Fedora kernel-2.6.17-1.2142_FC4 patched with stable patch-2.6.17.4-vs2.0.2-rc26.diff
[linux-2.6.git] / fs / ext3 / balloc.c
1 /*
2  *  linux/fs/ext3/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/config.h>
15 #include <linux/time.h>
16 #include <linux/capability.h>
17 #include <linux/fs.h>
18 #include <linux/jbd.h>
19 #include <linux/ext3_fs.h>
20 #include <linux/ext3_jbd.h>
21 #include <linux/quotaops.h>
22 #include <linux/buffer_head.h>
23 #include <linux/vs_dlimit.h>
24
25 /*
26  * balloc.c contains the blocks allocation and deallocation routines
27  */
28
29 /*
30  * The free blocks are managed by bitmaps.  A file system contains several
31  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
32  * block for inodes, N blocks for the inode table and data blocks.
33  *
34  * The file system contains group descriptors which are located after the
35  * super block.  Each descriptor contains the number of the bitmap block and
36  * the free blocks count in the block.  The descriptors are loaded in memory
37  * when a file system is mounted (see ext3_read_super).
38  */
39
40
41 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
42
43 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
44                                              unsigned int block_group,
45                                              struct buffer_head ** bh)
46 {
47         unsigned long group_desc;
48         unsigned long offset;
49         struct ext3_group_desc * desc;
50         struct ext3_sb_info *sbi = EXT3_SB(sb);
51
52         if (block_group >= sbi->s_groups_count) {
53                 ext3_error (sb, "ext3_get_group_desc",
54                             "block_group >= groups_count - "
55                             "block_group = %d, groups_count = %lu",
56                             block_group, sbi->s_groups_count);
57
58                 return NULL;
59         }
60         smp_rmb();
61
62         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
63         offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
64         if (!sbi->s_group_desc[group_desc]) {
65                 ext3_error (sb, "ext3_get_group_desc",
66                             "Group descriptor not loaded - "
67                             "block_group = %d, group_desc = %lu, desc = %lu",
68                              block_group, group_desc, offset);
69                 return NULL;
70         }
71
72         desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
73         if (bh)
74                 *bh = sbi->s_group_desc[group_desc];
75         return desc + offset;
76 }
77
78 /*
79  * Read the bitmap for a given block_group, reading into the specified 
80  * slot in the superblock's bitmap cache.
81  *
82  * Return buffer_head on success or NULL in case of failure.
83  */
84 static struct buffer_head *
85 read_block_bitmap(struct super_block *sb, unsigned int block_group)
86 {
87         struct ext3_group_desc * desc;
88         struct buffer_head * bh = NULL;
89
90         desc = ext3_get_group_desc (sb, block_group, NULL);
91         if (!desc)
92                 goto error_out;
93         bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap));
94         if (!bh)
95                 ext3_error (sb, "read_block_bitmap",
96                             "Cannot read block bitmap - "
97                             "block_group = %d, block_bitmap = %u",
98                             block_group, le32_to_cpu(desc->bg_block_bitmap));
99 error_out:
100         return bh;
101 }
102 /*
103  * The reservation window structure operations
104  * --------------------------------------------
105  * Operations include:
106  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
107  *
108  * We use sorted double linked list for the per-filesystem reservation
109  * window list. (like in vm_region).
110  *
111  * Initially, we keep those small operations in the abstract functions,
112  * so later if we need a better searching tree than double linked-list,
113  * we could easily switch to that without changing too much
114  * code.
115  */
116 #if 0
117 static void __rsv_window_dump(struct rb_root *root, int verbose,
118                               const char *fn)
119 {
120         struct rb_node *n;
121         struct ext3_reserve_window_node *rsv, *prev;
122         int bad;
123
124 restart:
125         n = rb_first(root);
126         bad = 0;
127         prev = NULL;
128
129         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
130         while (n) {
131                 rsv = list_entry(n, struct ext3_reserve_window_node, rsv_node);
132                 if (verbose)
133                         printk("reservation window 0x%p "
134                                "start:  %d, end:  %d\n",
135                                rsv, rsv->rsv_start, rsv->rsv_end);
136                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
137                         printk("Bad reservation %p (start >= end)\n",
138                                rsv);
139                         bad = 1;
140                 }
141                 if (prev && prev->rsv_end >= rsv->rsv_start) {
142                         printk("Bad reservation %p (prev->end >= start)\n",
143                                rsv);
144                         bad = 1;
145                 }
146                 if (bad) {
147                         if (!verbose) {
148                                 printk("Restarting reservation walk in verbose mode\n");
149                                 verbose = 1;
150                                 goto restart;
151                         }
152                 }
153                 n = rb_next(n);
154                 prev = rsv;
155         }
156         printk("Window map complete.\n");
157         if (bad)
158                 BUG();
159 }
160 #define rsv_window_dump(root, verbose) \
161         __rsv_window_dump((root), (verbose), __FUNCTION__)
162 #else
163 #define rsv_window_dump(root, verbose) do {} while (0)
164 #endif
165
166 static int
167 goal_in_my_reservation(struct ext3_reserve_window *rsv, int goal,
168                         unsigned int group, struct super_block * sb)
169 {
170         unsigned long group_first_block, group_last_block;
171
172         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
173                                 group * EXT3_BLOCKS_PER_GROUP(sb);
174         group_last_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
175
176         if ((rsv->_rsv_start > group_last_block) ||
177             (rsv->_rsv_end < group_first_block))
178                 return 0;
179         if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start)
180                 || (goal + group_first_block > rsv->_rsv_end)))
181                 return 0;
182         return 1;
183 }
184
185 /*
186  * Find the reserved window which includes the goal, or the previous one
187  * if the goal is not in any window.
188  * Returns NULL if there are no windows or if all windows start after the goal.
189  */
190 static struct ext3_reserve_window_node *
191 search_reserve_window(struct rb_root *root, unsigned long goal)
192 {
193         struct rb_node *n = root->rb_node;
194         struct ext3_reserve_window_node *rsv;
195
196         if (!n)
197                 return NULL;
198
199         do {
200                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
201
202                 if (goal < rsv->rsv_start)
203                         n = n->rb_left;
204                 else if (goal > rsv->rsv_end)
205                         n = n->rb_right;
206                 else
207                         return rsv;
208         } while (n);
209         /*
210          * We've fallen off the end of the tree: the goal wasn't inside
211          * any particular node.  OK, the previous node must be to one
212          * side of the interval containing the goal.  If it's the RHS,
213          * we need to back up one.
