fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/pagemap.h>
33 #include <linux/quotaops.h>
34 #include <linux/string.h>
35 #include <linux/buffer_head.h>
36 #include <linux/writeback.h>
37 #include <linux/mpage.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/vs_tag.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT3_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67                         struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69         int err;
70
71         might_sleep();
72
73         BUFFER_TRACE(bh, "enter");
74
75         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76                   "data mode %lx\n",
77                   bh, is_metadata, inode->i_mode,
78                   test_opt(inode->i_sb, DATA_FLAGS));
79
80         /* Never use the revoke function if we are doing full data
81          * journaling: there is no need to, and a V1 superblock won't
82          * support it.  Otherwise, only skip the revoke on un-journaled
83          * data blocks. */
84
85         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86             (!is_metadata && !ext3_should_journal_data(inode))) {
87                 if (bh) {
88                         BUFFER_TRACE(bh, "call journal_forget");
89                         return ext3_journal_forget(handle, bh);
90                 }
91                 return 0;
92         }
93
94         /*
95          * data!=journal && (is_metadata || should_journal_data(inode))
96          */
97         BUFFER_TRACE(bh, "call ext3_journal_revoke");
98         err = ext3_journal_revoke(handle, blocknr, bh);
99         if (err)
100                 ext3_abort(inode->i_sb, __FUNCTION__,
101                            "error %d when attempting revoke", err);
102         BUFFER_TRACE(bh, "exit");
103         return err;
104 }
105
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA)
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145         handle_t *result;
146
147         result = ext3_journal_start(inode, blocks_for_truncate(inode));
148         if (!IS_ERR(result))
149                 return result;
150
151         ext3_std_error(inode->i_sb, PTR_ERR(result));
152         return result;
153 }
154
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164                 return 0;
165         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166                 return 0;
167         return 1;
168 }
169
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
175 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
176 {
177         jbd_debug(2, "restarting handle %p\n", handle);
178         return ext3_journal_restart(handle, blocks_for_truncate(inode));
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext3_delete_inode (struct inode * inode)
185 {
186         handle_t *handle;
187
188         truncate_inode_pages(&inode->i_data, 0);
189
190         if (is_bad_inode(inode))
191                 goto no_delete;
192
193         handle = start_transaction(inode);
194         if (IS_ERR(handle)) {
195                 /*
196                  * If we're going to skip the normal cleanup, we still need to
197                  * make sure that the in-core orphan linked list is properly
198                  * cleaned up.
199                  */
200                 ext3_orphan_del(NULL, inode);
201                 goto no_delete;
202         }
203
204         if (IS_SYNC(inode))
205                 handle->h_sync = 1;
206         inode->i_size = 0;
207         if (inode->i_blocks)
208                 ext3_truncate(inode);
209         /*
210          * Kill off the orphan record which ext3_truncate created.
211          * AKPM: I think this can be inside the above `if'.
212          * Note that ext3_orphan_del() has to be able to cope with the
213          * deletion of a non-existent orphan - this is because we don't
214          * know if ext3_truncate() actually created an orphan record.
215          * (Well, we could do this if we need to, but heck - it works)
216          */
217         ext3_orphan_del(handle, inode);
218         EXT3_I(inode)->i_dtime  = get_seconds();
219
220         /*
221          * One subtle ordering requirement: if anything has gone wrong
222          * (transaction abort, IO errors, whatever), then we can still
223          * do these next steps (the fs will already have been marked as
224          * having errors), but we can't free the inode if the mark_dirty
225          * fails.
226          */
227         if (ext3_mark_inode_dirty(handle, inode))
228                 /* If that failed, just do the required in-core inode clear. */
229                 clear_inode(inode);
230         else
231                 ext3_free_inode(handle, inode);
232         ext3_journal_stop(handle);
233         return;
234 no_delete:
235         clear_inode(inode);     /* We must guarantee clearing of inode... */
236 }
237
238 typedef struct {
239         __le32  *p;
240         __le32  key;
241         struct buffer_head *bh;
242 } Indirect;
243
244 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
245 {
246         p->key = *(p->p = v);
247         p->bh = bh;
248 }
249
250 static int verify_chain(Indirect *from, Indirect *to)
251 {
252         while (from <= to && from->key == *from->p)
253                 from++;
254         return (from > to);
255 }
256
257 /**
258  *      ext3_block_to_path - parse the block number into array of offsets
259  *      @inode: inode in question (we are only interested in its superblock)
260  *      @i_block: block number to be parsed
261  *      @offsets: array to store the offsets in
262  *      @boundary: set this non-zero if the referred-to block is likely to be
263  *             followed (on disk) by an indirect block.
264  *
265  *      To store the locations of file's data ext3 uses a data structure common
266  *      for UNIX filesystems - tree of pointers anchored in the inode, with
267  *      data blocks at leaves and indirect blocks in intermediate nodes.
268  *      This function translates the block number into path in that tree -
269  *      return value is the path length and @offsets[n] is the offset of
270  *      pointer to (n+1)th node in the nth one. If @block is out of range
271  *      (negative or too large) warning is printed and zero returned.
272  *
273  *      Note: function doesn't find node addresses, so no IO is needed. All
274  *      we need to know is the capacity of indirect blocks (taken from the
275  *      inode->i_sb).
276  */
277
278 /*
279  * Portability note: the last comparison (check that we fit into triple
280  * indirect block) is spelled differently, because otherwise on an
281  * architecture with 32-bit longs and 8Kb pages we might get into trouble
282  * if our filesystem had 8Kb blocks. We might use long long, but that would
283  * kill us on x86. Oh, well, at least the sign propagation does not matter -
284  * i_block would have to be negative in the very beginning, so we would not
285  * get there at all.
286  */
287
288 static int ext3_block_to_path(struct inode *inode,
289                         long i_block, int offsets[4], int *boundary)
290 {
291         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
292         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
293         const long direct_blocks = EXT3_NDIR_BLOCKS,
294                 indirect_blocks = ptrs,
295                 double_blocks = (1 << (ptrs_bits * 2));
296         int n = 0;
297         int final = 0;
298
299         if (i_block < 0) {
300                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
301         } else if (i_block < direct_blocks) {
302                 offsets[n++] = i_block;
303                 final = direct_blocks;
304         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
305                 offsets[n++] = EXT3_IND_BLOCK;
306                 offsets[n++] = i_block;
307                 final = ptrs;
308         } else if ((i_block -= indirect_blocks) < double_blocks) {
309                 offsets[n++] = EXT3_DIND_BLOCK;
310                 offsets[n++] = i_block >> ptrs_bits;
311                 offsets[n++] = i_block & (ptrs - 1);
312                 final = ptrs;
313         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
314                 offsets[n++] = EXT3_TIND_BLOCK;
315                 offsets[n++] = i_block >> (ptrs_bits * 2);
316                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
317                 offsets[n++] = i_block & (ptrs - 1);
318                 final = ptrs;
319         } else {
320                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
321         }
322         if (boundary)
323                 *boundary = final - 1 - (i_block & (ptrs - 1));
324         return n;
325 }
326
327 /**
328  *      ext3_get_branch - read the chain of indirect blocks leading to data
329  *      @inode: inode in question
330  *      @depth: depth of the chain (1 - direct pointer, etc.)
331  *      @offsets: offsets of pointers in inode/indirect blocks
332  *      @chain: place to store the result
333  *      @err: here we store the error value
334  *
335  *      Function fills the array of triples <key, p, bh> and returns %NULL
336  *      if everything went OK or the pointer to the last filled triple
337  *      (incomplete one) otherwise. Upon the return chain[i].key contains
338  *      the number of (i+1)-th block in the chain (as it is stored in memory,
339  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
340  *      number (it points into struct inode for i==0 and into the bh->b_data
341  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
342  *      block for i>0 and NULL for i==0. In other words, it holds the block
343  *      numbers of the chain, addresses they were taken from (and where we can
344  *      verify that chain did not change) and buffer_heads hosting these
345  *      numbers.
346  *
347  *      Function stops when it stumbles upon zero pointer (absent block)
348  *              (pointer to last triple returned, *@err == 0)
349  *      or when it gets an IO error reading an indirect block
350  *              (ditto, *@err == -EIO)
351  *      or when it notices that chain had been changed while it was reading
352  *              (ditto, *@err == -EAGAIN)
353  *      or when it reads all @depth-1 indirect blocks successfully and finds
354  *      the whole chain, all way to the data (returns %NULL, *err == 0).
355  */
356 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
357                                  Indirect chain[4], int *err)
358 {
359         struct super_block *sb = inode->i_sb;
360         Indirect *p = chain;
361         struct buffer_head *bh;
362
363         *err = 0;
364         /* i_data is not going away, no lock needed */
365         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
366         if (!p->key)
367                 goto no_block;
368         while (--depth) {
369                 bh = sb_bread(sb, le32_to_cpu(p->key));
370                 if (!bh)
371                         goto failure;
372                 /* Reader: pointers */
373                 if (!verify_chain(chain, p))
374                         goto changed;
375                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
376                 /* Reader: end */
377                 if (!p->key)
378                         goto no_block;
379         }
380         return NULL;
381
382 changed:
383         brelse(bh);
384         *err = -EAGAIN;
385         goto no_block;
386 failure:
387         *err = -EIO;
388 no_block:
389         return p;
390 }
391
392 /**
393  *      ext3_find_near - find a place for allocation with sufficient locality
394  *      @inode: owner
395  *      @ind: descriptor of indirect block.
