vserver 2.0 rc7
[linux-2.6.git] / fs / ext3 / balloc.c
1 /*
2  *  linux/fs/ext3/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/config.h>
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd.h>
18 #include <linux/ext3_fs.h>
19 #include <linux/ext3_jbd.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/vs_dlimit.h>
23
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27
28 /*
29  * The free blocks are managed by bitmaps.  A file system contains several
30  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
31  * block for inodes, N blocks for the inode table and data blocks.
32  *
33  * The file system contains group descriptors which are located after the
34  * super block.  Each descriptor contains the number of the bitmap block and
35  * the free blocks count in the block.  The descriptors are loaded in memory
36  * when a file system is mounted (see ext3_read_super).
37  */
38
39
40 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
41
42 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
43                                              unsigned int block_group,
44                                              struct buffer_head ** bh)
45 {
46         unsigned long group_desc;
47         unsigned long offset;
48         struct ext3_group_desc * desc;
49         struct ext3_sb_info *sbi = EXT3_SB(sb);
50
51         if (block_group >= sbi->s_groups_count) {
52                 ext3_error (sb, "ext3_get_group_desc",
53                             "block_group >= groups_count - "
54                             "block_group = %d, groups_count = %lu",
55                             block_group, sbi->s_groups_count);
56
57                 return NULL;
58         }
59         smp_rmb();
60
61         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
62         offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
63         if (!sbi->s_group_desc[group_desc]) {
64                 ext3_error (sb, "ext3_get_group_desc",
65                             "Group descriptor not loaded - "
66                             "block_group = %d, group_desc = %lu, desc = %lu",
67                              block_group, group_desc, offset);
68                 return NULL;
69         }
70
71         desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
72         if (bh)
73                 *bh = sbi->s_group_desc[group_desc];
74         return desc + offset;
75 }
76
77 /*
78  * Read the bitmap for a given block_group, reading into the specified 
79  * slot in the superblock's bitmap cache.
80  *
81  * Return buffer_head on success or NULL in case of failure.
82  */
83 static struct buffer_head *
84 read_block_bitmap(struct super_block *sb, unsigned int block_group)
85 {
86         struct ext3_group_desc * desc;
87         struct buffer_head * bh = NULL;
88
89         desc = ext3_get_group_desc (sb, block_group, NULL);
90         if (!desc)
91                 goto error_out;
92         bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap));
93         if (!bh)
94                 ext3_error (sb, "read_block_bitmap",
95                             "Cannot read block bitmap - "
96                             "block_group = %d, block_bitmap = %u",
97                             block_group, le32_to_cpu(desc->bg_block_bitmap));
98 error_out:
99         return bh;
100 }
101 /*
102  * The reservation window structure operations
103  * --------------------------------------------
104  * Operations include:
105  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
106  *
107  * We use sorted double linked list for the per-filesystem reservation
108  * window list. (like in vm_region).
109  *
110  * Initially, we keep those small operations in the abstract functions,
111  * so later if we need a better searching tree than double linked-list,
112  * we could easily switch to that without changing too much
113  * code.
114  */
115 #if 0
116 static void __rsv_window_dump(struct rb_root *root, int verbose,
117                               const char *fn)
118 {
119         struct rb_node *n;
120         struct ext3_reserve_window_node *rsv, *prev;
121         int bad;
122
123 restart:
124         n = rb_first(root);
125         bad = 0;
126         prev = NULL;
127
128         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
129         while (n) {
130                 rsv = list_entry(n, struct ext3_reserve_window_node, rsv_node);
131                 if (verbose)
132                         printk("reservation window 0x%p "
133                                "start:  %d, end:  %d\n",
134                                rsv, rsv->rsv_start, rsv->rsv_end);
135                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
136                         printk("Bad reservation %p (start >= end)\n",
137                                rsv);
138                         bad = 1;
139                 }
140                 if (prev && prev->rsv_end >= rsv->rsv_start) {
141                         printk("Bad reservation %p (prev->end >= start)\n",
142                                rsv);
143                         bad = 1;
144                 }
145                 if (bad) {
146                         if (!verbose) {
147                                 printk("Restarting reservation walk in verbose mode\n");
148                                 verbose = 1;
149                                 goto restart;
150                         }
151                 }
152                 n = rb_next(n);
153                 prev = rsv;
154         }
155         printk("Window map complete.\n");
156         if (bad)
157                 BUG();
158 }
159 #define rsv_window_dump(root, verbose) \
160         __rsv_window_dump((root), (verbose), __FUNCTION__)
161 #else
162 #define rsv_window_dump(root, verbose) do {} while (0)
163 #endif
164
165 static int
166 goal_in_my_reservation(struct ext3_reserve_window *rsv, int goal,
167                         unsigned int group, struct super_block * sb)
168 {
169         unsigned long group_first_block, group_last_block;
170
171         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
172                                 group * EXT3_BLOCKS_PER_GROUP(sb);
173         group_last_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
174
175         if ((rsv->_rsv_start > group_last_block) ||
176             (rsv->_rsv_end < group_first_block))
177                 return 0;
178         if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start)
179                 || (goal + group_first_block > rsv->_rsv_end)))
180                 return 0;
181         return 1;
182 }
183
184 /*
185  * Find the reserved window which includes the goal, or the previous one
186  * if the goal is not in any window.
187  * Returns NULL if there are no windows or if all windows start after the goal.
188  */
189 static struct ext3_reserve_window_node *
190 search_reserve_window(struct rb_root *root, unsigned long goal)
191 {
192         struct rb_node *n = root->rb_node;
193         struct ext3_reserve_window_node *rsv;
194
195         if (!n)
196                 return NULL;
197
198         do {
199                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
200
201                 if (goal < rsv->rsv_start)
202                         n = n->rb_left;
203                 else if (goal > rsv->rsv_end)
204                         n = n->rb_right;
205                 else
206                         return rsv;
207         } while (n);
208         /*
209          * We've fallen off the end of the tree: the goal wasn't inside
210          * any particular node.  OK, the previous node must be to one
211          * side of the interval containing the goal.  If it's the RHS,
212          * we need to back up one.