214          */
215         if (rsv->rsv_start > goal) {
216                 n = rb_prev(&rsv->rsv_node);
217                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
218         }
219         return rsv;
220 }
221
222 void ext3_rsv_window_add(struct super_block *sb,
223                     struct ext3_reserve_window_node *rsv)
224 {
225         struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
226         struct rb_node *node = &rsv->rsv_node;
227         unsigned int start = rsv->rsv_start;
228
229         struct rb_node ** p = &root->rb_node;
230         struct rb_node * parent = NULL;
231         struct ext3_reserve_window_node *this;
232
233         while (*p)
234         {
235                 parent = *p;
236                 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
237
238                 if (start < this->rsv_start)
239                         p = &(*p)->rb_left;
240                 else if (start > this->rsv_end)
241                         p = &(*p)->rb_right;
242                 else
243                         BUG();
244         }
245
246         rb_link_node(node, parent, p);
247         rb_insert_color(node, root);
248 }
249
250 static void rsv_window_remove(struct super_block *sb,
251                               struct ext3_reserve_window_node *rsv)
252 {
253         rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
254         rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
255         rsv->rsv_alloc_hit = 0;
256         rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
257 }
258
259 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
260 {
261         /* a valid reservation end block could not be 0 */
262         return (rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED);
263 }
264 void ext3_init_block_alloc_info(struct inode *inode)
265 {
266         struct ext3_inode_info *ei = EXT3_I(inode);
267         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
268         struct super_block *sb = inode->i_sb;
269
270         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
271         if (block_i) {
272                 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
273
274                 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
275                 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
276
277                 /*
278                  * if filesystem is mounted with NORESERVATION, the goal
279                  * reservation window size is set to zero to indicate
280                  * block reservation is off
281                  */
282                 if (!test_opt(sb, RESERVATION))
283                         rsv->rsv_goal_size = 0;
284                 else
285                         rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
286                 rsv->rsv_alloc_hit = 0;
287                 block_i->last_alloc_logical_block = 0;
288                 block_i->last_alloc_physical_block = 0;
289         }
290         ei->i_block_alloc_info = block_i;
291 }
292
293 void ext3_discard_reservation(struct inode *inode)
294 {
295         struct ext3_inode_info *ei = EXT3_I(inode);
296         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
297         struct ext3_reserve_window_node *rsv;
298         spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
299
300         if (!block_i)
301                 return;
302
303         rsv = &block_i->rsv_window_node;
304         if (!rsv_is_empty(&rsv->rsv_window)) {
305                 spin_lock(rsv_lock);
306                 if (!rsv_is_empty(&rsv->rsv_window))
307                         rsv_window_remove(inode->i_sb, rsv);
308                 spin_unlock(rsv_lock);
309         }
310 }
311
312 /* Free given blocks, update quota and i_blocks field */
313 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
314                          unsigned long block, unsigned long count,
315                          int *pdquot_freed_blocks)
316 {
317         struct buffer_head *bitmap_bh = NULL;
318         struct buffer_head *gd_bh;
319         unsigned long block_group;
320         unsigned long bit;
321         unsigned long i;
322         unsigned long overflow;
323         struct ext3_group_desc * desc;
324         struct ext3_super_block * es;
325         struct ext3_sb_info *sbi;
326         int err = 0, ret;
327         unsigned group_freed;
328
329         *pdquot_freed_blocks = 0;
330         sbi = EXT3_SB(sb);
331         es = sbi->s_es;
332         if (block < le32_to_cpu(es->s_first_data_block) ||
333             block + count < block ||
334             block + count > le32_to_cpu(es->s_blocks_count)) {
335                 ext3_error (sb, "ext3_free_blocks",
336                             "Freeing blocks not in datazone - "
337                             "block = %lu, count = %lu", block, count);
338                 goto error_return;
339         }
340
341         ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
342
343 do_more:
344         overflow = 0;
345         block_group = (block - le32_to_cpu(es->s_first_data_block)) /
346                       EXT3_BLOCKS_PER_GROUP(sb);
347         bit = (block - le32_to_cpu(es->s_first_data_block)) %
348                       EXT3_BLOCKS_PER_GROUP(sb);
349         /*
350          * Check to see if we are freeing blocks across a group
351          * boundary.
352          */
353         if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
354                 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
355                 count -= overflow;
356         }
357         brelse(bitmap_bh);
358         bitmap_bh = read_block_bitmap(sb, block_group);
359         if (!bitmap_bh)
360                 goto error_return;
361         desc = ext3_get_group_desc (sb, block_group, &gd_bh);
362         if (!desc)
363                 goto error_return;
364
365         if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
366             in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
367             in_range (block, le32_to_cpu(desc->bg_inode_table),
368                       sbi->s_itb_per_group) ||
369             in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
370                       sbi->s_itb_per_group))
371                 ext3_error (sb, "ext3_free_blocks",
372                             "Freeing blocks in system zones - "
373                             "Block = %lu, count = %lu",
374                             block, count);
375
376         /*
377          * We are about to start releasing blocks in the bitmap,
378          * so we need undo access.
379          */
380         /* @@@ check errors */
381         BUFFER_TRACE(bitmap_bh, "getting undo access");
382         err = ext3_journal_get_undo_access(handle, bitmap_bh);
383         if (err)
384                 goto error_return;
385
386         /*
387          * We are about to modify some metadata.  Call the journal APIs
388          * to unshare ->b_data if a currently-committing transaction is
389          * using it
390          */
391         BUFFER_TRACE(gd_bh, "get_write_access");
392         err = ext3_journal_get_write_access(handle, gd_bh);
393         if (err)
394                 goto error_return;
395
396         jbd_lock_bh_state(bitmap_bh);
397
398         for (i = 0, group_freed = 0; i < count; i++) {
399                 /*
400                  * An HJ special.  This is expensive...
401                  */
402 #ifdef CONFIG_JBD_DEBUG
403                 jbd_unlock_bh_state(bitmap_bh);
404                 {
405                         struct buffer_head *debug_bh;
406                         debug_bh = sb_find_get_block(sb, block + i);
407                         if (debug_bh) {
408                                 BUFFER_TRACE(debug_bh, "Deleted!");
409                                 if (!bh2jh(bitmap_bh)->b_committed_data)
410                                         BUFFER_TRACE(debug_bh,
411                                                 "No commited data in bitmap");
412                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
413                                 __brelse(debug_bh);
414                         }
415                 }
416                 jbd_lock_bh_state(bitmap_bh);
417 #endif
418                 if (need_resched()) {
419                         jbd_unlock_bh_state(bitmap_bh);
420                         cond_resched();
421                         jbd_lock_bh_state(bitmap_bh);
422                 }
423                 /* @@@ This prevents newly-allocated data from being
424                  * freed and then reallocated within the same
425                  * transaction. 
426                  * 
427                  * Ideally we would want to allow that to happen, but to
428                  * do so requires making journal_forget() capable of
429                  * revoking the queued write of a data block, which
430                  * implies blocking on the journal lock.  *forget()
431                  * cannot block due to truncate races.