396  *
397  *      This function returns the prefered place for block allocation.
398  *      It is used when heuristic for sequential allocation fails.
399  *      Rules are:
400  *        + if there is a block to the left of our position - allocate near it.
401  *        + if pointer will live in indirect block - allocate near that block.
402  *        + if pointer will live in inode - allocate in the same
403  *          cylinder group.
404  *
405  * In the latter case we colour the starting block by the callers PID to
406  * prevent it from clashing with concurrent allocations for a different inode
407  * in the same block group.   The PID is used here so that functionally related
408  * files will be close-by on-disk.
409  *
410  *      Caller must make sure that @ind is valid and will stay that way.
411  */
412 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
413 {
414         struct ext3_inode_info *ei = EXT3_I(inode);
415         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
416         __le32 *p;
417         ext3_fsblk_t bg_start;
418         ext3_grpblk_t colour;
419
420         /* Try to find previous block */
421         for (p = ind->p - 1; p >= start; p--) {
422                 if (*p)
423                         return le32_to_cpu(*p);
424         }
425
426         /* No such thing, so let's try location of indirect block */
427         if (ind->bh)
428                 return ind->bh->b_blocknr;
429
430         /*
431          * It is going to be referred to from the inode itself? OK, just put it
432          * into the same cylinder group then.
433          */
434         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
435         colour = (current->pid % 16) *
436                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
437         return bg_start + colour;
438 }
439
440 /**
441  *      ext3_find_goal - find a prefered place for allocation.
442  *      @inode: owner
443  *      @block:  block we want
444  *      @chain:  chain of indirect blocks
445  *      @partial: pointer to the last triple within a chain
446  *      @goal:  place to store the result.
447  *
448  *      Normally this function find the prefered place for block allocation,
449  *      stores it in *@goal and returns zero.
450  */
451
452 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
453                 Indirect chain[4], Indirect *partial)
454 {
455         struct ext3_block_alloc_info *block_i;
456
457         block_i =  EXT3_I(inode)->i_block_alloc_info;
458
459         /*
460          * try the heuristic for sequential allocation,
461          * failing that at least try to get decent locality.
462          */
463         if (block_i && (block == block_i->last_alloc_logical_block + 1)
464                 && (block_i->last_alloc_physical_block != 0)) {
465                 return block_i->last_alloc_physical_block + 1;
466         }
467
468         return ext3_find_near(inode, partial);
469 }
470
471 /**
472  *      ext3_blks_to_allocate: Look up the block map and count the number
473  *      of direct blocks need to be allocated for the given branch.
474  *
475  *      @branch: chain of indirect blocks
476  *      @k: number of blocks need for indirect blocks
477  *      @blks: number of data blocks to be mapped.
478  *      @blocks_to_boundary:  the offset in the indirect block
479  *
480  *      return the total number of blocks to be allocate, including the
481  *      direct and indirect blocks.
482  */
483 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
484                 int blocks_to_boundary)
485 {
486         unsigned long count = 0;
487
488         /*
489          * Simple case, [t,d]Indirect block(s) has not allocated yet
490          * then it's clear blocks on that path have not allocated
491          */
492         if (k > 0) {
493                 /* right now we don't handle cross boundary allocation */
494                 if (blks < blocks_to_boundary + 1)
495                         count += blks;
496                 else
497                         count += blocks_to_boundary + 1;
498                 return count;
499         }
500
501         count++;
502         while (count < blks && count <= blocks_to_boundary &&
503                 le32_to_cpu(*(branch[0].p + count)) == 0) {
504                 count++;
505         }
506         return count;
507 }
508
509 /**
510  *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
511  *      @indirect_blks: the number of blocks need to allocate for indirect
512  *                      blocks
513  *
514  *      @new_blocks: on return it will store the new block numbers for
515  *      the indirect blocks(if needed) and the first direct block,
516  *      @blks:  on return it will store the total number of allocated
517  *              direct blocks
518  */
519 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
520                         ext3_fsblk_t goal, int indirect_blks, int blks,
521                         ext3_fsblk_t new_blocks[4], int *err)
522 {
523         int target, i;
524         unsigned long count = 0;
525         int index = 0;
526         ext3_fsblk_t current_block = 0;
527         int ret = 0;
528
529         /*
530          * Here we try to allocate the requested multiple blocks at once,
531          * on a best-effort basis.
532          * To build a branch, we should allocate blocks for
533          * the indirect blocks(if not allocated yet), and at least
534          * the first direct block of this branch.  That's the
535          * minimum number of blocks need to allocate(required)
536          */
537         target = blks + indirect_blks;
538
539         while (1) {
540                 count = target;
541                 /* allocating blocks for indirect blocks and direct blocks */
542                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
543                 if (*err)
544                         goto failed_out;
545
546                 target -= count;
547                 /* allocate blocks for indirect blocks */
548                 while (index < indirect_blks && count) {
549                         new_blocks[index++] = current_block++;
550                         count--;
551                 }
552
553                 if (count > 0)
554                         break;
555         }
556
557         /* save the new block number for the first direct block */
558         new_blocks[index] = current_block;
559
560         /* total number of blocks allocated for direct blocks */
561         ret = count;
562         *err = 0;
563         return ret;
564 failed_out:
565         for (i = 0; i <index; i++)
566                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
567         return ret;
568 }
569
570 /**
571  *      ext3_alloc_branch - allocate and set up a chain of blocks.
572  *      @inode: owner
573  *      @indirect_blks: number of allocated indirect blocks
574  *      @blks: number of allocated direct blocks
575  *      @offsets: offsets (in the blocks) to store the pointers to next.
576  *      @branch: place to store the chain in.
577  *
578  *      This function allocates blocks, zeroes out all but the last one,
579  *      links them into chain and (if we are synchronous) writes them to disk.
580  *      In other words, it prepares a branch that can be spliced onto the
581  *      inode. It stores the information about that chain in the branch[], in
582  *      the same format as ext3_get_branch() would do. We are calling it after
583  *      we had read the existing part of chain and partial points to the last
584  *      triple of that (one with zero ->key). Upon the exit we have the same
585  *      picture as after the successful ext3_get_block(), except that in one
586  *      place chain is disconnected - *branch->p is still zero (we did not
587  *      set the last link), but branch->key contains the number that should
588  *      be placed into *branch->p to fill that gap.
589  *
590  *      If allocation fails we free all blocks we've allocated (and forget
591  *      their buffer_heads) and return the error value the from failed
592  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
593  *      as described above and return 0.
594  */
595 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
596                         int indirect_blks, int *blks, ext3_fsblk_t goal,
597                         int *offsets, Indirect *branch)
598 {
599         int blocksize = inode->i_sb->s_blocksize;
600         int i, n = 0;
601         int err = 0;
602         struct buffer_head *bh;
603         int num;
604         ext3_fsblk_t new_blocks[4];
605         ext3_fsblk_t current_block;
606
607         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
608                                 *blks, new_blocks, &err);
609         if (err)
610                 return err;
611
612         branch[0].key = cpu_to_le32(new_blocks[0]);
613         /*
614          * metadata blocks and data blocks are allocated.
615          */
616         for (n = 1; n <= indirect_blks;  n++) {
617                 /*
618                  * Get buffer_head for parent block, zero it out
619                  * and set the pointer to new one, then send
620                  * parent to disk.
621                  */
622                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
623                 branch[n].bh = bh;
624                 lock_buffer(bh);
625                 BUFFER_TRACE(bh, "call get_create_access");
626                 err = ext3_journal_get_create_access(handle, bh);
627                 if (err) {
628                         unlock_buffer(bh);
629                         brelse(bh);
630                         goto failed;
631                 }
632
633                 memset(bh->b_data, 0, blocksize);
634                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
635                 branch[n].key = cpu_to_le32(new_blocks[n]);
636                 *branch[n].p = branch[n].key;
637                 if ( n == indirect_blks) {
638                         current_block = new_blocks[n];
639                         /*
640                          * End of chain, update the last new metablock of
641                          * the chain to point to the new allocated
642                          * data blocks numbers
643                          */
644                         for (i=1; i < num; i++)
645                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
646                 }
647                 BUFFER_TRACE(bh, "marking uptodate");
648                 set_buffer_uptodate(bh);
649                 unlock_buffer(bh);
650
651                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
652                 err = ext3_journal_dirty_metadata(handle, bh);
653                 if (err)
654                         goto failed;
655         }
656         *blks = num;
657         return err;
658 failed:
659         /* Allocation failed, free what we already allocated */
660         for (i = 1; i <= n ; i++) {
661                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
662                 ext3_journal_forget(handle, branch[i].bh);
663         }
664         for (i = 0; i <indirect_blks; i++)
665                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
666
667         ext3_free_blocks(handle, inode, new_blocks[i], num);
668
669         return err;
670 }
671
672 /**
673  * ext3_splice_branch - splice the allocated branch onto inode.
674  * @inode: owner
675  * @block: (logical) number of block we are adding
676  * @chain: chain of indirect blocks (with a missing link - see
677  *      ext3_alloc_branch)
678  * @where: location of missing link
679  * @num:   number of indirect blocks we are adding
680  * @blks:  number of direct blocks we are adding
681  *
682  * This function fills the missing link and does all housekeeping needed in
683  * inode (->i_blocks, etc.). In case of success we end up with the full
684  * chain to new block and return 0.
