tmp.b_blocknr;
2788 }
2789
2790 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2791 {
2792         struct buffer_head *bh = bio->bi_private;
2793
2794         if (bio->bi_size)
2795                 return 1;
2796
2797         if (err == -EOPNOTSUPP) {
2798                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2799                 set_bit(BH_Eopnotsupp, &bh->b_state);
2800         }
2801
2802         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2803         bio_put(bio);
2804         return 0;
2805 }
2806
2807 int submit_bh(int rw, struct buffer_head * bh)
2808 {
2809         struct bio *bio;
2810         int ret = 0;
2811
2812         BUG_ON(!buffer_locked(bh));
2813         BUG_ON(!buffer_mapped(bh));
2814         BUG_ON(!bh->b_end_io);
2815
2816         if (buffer_ordered(bh) && (rw == WRITE))
2817                 rw = WRITE_BARRIER;
2818
2819         /*
2820          * Only clear out a write error when rewriting, should this
2821          * include WRITE_SYNC as well?
2822          */
2823         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2824                 clear_buffer_write_io_error(bh);
2825
2826         /*
2827          * from here on down, it's all bio -- do the initial mapping,
2828          * submit_bio -> generic_make_request may further map this bio around
2829          */
2830         bio = bio_alloc(GFP_NOIO, 1);
2831
2832         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2833         bio->bi_bdev = bh->b_bdev;
2834         bio->bi_io_vec[0].bv_page = bh->b_page;
2835         bio->bi_io_vec[0].bv_len = bh->b_size;
2836         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2837
2838         bio->bi_vcnt = 1;
2839         bio->bi_idx = 0;
2840         bio->bi_size = bh->b_size;
2841
2842         bio->bi_end_io = end_bio_bh_io_sync;
2843         bio->bi_private = bh;
2844
2845         bio_get(bio);
2846         submit_bio(rw, bio);
2847
2848         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2849                 ret = -EOPNOTSUPP;
2850
2851         bio_put(bio);
2852         return ret;
2853 }
2854
2855 /**
2856  * ll_rw_block: low-level access to block devices (DEPRECATED)
2857  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2858  * @nr: number of &struct buffer_heads in the array
2859  * @bhs: array of pointers to &struct buffer_head
2860  *
2861  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2862  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2863  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2864  * are sent to disk. The fourth %READA option is described in the documentation
2865  * for generic_make_request() which ll_rw_block() calls.
2866  *
2867  * This function drops any buffer that it cannot get a lock on (with the
2868  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2869  * clean when doing a write request, and any buffer that appears to be
2870  * up-to-date when doing read request.  Further it marks as clean buffers that
2871  * are processed for writing (the buffer cache won't assume that they are
2872  * actually clean until the buffer gets unlocked).
2873  *
2874  * ll_rw_block sets b_end_io to simple completion handler that marks
2875  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2876  * any waiters. 
2877  *
2878  * All of the buffers must be for the same device, and must also be a
2879  * multiple of the current approved size for the device.
2880  */
2881 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2882 {
2883         int i;
2884
2885         for (i = 0; i < nr; i++) {
2886                 struct buffer_head *bh = bhs[i];
2887
2888                 if (rw == SWRITE)
2889                         lock_buffer(bh);
2890                 else if (test_set_buffer_locked(bh))
2891                         continue;
2892
2893                 if (rw == WRITE || rw == SWRITE) {
2894                         if (test_clear_buffer_dirty(bh)) {
2895                                 bh->b_end_io = end_buffer_write_sync;
2896                                 get_bh(bh);
2897                                 submit_bh(WRITE, bh);
2898                                 continue;
2899                         }
2900                 } else {
2901                         if (!buffer_uptodate(bh)) {
2902                                 bh->b_end_io = end_buffer_read_sync;
2903                                 get_bh(bh);
2904                                 submit_bh(rw, bh);
2905                                 continue;
2906                         }
2907                 }
2908                 unlock_buffer(bh);
2909         }
2910 }
2911
2912 /*
2913  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2914  * and then start new I/O and then wait upon it.  The caller must have a ref on
2915  * the buffer_head.
2916  */
2917 int sync_dirty_buffer(struct buffer_head *bh)
2918 {
2919         int ret = 0;
2920
2921         WARN_ON(atomic_read(&bh->b_count) < 1);
2922         lock_buffer(bh);
2923         if (test_clear_buffer_dirty(bh)) {
2924                 get_bh(bh);
2925                 bh->b_end_io = end_buffer_write_sync;
2926                 ret = submit_bh(WRITE, bh);
2927                 wait_on_buffer(bh);
2928                 if (buffer_eopnotsupp(bh)) {
2929                         clear_buffer_eopnotsupp(bh);
2930                         ret = -EOPNOTSUPP;
2931                 }
2932                 if (!ret && !buffer_uptodate(bh))
2933                         ret = -EIO;
2934         } else {
2935                 unlock_buffer(bh);
2936         }
2937         return ret;
2938 }
2939
2940 /*
2941  * try_to_free_buffers() checks if all the buffers on this particular page
2942  * are unused, and releases them if so.