432                  *
433                  * Eventually we can fix this by making journal_forget()
434                  * return a status indicating whether or not it was able
435                  * to revoke the buffer.  On successful revoke, it is
436                  * safe not to set the allocation bit in the committed
437                  * bitmap, because we know that there is no outstanding
438                  * activity on the buffer any more and so it is safe to
439                  * reallocate it.  
440                  */
441                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
442                 J_ASSERT_BH(bitmap_bh,
443                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
444                 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
445                                 bh2jh(bitmap_bh)->b_committed_data);
446
447                 /*
448                  * We clear the bit in the bitmap after setting the committed
449                  * data bit, because this is the reverse order to that which
450                  * the allocator uses.
451                  */
452                 BUFFER_TRACE(bitmap_bh, "clear bit");
453                 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
454                                                 bit + i, bitmap_bh->b_data)) {
455                         jbd_unlock_bh_state(bitmap_bh);
456                         ext3_error(sb, __FUNCTION__,
457                                 "bit already cleared for block %lu", block + i);
458                         jbd_lock_bh_state(bitmap_bh);
459                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
460                 } else {
461                         group_freed++;
462                 }
463         }
464         jbd_unlock_bh_state(bitmap_bh);
465
466         spin_lock(sb_bgl_lock(sbi, block_group));
467         desc->bg_free_blocks_count =
468                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
469                         group_freed);
470         spin_unlock(sb_bgl_lock(sbi, block_group));
471         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
472
473         /* We dirtied the bitmap block */
474         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
475         err = ext3_journal_dirty_metadata(handle, bitmap_bh);
476
477         /* And the group descriptor block */
478         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
479         ret = ext3_journal_dirty_metadata(handle, gd_bh);
480         if (!err) err = ret;
481         *pdquot_freed_blocks += group_freed;
482
483         if (overflow && !err) {
484                 block += count;
485                 count = overflow;
486                 goto do_more;
487         }
488         sb->s_dirt = 1;
489 error_return:
490         brelse(bitmap_bh);
491         ext3_std_error(sb, err);
492         return;
493 }
494
495 /* Free given blocks, update quota and i_blocks field */
496 void ext3_free_blocks(handle_t *handle, struct inode *inode,
497                         unsigned long block, unsigned long count)
498 {
499         struct super_block * sb;
500         int dquot_freed_blocks;
501
502         sb = inode->i_sb;
503         if (!sb) {
504                 printk ("ext3_free_blocks: nonexistent device");
505                 return;
506         }
507         ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
508         if (dquot_freed_blocks) {
509                 DLIMIT_FREE_BLOCK(inode, dquot_freed_blocks);
510                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
511         }
512         return;
513 }
514
515 /*
516  * For ext3 allocations, we must not reuse any blocks which are
517  * allocated in the bitmap buffer's "last committed data" copy.  This
518  * prevents deletes from freeing up the page for reuse until we have
519  * committed the delete transaction.
520  *
521  * If we didn't do this, then deleting something and reallocating it as
522  * data would allow the old block to be overwritten before the
523  * transaction committed (because we force data to disk before commit).
524  * This would lead to corruption if we crashed between overwriting the
525  * data and committing the delete. 
526  *
527  * @@@ We may want to make this allocation behaviour conditional on
528  * data-writes at some point, and disable it for metadata allocations or
529  * sync-data inodes.
530  */
531 static int ext3_test_allocatable(int nr, struct buffer_head *bh)
532 {
533         int ret;
534         struct journal_head *jh = bh2jh(bh);
535
536         if (ext3_test_bit(nr, bh->b_data))
537                 return 0;
538
539         jbd_lock_bh_state(bh);
540         if (!jh->b_committed_data)
541                 ret = 1;
542         else
543                 ret = !ext3_test_bit(nr, jh->b_committed_data);
544         jbd_unlock_bh_state(bh);
545         return ret;
546 }
547
548 static int
549 bitmap_search_next_usable_block(int start, struct buffer_head *bh,
550                                         int maxblocks)
551 {
552         int next;
553         struct journal_head *jh = bh2jh(bh);
554
555         /*
556          * The bitmap search --- search forward alternately through the actual
557          * bitmap and the last-committed copy until we find a bit free in
558          * both
559          */
560         while (start < maxblocks) {
561                 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
562                 if (next >= maxblocks)
563                         return -1;
564                 if (ext3_test_allocatable(next, bh))
565                         return next;
566                 jbd_lock_bh_state(bh);
567                 if (jh->b_committed_data)
568                         start = ext3_find_next_zero_bit(jh->b_committed_data,
569                                                         maxblocks, next);
570                 jbd_unlock_bh_state(bh);
571         }
572         return -1;
573 }
574
575 /*
576  * Find an allocatable block in a bitmap.  We honour both the bitmap and
577  * its last-committed copy (if that exists), and perform the "most
578  * appropriate allocation" algorithm of looking for a free block near
579  * the initial goal; then for a free byte somewhere in the bitmap; then
580  * for any free bit in the bitmap.
581  */
582 static int
583 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
584 {
585         int here, next;
586         char *p, *r;
587
588         if (start > 0) {
589                 /*
590                  * The goal was occupied; search forward for a free 
591                  * block within the next XX blocks.
592                  *
593                  * end_goal is more or less random, but it has to be
594                  * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
595                  * next 64-bit boundary is simple..
596                  */
597                 int end_goal = (start + 63) & ~63;
598                 if (end_goal > maxblocks)
599                         end_goal = maxblocks;
600                 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
601                 if (here < end_goal && ext3_test_allocatable(here, bh))
602                         return here;
603                 ext3_debug("Bit not found near goal\n");
604         }
605
606         here = start;
607         if (here < 0)
608                 here = 0;
609
610         p = ((char *)bh->b_data) + (here >> 3);
611         r = memscan(p, 0, (maxblocks - here + 7) >> 3);
612         next = (r - ((char *)bh->b_data)) << 3;
613
614         if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
615                 return next;
616
617         /*
618          * The bitmap search --- search forward alternately through the actual
619          * bitmap and the last-committed copy until we find a bit free in
620          * both
621          */
622         here = bitmap_search_next_usable_block(here, bh, maxblocks);
623         return here;
624 }
625
626 /*
627  * We think we can allocate this block in this bitmap.  Try to set the bit.
628  * If that succeeds then check that nobody has allocated and then freed the
629  * block since we saw that is was not marked in b_committed_data.  If it _was_
630  * allocated and freed then clear the bit in the bitmap again and return
631  * zero (failure).