213          */
214         if (rsv->rsv_start > goal) {
215                 n = rb_prev(&rsv->rsv_node);
216                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
217         }
218         return rsv;
219 }
220
221 void ext3_rsv_window_add(struct super_block *sb,
222                     struct ext3_reserve_window_node *rsv)
223 {
224         struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
225         struct rb_node *node = &rsv->rsv_node;
226         unsigned int start = rsv->rsv_start;
227
228         struct rb_node ** p = &root->rb_node;
229         struct rb_node * parent = NULL;
230         struct ext3_reserve_window_node *this;
231
232         while (*p)
233         {
234                 parent = *p;
235                 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
236
237                 if (start < this->rsv_start)
238                         p = &(*p)->rb_left;
239                 else if (start > this->rsv_end)
240                         p = &(*p)->rb_right;
241                 else
242                         BUG();
243         }
244
245         rb_link_node(node, parent, p);
246         rb_insert_color(node, root);
247 }
248
249 static void rsv_window_remove(struct super_block *sb,
250                               struct ext3_reserve_window_node *rsv)
251 {
252         rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
253         rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
254         rsv->rsv_alloc_hit = 0;
255         rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
256 }
257
258 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
259 {
260         /* a valid reservation end block could not be 0 */
261         return (rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED);
262 }
263 void ext3_init_block_alloc_info(struct inode *inode)
264 {
265         struct ext3_inode_info *ei = EXT3_I(inode);
266         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
267         struct super_block *sb = inode->i_sb;
268
269         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
270         if (block_i) {
271                 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
272
273                 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
274                 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
275
276                 /*
277                  * if filesystem is mounted with NORESERVATION, the goal
278                  * reservation window size is set to zero to indicate
279                  * block reservation is off
280                  */
281                 if (!test_opt(sb, RESERVATION))
282                         rsv->rsv_goal_size = 0;
283                 else
284                         rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
285                 rsv->rsv_alloc_hit = 0;
286                 block_i->last_alloc_logical_block = 0;
287                 block_i->last_alloc_physical_block = 0;
288         }
289         ei->i_block_alloc_info = block_i;
290 }
291
292 void ext3_discard_reservation(struct inode *inode)
293 {
294         struct ext3_inode_info *ei = EXT3_I(inode);
295         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
296         struct ext3_reserve_window_node *rsv;
297         spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
298
299         if (!block_i)
300                 return;
301
302         rsv = &block_i->rsv_window_node;
303         if (!rsv_is_empty(&rsv->rsv_window)) {
304                 spin_lock(rsv_lock);
305                 if (!rsv_is_empty(&rsv->rsv_window))
306                         rsv_window_remove(inode->i_sb, rsv);
307                 spin_unlock(rsv_lock);
308         }
309 }
310
311 /* Free given blocks, update quota and i_blocks field */
312 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
313                          unsigned long block, unsigned long count,
314                          int *pdquot_freed_blocks)
315 {
316         struct buffer_head *bitmap_bh = NULL;
317         struct buffer_head *gd_bh;
318         unsigned long block_group;
319         unsigned long bit;
320         unsigned long i;
321         unsigned long overflow;
322         struct ext3_group_desc * desc;
323         struct ext3_super_block * es;
324         struct ext3_sb_info *sbi;
325         int err = 0, ret;
326         unsigned group_freed;
327
328         *pdquot_freed_blocks = 0;
329         sbi = EXT3_SB(sb);
330         es = sbi->s_es;
331         if (block < le32_to_cpu(es->s_first_data_block) ||
332             block + count < block ||
333             block + count > le32_to_cpu(es->s_blocks_count)) {
334                 ext3_error (sb, "ext3_free_blocks",
335                             "Freeing blocks not in datazone - "
336                             "block = %lu, count = %lu", block, count);
337                 goto error_return;
338         }
339
340         ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
341
342 do_more:
343         overflow = 0;
344         block_group = (block - le32_to_cpu(es->s_first_data_block)) /
345                       EXT3_BLOCKS_PER_GROUP(sb);
346         bit = (block - le32_to_cpu(es->s_first_data_block)) %
347                       EXT3_BLOCKS_PER_GROUP(sb);
348         /*
349          * Check to see if we are freeing blocks across a group
350          * boundary.
351          */
352         if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
353                 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
354                 count -= overflow;
355         }
356         brelse(bitmap_bh);
357         bitmap_bh = read_block_bitmap(sb, block_group);
358         if (!bitmap_bh)
359                 goto error_return;
360         desc = ext3_get_group_desc (sb, block_group, &gd_bh);
361         if (!desc)
362                 goto error_return;
363
364         if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
365             in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
366             in_range (block, le32_to_cpu(desc->bg_inode_table),
367                       sbi->s_itb_per_group) ||
368             in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
369                       sbi->s_itb_per_group))
370                 ext3_error (sb, "ext3_free_blocks",
371                             "Freeing blocks in system zones - "
372                             "Block = %lu, count = %lu",
373                             block, count);
374
375         /*
376          * We are about to start releasing blocks in the bitmap,
377          * so we need undo access.
378          */
379         /* @@@ check errors */
380         BUFFER_TRACE(bitmap_bh, "getting undo access");
381         err = ext3_journal_get_undo_access(handle, bitmap_bh);
382         if (err)
383                 goto error_return;
384
385         /*
386          * We are about to modify some metadata.  Call the journal APIs
387          * to unshare ->b_data if a currently-committing transaction is
388          * using it
389          */
390         BUFFER_TRACE(gd_bh, "get_write_access");
391         err = ext3_journal_get_write_access(handle, gd_bh);
392         if (err)
393                 goto error_return;
394
395         jbd_lock_bh_state(bitmap_bh);
396
397         for (i = 0, group_freed = 0; i < count; i++) {
398                 /*
399                  * An HJ special.  This is expensive...
400                  */
401 #ifdef CONFIG_JBD_DEBUG
402                 jbd_unlock_bh_state(bitmap_bh);
403                 {
404                         struct buffer_head *debug_bh;
405                         debug_bh = sb_find_get_block(sb, block + i);
406                         if (debug_bh) {
407                                 BUFFER_TRACE(debug_bh, "Deleted!");
408                                 if (!bh2jh(bitmap_bh)->b_committed_data)
409                                         BUFFER_TRACE(debug_bh,
410                                                 "No commited data in bitmap");
411                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
412                                 __brelse(debug_bh);
413                         }
414                 }
415                 jbd_lock_bh_state(bitmap_bh);
416 #endif
417                 if (need_resched()) {
418                         jbd_unlock_bh_state(bitmap_bh);
419                         cond_resched();
420                         jbd_lock_bh_state(bitmap_bh);
421                 }
422                 /* @@@ This prevents newly-allocated data from being
423                  * freed and then reallocated within the same
424                  * transaction. 
425                  * 
426                  * Ideally we would want to allow that to happen, but to
427                  * do so requires making journal_forget() capable of
428                  * revoking the queued write of a data block, which
429                  * implies blocking on the journal lock.  *forget()
430                  * cannot block due to truncate races.
431                  *
432                  * Eventually we can fix this by making journal_forget()
433                  * return a status indicating whether or not it was able
434                  * to revoke the buffer.  On successful revoke, it is
435                  * safe not to set the allocation bit in the committed
436                  * bitmap, because we know that there is no outstanding
437                  * activity on the buffer any more and so it is safe to
438                  * reallocate it.  
439                  */
440                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
441                 J_ASSERT_BH(bitmap_bh,
442                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
443                 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
444                                 bh2jh(bitmap_bh)->b_committed_data);
445
446                 /*
447                  * We clear the bit in the bitmap after setting the committed
448                  * data bit, because this is the reverse order to that which
449                  * the allocator uses.