685  */
686 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
687                         long block, Indirect *where, int num, int blks)
688 {
689         int i;
690         int err = 0;
691         struct ext3_block_alloc_info *block_i;
692         ext3_fsblk_t current_block;
693
694         block_i = EXT3_I(inode)->i_block_alloc_info;
695         /*
696          * If we're splicing into a [td]indirect block (as opposed to the
697          * inode) then we need to get write access to the [td]indirect block
698          * before the splice.
699          */
700         if (where->bh) {
701                 BUFFER_TRACE(where->bh, "get_write_access");
702                 err = ext3_journal_get_write_access(handle, where->bh);
703                 if (err)
704                         goto err_out;
705         }
706         /* That's it */
707
708         *where->p = where->key;
709
710         /*
711          * Update the host buffer_head or inode to point to more just allocated
712          * direct blocks blocks
713          */
714         if (num == 0 && blks > 1) {
715                 current_block = le32_to_cpu(where->key) + 1;
716                 for (i = 1; i < blks; i++)
717                         *(where->p + i ) = cpu_to_le32(current_block++);
718         }
719
720         /*
721          * update the most recently allocated logical & physical block
722          * in i_block_alloc_info, to assist find the proper goal block for next
723          * allocation
724          */
725         if (block_i) {
726                 block_i->last_alloc_logical_block = block + blks - 1;
727                 block_i->last_alloc_physical_block =
728                                 le32_to_cpu(where[num].key) + blks - 1;
729         }
730
731         /* We are done with atomic stuff, now do the rest of housekeeping */
732
733         inode->i_ctime = CURRENT_TIME_SEC;
734         ext3_mark_inode_dirty(handle, inode);
735
736         /* had we spliced it onto indirect block? */
737         if (where->bh) {
738                 /*
739                  * If we spliced it onto an indirect block, we haven't
740                  * altered the inode.  Note however that if it is being spliced
741                  * onto an indirect block at the very end of the file (the
742                  * file is growing) then we *will* alter the inode to reflect
743                  * the new i_size.  But that is not done here - it is done in
744                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
745                  */
746                 jbd_debug(5, "splicing indirect only\n");
747                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
748                 err = ext3_journal_dirty_metadata(handle, where->bh);
749                 if (err)
750                         goto err_out;
751         } else {
752                 /*
753                  * OK, we spliced it into the inode itself on a direct block.
754                  * Inode was dirtied above.
755                  */
756                 jbd_debug(5, "splicing direct\n");
757         }
758         return err;
759
760 err_out:
761         for (i = 1; i <= num; i++) {
762                 BUFFER_TRACE(where[i].bh, "call journal_forget");
763                 ext3_journal_forget(handle, where[i].bh);
764                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
765         }
766         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
767
768         return err;
769 }
770
771 /*
772  * Allocation strategy is simple: if we have to allocate something, we will
773  * have to go the whole way to leaf. So let's do it before attaching anything
774  * to tree, set linkage between the newborn blocks, write them if sync is
775  * required, recheck the path, free and repeat if check fails, otherwise
776  * set the last missing link (that will protect us from any truncate-generated
777  * removals - all blocks on the path are immune now) and possibly force the
778  * write on the parent block.
779  * That has a nice additional property: no special recovery from the failed
780  * allocations is needed - we simply release blocks and do not touch anything
781  * reachable from inode.
782  *
783  * `handle' can be NULL if create == 0.
784  *
785  * The BKL may not be held on entry here.  Be sure to take it early.
786  * return > 0, # of blocks mapped or allocated.
787  * return = 0, if plain lookup failed.
788  * return < 0, error case.
789  */
790 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
791                 sector_t iblock, unsigned long maxblocks,
792                 struct buffer_head *bh_result,
793                 int create, int extend_disksize)
794 {
795         int err = -EIO;
796         int offsets[4];
797         Indirect chain[4];
798         Indirect *partial;
799         ext3_fsblk_t goal;
800         int indirect_blks;
801         int blocks_to_boundary = 0;
802         int depth;
803         struct ext3_inode_info *ei = EXT3_I(inode);
804         int count = 0;
805         ext3_fsblk_t first_block = 0;
806
807
808         J_ASSERT(handle != NULL || create == 0);
809         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
810
811         if (depth == 0)
812                 goto out;
813
814         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
815
816         /* Simplest case - block found, no allocation needed */
817         if (!partial) {
818                 first_block = le32_to_cpu(chain[depth - 1].key);
819                 clear_buffer_new(bh_result);
820                 count++;
821                 /*map more blocks*/
822                 while (count < maxblocks && count <= blocks_to_boundary) {
823                         ext3_fsblk_t blk;
824
825                         if (!verify_chain(chain, partial)) {
826                                 /*
827                                  * Indirect block might be removed by
828                                  * truncate while we were reading it.
829                                  * Handling of that case: forget what we've
830                                  * got now. Flag the err as EAGAIN, so it
831                                  * will reread.
832                                  */
833                                 err = -EAGAIN;
834                                 count = 0;
835                                 break;
836                         }
837                         blk = le32_to_cpu(*(chain[depth-1].p + count));
838
839                         if (blk == first_block + count)
840                                 count++;
841                         else
842                                 break;
843                 }
844                 if (err != -EAGAIN)
845                         goto got_it;
846         }
847
848         /* Next simple case - plain lookup or failed read of indirect block */
849         if (!create || err == -EIO)
850                 goto cleanup;
851
852         mutex_lock(&ei->truncate_mutex);
853
854         /*
855          * If the indirect block is missing while we are reading
856          * the chain(ext3_get_branch() returns -EAGAIN err), or
857          * if the chain has been changed after we grab the semaphore,
858          * (either because another process truncated this branch, or
859          * another get_block allocated this branch) re-grab the chain to see if
860          * the request block has been allocated or not.
861          *
862          * Since we already block the truncate/other get_block
863          * at this point, we will have the current copy of the chain when we
864          * splice the branch into the tree.
865          */
866         if (err == -EAGAIN || !verify_chain(chain, partial)) {
867                 while (partial > chain) {
868                         brelse(partial->bh);
869                         partial--;
870                 }
871                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
872                 if (!partial) {
873                         count++;
874                         mutex_unlock(&ei->truncate_mutex);
875                         if (err)
876                                 goto cleanup;
877                         clear_buffer_new(bh_result);
878                         goto got_it;
879                 }
880         }
881
882         /*
883          * Okay, we need to do block allocation.  Lazily initialize the block
884          * allocation info here if necessary
885         */
886         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
887                 ext3_init_block_alloc_info(inode);
888
889         goal = ext3_find_goal(inode, iblock, chain, partial);
890
891         /* the number of blocks need to allocate for [d,t]indirect blocks */
892         indirect_blks = (chain + depth) - partial - 1;
893
894         /*
895          * Next look up the indirect map to count the totoal number of
896          * direct blocks to allocate for this branch.
897          */
898         count = ext3_blks_to_allocate(partial, indirect_blks,
899                                         maxblocks, blocks_to_boundary);
900         /*
901          * Block out ext3_truncate while we alter the tree
902          */
903         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
904                                 offsets + (partial - chain), partial);
905
906         /*
907          * The ext3_splice_branch call will free and forget any buffers
908          * on the new chain if there is a failure, but that risks using
909          * up transaction credits, especially for bitmaps where the
910          * credits cannot be returned.  Can we handle this somehow?  We
911          * may need to return -EAGAIN upwards in the worst case.  --sct
912          */
913         if (!err)
914                 err = ext3_splice_branch(handle, inode, iblock,
915                                         partial, indirect_blks, count);
916         /*
917          * i_disksize growing is protected by truncate_mutex.  Don't forget to
918          * protect it if you're about to implement concurrent
919          * ext3_get_block() -bzzz
920         */
921         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
922                 ei->i_disksize = inode->i_size;
923         mutex_unlock(&ei->truncate_mutex);
924         if (err)
925                 goto cleanup;
926
927         set_buffer_new(bh_result);
928 got_it:
929         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
930         if (count > blocks_to_boundary)
931                 set_buffer_boundary(bh_result);
932         err = count;
933         /* Clean up and exit */
934         partial = chain + depth - 1;    /* the whole chain */
935 cleanup:
936         while (partial > chain) {
937                 BUFFER_TRACE(partial->bh, "call brelse");
938                 brelse(partial->bh);
939                 partial--;
940         }
941         BUFFER_TRACE(bh_result, "returned");
942 out:
943         return err;
944 }
945
946 #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
947
948 static int ext3_get_block(struct inode *inode, sector_t iblock,
949                         struct buffer_head *bh_result, int create)
950 {
951         handle_t *handle = journal_current_handle();
952         int ret = 0;
953         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
954
955         if (!create)
956                 goto get_block;         /* A read */
957
958         if (max_blocks == 1)
959                 goto get_block;         /* A single block get */
960
961         if (handle->h_transaction->t_state == T_LOCKED) {
962                 /*
963                  * Huge direct-io writes can hold off commits for long
964                  * periods of time.  Let this commit run.
965                  */
966                 ext3_journal_stop(handle);
967                 handle = ext3_journal_start(inode, DIO_CREDITS);
968                 if (IS_ERR(handle))
969                         ret = PTR_ERR(handle);
970                 goto get_block;
971         }
972
973         if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
974                 /*
975                  * Getting low on buffer credits...
976                  */
977                 ret = ext3_journal_extend(handle, DIO_CREDITS);
978                 if (ret > 0) {
979                         /*
980                          * Couldn't extend the transaction.  Start a new one.