632  */
633 static inline int
634 claim_block(spinlock_t *lock, int block, struct buffer_head *bh)
635 {
636         struct journal_head *jh = bh2jh(bh);
637         int ret;
638
639         if (ext3_set_bit_atomic(lock, block, bh->b_data))
640                 return 0;
641         jbd_lock_bh_state(bh);
642         if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
643                 ext3_clear_bit_atomic(lock, block, bh->b_data);
644                 ret = 0;
645         } else {
646                 ret = 1;
647         }
648         jbd_unlock_bh_state(bh);
649         return ret;
650 }
651
652 /*
653  * If we failed to allocate the desired block then we may end up crossing to a
654  * new bitmap.  In that case we must release write access to the old one via
655  * ext3_journal_release_buffer(), else we'll run out of credits.
656  */
657 static int
658 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
659                         struct buffer_head *bitmap_bh, int goal,
660                         unsigned long *count, struct ext3_reserve_window *my_rsv)
661 {
662         int group_first_block, start, end;
663         unsigned long num = 0;
664
665         /* we do allocation within the reservation window if we have a window */
666         if (my_rsv) {
667                 group_first_block =
668                         le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
669                         group * EXT3_BLOCKS_PER_GROUP(sb);
670                 if (my_rsv->_rsv_start >= group_first_block)
671                         start = my_rsv->_rsv_start - group_first_block;
672                 else
673                         /* reservation window cross group boundary */
674                         start = 0;
675                 end = my_rsv->_rsv_end - group_first_block + 1;
676                 if (end > EXT3_BLOCKS_PER_GROUP(sb))
677                         /* reservation window crosses group boundary */
678                         end = EXT3_BLOCKS_PER_GROUP(sb);
679                 if ((start <= goal) && (goal < end))
680                         start = goal;
681                 else
682                         goal = -1;
683         } else {
684                 if (goal > 0)
685                         start = goal;
686                 else
687                         start = 0;
688                 end = EXT3_BLOCKS_PER_GROUP(sb);
689         }
690
691         BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
692
693 repeat:
694         if (goal < 0 || !ext3_test_allocatable(goal, bitmap_bh)) {
695                 goal = find_next_usable_block(start, bitmap_bh, end);
696                 if (goal < 0)
697                         goto fail_access;
698                 if (!my_rsv) {
699                         int i;
700
701                         for (i = 0; i < 7 && goal > start &&
702                                         ext3_test_allocatable(goal - 1,
703                                                                 bitmap_bh);
704                                         i++, goal--)
705                                 ;
706                 }
707         }
708         start = goal;
709
710         if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) {
711                 /*
712                  * The block was allocated by another thread, or it was
713                  * allocated and then freed by another thread
714                  */
715                 start++;
716                 goal++;
717                 if (start >= end)
718                         goto fail_access;
719                 goto repeat;
720         }
721         num++;
722         goal++;
723         while (num < *count && goal < end
724                 && ext3_test_allocatable(goal, bitmap_bh)
725                 && claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) {
726                 num++;
727                 goal++;
728         }
729         *count = num;
730         return goal - num;
731 fail_access:
732         *count = num;
733         return -1;
734 }
735
736 /**
737  *      find_next_reservable_window():
738  *              find a reservable space within the given range.
739  *              It does not allocate the reservation window for now:
740  *              alloc_new_reservation() will do the work later.
741  *
742  *      @search_head: the head of the searching list;
743  *              This is not necessarily the list head of the whole filesystem
744  *
745  *              We have both head and start_block to assist the search
746  *              for the reservable space. The list starts from head,
747  *              but we will shift to the place where start_block is,
748  *              then start from there, when looking for a reservable space.
749  *
750  *      @size: the target new reservation window size
751  *
752  *      @group_first_block: the first block we consider to start
753  *                      the real search from
754  *
755  *      @last_block:
756  *              the maximum block number that our goal reservable space
757  *              could start from. This is normally the last block in this
758  *              group. The search will end when we found the start of next
759  *              possible reservable space is out of this boundary.
760  *              This could handle the cross boundary reservation window
761  *              request.
762  *
763  *      basically we search from the given range, rather than the whole
764  *      reservation double linked list, (start_block, last_block)
765  *      to find a free region that is of my size and has not
766  *      been reserved.
767  *
768  */
769 static int find_next_reservable_window(
770                                 struct ext3_reserve_window_node *search_head,
771                                 struct ext3_reserve_window_node *my_rsv,
772                                 struct super_block * sb, int start_block,
773                                 int last_block)
774 {
775         struct rb_node *next;
776         struct ext3_reserve_window_node *rsv, *prev;
777         int cur;
778         int size = my_rsv->rsv_goal_size;
779
780         /* TODO: make the start of the reservation window byte-aligned */
781         /* cur = *start_block & ~7;*/
782         cur = start_block;
783         rsv = search_head;
784         if (!rsv)
785                 return -1;
786
787         while (1) {
788                 if (cur <= rsv->rsv_end)
789                         cur = rsv->rsv_end + 1;
790
791                 /* TODO?
792                  * in the case we could not find a reservable space
793                  * that is what is expected, during the re-search, we could
794                  * remember what's the largest reservable space we could have
795                  * and return that one.
796                  *
797                  * For now it will fail if we could not find the reservable
798                  * space with expected-size (or more)...
799                  */
800                 if (cur > last_block)
801                         return -1;              /* fail */
802
803                 prev = rsv;
804                 next = rb_next(&rsv->rsv_node);
805                 rsv = list_entry(next,struct ext3_reserve_window_node,rsv_node);
806
807                 /*
808                  * Reached the last reservation, we can just append to the
809                  * previous one.
810                  */
811                 if (!next)
812                         break;
813
814                 if (cur + size <= rsv->rsv_start) {
815                         /*
816                          * Found a reserveable space big enough.  We could
817                          * have a reservation across the group boundary here
818                          */
819                         break;
820                 }
821         }
822         /*
823          * we come here either :
824          * when we reach the end of the whole list,
825          * and there is empty reservable space after last entry in the list.
826          * append it to the end of the list.
827          *
828          * or we found one reservable space in the middle of the list,
829          * return the reservation window that we could append to.
830          * succeed.
831          */
832
833         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
834                 rsv_window_remove(sb, my_rsv);
835
836         /*
837          * Let's book the whole avaliable window for now.  We will check the
838          * disk bitmap later and then, if there are free blocks then we adjust
839          * the window size if it's larger than requested.
840          * Otherwise, we will remove this node from the tree next time
841          * call find_next_reservable_window.
842          */
843         my_rsv->rsv_start = cur;
844         my_rsv->rsv_end = cur + size - 1;
845         my_rsv->rsv_alloc_hit = 0;
846
847         if (prev != my_rsv)
848                 ext3_rsv_window_add(sb, my_rsv);
849
850         return 0;
851 }
852
853 /**
854  *      alloc_new_reservation()--allocate a new reservation window
855  *
856  *              To make a new reservation, we search part of the filesystem
857  *              reservation list (the list that inside the group). We try to
858  *              allocate a new reservation window near the allocation goal,
859  *              or the beginning of the group, if there is no goal.