450                  */
451                 BUFFER_TRACE(bitmap_bh, "clear bit");
452                 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
453                                                 bit + i, bitmap_bh->b_data)) {
454                         jbd_unlock_bh_state(bitmap_bh);
455                         ext3_error(sb, __FUNCTION__,
456                                 "bit already cleared for block %lu", block + i);
457                         jbd_lock_bh_state(bitmap_bh);
458                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
459                 } else {
460                         group_freed++;
461                 }
462         }
463         jbd_unlock_bh_state(bitmap_bh);
464
465         spin_lock(sb_bgl_lock(sbi, block_group));
466         desc->bg_free_blocks_count =
467                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
468                         group_freed);
469         spin_unlock(sb_bgl_lock(sbi, block_group));
470         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
471
472         /* We dirtied the bitmap block */
473         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
474         err = ext3_journal_dirty_metadata(handle, bitmap_bh);
475
476         /* And the group descriptor block */
477         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
478         ret = ext3_journal_dirty_metadata(handle, gd_bh);
479         if (!err) err = ret;
480         *pdquot_freed_blocks += group_freed;
481
482         if (overflow && !err) {
483                 block += count;
484                 count = overflow;
485                 goto do_more;
486         }
487         sb->s_dirt = 1;
488 error_return:
489         brelse(bitmap_bh);
490         ext3_std_error(sb, err);
491         return;
492 }
493
494 /* Free given blocks, update quota and i_blocks field */
495 void ext3_free_blocks(handle_t *handle, struct inode *inode,
496                         unsigned long block, unsigned long count)
497 {
498         struct super_block * sb;
499         int dquot_freed_blocks;
500
501         sb = inode->i_sb;
502         if (!sb) {
503                 printk ("ext3_free_blocks: nonexistent device");
504                 return;
505         }
506         ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
507         if (dquot_freed_blocks) {
508                 DLIMIT_FREE_BLOCK(sb, inode->i_xid, dquot_freed_blocks);
509                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
510         }
511         return;
512 }
513
514 /*
515  * For ext3 allocations, we must not reuse any blocks which are
516  * allocated in the bitmap buffer's "last committed data" copy.  This
517  * prevents deletes from freeing up the page for reuse until we have
518  * committed the delete transaction.
519  *
520  * If we didn't do this, then deleting something and reallocating it as
521  * data would allow the old block to be overwritten before the
522  * transaction committed (because we force data to disk before commit).
523  * This would lead to corruption if we crashed between overwriting the
524  * data and committing the delete. 
525  *
526  * @@@ We may want to make this allocation behaviour conditional on
527  * data-writes at some point, and disable it for metadata allocations or
528  * sync-data inodes.
529  */
530 static int ext3_test_allocatable(int nr, struct buffer_head *bh)
531 {
532         int ret;
533         struct journal_head *jh = bh2jh(bh);
534
535         if (ext3_test_bit(nr, bh->b_data))
536                 return 0;
537
538         jbd_lock_bh_state(bh);
539         if (!jh->b_committed_data)
540                 ret = 1;
541         else
542                 ret = !ext3_test_bit(nr, jh->b_committed_data);
543         jbd_unlock_bh_state(bh);
544         return ret;
545 }
546
547 static int
548 bitmap_search_next_usable_block(int start, struct buffer_head *bh,
549                                         int maxblocks)
550 {
551         int next;
552         struct journal_head *jh = bh2jh(bh);
553
554         /*
555          * The bitmap search --- search forward alternately through the actual
556          * bitmap and the last-committed copy until we find a bit free in
557          * both
558          */
559         while (start < maxblocks) {
560                 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
561                 if (next >= maxblocks)
562                         return -1;
563                 if (ext3_test_allocatable(next, bh))
564                         return next;
565                 jbd_lock_bh_state(bh);
566                 if (jh->b_committed_data)
567                         start = ext3_find_next_zero_bit(jh->b_committed_data,
568                                                         maxblocks, next);
569                 jbd_unlock_bh_state(bh);
570         }
571         return -1;
572 }
573
574 /*
575  * Find an allocatable block in a bitmap.  We honour both the bitmap and
576  * its last-committed copy (if that exists), and perform the "most
577  * appropriate allocation" algorithm of looking for a free block near
578  * the initial goal; then for a free byte somewhere in the bitmap; then
579  * for any free bit in the bitmap.
580  */
581 static int
582 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
583 {
584         int here, next;
585         char *p, *r;
586
587         if (start > 0) {
588                 /*
589                  * The goal was occupied; search forward for a free 
590                  * block within the next XX blocks.
591                  *
592                  * end_goal is more or less random, but it has to be
593                  * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
594                  * next 64-bit boundary is simple..
595                  */
596                 int end_goal = (start + 63) & ~63;
597                 if (end_goal > maxblocks)
598                         end_goal = maxblocks;
599                 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
600                 if (here < end_goal && ext3_test_allocatable(here, bh))
601                         return here;
602                 ext3_debug("Bit not found near goal\n");
603         }
604
605         here = start;
606         if (here < 0)
607                 here = 0;
608
609         p = ((char *)bh->b_data) + (here >> 3);
610         r = memscan(p, 0, (maxblocks - here + 7) >> 3);
611         next = (r - ((char *)bh->b_data)) << 3;
612
613         if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
614                 return next;
615
616         /*
617          * The bitmap search --- search forward alternately through the actual
618          * bitmap and the last-committed copy until we find a bit free in
619          * both
620          */
621         here = bitmap_search_next_usable_block(here, bh, maxblocks);
622         return here;
623 }
624
625 /*
626  * We think we can allocate this block in this bitmap.  Try to set the bit.
627  * If that succeeds then check that nobody has allocated and then freed the
628  * block since we saw that is was not marked in b_committed_data.  If it _was_
629  * allocated and freed then clear the bit in the bitmap again and return
630  * zero (failure).
631  */
632 static inline int
633 claim_block(spinlock_t *lock, int block, struct buffer_head *bh)
634 {
635         struct journal_head *jh = bh2jh(bh);
636         int ret;
637
638         if (ext3_set_bit_atomic(lock, block, bh->b_data))
639                 return 0;
640         jbd_lock_bh_state(bh);
641         if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
642                 ext3_clear_bit_atomic(lock, block, bh->b_data);
643                 ret = 0;
644         } else {
645                 ret = 1;
646         }
647         jbd_unlock_bh_state(bh);
648         return ret;
649 }
650
651 /*
652  * If we failed to allocate the desired block then we may end up crossing to a
653  * new bitmap.  In that case we must release write access to the old one via
654  * ext3_journal_release_buffer(), else we'll run out of credits.