981                          */
982                         ret = ext3_journal_restart(handle, DIO_CREDITS);
983                 }
984         }
985
986 get_block:
987         if (ret == 0) {
988                 ret = ext3_get_blocks_handle(handle, inode, iblock,
989                                         max_blocks, bh_result, create, 0);
990                 if (ret > 0) {
991                         bh_result->b_size = (ret << inode->i_blkbits);
992                         ret = 0;
993                 }
994         }
995         return ret;
996 }
997
998 /*
999  * `handle' can be NULL if create is zero
1000  */
1001 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1002                                 long block, int create, int *errp)
1003 {
1004         struct buffer_head dummy;
1005         int fatal = 0, err;
1006
1007         J_ASSERT(handle != NULL || create == 0);
1008
1009         dummy.b_state = 0;
1010         dummy.b_blocknr = -1000;
1011         buffer_trace_init(&dummy.b_history);
1012         err = ext3_get_blocks_handle(handle, inode, block, 1,
1013                                         &dummy, create, 1);
1014         /*
1015          * ext3_get_blocks_handle() returns number of blocks
1016          * mapped. 0 in case of a HOLE.
1017          */
1018         if (err > 0) {
1019                 if (err > 1)
1020                         WARN_ON(1);
1021                 err = 0;
1022         }
1023         *errp = err;
1024         if (!err && buffer_mapped(&dummy)) {
1025                 struct buffer_head *bh;
1026                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1027                 if (!bh) {
1028                         *errp = -EIO;
1029                         goto err;
1030                 }
1031                 if (buffer_new(&dummy)) {
1032                         J_ASSERT(create != 0);
1033                         J_ASSERT(handle != 0);
1034
1035                         /*
1036                          * Now that we do not always journal data, we should
1037                          * keep in mind whether this should always journal the
1038                          * new buffer as metadata.  For now, regular file
1039                          * writes use ext3_get_block instead, so it's not a
1040                          * problem.
1041                          */
1042                         lock_buffer(bh);
1043                         BUFFER_TRACE(bh, "call get_create_access");
1044                         fatal = ext3_journal_get_create_access(handle, bh);
1045                         if (!fatal && !buffer_uptodate(bh)) {
1046                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1047                                 set_buffer_uptodate(bh);
1048                         }
1049                         unlock_buffer(bh);
1050                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1051                         err = ext3_journal_dirty_metadata(handle, bh);
1052                         if (!fatal)
1053                                 fatal = err;
1054                 } else {
1055                         BUFFER_TRACE(bh, "not a new buffer");
1056                 }
1057                 if (fatal) {
1058                         *errp = fatal;
1059                         brelse(bh);
1060                         bh = NULL;
1061                 }
1062                 return bh;
1063         }
1064 err:
1065         return NULL;
1066 }
1067
1068 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1069                                int block, int create, int *err)
1070 {
1071         struct buffer_head * bh;
1072
1073         bh = ext3_getblk(handle, inode, block, create, err);
1074         if (!bh)
1075                 return bh;
1076         if (buffer_uptodate(bh))
1077                 return bh;
1078         ll_rw_block(READ_META, 1, &bh);
1079         wait_on_buffer(bh);
1080         if (buffer_uptodate(bh))
1081                 return bh;
1082         put_bh(bh);
1083         *err = -EIO;
1084         return NULL;
1085 }
1086
1087 static int walk_page_buffers(   handle_t *handle,
1088                                 struct buffer_head *head,
1089                                 unsigned from,
1090                                 unsigned to,
1091                                 int *partial,
1092                                 int (*fn)(      handle_t *handle,
1093                                                 struct buffer_head *bh))
1094 {
1095         struct buffer_head *bh;
1096         unsigned block_start, block_end;
1097         unsigned blocksize = head->b_size;
1098         int err, ret = 0;
1099         struct buffer_head *next;
1100
1101         for (   bh = head, block_start = 0;
1102                 ret == 0 && (bh != head || !block_start);
1103                 block_start = block_end, bh = next)
1104         {
1105                 next = bh->b_this_page;
1106                 block_end = block_start + blocksize;
1107                 if (block_end <= from || block_start >= to) {
1108                         if (partial && !buffer_uptodate(bh))
1109                                 *partial = 1;
1110                         continue;
1111                 }
1112                 err = (*fn)(handle, bh);
1113                 if (!ret)
1114                         ret = err;
1115         }
1116         return ret;
1117 }
1118
1119 /*
1120  * To preserve ordering, it is essential that the hole instantiation and
1121  * the data write be encapsulated in a single transaction.  We cannot
1122  * close off a transaction and start a new one between the ext3_get_block()
1123  * and the commit_write().  So doing the journal_start at the start of
1124  * prepare_write() is the right place.
1125  *
1126  * Also, this function can nest inside ext3_writepage() ->
1127  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1128  * has generated enough buffer credits to do the whole page.  So we won't
1129  * block on the journal in that case, which is good, because the caller may
1130  * be PF_MEMALLOC.
1131  *
1132  * By accident, ext3 can be reentered when a transaction is open via
1133  * quota file writes.  If we were to commit the transaction while thus
1134  * reentered, there can be a deadlock - we would be holding a quota
1135  * lock, and the commit would never complete if another thread had a
1136  * transaction open and was blocking on the quota lock - a ranking
1137  * violation.
1138  *
1139  * So what we do is to rely on the fact that journal_stop/journal_start
1140  * will _not_ run commit under these circumstances because handle->h_ref
1141  * is elevated.  We'll still have enough credits for the tiny quotafile
1142  * write.
1143  */
1144 static int do_journal_get_write_access(handle_t *handle,
1145                                         struct buffer_head *bh)
1146 {
1147         if (!buffer_mapped(bh) || buffer_freed(bh))
1148                 return 0;
1149         return ext3_journal_get_write_access(handle, bh);
1150 }
1151
1152 static int ext3_prepare_write(struct file *file, struct page *page,
1153                               unsigned from, unsigned to)
1154 {
1155         struct inode *inode = page->mapping->host;
1156         int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1157         handle_t *handle;
1158         int retries = 0;
1159
1160 retry:
1161         handle = ext3_journal_start(inode, needed_blocks);
1162         if (IS_ERR(handle)) {
1163                 ret = PTR_ERR(handle);
1164                 goto out;
1165         }
1166         if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1167                 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1168         else
1169                 ret = block_prepare_write(page, from, to, ext3_get_block);
1170         if (ret)
1171                 goto prepare_write_failed;
1172
1173         if (ext3_should_journal_data(inode)) {
1174                 ret = walk_page_buffers(handle, page_buffers(page),
1175                                 from, to, NULL, do_journal_get_write_access);
1176         }
1177 prepare_write_failed:
1178         if (ret)
1179                 ext3_journal_stop(handle);
1180         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1181                 goto retry;
1182 out:
1183         return ret;
1184 }
1185
1186 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1187 {
1188         int err = journal_dirty_data(handle, bh);
1189         if (err)
1190                 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1191                                                 bh, handle,err);
1192         return err;
1193 }
1194
1195 /* For commit_write() in data=journal mode */
1196 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1197 {
1198         if (!buffer_mapped(bh) || buffer_freed(bh))
1199                 return 0;
1200         set_buffer_uptodate(bh);
1201         return ext3_journal_dirty_metadata(handle, bh);
1202 }
1203
1204 /*
1205  * We need to pick up the new inode size which generic_commit_write gave us
1206  * `file' can be NULL - eg, when called from page_symlink().
1207  *
1208  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1209  * buffers are managed internally.
1210  */
1211 static int ext3_ordered_commit_write(struct file *file, struct page *page,
1212                              unsigned from, unsigned to)
1213 {
1214         handle_t *handle = ext3_journal_current_handle();
1215         struct inode *inode = page->mapping->host;
1216         int ret = 0, ret2;
1217
1218         ret = walk_page_buffers(handle, page_buffers(page),
1219                 from, to, NULL, ext3_journal_dirty_data);
1220
1221         if (ret == 0) {
1222                 /*
1223                  * generic_commit_write() will run mark_inode_dirty() if i_size
1224                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1225                  * into that.
1226                  */
1227                 loff_t new_i_size;
1228
1229                 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1230                 if (new_i_size > EXT3_I(inode)->i_disksize)
1231                         EXT3_I(inode)->i_disksize = new_i_size;
1232                 ret = generic_commit_write(file, page, from, to);
1233         }
1234         ret2 = ext3_journal_stop(handle);
1235         if (!ret)
1236                 ret = ret2;
1237         return ret;
1238 }
1239
1240 static int ext3_writeback_commit_write(struct file *file, struct page *page,
1241                              unsigned from, unsigned to)
1242 {
1243         handle_t *handle = ext3_journal_current_handle();
1244         struct inode *inode = page->mapping->host;
1245         int ret = 0, ret2;
1246         loff_t new_i_size;
1247
1248         new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1249         if (new_i_size > EXT3_I(inode)->i_disksize)
1250                 EXT3_I(inode)->i_disksize = new_i_size;
1251
1252         if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1253                 ret = nobh_commit_write(file, page, from, to);
1254         else
1255                 ret = generic_commit_write(file, page, from, to);
1256
1257         ret2 = ext3_journal_stop(handle);
1258         if (!ret)
1259                 ret = ret2;
1260         return ret;
1261 }
1262
1263 static int ext3_journalled_commit_write(struct file *file,
1264                         struct page *page, unsigned from, unsigned to)
1265 {
1266         handle_t *handle = ext3_journal_current_handle();
1267         struct inode *inode = page->mapping->host;
1268         int ret = 0, ret2;
1269         int partial = 0;
1270         loff_t pos;
1271
1272         /*
1273          * Here we duplicate the generic_commit_write() functionality
1274          */
1275         pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1276
1277         ret = walk_page_buffers(handle, page_buffers(page), from,
1278                                 to, &partial, commit_write_fn);
1279         if (!partial)
1280                 SetPageUptodate(page);
1281         if (pos > inode->i_size)
1282                 i_size_write(inode, pos);
1283         EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1284         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1285                 EXT3_I(inode)->i_disksize = inode->i_size;
1286                 ret2 = ext3_mark_inode_dirty(handle, inode);
1287                 if (!ret)
1288                         ret = ret2;
1289         }
1290         ret2 = ext3_journal_stop(handle);
1291         if (!ret)
1292                 ret = ret2;
1293         return ret;
1294 }
1295
1296 /*
1297  * bmap() is special.  It gets used by applications such as lilo and by
1298  * the swapper to find the on-disk block of a specific piece of data.