860  *
861  *              We first find a reservable space after the goal, then from
862  *              there, we check the bitmap for the first free block after
863  *              it. If there is no free block until the end of group, then the
864  *              whole group is full, we failed. Otherwise, check if the free
865  *              block is inside the expected reservable space, if so, we
866  *              succeed.
867  *              If the first free block is outside the reservable space, then
868  *              start from the first free block, we search for next available
869  *              space, and go on.
870  *
871  *      on succeed, a new reservation will be found and inserted into the list
872  *      It contains at least one free block, and it does not overlap with other
873  *      reservation windows.
874  *
875  *      failed: we failed to find a reservation window in this group
876  *
877  *      @rsv: the reservation
878  *
879  *      @goal: The goal (group-relative).  It is where the search for a
880  *              free reservable space should start from.
881  *              if we have a goal(goal >0 ), then start from there,
882  *              no goal(goal = -1), we start from the first block
883  *              of the group.
884  *
885  *      @sb: the super block
886  *      @group: the group we are trying to allocate in
887  *      @bitmap_bh: the block group block bitmap
888  *
889  */
890 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
891                 int goal, struct super_block *sb,
892                 unsigned int group, struct buffer_head *bitmap_bh)
893 {
894         struct ext3_reserve_window_node *search_head;
895         int group_first_block, group_end_block, start_block;
896         int first_free_block;
897         struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
898         unsigned long size;
899         int ret;
900         spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
901
902         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
903                                 group * EXT3_BLOCKS_PER_GROUP(sb);
904         group_end_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
905
906         if (goal < 0)
907                 start_block = group_first_block;
908         else
909                 start_block = goal + group_first_block;
910
911         size = my_rsv->rsv_goal_size;
912
913         if (!rsv_is_empty(&my_rsv->rsv_window)) {
914                 /*
915                  * if the old reservation is cross group boundary
916                  * and if the goal is inside the old reservation window,
917                  * we will come here when we just failed to allocate from
918                  * the first part of the window. We still have another part
919                  * that belongs to the next group. In this case, there is no
920                  * point to discard our window and try to allocate a new one
921                  * in this group(which will fail). we should
922                  * keep the reservation window, just simply move on.
923                  *
924                  * Maybe we could shift the start block of the reservation
925                  * window to the first block of next group.
926                  */
927
928                 if ((my_rsv->rsv_start <= group_end_block) &&
929                                 (my_rsv->rsv_end > group_end_block) &&
930                                 (start_block >= my_rsv->rsv_start))
931                         return -1;
932
933                 if ((my_rsv->rsv_alloc_hit >
934                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
935                         /*
936                          * if we previously allocation hit ration is greater than half
937                          * we double the size of reservation window next time
938                          * otherwise keep the same
939                          */
940                         size = size * 2;
941                         if (size > EXT3_MAX_RESERVE_BLOCKS)
942                                 size = EXT3_MAX_RESERVE_BLOCKS;
943                         my_rsv->rsv_goal_size= size;
944                 }
945         }
946
947         spin_lock(rsv_lock);
948         /*
949          * shift the search start to the window near the goal block
950          */
951         search_head = search_reserve_window(fs_rsv_root, start_block);
952
953         /*
954          * find_next_reservable_window() simply finds a reservable window
955          * inside the given range(start_block, group_end_block).
956          *
957          * To make sure the reservation window has a free bit inside it, we
958          * need to check the bitmap after we found a reservable window.
959          */
960 retry:
961         ret = find_next_reservable_window(search_head, my_rsv, sb,
962                                                 start_block, group_end_block);
963
964         if (ret == -1) {
965                 if (!rsv_is_empty(&my_rsv->rsv_window))
966                         rsv_window_remove(sb, my_rsv);
967                 spin_unlock(rsv_lock);
968                 return -1;
969         }
970
971         /*
972          * On success, find_next_reservable_window() returns the
973          * reservation window where there is a reservable space after it.
974          * Before we reserve this reservable space, we need
975          * to make sure there is at least a free block inside this region.
976          *
977          * searching the first free bit on the block bitmap and copy of
978          * last committed bitmap alternatively, until we found a allocatable
979          * block. Search start from the start block of the reservable space
980          * we just found.
981          */
982         spin_unlock(rsv_lock);
983         first_free_block = bitmap_search_next_usable_block(
984                         my_rsv->rsv_start - group_first_block,
985                         bitmap_bh, group_end_block - group_first_block + 1);
986
987         if (first_free_block < 0) {
988                 /*
989                  * no free block left on the bitmap, no point
990                  * to reserve the space. return failed.
991                  */
992                 spin_lock(rsv_lock);
993                 if (!rsv_is_empty(&my_rsv->rsv_window))
994                         rsv_window_remove(sb, my_rsv);
995                 spin_unlock(rsv_lock);
996                 return -1;              /* failed */
997         }
998
999         start_block = first_free_block + group_first_block;
1000         /*
1001          * check if the first free block is within the
1002          * free space we just reserved
1003          */
1004         if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
1005                 return 0;               /* success */
1006         /*
1007          * if the first free bit we found is out of the reservable space
1008          * continue search for next reservable space,
1009          * start from where the free block is,
1010          * we also shift the list head to where we stopped last time
1011          */
1012         search_head = my_rsv;
1013         spin_lock(rsv_lock);
1014         goto retry;
1015 }
1016
1017 static void try_to_extend_reservation(struct ext3_reserve_window_node *my_rsv,
1018                         struct super_block *sb, int size)
1019 {
1020         struct ext3_reserve_window_node *next_rsv;
1021         struct rb_node *next;
1022         spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1023
1024         if (!spin_trylock(rsv_lock))
1025                 return;
1026
1027         next = rb_next(&my_rsv->rsv_node);
1028
1029         if (!next)
1030                 my_rsv->rsv_end += size;
1031         else {
1032                 next_rsv = list_entry(next, struct ext3_reserve_window_node, rsv_node);
1033
1034                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1035                         my_rsv->rsv_end += size;
1036                 else
1037                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1038         }
1039         spin_unlock(rsv_lock);
1040 }
1041
1042 /*
1043  * This is the main function used to allocate a new block and its reservation
1044  * window.
1045  *
1046  * Each time when a new block allocation is need, first try to allocate from
1047  * its own reservation.  If it does not have a reservation window, instead of
1048  * looking for a free bit on bitmap first, then look up the reservation list to
1049  * see if it is inside somebody else's reservation window, we try to allocate a
1050  * reservation window for it starting from the goal first. Then do the block
1051  * allocation within the reservation window.