2943  *
2944  * Exclusion against try_to_free_buffers may be obtained by either
2945  * locking the page or by holding its mapping's private_lock.
2946  *
2947  * If the page is dirty but all the buffers are clean then we need to
2948  * be sure to mark the page clean as well.  This is because the page
2949  * may be against a block device, and a later reattachment of buffers
2950  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2951  * filesystem data on the same device.
2952  *
2953  * The same applies to regular filesystem pages: if all the buffers are
2954  * clean then we set the page clean and proceed.  To do that, we require
2955  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2956  * private_lock.
2957  *
2958  * try_to_free_buffers() is non-blocking.
2959  */
2960 static inline int buffer_busy(struct buffer_head *bh)
2961 {
2962         return atomic_read(&bh->b_count) |
2963                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2964 }
2965
2966 static int
2967 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2968 {
2969         struct buffer_head *head = page_buffers(page);
2970         struct buffer_head *bh;
2971
2972         bh = head;
2973         do {
2974                 if (buffer_write_io_error(bh) && page->mapping)
2975                         set_bit(AS_EIO, &page->mapping->flags);
2976                 if (buffer_busy(bh))
2977                         goto failed;
2978                 bh = bh->b_this_page;
2979         } while (bh != head);
2980
2981         do {
2982                 struct buffer_head *next = bh->b_this_page;
2983
2984                 if (!list_empty(&bh->b_assoc_buffers))
2985                         __remove_assoc_queue(bh);
2986                 bh = next;
2987         } while (bh != head);
2988         *buffers_to_free = head;
2989         __clear_page_buffers(page);
2990         return 1;
2991 failed:
2992         return 0;
2993 }
2994
2995 int try_to_free_buffers(struct page *page)
2996 {
2997         struct address_space * const mapping = page->mapping;
2998         struct buffer_head *buffers_to_free = NULL;
2999         int ret = 0;
3000
3001         BUG_ON(!PageLocked(page));
3002         if (PageWriteback(page))
3003                 return 0;
3004
3005         if (mapping == NULL) {          /* can this still happen? */
3006                 ret = drop_buffers(page, &buffers_to_free);
3007                 goto out;
3008         }
3009
3010         spin_lock(&mapping->private_lock);
3011         ret = drop_buffers(page, &buffers_to_free);
3012         spin_unlock(&mapping->private_lock);
3013         if (ret) {
3014                 /*
3015                  * If the filesystem writes its buffers by hand (eg ext3)
3016                  * then we can have clean buffers against a dirty page.  We
3017                  * clean the page here; otherwise later reattachment of buffers
3018                  * could encounter a non-uptodate page, which is unresolvable.
3019                  * This only applies in the rare case where try_to_free_buffers
3020                  * succeeds but the page is not freed.
3021                  */
3022                 clear_page_dirty(page);
3023         }
3024 out:
3025         if (buffers_to_free) {
3026                 struct buffer_head *bh = buffers_to_free;
3027
3028                 do {
3029                         struct buffer_head *next = bh->b_this_page;
3030                         free_buffer_head(bh);
3031                         bh = next;
3032                 } while (bh != buffers_to_free);
3033         }
3034         return ret;
3035 }
3036 EXPORT_SYMBOL(try_to_free_buffers);
3037
3038 void block_sync_page(struct page *page)
3039 {
3040         struct address_space *mapping;
3041
3042         smp_mb();
3043         mapping = page_mapping(page);
3044         if (mapping)
3045                 blk_run_backing_dev(mapping->backing_dev_info, page);
3046 }
3047
3048 /*
3049  * There are no bdflush tunables left.  But distributions are
3050  * still running obsolete flush daemons, so we terminate them here.
3051  *
3052  * Use of bdflush() is deprecated and will be removed in a future kernel.
3053  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3054  */
3055 asmlinkage long sys_bdflush(int func, long data)
3056 {
3057         static int msg_count;
3058
3059         if (!capable(CAP_SYS_ADMIN))
3060                 return -EPERM;
3061
3062         if (msg_count < 5) {
3063                 msg_count++;
3064                 printk(KERN_INFO
3065                         "warning: process `%s' used the obsolete bdflush"
3066                         " system call\n", current->comm);
3067                 printk(KERN_INFO "Fix your initscripts?\n");
3068         }
3069
3070         if (func == 1)
3071                 do_exit(0);
3072         return 0;
3073 }
3074
3075 /*
3076  * Buffer-head allocation
3077  */
3078 static kmem_cache_t *bh_cachep;
3079
3080 /*
3081  * Once the number of bh's in the machine exceeds this level, we start
3082  * stripping them in writeback.