655  */
656 static int
657 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
658         struct buffer_head *bitmap_bh, int goal, struct ext3_reserve_window *my_rsv)
659 {
660         int group_first_block, start, end;
661
662         /* we do allocation within the reservation window if we have a window */
663         if (my_rsv) {
664                 group_first_block =
665                         le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
666                         group * EXT3_BLOCKS_PER_GROUP(sb);
667                 if (my_rsv->_rsv_start >= group_first_block)
668                         start = my_rsv->_rsv_start - group_first_block;
669                 else
670                         /* reservation window cross group boundary */
671                         start = 0;
672                 end = my_rsv->_rsv_end - group_first_block + 1;
673                 if (end > EXT3_BLOCKS_PER_GROUP(sb))
674                         /* reservation window crosses group boundary */
675                         end = EXT3_BLOCKS_PER_GROUP(sb);
676                 if ((start <= goal) && (goal < end))
677                         start = goal;
678                 else
679                         goal = -1;
680         } else {
681                 if (goal > 0)
682                         start = goal;
683                 else
684                         start = 0;
685                 end = EXT3_BLOCKS_PER_GROUP(sb);
686         }
687
688         BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
689
690 repeat:
691         if (goal < 0 || !ext3_test_allocatable(goal, bitmap_bh)) {
692                 goal = find_next_usable_block(start, bitmap_bh, end);
693                 if (goal < 0)
694                         goto fail_access;
695                 if (!my_rsv) {
696                         int i;
697
698                         for (i = 0; i < 7 && goal > start &&
699                                         ext3_test_allocatable(goal - 1,
700                                                                 bitmap_bh);
701                                         i++, goal--)
702                                 ;
703                 }
704         }
705         start = goal;
706
707         if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) {
708                 /*
709                  * The block was allocated by another thread, or it was
710                  * allocated and then freed by another thread
711                  */
712                 start++;
713                 goal++;
714                 if (start >= end)
715                         goto fail_access;
716                 goto repeat;
717         }
718         return goal;
719 fail_access:
720         return -1;
721 }
722
723 /**
724  *      find_next_reservable_window():
725  *              find a reservable space within the given range.
726  *              It does not allocate the reservation window for now:
727  *              alloc_new_reservation() will do the work later.
728  *
729  *      @search_head: the head of the searching list;
730  *              This is not necessarily the list head of the whole filesystem
731  *
732  *              We have both head and start_block to assist the search
733  *              for the reservable space. The list starts from head,
734  *              but we will shift to the place where start_block is,
735  *              then start from there, when looking for a reservable space.
736  *
737  *      @size: the target new reservation window size
738  *
739  *      @group_first_block: the first block we consider to start
740  *                      the real search from
741  *
742  *      @last_block:
743  *              the maximum block number that our goal reservable space
744  *              could start from. This is normally the last block in this
745  *              group. The search will end when we found the start of next
746  *              possible reservable space is out of this boundary.
747  *              This could handle the cross boundary reservation window
748  *              request.
749  *
750  *      basically we search from the given range, rather than the whole
751  *      reservation double linked list, (start_block, last_block)
752  *      to find a free region that is of my size and has not
753  *      been reserved.
754  *
755  *      on succeed, it returns the reservation window to be appended to.
756  *      failed, return NULL.
757  */
758 static struct ext3_reserve_window_node *find_next_reservable_window(
759                                 struct ext3_reserve_window_node *search_head,
760                                 unsigned long size, int *start_block,
761                                 int last_block)
762 {
763         struct rb_node *next;
764         struct ext3_reserve_window_node *rsv, *prev;
765         int cur;
766
767         /* TODO: make the start of the reservation window byte-aligned */
768         /* cur = *start_block & ~7;*/
769         cur = *start_block;
770         rsv = search_head;
771         if (!rsv)
772                 return NULL;
773
774         while (1) {
775                 if (cur <= rsv->rsv_end)
776                         cur = rsv->rsv_end + 1;
777
778                 /* TODO?
779                  * in the case we could not find a reservable space
780                  * that is what is expected, during the re-search, we could
781                  * remember what's the largest reservable space we could have
782                  * and return that one.
783                  *
784                  * For now it will fail if we could not find the reservable
785                  * space with expected-size (or more)...
786                  */
787                 if (cur > last_block)
788                         return NULL;            /* fail */
789
790                 prev = rsv;
791                 next = rb_next(&rsv->rsv_node);
792                 rsv = list_entry(next, struct ext3_reserve_window_node, rsv_node);
793
794                 /*
795                  * Reached the last reservation, we can just append to the
796                  * previous one.
797                  */
798                 if (!next)
799                         break;
800
801                 if (cur + size <= rsv->rsv_start) {
802                         /*
803                          * Found a reserveable space big enough.  We could
804                          * have a reservation across the group boundary here
805                          */
806                         break;
807                 }
808         }
809         /*
810          * we come here either :
811          * when we reach the end of the whole list,
812          * and there is empty reservable space after last entry in the list.
813          * append it to the end of the list.
814          *
815          * or we found one reservable space in the middle of the list,
816          * return the reservation window that we could append to.
817          * succeed.
818          */
819         *start_block = cur;
820         return prev;
821 }
822
823 /**
824  *      alloc_new_reservation()--allocate a new reservation window
825  *
826  *              To make a new reservation, we search part of the filesystem
827  *              reservation list (the list that inside the group). We try to
828  *              allocate a new reservation window near the allocation goal,
829  *              or the beginning of the group, if there is no goal.
830  *
831  *              We first find a reservable space after the goal, then from
832  *              there, we check the bitmap for the first free block after
833  *              it. If there is no free block until the end of group, then the
834  *              whole group is full, we failed. Otherwise, check if the free
835  *              block is inside the expected reservable space, if so, we
836  *              succeed.
837  *              If the first free block is outside the reservable space, then
838  *              start from the first free block, we search for next available
839  *              space, and go on.
840  *
841  *      on succeed, a new reservation will be found and inserted into the list
842  *      It contains at least one free block, and it does not overlap with other
843  *      reservation windows.
844  *
845  *      failed: we failed to find a reservation window in this group
846  *
847  *      @rsv: the reservation
848  *
849  *      @goal: The goal (group-relative).  It is where the search for a
850  *              free reservable space should start from.
851  *              if we have a goal(goal >0 ), then start from there,
852  *              no goal(goal = -1), we start from the first block
853  *              of the group.