1299  *
1300  * Naturally, this is dangerous if the block concerned is still in the
1301  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1302  * filesystem and enables swap, then they may get a nasty shock when the
1303  * data getting swapped to that swapfile suddenly gets overwritten by
1304  * the original zero's written out previously to the journal and
1305  * awaiting writeback in the kernel's buffer cache.
1306  *
1307  * So, if we see any bmap calls here on a modified, data-journaled file,
1308  * take extra steps to flush any blocks which might be in the cache.
1309  */
1310 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1311 {
1312         struct inode *inode = mapping->host;
1313         journal_t *journal;
1314         int err;
1315
1316         if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1317                 /*
1318                  * This is a REALLY heavyweight approach, but the use of
1319                  * bmap on dirty files is expected to be extremely rare:
1320                  * only if we run lilo or swapon on a freshly made file
1321                  * do we expect this to happen.
1322                  *
1323                  * (bmap requires CAP_SYS_RAWIO so this does not
1324                  * represent an unprivileged user DOS attack --- we'd be
1325                  * in trouble if mortal users could trigger this path at
1326                  * will.)
1327                  *
1328                  * NB. EXT3_STATE_JDATA is not set on files other than
1329                  * regular files.  If somebody wants to bmap a directory
1330                  * or symlink and gets confused because the buffer
1331                  * hasn't yet been flushed to disk, they deserve
1332                  * everything they get.
1333                  */
1334
1335                 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1336                 journal = EXT3_JOURNAL(inode);
1337                 journal_lock_updates(journal);
1338                 err = journal_flush(journal);
1339                 journal_unlock_updates(journal);
1340
1341                 if (err)
1342                         return 0;
1343         }
1344
1345         return generic_block_bmap(mapping,block,ext3_get_block);
1346 }
1347
1348 static int bget_one(handle_t *handle, struct buffer_head *bh)
1349 {
1350         get_bh(bh);
1351         return 0;
1352 }
1353
1354 static int bput_one(handle_t *handle, struct buffer_head *bh)
1355 {
1356         put_bh(bh);
1357         return 0;
1358 }
1359
1360 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1361 {
1362         if (buffer_mapped(bh))
1363                 return ext3_journal_dirty_data(handle, bh);
1364         return 0;
1365 }
1366
1367 /*
1368  * Note that we always start a transaction even if we're not journalling
1369  * data.  This is to preserve ordering: any hole instantiation within
1370  * __block_write_full_page -> ext3_get_block() should be journalled
1371  * along with the data so we don't crash and then get metadata which
1372  * refers to old data.
1373  *
1374  * In all journalling modes block_write_full_page() will start the I/O.
1375  *
1376  * Problem:
1377  *
1378  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1379  *              ext3_writepage()
1380  *
1381  * Similar for:
1382  *
1383  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1384  *
1385  * Same applies to ext3_get_block().  We will deadlock on various things like
1386  * lock_journal and i_truncate_mutex.
1387  *
1388  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1389  * allocations fail.
1390  *
1391  * 16May01: If we're reentered then journal_current_handle() will be
1392  *          non-zero. We simply *return*.
1393  *
1394  * 1 July 2001: @@@ FIXME:
1395  *   In journalled data mode, a data buffer may be metadata against the
1396  *   current transaction.  But the same file is part of a shared mapping
1397  *   and someone does a writepage() on it.
1398  *
1399  *   We will move the buffer onto the async_data list, but *after* it has
1400  *   been dirtied. So there's a small window where we have dirty data on
1401  *   BJ_Metadata.
1402  *
1403  *   Note that this only applies to the last partial page in the file.  The
1404  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1405  *   broken code anyway: it's wrong for msync()).
1406  *
1407  *   It's a rare case: affects the final partial page, for journalled data
1408  *   where the file is subject to bith write() and writepage() in the same
1409  *   transction.  To fix it we'll need a custom block_write_full_page().
1410  *   We'll probably need that anyway for journalling writepage() output.
1411  *
1412  * We don't honour synchronous mounts for writepage().  That would be
1413  * disastrous.  Any write() or metadata operation will sync the fs for
1414  * us.
1415  *
1416  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1417  * we don't need to open a transaction here.
1418  */
1419 static int ext3_ordered_writepage(struct page *page,
1420                                 struct writeback_control *wbc)
1421 {
1422         struct inode *inode = page->mapping->host;
1423         struct buffer_head *page_bufs;
1424         handle_t *handle = NULL;
1425         int ret = 0;
1426         int err;
1427
1428         J_ASSERT(PageLocked(page));
1429
1430         /*
1431          * We give up here if we're reentered, because it might be for a
1432          * different filesystem.
1433          */
1434         if (ext3_journal_current_handle())
1435                 goto out_fail;
1436
1437         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1438
1439         if (IS_ERR(handle)) {
1440                 ret = PTR_ERR(handle);
1441                 goto out_fail;
1442         }
1443
1444         if (!page_has_buffers(page)) {
1445                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1446                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1447         }
1448         page_bufs = page_buffers(page);
1449         walk_page_buffers(handle, page_bufs, 0,
1450                         PAGE_CACHE_SIZE, NULL, bget_one);
1451
1452         ret = block_write_full_page(page, ext3_get_block, wbc);
1453
1454         /*
1455          * The page can become unlocked at any point now, and
1456          * truncate can then come in and change things.  So we
1457          * can't touch *page from now on.  But *page_bufs is
1458          * safe due to elevated refcount.
1459          */
1460
1461         /*
1462          * And attach them to the current transaction.  But only if
1463          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1464          * and generally junk.
1465          */
1466         if (ret == 0) {
1467                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1468                                         NULL, journal_dirty_data_fn);
1469                 if (!ret)
1470                         ret = err;
1471         }
1472         walk_page_buffers(handle, page_bufs, 0,
1473                         PAGE_CACHE_SIZE, NULL, bput_one);
1474         err = ext3_journal_stop(handle);
1475         if (!ret)
1476                 ret = err;
1477         return ret;
1478
1479 out_fail:
1480         redirty_page_for_writepage(wbc, page);
1481         unlock_page(page);
1482         return ret;
1483 }
1484
1485 static int ext3_writeback_writepage(struct page *page,
1486                                 struct writeback_control *wbc)
1487 {
1488         struct inode *inode = page->mapping->host;
1489         handle_t *handle = NULL;
1490         int ret = 0;
1491         int err;
1492
1493         if (ext3_journal_current_handle())
1494                 goto out_fail;
1495
1496         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1497         if (IS_ERR(handle)) {
1498                 ret = PTR_ERR(handle);
1499                 goto out_fail;
1500         }
1501
1502         if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1503                 ret = nobh_writepage(page, ext3_get_block, wbc);
1504         else
1505                 ret = block_write_full_page(page, ext3_get_block, wbc);
1506
1507         err = ext3_journal_stop(handle);
1508         if (!ret)
1509                 ret = err;
1510         return ret;
1511
1512 out_fail:
1513         redirty_page_for_writepage(wbc, page);
1514         unlock_page(page);
1515         return ret;
1516 }
1517
1518 static int ext3_journalled_writepage(struct page *page,
1519                                 struct writeback_control *wbc)
1520 {
1521         struct inode *inode = page->mapping->host;
1522         handle_t *handle = NULL;
1523         int ret = 0;
1524         int err;
1525
1526         if (ext3_journal_current_handle())
1527                 goto no_write;
1528
1529         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1530         if (IS_ERR(handle)) {
1531                 ret = PTR_ERR(handle);
1532                 goto no_write;
1533         }
1534
1535         if (!page_has_buffers(page) || PageChecked(page)) {
1536                 /*
1537                  * It's mmapped pagecache.  Add buffers and journal it.  There
1538                  * doesn't seem much point in redirtying the page here.
1539                  */
1540                 ClearPageChecked(page);
1541                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1542                                         ext3_get_block);
1543                 if (ret != 0) {
1544                         ext3_journal_stop(handle);
1545                         goto out_unlock;
1546                 }
1547                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1548                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1549
1550                 err = walk_page_buffers(handle, page_buffers(page), 0,
1551                                 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1552                 if (ret == 0)
1553                         ret = err;
1554                 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1555                 unlock_page(page);
1556         } else {
1557                 /*
1558                  * It may be a page full of checkpoint-mode buffers.  We don't
1559                  * really know unless we go poke around in the buffer_heads.