3083  */
3084 static int max_buffer_heads;
3085
3086 int buffer_heads_over_limit;
3087
3088 struct bh_accounting {
3089         int nr;                 /* Number of live bh's */
3090         int ratelimit;          /* Limit cacheline bouncing */
3091 };
3092
3093 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3094
3095 static void recalc_bh_state(void)
3096 {
3097         int i;
3098         int tot = 0;
3099
3100         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3101                 return;
3102         __get_cpu_var(bh_accounting).ratelimit = 0;
3103         for_each_online_cpu(i)
3104                 tot += per_cpu(bh_accounting, i).nr;
3105         buffer_heads_over_limit = (tot > max_buffer_heads);
3106 }
3107         
3108 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3109 {
3110         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3111         if (ret) {
3112                 get_cpu_var(bh_accounting).nr++;
3113                 recalc_bh_state();
3114                 put_cpu_var(bh_accounting);
3115         }
3116         return ret;
3117 }
3118 EXPORT_SYMBOL(alloc_buffer_head);
3119
3120 void free_buffer_head(struct buffer_head *bh)
3121 {
3122         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3123         kmem_cache_free(bh_cachep, bh);
3124         get_cpu_var(bh_accounting).nr--;
3125         recalc_bh_state();
3126         put_cpu_var(bh_accounting);
3127 }
3128 EXPORT_SYMBOL(free_buffer_head);
3129
3130 static void
3131 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3132 {
3133         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3134                             SLAB_CTOR_CONSTRUCTOR) {
3135                 struct buffer_head * bh = (struct buffer_head *)data;
3136
3137                 memset(bh, 0, sizeof(*bh));
3138                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3139         }
3140 }
3141
3142 #ifdef CONFIG_HOTPLUG_CPU
3143 static void buffer_exit_cpu(int cpu)
3144 {
3145         int i;
3146         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3147
3148         for (i = 0; i < BH_LRU_SIZE; i++) {
3149                 brelse(b->bhs[i]);
3150                 b->bhs[i] = NULL;
3151         }
3152         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3153         per_cpu(bh_accounting, cpu).nr = 0;
3154         put_cpu_var(bh_accounting);
3155 }
3156
3157 static int buffer_cpu_notify(struct notifier_block *self,
3158                               unsigned long action, void *hcpu)
3159 {
3160         if (action == CPU_DEAD)
3161                 buffer_exit_cpu((unsigned long)hcpu);
3162         return NOTIFY_OK;
3163 }
3164 #endif /* CONFIG_HOTPLUG_CPU */
3165
3166 void __init buffer_init(void)
3167 {
3168         int nrpages;
3169
3170         bh_cachep = kmem_cache_create("buffer_head",
3171                                         sizeof(struct buffer_head), 0,
3172                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3173                                         SLAB_MEM_SPREAD),
3174                                         init_buffer_head,
3175                                         NULL);
3176
3177         /*
3178          * Limit the bh occupancy to 10% of ZONE_NORMAL
3179          */
3180         nrpages = (nr_free_buffer_pages() * 10) / 100;
3181         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3182         hotcpu_notifier(buffer_cpu_notify, 0);
3183 }
3184
3185 EXPORT_SYMBOL(__bforget);
3186 EXPORT_SYMBOL(__brelse);
3187 EXPORT_SYMBOL(__wait_on_buffer);
3188 EXPORT_SYMBOL(block_commit_write);
3189 EXPORT_SYMBOL(block_prepare_write);
3190 EXPORT_SYMBOL(block_read_full_page);
3191 EXPORT_SYMBOL(block_sync_page);
3192 EXPORT_SYMBOL(block_truncate_page);
3193 EXPORT_SYMBOL(block_write_full_page);
3194 EXPORT_SYMBOL(cont_prepare_write);
3195 EXPORT_SYMBOL(end_buffer_read_sync);
3196 EXPORT_SYMBOL(end_buffer_write_sync);
3197 EXPORT_SYMBOL(file_fsync);
3198 EXPORT_SYMBOL(fsync_bdev);
3199 EXPORT_SYMBOL(generic_block_bmap);
3200 EXPORT_SYMBOL(generic_commit_write);
3201 EXPORT_SYMBOL(generic_cont_expand);
3202 EXPORT_SYMBOL(generic_cont_expand_simple);
3203 EXPORT_SYMBOL(init_buffer);
3204 EXPORT_SYMBOL(invalidate_bdev);
3205 EXPORT_SYMBOL(ll_rw_block);
3206 EXPORT_SYMBOL(mark_buffer_dirty);
3207 EXPORT_SYMBOL(submit_bh);
3208 EXPORT_SYMBOL(sync_dirty_buffer);
3209 EXPORT_SYMBOL(unlock_buffer);