1052  *
1053  * This will avoid keeping on searching the reservation list again and
1054  * again when somebody is looking for a free block (without
1055  * reservation), and there are lots of free blocks, but they are all
1056  * being reserved.
1057  *
1058  * We use a sorted double linked list for the per-filesystem reservation list.
1059  * The insert, remove and find a free space(non-reserved) operations for the
1060  * sorted double linked list should be fast.
1061  *
1062  */
1063 static int
1064 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1065                         unsigned int group, struct buffer_head *bitmap_bh,
1066                         int goal, struct ext3_reserve_window_node * my_rsv,
1067                         unsigned long *count, int *errp)
1068 {
1069         unsigned long group_first_block;
1070         int ret = 0;
1071         int fatal;
1072         unsigned long num = *count;
1073
1074         *errp = 0;
1075
1076         /*
1077          * Make sure we use undo access for the bitmap, because it is critical
1078          * that we do the frozen_data COW on bitmap buffers in all cases even
1079          * if the buffer is in BJ_Forget state in the committing transaction.
1080          */
1081         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1082         fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1083         if (fatal) {
1084                 *errp = fatal;
1085                 return -1;
1086         }
1087
1088         /*
1089          * we don't deal with reservation when
1090          * filesystem is mounted without reservation
1091          * or the file is not a regular file
1092          * or last attempt to allocate a block with reservation turned on failed
1093          */
1094         if (my_rsv == NULL ) {
1095                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1096                                                 goal, count, NULL);
1097                 goto out;
1098         }
1099         /*
1100          * goal is a group relative block number (if there is a goal)
1101          * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb)
1102          * first block is a filesystem wide block number
1103          * first block is the block number of the first block in this group
1104          */
1105         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
1106                         group * EXT3_BLOCKS_PER_GROUP(sb);
1107
1108         /*
1109          * Basically we will allocate a new block from inode's reservation
1110          * window.
1111          *
1112          * We need to allocate a new reservation window, if:
1113          * a) inode does not have a reservation window; or
1114          * b) last attempt to allocate a block from existing reservation
1115          *    failed; or
1116          * c) we come here with a goal and with a reservation window
1117          *
1118          * We do not need to allocate a new reservation window if we come here
1119          * at the beginning with a goal and the goal is inside the window, or
1120          * we don't have a goal but already have a reservation window.
1121          * then we could go to allocate from the reservation window directly.
1122          */
1123         while (1) {
1124                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1125                         !goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb)) {
1126                         if (my_rsv->rsv_goal_size < *count)
1127                                 my_rsv->rsv_goal_size = *count;
1128                         ret = alloc_new_reservation(my_rsv, goal, sb,
1129                                                         group, bitmap_bh);
1130                         if (ret < 0)
1131                                 break;                  /* failed */
1132
1133                         if (!goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb))
1134                                 goal = -1;
1135                 } else if (goal > 0 && (my_rsv->rsv_end-goal+1) < *count)
1136                         try_to_extend_reservation(my_rsv, sb,
1137                                         *count-my_rsv->rsv_end + goal - 1);
1138
1139                 if ((my_rsv->rsv_start >= group_first_block + EXT3_BLOCKS_PER_GROUP(sb))
1140                     || (my_rsv->rsv_end < group_first_block))
1141                         BUG();
1142                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal,
1143                                            &num, &my_rsv->rsv_window);
1144                 if (ret >= 0) {
1145                         my_rsv->rsv_alloc_hit += num;
1146                         *count = num;
1147                         break;                          /* succeed */
1148                 }
1149                 num = *count;
1150         }
1151 out:
1152         if (ret >= 0) {
1153                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1154                                         "bitmap block");
1155                 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1156                 if (fatal) {
1157                         *errp = fatal;
1158                         return -1;
1159                 }
1160                 return ret;
1161         }
1162
1163         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1164         ext3_journal_release_buffer(handle, bitmap_bh);
1165         return ret;
1166 }
1167
1168 static int ext3_has_free_blocks(struct super_block *sb)
1169 {
1170         struct ext3_sb_info *sbi = EXT3_SB(sb);
1171         int free_blocks, root_blocks, cond;
1172
1173         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1174         root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1175
1176         vxdprintk(VXD_CBIT(dlim, 3),
1177                 "ext3_has_free_blocks(%p): free=%u, root=%u",
1178                 sb, free_blocks, root_blocks);
1179
1180         DLIMIT_ADJUST_BLOCK(sb, vx_current_xid(), &free_blocks, &root_blocks);
1181
1182         cond = (free_blocks < root_blocks + 1 &&
1183                 !capable(CAP_SYS_RESOURCE) &&
1184                 sbi->s_resuid != current->fsuid &&
1185                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid)));
1186
1187         vxdprintk(VXD_CBIT(dlim, 3),
1188                 "ext3_has_free_blocks(%p): %u<%u+1, %c, %u!=%u r=%d",
1189                 sb, free_blocks, root_blocks,
1190                 !capable(CAP_SYS_RESOURCE)?'1':'0',
1191                 sbi->s_resuid, current->fsuid, cond?0:1);
1192
1193         return (cond ? 0 : 1);
1194 }
1195
1196 /*
1197  * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1198  * it is profitable to retry the operation, this function will wait
1199  * for the current or commiting transaction to complete, and then
1200  * return TRUE.
1201  */
1202 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1203 {
1204         if (!ext3_has_free_blocks(sb) || (*retries)++ > 3)
1205                 return 0;
1206
1207         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1208
1209         return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1210 }
1211
1212 /*
1213  * ext3_new_block uses a goal block to assist allocation.  If the goal is
1214  * free, or there is a free block within 32 blocks of the goal, that block
1215  * is allocated.  Otherwise a forward search is made for a free block; within 
1216  * each block group the search first looks for an entire free byte in the block
1217  * bitmap, and then for any free bit if that fails.
1218  * This function also updates quota and i_blocks field.
1219  */
1220 int ext3_new_blocks(handle_t *handle, struct inode *inode,
1221                         unsigned long goal, unsigned long *count, int *errp)
1222 {
1223         struct buffer_head *bitmap_bh = NULL;
1224         struct buffer_head *gdp_bh;
1225         int group_no;
1226         int goal_group;
1227         int ret_block;
1228         int bgi;                        /* blockgroup iteration index */
1229         int target_block;
1230         int fatal = 0, err;
1231         int performed_allocation = 0;
1232         int free_blocks;
1233         struct super_block *sb;
1234         struct ext3_group_desc *gdp;
1235         struct ext3_super_block *es;
1236         struct ext3_sb_info *sbi;
1237         struct ext3_reserve_window_node *my_rsv = NULL;
1238         struct ext3_block_alloc_info *block_i;
1239         unsigned short windowsz = 0;
1240 #ifdef EXT3FS_DEBUG
1241         static int goal_hits, goal_attempts;
1242 #endif
1243         unsigned long ngroups;
1244         unsigned long num = *count;
1245
1246         *errp = -ENOSPC;
1247         sb = inode->i_sb;
1248         if (!sb) {
1249                 printk("ext3_new_block: nonexistent device");
1250                 return 0;
1251         }
1252
1253         /*
1254          * Check quota for allocation of this block.