854  *
855  *      @sb: the super block
856  *      @group: the group we are trying to allocate in
857  *      @bitmap_bh: the block group block bitmap
858  */
859 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
860                 int goal, struct super_block *sb,
861                 unsigned int group, struct buffer_head *bitmap_bh)
862 {
863         struct ext3_reserve_window_node *search_head;
864         int group_first_block, group_end_block, start_block;
865         int first_free_block;
866         int reservable_space_start;
867         struct ext3_reserve_window_node *prev_rsv;
868         struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
869         unsigned long size;
870
871         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
872                                 group * EXT3_BLOCKS_PER_GROUP(sb);
873         group_end_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
874
875         if (goal < 0)
876                 start_block = group_first_block;
877         else
878                 start_block = goal + group_first_block;
879
880         size = my_rsv->rsv_goal_size;
881         if (!rsv_is_empty(&my_rsv->rsv_window)) {
882                 /*
883                  * if the old reservation is cross group boundary
884                  * and if the goal is inside the old reservation window,
885                  * we will come here when we just failed to allocate from
886                  * the first part of the window. We still have another part
887                  * that belongs to the next group. In this case, there is no
888                  * point to discard our window and try to allocate a new one
889                  * in this group(which will fail). we should
890                  * keep the reservation window, just simply move on.
891                  *
892                  * Maybe we could shift the start block of the reservation
893                  * window to the first block of next group.
894                  */
895
896                 if ((my_rsv->rsv_start <= group_end_block) &&
897                                 (my_rsv->rsv_end > group_end_block) &&
898                                 (start_block >= my_rsv->rsv_start))
899                         return -1;
900
901                 if ((my_rsv->rsv_alloc_hit >
902                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
903                         /*
904                          * if we previously allocation hit ration is greater than half
905                          * we double the size of reservation window next time
906                          * otherwise keep the same
907                          */
908                         size = size * 2;
909                         if (size > EXT3_MAX_RESERVE_BLOCKS)
910                                 size = EXT3_MAX_RESERVE_BLOCKS;
911                         my_rsv->rsv_goal_size= size;
912                 }
913         }
914         /*
915          * shift the search start to the window near the goal block
916          */
917         search_head = search_reserve_window(fs_rsv_root, start_block);
918
919         /*
920          * find_next_reservable_window() simply finds a reservable window
921          * inside the given range(start_block, group_end_block).
922          *
923          * To make sure the reservation window has a free bit inside it, we
924          * need to check the bitmap after we found a reservable window.
925          */
926 retry:
927         prev_rsv = find_next_reservable_window(search_head, size,
928                                                 &start_block, group_end_block);
929         if (prev_rsv == NULL)
930                 goto failed;
931         reservable_space_start = start_block;
932         /*
933          * On success, find_next_reservable_window() returns the
934          * reservation window where there is a reservable space after it.
935          * Before we reserve this reservable space, we need
936          * to make sure there is at least a free block inside this region.
937          *
938          * searching the first free bit on the block bitmap and copy of
939          * last committed bitmap alternatively, until we found a allocatable
940          * block. Search start from the start block of the reservable space
941          * we just found.
942          */
943         first_free_block = bitmap_search_next_usable_block(
944                         reservable_space_start - group_first_block,
945                         bitmap_bh, group_end_block - group_first_block + 1);
946
947         if (first_free_block < 0) {
948                 /*
949                  * no free block left on the bitmap, no point
950                  * to reserve the space. return failed.
951                  */
952                 goto failed;
953         }
954         start_block = first_free_block + group_first_block;
955         /*
956          * check if the first free block is within the
957          * free space we just found
958          */
959         if ((start_block >= reservable_space_start) &&
960           (start_block < reservable_space_start + size))
961                 goto found_rsv_window;
962         /*
963          * if the first free bit we found is out of the reservable space
964          * this means there is no free block on the reservable space
965          * we should continue search for next reservable space,
966          * start from where the free block is,
967          * we also shift the list head to where we stopped last time
968          */
969         search_head = prev_rsv;
970         goto retry;
971
972 found_rsv_window:
973         /*
974          * great! the reservable space contains some free blocks.
975          * if the search returns that we should add the new
976          * window just next to where the old window, we don't
977          * need to remove the old window first then add it to the
978          * same place, just update the new start and new end.
979          */
980         if (my_rsv != prev_rsv)  {
981                 if (!rsv_is_empty(&my_rsv->rsv_window))
982                         rsv_window_remove(sb, my_rsv);
983         }
984         my_rsv->rsv_start = reservable_space_start;
985         my_rsv->rsv_end = my_rsv->rsv_start + size - 1;
986         my_rsv->rsv_alloc_hit = 0;
987         if (my_rsv != prev_rsv)  {
988                 ext3_rsv_window_add(sb, my_rsv);
989         }
990         return 0;               /* succeed */
991 failed:
992         /*
993          * failed to find a new reservation window in the current
994          * group, remove the current(stale) reservation window
995          * if there is any
996          */
997         if (!rsv_is_empty(&my_rsv->rsv_window))
998                 rsv_window_remove(sb, my_rsv);
999         return -1;              /* failed */
1000 }
1001
1002 /*
1003  * This is the main function used to allocate a new block and its reservation
1004  * window.
1005  *
1006  * Each time when a new block allocation is need, first try to allocate from
1007  * its own reservation.  If it does not have a reservation window, instead of
1008  * looking for a free bit on bitmap first, then look up the reservation list to
1009  * see if it is inside somebody else's reservation window, we try to allocate a
1010  * reservation window for it starting from the goal first. Then do the block
1011  * allocation within the reservation window.
1012  *
1013  * This will avoid keeping on searching the reservation list again and
1014  * again when someboday is looking for a free block (without
1015  * reservation), and there are lots of free blocks, but they are all
1016  * being reserved.
1017  *
1018  * We use a sorted double linked list for the per-filesystem reservation list.
1019  * The insert, remove and find a free space(non-reserved) operations for the
1020  * sorted double linked list should be fast.
1021  *
1022  */
1023 static int
1024 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1025                         unsigned int group, struct buffer_head *bitmap_bh,
1026                         int goal, struct ext3_reserve_window_node * my_rsv,
1027                         int *errp)
1028 {
1029         spinlock_t *rsv_lock;
1030         unsigned long group_first_block;
1031         int ret = 0;
1032         int fatal;
1033
1034         *errp = 0;
1035
1036         /*
1037          * Make sure we use undo access for the bitmap, because it is critical
1038          * that we do the frozen_data COW on bitmap buffers in all cases even
1039          * if the buffer is in BJ_Forget state in the committing transaction.
1040          */
1041         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1042         fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1043         if (fatal) {
1044                 *errp = fatal;
1045                 return -1;
1046         }
1047
1048         /*
1049          * we don't deal with reservation when
1050          * filesystem is mounted without reservation
1051          * or the file is not a regular file
1052          * or last attempt to allocate a block with reservation turned on failed
1053          */
1054         if (my_rsv == NULL ) {
1055                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal, NULL);
1056                 goto out;
1057         }
1058         rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1059         /*
1060          * goal is a group relative block number (if there is a goal)
1061          * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb)
1062          * first block is a filesystem wide block number
1063          * first block is the block number of the first block in this group
1064          */
1065         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
1066                         group * EXT3_BLOCKS_PER_GROUP(sb);
1067
1068         /*
1069          * Basically we will allocate a new block from inode's reservation
1070          * window.