1560                  * But block_write_full_page will do the right thing.
1561                  */
1562                 ret = block_write_full_page(page, ext3_get_block, wbc);
1563         }
1564         err = ext3_journal_stop(handle);
1565         if (!ret)
1566                 ret = err;
1567 out:
1568         return ret;
1569
1570 no_write:
1571         redirty_page_for_writepage(wbc, page);
1572 out_unlock:
1573         unlock_page(page);
1574         goto out;
1575 }
1576
1577 static int ext3_readpage(struct file *file, struct page *page)
1578 {
1579         return mpage_readpage(page, ext3_get_block);
1580 }
1581
1582 static int
1583 ext3_readpages(struct file *file, struct address_space *mapping,
1584                 struct list_head *pages, unsigned nr_pages)
1585 {
1586         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1587 }
1588
1589 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1590 {
1591         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1592
1593         /*
1594          * If it's a full truncate we just forget about the pending dirtying
1595          */
1596         if (offset == 0)
1597                 ClearPageChecked(page);
1598
1599         journal_invalidatepage(journal, page, offset);
1600 }
1601
1602 static int ext3_releasepage(struct page *page, gfp_t wait)
1603 {
1604         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1605
1606         WARN_ON(PageChecked(page));
1607         if (!page_has_buffers(page))
1608                 return 0;
1609         return journal_try_to_free_buffers(journal, page, wait);
1610 }
1611
1612 /*
1613  * If the O_DIRECT write will extend the file then add this inode to the
1614  * orphan list.  So recovery will truncate it back to the original size
1615  * if the machine crashes during the write.
1616  *
1617  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1618  * crashes then stale disk data _may_ be exposed inside the file.
1619  */
1620 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1621                         const struct iovec *iov, loff_t offset,
1622                         unsigned long nr_segs)
1623 {
1624         struct file *file = iocb->ki_filp;
1625         struct inode *inode = file->f_mapping->host;
1626         struct ext3_inode_info *ei = EXT3_I(inode);
1627         handle_t *handle = NULL;
1628         ssize_t ret;
1629         int orphan = 0;
1630         size_t count = iov_length(iov, nr_segs);
1631
1632         if (rw == WRITE) {
1633                 loff_t final_size = offset + count;
1634
1635                 handle = ext3_journal_start(inode, DIO_CREDITS);
1636                 if (IS_ERR(handle)) {
1637                         ret = PTR_ERR(handle);
1638                         goto out;
1639                 }
1640                 if (final_size > inode->i_size) {
1641                         ret = ext3_orphan_add(handle, inode);
1642                         if (ret)
1643                                 goto out_stop;
1644                         orphan = 1;
1645                         ei->i_disksize = inode->i_size;
1646                 }
1647         }
1648
1649         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1650                                  offset, nr_segs,
1651                                  ext3_get_block, NULL);
1652
1653         /*
1654          * Reacquire the handle: ext3_get_block() can restart the transaction
1655          */
1656         handle = journal_current_handle();
1657
1658 out_stop:
1659         if (handle) {
1660                 int err;
1661
1662                 if (orphan && inode->i_nlink)
1663                         ext3_orphan_del(handle, inode);
1664                 if (orphan && ret > 0) {
1665                         loff_t end = offset + ret;
1666                         if (end > inode->i_size) {
1667                                 ei->i_disksize = end;
1668                                 i_size_write(inode, end);
1669                                 /*
1670                                  * We're going to return a positive `ret'
1671                                  * here due to non-zero-length I/O, so there's
1672                                  * no way of reporting error returns from
1673                                  * ext3_mark_inode_dirty() to userspace.  So
1674                                  * ignore it.
1675                                  */
1676                                 ext3_mark_inode_dirty(handle, inode);
1677                         }
1678                 }
1679                 err = ext3_journal_stop(handle);
1680                 if (ret == 0)
1681                         ret = err;
1682         }
1683 out:
1684         return ret;
1685 }
1686
1687 /*
1688  * Pages can be marked dirty completely asynchronously from ext3's journalling
1689  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1690  * much here because ->set_page_dirty is called under VFS locks.  The page is
1691  * not necessarily locked.
1692  *
1693  * We cannot just dirty the page and leave attached buffers clean, because the
1694  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1695  * or jbddirty because all the journalling code will explode.
1696  *
1697  * So what we do is to mark the page "pending dirty" and next time writepage
1698  * is called, propagate that into the buffers appropriately.
1699  */
1700 static int ext3_journalled_set_page_dirty(struct page *page)
1701 {
1702         SetPageChecked(page);
1703         return __set_page_dirty_nobuffers(page);
1704 }
1705
1706 static const struct address_space_operations ext3_ordered_aops = {
1707         .readpage       = ext3_readpage,
1708         .readpages      = ext3_readpages,
1709         .writepage      = ext3_ordered_writepage,
1710         .sync_page      = block_sync_page,
1711         .prepare_write  = ext3_prepare_write,
1712         .commit_write   = ext3_ordered_commit_write,
1713         .bmap           = ext3_bmap,
1714         .invalidatepage = ext3_invalidatepage,
1715         .releasepage    = ext3_releasepage,
1716         .direct_IO      = ext3_direct_IO,
1717         .migratepage    = buffer_migrate_page,
1718 };
1719
1720 static const struct address_space_operations ext3_writeback_aops = {
1721         .readpage       = ext3_readpage,
1722         .readpages      = ext3_readpages,
1723         .writepage      = ext3_writeback_writepage,
1724         .sync_page      = block_sync_page,
1725         .prepare_write  = ext3_prepare_write,
1726         .commit_write   = ext3_writeback_commit_write,
1727         .bmap           = ext3_bmap,
1728         .invalidatepage = ext3_invalidatepage,
1729         .releasepage    = ext3_releasepage,
1730         .direct_IO      = ext3_direct_IO,
1731         .migratepage    = buffer_migrate_page,
1732 };
1733
1734 static const struct address_space_operations ext3_journalled_aops = {
1735         .readpage       = ext3_readpage,
1736         .readpages      = ext3_readpages,
1737         .writepage      = ext3_journalled_writepage,
1738         .sync_page      = block_sync_page,
1739         .prepare_write  = ext3_prepare_write,
1740         .commit_write   = ext3_journalled_commit_write,
1741         .set_page_dirty = ext3_journalled_set_page_dirty,
1742         .bmap           = ext3_bmap,
1743         .invalidatepage = ext3_invalidatepage,
1744         .releasepage    = ext3_releasepage,
1745 };
1746
1747 void ext3_set_aops(struct inode *inode)
1748 {
1749         if (ext3_should_order_data(inode))
1750                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1751         else if (ext3_should_writeback_data(inode))
1752                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1753         else
1754                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1755 }
1756
1757 /*
1758  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1759  * up to the end of the block which corresponds to `from'.
1760  * This required during truncate. We need to physically zero the tail end
1761  * of that block so it doesn't yield old data if the file is later grown.
1762  */
1763 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1764                 struct address_space *mapping, loff_t from)
1765 {
1766         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1767         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1768         unsigned blocksize, iblock, length, pos;
1769         struct inode *inode = mapping->host;
1770         struct buffer_head *bh;
1771         int err = 0;
1772         void *kaddr;
1773
1774         blocksize = inode->i_sb->s_blocksize;
1775         length = blocksize - (offset & (blocksize - 1));
1776         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1777
1778         /*
1779          * For "nobh" option,  we can only work if we don't need to
1780          * read-in the page - otherwise we create buffers to do the IO.
1781          */
1782         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1783              ext3_should_writeback_data(inode) && PageUptodate(page)) {
1784                 kaddr = kmap_atomic(page, KM_USER0);
1785                 memset(kaddr + offset, 0, length);
1786                 flush_dcache_page(page);
1787                 kunmap_atomic(kaddr, KM_USER0);
1788                 set_page_dirty(page);
1789                 goto unlock;
1790         }
1791
1792         if (!page_has_buffers(page))
1793                 create_empty_buffers(page, blocksize, 0);
1794
1795         /* Find the buffer that contains "offset" */
1796         bh = page_buffers(page);
1797         pos = blocksize;
1798         while (offset >= pos) {
1799                 bh = bh->b_this_page;
1800                 iblock++;
1801                 pos += blocksize;
1802         }
1803
1804         err = 0;
1805         if (buffer_freed(bh)) {
1806                 BUFFER_TRACE(bh, "freed: skip");
1807                 goto unlock;
1808         }
1809
1810         if (!buffer_mapped(bh)) {
1811                 BUFFER_TRACE(bh, "unmapped");
1812                 ext3_get_block(inode, iblock, bh, 0);
1813                 /* unmapped? It's a hole - nothing to do */
1814                 if (!buffer_mapped(bh)) {
1815                         BUFFER_TRACE(bh, "still unmapped");
1816                         goto unlock;
1817                 }
1818         }
1819
1820         /* Ok, it's mapped. Make sure it's up-to-date */
1821         if (PageUptodate(page))
1822                 set_buffer_uptodate(bh);
1823
1824         if (!buffer_uptodate(bh)) {
1825                 err = -EIO;
1826                 ll_rw_block(READ, 1, &bh);
1827                 wait_on_buffer(bh);
1828                 /* Uhhuh. Read error. Complain and punt. */
1829                 if (!buffer_uptodate(bh))
1830                         goto unlock;
1831         }
1832
1833         if (ext3_should_journal_data(inode)) {
1834                 BUFFER_TRACE(bh, "get write access");
1835                 err = ext3_journal_get_write_access(handle, bh);
1836                 if (err)
1837                         goto unlock;
1838         }
1839
1840         kaddr = kmap_atomic(page, KM_USER0);
1841         memset(kaddr + offset, 0, length);
1842         flush_dcache_page(page);
1843         kunmap_atomic(kaddr, KM_USER0);
1844
1845         BUFFER_TRACE(bh, "zeroed end of block");
1846
1847         err = 0;
1848         if (ext3_should_journal_data(inode)) {
1849                 err = ext3_journal_dirty_metadata(handle, bh);
1850         } else {
1851                 if (ext3_should_order_data(inode))
1852                         err = ext3_journal_dirty_data(handle, bh);
1853                 mark_buffer_dirty(bh);
1854         }
1855
1856 unlock:
1857         unlock_page(page);
1858         page_cache_release(page);
1859         return err;
1860 }
1861
1862 /*
1863  * Probably it should be a library function... search for first non-zero word
1864  * or memcmp with zero_page, whatever is better for particular architecture.