1255          */
1256         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1257                 *errp = -EDQUOT;
1258                 return 0;
1259         }
1260         if (DLIMIT_ALLOC_BLOCK(inode, 1))
1261             goto out_dlimit;
1262
1263         sbi = EXT3_SB(sb);
1264         es = EXT3_SB(sb)->s_es;
1265         ext3_debug("goal=%lu.\n", goal);
1266         /*
1267          * Allocate a block from reservation only when
1268          * filesystem is mounted with reservation(default,-o reservation), and
1269          * it's a regular file, and
1270          * the desired window size is greater than 0 (One could use ioctl
1271          * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1272          * reservation on that particular file)
1273          */
1274         block_i = EXT3_I(inode)->i_block_alloc_info;
1275         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1276                 my_rsv = &block_i->rsv_window_node;
1277
1278         if (!ext3_has_free_blocks(sb)) {
1279                 *errp = -ENOSPC;
1280                 goto out;
1281         }
1282
1283         /*
1284          * First, test whether the goal block is free.
1285          */
1286         if (goal < le32_to_cpu(es->s_first_data_block) ||
1287             goal >= le32_to_cpu(es->s_blocks_count))
1288                 goal = le32_to_cpu(es->s_first_data_block);
1289         group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1290                         EXT3_BLOCKS_PER_GROUP(sb);
1291         gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1292         if (!gdp)
1293                 goto io_error;
1294
1295         goal_group = group_no;
1296 retry:
1297         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1298         /*
1299          * if there is not enough free blocks to make a new resevation
1300          * turn off reservation for this allocation
1301          */
1302         if (my_rsv && (free_blocks < windowsz)
1303                 && (rsv_is_empty(&my_rsv->rsv_window)))
1304                 my_rsv = NULL;
1305
1306         if (free_blocks > 0) {
1307                 ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) %
1308                                 EXT3_BLOCKS_PER_GROUP(sb));
1309                 bitmap_bh = read_block_bitmap(sb, group_no);
1310                 if (!bitmap_bh)
1311                         goto io_error;
1312                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1313                                         bitmap_bh, ret_block, my_rsv, &num, &fatal);
1314                 if (fatal)
1315                         goto out;
1316                 if (ret_block >= 0)
1317                         goto allocated;
1318         }
1319
1320         ngroups = EXT3_SB(sb)->s_groups_count;
1321         smp_rmb();
1322
1323         /*
1324          * Now search the rest of the groups.  We assume that 
1325          * i and gdp correctly point to the last group visited.
1326          */
1327         for (bgi = 0; bgi < ngroups; bgi++) {
1328                 group_no++;
1329                 if (group_no >= ngroups)
1330                         group_no = 0;
1331                 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1332                 if (!gdp) {
1333                         *errp = -EIO;
1334                         goto out;
1335                 }
1336                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1337                 /*
1338                  * skip this group if the number of
1339                  * free blocks is less than half of the reservation
1340                  * window size.
1341                  */
1342                 if (free_blocks <= (windowsz/2))
1343                         continue;
1344
1345                 brelse(bitmap_bh);
1346                 bitmap_bh = read_block_bitmap(sb, group_no);
1347                 if (!bitmap_bh)
1348                         goto io_error;
1349                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1350                                         bitmap_bh, -1, my_rsv, &num, &fatal);
1351                 if (fatal)
1352                         goto out;
1353                 if (ret_block >= 0) 
1354                         goto allocated;
1355         }
1356         /*
1357          * We may end up a bogus ealier ENOSPC error due to
1358          * filesystem is "full" of reservations, but
1359          * there maybe indeed free blocks avaliable on disk
1360          * In this case, we just forget about the reservations
1361          * just do block allocation as without reservations.
1362          */
1363         if (my_rsv) {
1364                 my_rsv = NULL;
1365                 group_no = goal_group;
1366                 goto retry;
1367         }
1368         /* No space left on the device */
1369         *errp = -ENOSPC;
1370         goto out;
1371
1372 allocated:
1373
1374         ext3_debug("using block group %d(%d)\n",
1375                         group_no, gdp->bg_free_blocks_count);
1376
1377         BUFFER_TRACE(gdp_bh, "get_write_access");
1378         fatal = ext3_journal_get_write_access(handle, gdp_bh);
1379         if (fatal)
1380                 goto out;
1381
1382         target_block = ret_block + group_no * EXT3_BLOCKS_PER_GROUP(sb)
1383                                 + le32_to_cpu(es->s_first_data_block);
1384
1385         if (in_range(le32_to_cpu(gdp->bg_block_bitmap), target_block, num) ||
1386             in_range(le32_to_cpu(gdp->bg_inode_bitmap), target_block, num) ||
1387             in_range(target_block, le32_to_cpu(gdp->bg_inode_table),
1388                       EXT3_SB(sb)->s_itb_per_group) ||
1389             in_range(target_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1390                       EXT3_SB(sb)->s_itb_per_group))
1391                 ext3_error(sb, "ext3_new_block",
1392                             "Allocating block in system zone - "
1393                             "blocks from %u, length %lu", target_block, num);
1394
1395         performed_allocation = 1;
1396
1397 #ifdef CONFIG_JBD_DEBUG
1398         {
1399                 struct buffer_head *debug_bh;
1400
1401                 /* Record bitmap buffer state in the newly allocated block */
1402                 debug_bh = sb_find_get_block(sb, target_block);
1403                 if (debug_bh) {
1404                         BUFFER_TRACE(debug_bh, "state when allocated");
1405                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1406                         brelse(debug_bh);
1407                 }
1408         }
1409         jbd_lock_bh_state(bitmap_bh);
1410         spin_lock(sb_bgl_lock(sbi, group_no));
1411         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1412                 int i;
1413
1414                 for (i = 0; i < num; i++) {
1415                         if (ext3_test_bit(ret_block,
1416                                         bh2jh(bitmap_bh)->b_committed_data)) {
1417                                 printk("%s: block was unexpectedly set in "
1418                                         "b_committed_data\n", __FUNCTION__);
1419                         }
1420                 }
1421         }
1422         ext3_debug("found bit %d\n", ret_block);
1423         spin_unlock(sb_bgl_lock(sbi, group_no));
1424         jbd_unlock_bh_state(bitmap_bh);
1425 #endif
1426
1427         /* ret_block was blockgroup-relative.  Now it becomes fs-relative */
1428         ret_block = target_block;
1429
1430         if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1431                 ext3_error(sb, "ext3_new_block",
1432                             "block(%d) >= blocks count(%d) - "
1433                             "block_group = %d, es == %p ", ret_block,
1434                         le32_to_cpu(es->s_blocks_count), group_no, es);
1435                 goto out;
1436         }
1437
1438         /*
1439          * It is up to the caller to add the new buffer to a journal
1440          * list of some description.  We don't know in advance whether
1441          * the caller wants to use it as metadata or data.