1071          *
1072          * We need to allocate a new reservation window, if:
1073          * a) inode does not have a reservation window; or
1074          * b) last attempt to allocate a block from existing reservation
1075          *    failed; or
1076          * c) we come here with a goal and with a reservation window
1077          *
1078          * We do not need to allocate a new reservation window if we come here
1079          * at the beginning with a goal and the goal is inside the window, or
1080          * we don't have a goal but already have a reservation window.
1081          * then we could go to allocate from the reservation window directly.
1082          */
1083         while (1) {
1084                 struct ext3_reserve_window rsv_copy;
1085
1086                 rsv_copy._rsv_start = my_rsv->rsv_start;
1087                 rsv_copy._rsv_end = my_rsv->rsv_end;
1088
1089                 if (rsv_is_empty(&rsv_copy) || (ret < 0) ||
1090                         !goal_in_my_reservation(&rsv_copy, goal, group, sb)) {
1091                         spin_lock(rsv_lock);
1092                         ret = alloc_new_reservation(my_rsv, goal, sb,
1093                                                         group, bitmap_bh);
1094                         rsv_copy._rsv_start = my_rsv->rsv_start;
1095                         rsv_copy._rsv_end = my_rsv->rsv_end;
1096                         spin_unlock(rsv_lock);
1097                         if (ret < 0)
1098                                 break;                  /* failed */
1099
1100                         if (!goal_in_my_reservation(&rsv_copy, goal, group, sb))
1101                                 goal = -1;
1102                 }
1103                 if ((rsv_copy._rsv_start >= group_first_block + EXT3_BLOCKS_PER_GROUP(sb))
1104                     || (rsv_copy._rsv_end < group_first_block))
1105                         BUG();
1106                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal,
1107                                            &rsv_copy);
1108                 if (ret >= 0) {
1109                         my_rsv->rsv_alloc_hit++;
1110                         break;                          /* succeed */
1111                 }
1112         }
1113 out:
1114         if (ret >= 0) {
1115                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1116                                         "bitmap block");
1117                 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1118                 if (fatal) {
1119                         *errp = fatal;
1120                         return -1;
1121                 }
1122                 return ret;
1123         }
1124
1125         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1126         ext3_journal_release_buffer(handle, bitmap_bh);
1127         return ret;
1128 }
1129
1130 static int ext3_has_free_blocks(struct super_block *sb)
1131 {
1132         struct ext3_sb_info *sbi = EXT3_SB(sb);
1133         int free_blocks, root_blocks, cond;
1134
1135         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1136         root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1137
1138         vxdprintk(VXD_CBIT(dlim, 3),
1139                 "ext3_has_free_blocks(%p): free=%u, root=%u",
1140                 sb, free_blocks, root_blocks);
1141
1142         DLIMIT_ADJUST_BLOCK(sb, vx_current_xid(), &free_blocks, &root_blocks);
1143
1144         cond = (free_blocks < root_blocks + 1 &&
1145                 !capable(CAP_SYS_RESOURCE) &&
1146                 sbi->s_resuid != current->fsuid &&
1147                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid)));
1148
1149         vxdprintk(VXD_CBIT(dlim, 3),
1150                 "ext3_has_free_blocks(%p): %u<%u+1, %c, %u!=%u r=%d",
1151                 sb, free_blocks, root_blocks,
1152                 !capable(CAP_SYS_RESOURCE)?'1':'0',
1153                 sbi->s_resuid, current->fsuid, cond?0:1);
1154
1155         return (cond ? 0 : 1);
1156 }
1157
1158 /*
1159  * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1160  * it is profitable to retry the operation, this function will wait
1161  * for the current or commiting transaction to complete, and then
1162  * return TRUE.
1163  */
1164 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1165 {
1166         if (!ext3_has_free_blocks(sb) || (*retries)++ > 3)
1167                 return 0;
1168
1169         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1170
1171         return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1172 }
1173
1174 /*
1175  * ext3_new_block uses a goal block to assist allocation.  If the goal is
1176  * free, or there is a free block within 32 blocks of the goal, that block
1177  * is allocated.  Otherwise a forward search is made for a free block; within 
1178  * each block group the search first looks for an entire free byte in the block
1179  * bitmap, and then for any free bit if that fails.
1180  * This function also updates quota and i_blocks field.
1181  */
1182 int ext3_new_block(handle_t *handle, struct inode *inode,
1183                         unsigned long goal, int *errp)
1184 {
1185         struct buffer_head *bitmap_bh = NULL;
1186         struct buffer_head *gdp_bh;
1187         int group_no;
1188         int goal_group;
1189         int ret_block;
1190         int bgi;                        /* blockgroup iteration index */
1191         int target_block;
1192         int fatal = 0, err;
1193         int performed_allocation = 0;
1194         int free_blocks;
1195         struct super_block *sb;
1196         struct ext3_group_desc *gdp;
1197         struct ext3_super_block *es;
1198         struct ext3_sb_info *sbi;
1199         struct ext3_reserve_window_node *my_rsv = NULL;
1200         struct ext3_block_alloc_info *block_i;
1201         unsigned short windowsz = 0;
1202 #ifdef EXT3FS_DEBUG
1203         static int goal_hits, goal_attempts;
1204 #endif
1205         unsigned long ngroups;
1206
1207         *errp = -ENOSPC;
1208         sb = inode->i_sb;
1209         if (!sb) {
1210                 printk("ext3_new_block: nonexistent device");
1211                 return 0;
1212         }
1213
1214         /*
1215          * Check quota for allocation of this block.
1216          */
1217         if (DQUOT_ALLOC_BLOCK(inode, 1)) {
1218                 *errp = -EDQUOT;
1219                 return 0;
1220         }
1221         if (DLIMIT_ALLOC_BLOCK(sb, inode->i_xid, 1))
1222             goto out_dlimit;
1223
1224         sbi = EXT3_SB(sb);
1225         es = EXT3_SB(sb)->s_es;
1226         ext3_debug("goal=%lu.\n", goal);
1227         /*
1228          * Allocate a block from reservation only when
1229          * filesystem is mounted with reservation(default,-o reservation), and
1230          * it's a regular file, and
1231          * the desired window size is greater than 0 (One could use ioctl
1232          * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1233          * reservation on that particular file)
1234          */
1235         block_i = EXT3_I(inode)->i_block_alloc_info;
1236         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1237                 my_rsv = &block_i->rsv_window_node;
1238
1239         if (!ext3_has_free_blocks(sb)) {
1240                 *errp = -ENOSPC;
1241                 goto out;
1242         }
1243
1244         /*
1245          * First, test whether the goal block is free.