1865  * Linus?
1866  */
1867 static inline int all_zeroes(__le32 *p, __le32 *q)
1868 {
1869         while (p < q)
1870                 if (*p++)
1871                         return 0;
1872         return 1;
1873 }
1874
1875 /**
1876  *      ext3_find_shared - find the indirect blocks for partial truncation.
1877  *      @inode:   inode in question
1878  *      @depth:   depth of the affected branch
1879  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1880  *      @chain:   place to store the pointers to partial indirect blocks
1881  *      @top:     place to the (detached) top of branch
1882  *
1883  *      This is a helper function used by ext3_truncate().
1884  *
1885  *      When we do truncate() we may have to clean the ends of several
1886  *      indirect blocks but leave the blocks themselves alive. Block is
1887  *      partially truncated if some data below the new i_size is refered
1888  *      from it (and it is on the path to the first completely truncated
1889  *      data block, indeed).  We have to free the top of that path along
1890  *      with everything to the right of the path. Since no allocation
1891  *      past the truncation point is possible until ext3_truncate()
1892  *      finishes, we may safely do the latter, but top of branch may
1893  *      require special attention - pageout below the truncation point
1894  *      might try to populate it.
1895  *
1896  *      We atomically detach the top of branch from the tree, store the
1897  *      block number of its root in *@top, pointers to buffer_heads of
1898  *      partially truncated blocks - in @chain[].bh and pointers to
1899  *      their last elements that should not be removed - in
1900  *      @chain[].p. Return value is the pointer to last filled element
1901  *      of @chain.
1902  *
1903  *      The work left to caller to do the actual freeing of subtrees:
1904  *              a) free the subtree starting from *@top
1905  *              b) free the subtrees whose roots are stored in
1906  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1907  *              c) free the subtrees growing from the inode past the @chain[0].
1908  *                      (no partially truncated stuff there).  */
1909
1910 static Indirect *ext3_find_shared(struct inode *inode, int depth,
1911                         int offsets[4], Indirect chain[4], __le32 *top)
1912 {
1913         Indirect *partial, *p;
1914         int k, err;
1915
1916         *top = 0;
1917         /* Make k index the deepest non-null offest + 1 */
1918         for (k = depth; k > 1 && !offsets[k-1]; k--)
1919                 ;
1920         partial = ext3_get_branch(inode, k, offsets, chain, &err);
1921         /* Writer: pointers */
1922         if (!partial)
1923                 partial = chain + k-1;
1924         /*
1925          * If the branch acquired continuation since we've looked at it -
1926          * fine, it should all survive and (new) top doesn't belong to us.
1927          */
1928         if (!partial->key && *partial->p)
1929                 /* Writer: end */
1930                 goto no_top;
1931         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1932                 ;
1933         /*
1934          * OK, we've found the last block that must survive. The rest of our
1935          * branch should be detached before unlocking. However, if that rest
1936          * of branch is all ours and does not grow immediately from the inode
1937          * it's easier to cheat and just decrement partial->p.
1938          */
1939         if (p == chain + k - 1 && p > chain) {
1940                 p->p--;
1941         } else {
1942                 *top = *p->p;
1943                 /* Nope, don't do this in ext3.  Must leave the tree intact */
1944 #if 0
1945                 *p->p = 0;
1946 #endif
1947         }
1948         /* Writer: end */
1949
1950         while(partial > p) {
1951                 brelse(partial->bh);
1952                 partial--;
1953         }
1954 no_top:
1955         return partial;
1956 }
1957
1958 /*
1959  * Zero a number of block pointers in either an inode or an indirect block.
1960  * If we restart the transaction we must again get write access to the
1961  * indirect block for further modification.
1962  *
1963  * We release `count' blocks on disk, but (last - first) may be greater
1964  * than `count' because there can be holes in there.
1965  */
1966 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
1967                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
1968                 unsigned long count, __le32 *first, __le32 *last)
1969 {
1970         __le32 *p;
1971         if (try_to_extend_transaction(handle, inode)) {
1972                 if (bh) {
1973                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1974                         ext3_journal_dirty_metadata(handle, bh);
1975                 }
1976                 ext3_mark_inode_dirty(handle, inode);
1977                 ext3_journal_test_restart(handle, inode);
1978                 if (bh) {
1979                         BUFFER_TRACE(bh, "retaking write access");
1980                         ext3_journal_get_write_access(handle, bh);
1981                 }
1982         }
1983
1984         /*
1985          * Any buffers which are on the journal will be in memory. We find
1986          * them on the hash table so journal_revoke() will run journal_forget()
1987          * on them.  We've already detached each block from the file, so
1988          * bforget() in journal_forget() should be safe.
1989          *
1990          * AKPM: turn on bforget in journal_forget()!!!
1991          */
1992         for (p = first; p < last; p++) {
1993                 u32 nr = le32_to_cpu(*p);
1994                 if (nr) {
1995                         struct buffer_head *bh;
1996
1997                         *p = 0;
1998                         bh = sb_find_get_block(inode->i_sb, nr);
1999                         ext3_forget(handle, 0, inode, bh, nr);
2000                 }
2001         }
2002
2003         ext3_free_blocks(handle, inode, block_to_free, count);
2004 }
2005
2006 /**
2007  * ext3_free_data - free a list of data blocks
2008  * @handle:     handle for this transaction
2009  * @inode:      inode we are dealing with
2010  * @this_bh:    indirect buffer_head which contains *@first and *@last
2011  * @first:      array of block numbers
2012  * @last:       points immediately past the end of array
2013  *
2014  * We are freeing all blocks refered from that array (numbers are stored as
2015  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2016  *
2017  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2018  * blocks are contiguous then releasing them at one time will only affect one
2019  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2020  * actually use a lot of journal space.
2021  *
2022  * @this_bh will be %NULL if @first and @last point into the inode's direct
2023  * block pointers.
2024  */
2025 static void ext3_free_data(handle_t *handle, struct inode *inode,
2026                            struct buffer_head *this_bh,
2027                            __le32 *first, __le32 *last)
2028 {
2029         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2030         unsigned long count = 0;            /* Number of blocks in the run */
2031         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2032                                                corresponding to
2033                                                block_to_free */
2034         ext3_fsblk_t nr;                    /* Current block # */
2035         __le32 *p;                          /* Pointer into inode/ind
2036                                                for current block */
2037         int err;
2038
2039         if (this_bh) {                          /* For indirect block */
2040                 BUFFER_TRACE(this_bh, "get_write_access");
2041                 err = ext3_journal_get_write_access(handle, this_bh);
2042                 /* Important: if we can't update the indirect pointers
2043                  * to the blocks, we can't free them. */
2044                 if (err)
2045                         return;
2046         }
2047
2048         for (p = first; p < last; p++) {
2049                 nr = le32_to_cpu(*p);
2050                 if (nr) {
2051                         /* accumulate blocks to free if they're contiguous */
2052                         if (count == 0) {
2053                                 block_to_free = nr;
2054                                 block_to_free_p = p;
2055                                 count = 1;
2056                         } else if (nr == block_to_free + count) {
2057                                 count++;
2058                         } else {
2059                                 ext3_clear_blocks(handle, inode, this_bh,
2060                                                   block_to_free,
2061                                                   count, block_to_free_p, p);
2062                                 block_to_free = nr;
2063                                 block_to_free_p = p;
2064                                 count = 1;
2065                         }
2066                 }
2067         }
2068
2069         if (count > 0)
2070                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2071                                   count, block_to_free_p, p);
2072
2073         if (this_bh) {
2074                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2075                 ext3_journal_dirty_metadata(handle, this_bh);
2076         }
2077 }
2078
2079 /**
2080  *      ext3_free_branches - free an array of branches
2081  *      @handle: JBD handle for this transaction
2082  *      @inode: inode we are dealing with
2083  *      @parent_bh: the buffer_head which contains *@first and *@last
2084  *      @first: array of block numbers
2085  *      @last:  pointer immediately past the end of array
2086  *      @depth: depth of the branches to free
2087  *
2088  *      We are freeing all blocks refered from these branches (numbers are
2089  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2090  *      appropriately.