1442          */
1443         ext3_debug("allocating block %d. Goal hits %d of %d.\n",
1444                         ret_block, goal_hits, goal_attempts);
1445
1446         spin_lock(sb_bgl_lock(sbi, group_no));
1447         gdp->bg_free_blocks_count =
1448                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - num);
1449         spin_unlock(sb_bgl_lock(sbi, group_no));
1450         percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1451
1452         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1453         err = ext3_journal_dirty_metadata(handle, gdp_bh);
1454         if (!fatal)
1455                 fatal = err;
1456
1457         sb->s_dirt = 1;
1458         if (fatal)
1459                 goto out;
1460
1461         *errp = 0;
1462         brelse(bitmap_bh);
1463         DQUOT_FREE_BLOCK(inode, *count-num);
1464         *count = num;
1465         return ret_block;
1466
1467 io_error:
1468         *errp = -EIO;
1469 out:
1470         if (!performed_allocation)
1471                 DLIMIT_FREE_BLOCK(inode, 1);
1472 out_dlimit:
1473         if (fatal) {
1474                 *errp = fatal;
1475                 ext3_std_error(sb, fatal);
1476         }
1477         /*
1478          * Undo the block allocation
1479          */
1480         if (!performed_allocation)
1481                 DQUOT_FREE_BLOCK(inode, *count);
1482         brelse(bitmap_bh);
1483         return 0;
1484 }
1485
1486 int ext3_new_block(handle_t *handle, struct inode *inode,
1487                         unsigned long goal, int *errp)
1488 {
1489         unsigned long count = 1;
1490
1491         return ext3_new_blocks(handle, inode, goal, &count, errp);
1492 }
1493
1494 unsigned long ext3_count_free_blocks(struct super_block *sb)
1495 {
1496         unsigned long desc_count;
1497         struct ext3_group_desc *gdp;
1498         int i;
1499         unsigned long ngroups = EXT3_SB(sb)->s_groups_count;
1500 #ifdef EXT3FS_DEBUG
1501         struct ext3_super_block *es;
1502         unsigned long bitmap_count, x;
1503         struct buffer_head *bitmap_bh = NULL;
1504
1505         es = EXT3_SB(sb)->s_es;
1506         desc_count = 0;
1507         bitmap_count = 0;
1508         gdp = NULL;
1509
1510         smp_rmb();
1511         for (i = 0; i < ngroups; i++) {
1512                 gdp = ext3_get_group_desc(sb, i, NULL);
1513                 if (!gdp)
1514                         continue;
1515                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1516                 brelse(bitmap_bh);
1517                 bitmap_bh = read_block_bitmap(sb, i);
1518                 if (bitmap_bh == NULL)
1519                         continue;
1520
1521                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1522                 printk("group %d: stored = %d, counted = %lu\n",
1523                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1524                 bitmap_count += x;
1525         }
1526         brelse(bitmap_bh);
1527         printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n",
1528                le32_to_cpu(es->s_free_blocks_count), desc_count, bitmap_count);
1529         return bitmap_count;
1530 #else
1531         desc_count = 0;
1532         smp_rmb();
1533         for (i = 0; i < ngroups; i++) {
1534                 gdp = ext3_get_group_desc(sb, i, NULL);
1535                 if (!gdp)
1536                         continue;
1537                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1538         }
1539
1540         return desc_count;
1541 #endif
1542 }
1543
1544 static inline int
1545 block_in_use(unsigned long block, struct super_block *sb, unsigned char *map)
1546 {
1547         return ext3_test_bit ((block -
1548                 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) %
1549                          EXT3_BLOCKS_PER_GROUP(sb), map);
1550 }
1551
1552 static inline int test_root(int a, int b)
1553 {
1554         int num = b;
1555
1556         while (a > num)
1557                 num *= b;
1558         return num == a;
1559 }
1560
1561 static int ext3_group_sparse(int group)
1562 {
1563         if (group <= 1)
1564                 return 1;
1565         if (!(group & 1))
1566                 return 0;
1567         return (test_root(group, 7) || test_root(group, 5) ||
1568                 test_root(group, 3));
1569 }
1570
1571 /**
1572  *      ext3_bg_has_super - number of blocks used by the superblock in group
1573  *      @sb: superblock for filesystem
1574  *      @group: group number to check
1575  *
1576  *      Return the number of blocks used by the superblock (primary or backup)
1577  *      in this group.  Currently this will be only 0 or 1.
1578  */
1579 int ext3_bg_has_super(struct super_block *sb, int group)
1580 {
1581         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,
1582                                 EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1583                         !ext3_group_sparse(group))
1584                 return 0;
1585         return 1;
1586 }
1587
1588 static unsigned long ext3_bg_num_gdb_meta(struct super_block *sb, int group)
1589 {
1590         unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1591         unsigned long first = metagroup * EXT3_DESC_PER_BLOCK(sb);
1592         unsigned long last = first + EXT3_DESC_PER_BLOCK(sb) - 1;
1593
1594         if (group == first || group == first + 1 || group == last)
1595                 return 1;
1596         return 0;
1597 }
1598
1599 static unsigned long ext3_bg_num_gdb_nometa(struct super_block *sb, int group)
1600 {
1601         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,
1602                                 EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1603                         !ext3_group_sparse(group))
1604                 return 0;
1605         return EXT3_SB(sb)->s_gdb_count;
1606 }
1607
1608 /**
1609  *      ext3_bg_num_gdb - number of blocks used by the group table in group
1610  *      @sb: superblock for filesystem
1611  *      @group: group number to check
1612  *
1613  *      Return the number of blocks used by the group descriptor table
1614  *      (primary or backup) in this group.  In the future there may be a
1615  *      different number of descriptor blocks in each group.
1616  */
1617 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1618 {
1619         unsigned long first_meta_bg =
1620                         le32_to_cpu(EXT3_SB(sb)->s_es->s_first_meta_bg);
1621         unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1622
1623         if (!EXT3_HAS_INCOMPAT_FEATURE(sb,EXT3_FEATURE_INCOMPAT_META_BG) ||
1624                         metagroup < first_meta_bg)
1625                 return ext3_bg_num_gdb_nometa(sb,group);
1626
1627         return ext3_bg_num_gdb_meta(sb,group);
1628
1629 }