1246          */
1247         if (goal < le32_to_cpu(es->s_first_data_block) ||
1248             goal >= le32_to_cpu(es->s_blocks_count))
1249                 goal = le32_to_cpu(es->s_first_data_block);
1250         group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1251                         EXT3_BLOCKS_PER_GROUP(sb);
1252         gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1253         if (!gdp)
1254                 goto io_error;
1255
1256         goal_group = group_no;
1257 retry:
1258         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1259         /*
1260          * if there is not enough free blocks to make a new resevation
1261          * turn off reservation for this allocation
1262          */
1263         if (my_rsv && (free_blocks < windowsz)
1264                 && (rsv_is_empty(&my_rsv->rsv_window)))
1265                 my_rsv = NULL;
1266
1267         if (free_blocks > 0) {
1268                 ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) %
1269                                 EXT3_BLOCKS_PER_GROUP(sb));
1270                 bitmap_bh = read_block_bitmap(sb, group_no);
1271                 if (!bitmap_bh)
1272                         goto io_error;
1273                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1274                                         bitmap_bh, ret_block, my_rsv, &fatal);
1275                 if (fatal)
1276                         goto out;
1277                 if (ret_block >= 0)
1278                         goto allocated;
1279         }
1280
1281         ngroups = EXT3_SB(sb)->s_groups_count;
1282         smp_rmb();
1283
1284         /*
1285          * Now search the rest of the groups.  We assume that 
1286          * i and gdp correctly point to the last group visited.
1287          */
1288         for (bgi = 0; bgi < ngroups; bgi++) {
1289                 group_no++;
1290                 if (group_no >= ngroups)
1291                         group_no = 0;
1292                 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1293                 if (!gdp) {
1294                         *errp = -EIO;
1295                         goto out;
1296                 }
1297                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1298                 /*
1299                  * skip this group if the number of
1300                  * free blocks is less than half of the reservation
1301                  * window size.
1302                  */
1303                 if (free_blocks <= (windowsz/2))
1304                         continue;
1305
1306                 brelse(bitmap_bh);
1307                 bitmap_bh = read_block_bitmap(sb, group_no);
1308                 if (!bitmap_bh)
1309                         goto io_error;
1310                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1311                                         bitmap_bh, -1, my_rsv, &fatal);
1312                 if (fatal)
1313                         goto out;
1314                 if (ret_block >= 0) 
1315                         goto allocated;
1316         }
1317         /*
1318          * We may end up a bogus ealier ENOSPC error due to
1319          * filesystem is "full" of reservations, but
1320          * there maybe indeed free blocks avaliable on disk
1321          * In this case, we just forget about the reservations
1322          * just do block allocation as without reservations.
1323          */
1324         if (my_rsv) {
1325                 my_rsv = NULL;
1326                 group_no = goal_group;
1327                 goto retry;
1328         }
1329         /* No space left on the device */
1330         *errp = -ENOSPC;
1331         goto out;
1332
1333 allocated:
1334
1335         ext3_debug("using block group %d(%d)\n",
1336                         group_no, gdp->bg_free_blocks_count);
1337
1338         BUFFER_TRACE(gdp_bh, "get_write_access");
1339         fatal = ext3_journal_get_write_access(handle, gdp_bh);
1340         if (fatal)
1341                 goto out;
1342
1343         target_block = ret_block + group_no * EXT3_BLOCKS_PER_GROUP(sb)
1344                                 + le32_to_cpu(es->s_first_data_block);
1345
1346         if (target_block == le32_to_cpu(gdp->bg_block_bitmap) ||
1347             target_block == le32_to_cpu(gdp->bg_inode_bitmap) ||
1348             in_range(target_block, le32_to_cpu(gdp->bg_inode_table),
1349                       EXT3_SB(sb)->s_itb_per_group))
1350                 ext3_error(sb, "ext3_new_block",
1351                             "Allocating block in system zone - "
1352                             "block = %u", target_block);
1353
1354         performed_allocation = 1;
1355
1356 #ifdef CONFIG_JBD_DEBUG
1357         {
1358                 struct buffer_head *debug_bh;
1359
1360                 /* Record bitmap buffer state in the newly allocated block */
1361                 debug_bh = sb_find_get_block(sb, target_block);
1362                 if (debug_bh) {
1363                         BUFFER_TRACE(debug_bh, "state when allocated");
1364                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1365                         brelse(debug_bh);
1366                 }
1367         }
1368         jbd_lock_bh_state(bitmap_bh);
1369         spin_lock(sb_bgl_lock(sbi, group_no));
1370         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1371                 if (ext3_test_bit(ret_block,
1372                                 bh2jh(bitmap_bh)->b_committed_data)) {
1373                         printk("%s: block was unexpectedly set in "
1374                                 "b_committed_data\n", __FUNCTION__);
1375                 }
1376         }
1377         ext3_debug("found bit %d\n", ret_block);
1378         spin_unlock(sb_bgl_lock(sbi, group_no));
1379         jbd_unlock_bh_state(bitmap_bh);
1380 #endif
1381
1382         /* ret_block was blockgroup-relative.  Now it becomes fs-relative */
1383         ret_block = target_block;
1384
1385         if (ret_block >= le32_to_cpu(es->s_blocks_count)) {
1386                 ext3_error(sb, "ext3_new_block",
1387                             "block(%d) >= blocks count(%d) - "
1388                             "block_group = %d, es == %p ", ret_block,
1389                         le32_to_cpu(es->s_blocks_count), group_no, es);
1390                 goto out;
1391         }
1392
1393         /*
1394          * It is up to the caller to add the new buffer to a journal
1395          * list of some description.  We don't know in advance whether
1396          * the caller wants to use it as metadata or data.
1397          */
1398         ext3_debug("allocating block %d. Goal hits %d of %d.\n",
1399                         ret_block, goal_hits, goal_attempts);
1400
1401         spin_lock(sb_bgl_lock(sbi, group_no));
1402         gdp->bg_free_blocks_count =
1403                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - 1);
1404         spin_unlock(sb_bgl_lock(sbi, group_no));
1405         percpu_counter_mod(&sbi->s_freeblocks_counter, -1);
1406
1407         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1408         err = ext3_journal_dirty_metadata(handle, gdp_bh);
1409         if (!fatal)
1410                 fatal = err;
1411
1412         sb->s_dirt = 1;
1413         if (fatal)
1414                 goto out;
1415
1416         *errp = 0;
1417         brelse(bitmap_bh);
1418         return ret_block;
1419
1420 io_error:
1421         *errp = -EIO;
1422 out:
1423         if (!performed_allocation)
1424                 DLIMIT_FREE_BLOCK(sb, inode->i_xid, 1);
1425 out_dlimit:
1426         if (fatal) {
1427                 *errp = fatal;
1428                 ext3_std_error(sb, fatal);
1429         }
1430         /*
1431          * Undo the block allocation
1432          */
1433         if (!performed_allocation)
1434                 DQUOT_FREE_BLOCK(inode, 1);
1435         brelse(bitmap_bh);
1436         return 0;
1437 }
1438
1439 unsigned long ext3_count_free_blocks(struct super_block *sb)
1440 {
1441         unsigned long desc_count;
1442         struct ext3_group_desc *gdp;
1443         int i;
1444         unsigned long ngroups;
1445 #ifdef EXT3FS_DEBUG
1446         struct ext3_super_block *es;
1447         unsigned long bitmap_count, x;
1448         struct buffer_head *bitmap_bh = NULL;
1449
1450         lock_super(sb);
1451         es = EXT3_SB(sb)->s_es;
1452         desc_count = 0;
1453         bitmap_count = 0;
1454         gdp = NULL;
1455         for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++) {
1456                 gdp = ext3_get_group_desc(sb, i, NULL);
1457                 if (!gdp)
1458                         continue;
1459                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1460                 brelse(bitmap_bh);
1461                 bitmap_bh = read_block_bitmap(sb, i);
1462                 if (bitmap_bh == NULL)
1463                         continue;
1464
1465                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1466                 printk("group %d: stored = %d, counted = %lu\n",
1467                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1468                 bitmap_count += x;
1469         }
1470         brelse(bitmap_bh);
1471         printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n",
1472                le32_to_cpu(es->s_free_blocks_count), desc_count, bitmap_count);
1473         unlock_super(sb);
1474         return bitmap_count;
1475 #else
1476         desc_count = 0;
1477         ngroups = EXT3_SB(sb)->s_groups_count;
1478         smp_rmb();
1479         for (i = 0; i < ngroups; i++) {
1480                 gdp = ext3_get_group_desc(sb, i, NULL);
1481                 if (!gdp)
1482                         continue;
1483                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1484         }
1485
1486         return desc_count;
1487 #endif
1488 }
1489
1490 static inline int
1491 block_in_use(unsigned long block, struct super_block *sb, unsigned char *map)
1492 {
1493         return ext3_test_bit ((block -
1494                 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) %
1495                          EXT3_BLOCKS_PER_GROUP(sb), map);
1496 }
1497
1498 static inline int test_root(int a, int b)
1499 {
1500         int num = b;
1501
1502         while (a > num)
1503                 num *= b;
1504         return num == a;
1505 }
1506
1507 static int ext3_group_sparse(int group)
1508 {
1509         if (group <= 1)
1510                 return 1;
1511         if (!(group & 1))
1512                 return 0;
1513         return (test_root(group, 7) || test_root(group, 5) ||
1514                 test_root(group, 3));
1515 }
1516
1517 /**
1518  *      ext3_bg_has_super - number of blocks used by the superblock in group
1519  *      @sb: superblock for filesystem
1520  *      @group: group number to check
1521  *
1522  *      Return the number of blocks used by the superblock (primary or backup)
1523  *      in this group.  Currently this will be only 0 or 1.
1524  */
1525 int ext3_bg_has_super(struct super_block *sb, int group)
1526 {
1527         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1528             !ext3_group_sparse(group))
1529                 return 0;
1530         return 1;
1531 }
1532
1533 /**
1534  *      ext3_bg_num_gdb - number of blocks used by the group table in group
1535  *      @sb: superblock for filesystem
1536  *      @group: group number to check
1537  *
1538  *      Return the number of blocks used by the group descriptor table
1539  *      (primary or backup) in this group.  In the future there may be a
1540  *      different number of descriptor blocks in each group.
1541  */
1542 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1543 {
1544         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1545             !ext3_group_sparse(group))
1546                 return 0;
1547         return EXT3_SB(sb)->s_gdb_count;
1548 }
1549
1550 #ifdef CONFIG_EXT3_CHECK
1551 /* Called at mount-time, super-block is locked */
1552 void ext3_check_blocks_bitmap (struct super_block * sb)
1553 {
1554         struct ext3_super_block *es;
1555         unsigned long desc_count, bitmap_count, x, j;
1556         unsigned long desc_blocks;
1557         struct buffer_head *bitmap_bh = NULL;
1558         struct ext3_group_desc *gdp;
1559         int i;
1560
1561         es = EXT3_SB(sb)->s_es;
1562         desc_count = 0;
1563         bitmap_count = 0;
1564         gdp = NULL;
1565         for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++) {
1566                 gdp = ext3_get_group_desc (sb, i, NULL);
1567                 if (!gdp)
1568                         continue;
1569                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1570                 brelse(bitmap_bh);
1571                 bitmap_bh = read_block_bitmap(sb, i);
1572                 if (bitmap_bh == NULL)
1573                         continue;
1574
1575                 if (ext3_bg_has_super(sb, i) &&
1576                                 !ext3_test_bit(0, bitmap_bh->b_data))
1577                         ext3_error(sb, __FUNCTION__,
1578                                    "Superblock in group %d is marked free", i);
1579
1580                 desc_blocks = ext3_bg_num_gdb(sb, i);
1581                 for (j = 0; j < desc_blocks; j++)
1582                         if (!ext3_test_bit(j + 1, bitmap_bh->b_data))
1583                                 ext3_error(sb, __FUNCTION__,
1584                                            "Descriptor block #%ld in group "
1585                                            "%d is marked free", j, i);
1586
1587                 if (!block_in_use (le32_to_cpu(gdp->bg_block_bitmap),
1588                                                 sb, bitmap_bh->b_data))
1589                         ext3_error (sb, "ext3_check_blocks_bitmap",
1590                                     "Block bitmap for group %d is marked free",
1591                                     i);
1592
1593                 if (!block_in_use (le32_to_cpu(gdp->bg_inode_bitmap),
1594                                                 sb, bitmap_bh->b_data))
1595                         ext3_error (sb, "ext3_check_blocks_bitmap",
1596                                     "Inode bitmap for group %d is marked free",
1597                                     i);
1598
1599                 for (j = 0; j < EXT3_SB(sb)->s_itb_per_group; j++)
1600                         if (!block_in_use (le32_to_cpu(gdp->bg_inode_table) + j,
1601                                                         sb, bitmap_bh->b_data))
1602                                 ext3_error (sb, "ext3_check_blocks_bitmap",
1603                                             "Block #%d of the inode table in "
1604                                             "group %d is marked free", j, i);
1605
1606                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1607                 if (le16_to_cpu(gdp->bg_free_blocks_count) != x)
1608                         ext3_error (sb, "ext3_check_blocks_bitmap",
1609                                     "Wrong free blocks count for group %d, "
1610                                     "stored = %d, counted = %lu", i,
1611                                     le16_to_cpu(gdp->bg_free_blocks_count), x);
1612                 bitmap_count += x;
1613         }
1614         brelse(bitmap_bh);
1615         if (le32_to_cpu(es->s_free_blocks_count) != bitmap_count)
1616                 ext3_error (sb, "ext3_check_blocks_bitmap",
1617                         "Wrong free blocks count in super block, "
1618                         "stored = %lu, counted = %lu",
1619                         (unsigned long)le32_to_cpu(es->s_free_blocks_count),
1620                         bitmap_count);
1621 }
1622 #endif