2091  */
2092 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2093                                struct buffer_head *parent_bh,
2094                                __le32 *first, __le32 *last, int depth)
2095 {
2096         ext3_fsblk_t nr;
2097         __le32 *p;
2098
2099         if (is_handle_aborted(handle))
2100                 return;
2101
2102         if (depth--) {
2103                 struct buffer_head *bh;
2104                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2105                 p = last;
2106                 while (--p >= first) {
2107                         nr = le32_to_cpu(*p);
2108                         if (!nr)
2109                                 continue;               /* A hole */
2110
2111                         /* Go read the buffer for the next level down */
2112                         bh = sb_bread(inode->i_sb, nr);
2113
2114                         /*
2115                          * A read failure? Report error and clear slot
2116                          * (should be rare).
2117                          */
2118                         if (!bh) {
2119                                 ext3_error(inode->i_sb, "ext3_free_branches",
2120                                            "Read failure, inode=%lu, block="E3FSBLK,
2121                                            inode->i_ino, nr);
2122                                 continue;
2123                         }
2124
2125                         /* This zaps the entire block.  Bottom up. */
2126                         BUFFER_TRACE(bh, "free child branches");
2127                         ext3_free_branches(handle, inode, bh,
2128                                            (__le32*)bh->b_data,
2129                                            (__le32*)bh->b_data + addr_per_block,
2130                                            depth);
2131
2132                         /*
2133                          * We've probably journalled the indirect block several
2134                          * times during the truncate.  But it's no longer
2135                          * needed and we now drop it from the transaction via
2136                          * journal_revoke().
2137                          *
2138                          * That's easy if it's exclusively part of this
2139                          * transaction.  But if it's part of the committing
2140                          * transaction then journal_forget() will simply
2141                          * brelse() it.  That means that if the underlying
2142                          * block is reallocated in ext3_get_block(),
2143                          * unmap_underlying_metadata() will find this block
2144                          * and will try to get rid of it.  damn, damn.
2145                          *
2146                          * If this block has already been committed to the
2147                          * journal, a revoke record will be written.  And
2148                          * revoke records must be emitted *before* clearing
2149                          * this block's bit in the bitmaps.
2150                          */
2151                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2152
2153                         /*
2154                          * Everything below this this pointer has been
2155                          * released.  Now let this top-of-subtree go.
2156                          *
2157                          * We want the freeing of this indirect block to be
2158                          * atomic in the journal with the updating of the
2159                          * bitmap block which owns it.  So make some room in
2160                          * the journal.
2161                          *
2162                          * We zero the parent pointer *after* freeing its
2163                          * pointee in the bitmaps, so if extend_transaction()
2164                          * for some reason fails to put the bitmap changes and
2165                          * the release into the same transaction, recovery
2166                          * will merely complain about releasing a free block,
2167                          * rather than leaking blocks.
2168                          */
2169                         if (is_handle_aborted(handle))
2170                                 return;
2171                         if (try_to_extend_transaction(handle, inode)) {
2172                                 ext3_mark_inode_dirty(handle, inode);
2173                                 ext3_journal_test_restart(handle, inode);
2174                         }
2175
2176                         ext3_free_blocks(handle, inode, nr, 1);
2177
2178                         if (parent_bh) {
2179                                 /*
2180                                  * The block which we have just freed is
2181                                  * pointed to by an indirect block: journal it
2182                                  */
2183                                 BUFFER_TRACE(parent_bh, "get_write_access");
2184                                 if (!ext3_journal_get_write_access(handle,
2185                                                                    parent_bh)){
2186                                         *p = 0;
2187                                         BUFFER_TRACE(parent_bh,
2188                                         "call ext3_journal_dirty_metadata");
2189                                         ext3_journal_dirty_metadata(handle,
2190                                                                     parent_bh);
2191                                 }
2192                         }
2193                 }
2194         } else {
2195                 /* We have reached the bottom of the tree. */
2196                 BUFFER_TRACE(parent_bh, "free data blocks");
2197                 ext3_free_data(handle, inode, parent_bh, first, last);
2198         }
2199 }
2200
2201 /*
2202  * ext3_truncate()
2203  *
2204  * We block out ext3_get_block() block instantiations across the entire
2205  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2206  * simultaneously on behalf of the same inode.
2207  *
2208  * As we work through the truncate and commmit bits of it to the journal there
2209  * is one core, guiding principle: the file's tree must always be consistent on
2210  * disk.  We must be able to restart the truncate after a crash.
2211  *
2212  * The file's tree may be transiently inconsistent in memory (although it
2213  * probably isn't), but whenever we close off and commit a journal transaction,
2214  * the contents of (the filesystem + the journal) must be consistent and
2215  * restartable.  It's pretty simple, really: bottom up, right to left (although
2216  * left-to-right works OK too).
2217  *
2218  * Note that at recovery time, journal replay occurs *before* the restart of
2219  * truncate against the orphan inode list.
2220  *
2221  * The committed inode has the new, desired i_size (which is the same as
2222  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2223  * that this inode's truncate did not complete and it will again call
2224  * ext3_truncate() to have another go.  So there will be instantiated blocks
2225  * to the right of the truncation point in a crashed ext3 filesystem.  But
2226  * that's fine - as long as they are linked from the inode, the post-crash
2227  * ext3_truncate() run will find them and release them.
2228  */
2229 void ext3_truncate(struct inode *inode)
2230 {
2231         handle_t *handle;
2232         struct ext3_inode_info *ei = EXT3_I(inode);
2233         __le32 *i_data = ei->i_data;
2234         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2235         struct address_space *mapping = inode->i_mapping;
2236         int offsets[4];
2237         Indirect chain[4];
2238         Indirect *partial;
2239         __le32 nr = 0;
2240         int n;
2241         long last_block;
2242         unsigned blocksize = inode->i_sb->s_blocksize;
2243         struct page *page;
2244
2245         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2246             S_ISLNK(inode->i_mode)))
2247                 return;
2248         if (ext3_inode_is_fast_symlink(inode))
2249                 return;
2250         if (IS_APPEND(inode) || IS_IXORUNLINK(inode))
2251                 return;
2252
2253         /*
2254          * We have to lock the EOF page here, because lock_page() nests
2255          * outside journal_start().
2256          */
2257         if ((inode->i_size & (blocksize - 1)) == 0) {
2258                 /* Block boundary? Nothing to do */
2259                 page = NULL;
2260         } else {
2261                 page = grab_cache_page(mapping,
2262                                 inode->i_size >> PAGE_CACHE_SHIFT);
2263                 if (!page)
2264                         return;
2265         }
2266
2267         handle = start_transaction(inode);
2268         if (IS_ERR(handle)) {
2269                 if (page) {
2270                         clear_highpage(page);
2271                         flush_dcache_page(page);
2272                         unlock_page(page);
2273                         page_cache_release(page);
2274                 }
2275                 return;         /* AKPM: return what? */
2276         }
2277
2278         last_block = (inode->i_size + blocksize-1)
2279                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2280
2281         if (page)
2282                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2283
2284         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2285         if (n == 0)
2286                 goto out_stop;  /* error */
2287
2288         /*
2289          * OK.  This truncate is going to happen.  We add the inode to the
2290          * orphan list, so that if this truncate spans multiple transactions,
2291          * and we crash, we will resume the truncate when the filesystem
2292          * recovers.  It also marks the inode dirty, to catch the new size.
2293          *
2294          * Implication: the file must always be in a sane, consistent
2295          * truncatable state while each transaction commits.
2296          */
2297         if (ext3_orphan_add(handle, inode))
2298                 goto out_stop;
2299
2300         /*
2301          * The orphan list entry will now protect us from any crash which
2302          * occurs before the truncate completes, so it is now safe to propagate
2303          * the new, shorter inode size (held for now in i_size) into the
2304          * on-disk inode. We do this via i_disksize, which is the value which
2305          * ext3 *really* writes onto the disk inode.
2306          */
2307         ei->i_disksize = inode->i_size;
2308
2309         /*
2310          * From here we block out all ext3_get_block() callers who want to
2311          * modify the block allocation tree.
2312          */
2313         mutex_lock(&ei->truncate_mutex);
2314
2315         if (n == 1) {           /* direct blocks */
2316                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2317                                i_data + EXT3_NDIR_BLOCKS);
2318                 goto do_indirects;
2319         }
2320
2321         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2322         /* Kill the top of shared branch (not detached) */
2323         if (nr) {
2324                 if (partial == chain) {
2325                         /* Shared branch grows from the inode */
2326                         ext3_free_branches(handle, inode, NULL,
2327                                            &nr, &nr+1, (chain+n-1) - partial);
2328                         *partial->p = 0;
2329                         /*
2330                          * We mark the inode dirty prior to restart,
2331                          * and prior to stop.  No need for it here.
2332                          */
2333                 } else {
2334                         /* Shared branch grows from an indirect block */
2335                         BUFFER_TRACE(partial->bh, "get_write_access");
2336                         ext3_free_branches(handle, inode, partial->bh,
2337                                         partial->p,
2338                                         partial->p+1, (chain+n-1) - partial);
2339                 }
2340         }
2341         /* Clear the ends of indirect blocks on the shared branch */
2342         while (partial > chain) {
2343                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2344                                    (__le32*)partial->bh->b_data+addr_per_block,
2345                                    (chain+n-1) - partial);
2346                 BUFFER_TRACE(partial->bh, "call brelse");
2347                 brelse (partial->bh);
2348                 partial--;
2349         }
2350 do_indirects:
2351         /* Kill the remaining (whole) subtrees */
2352         switch (offsets[0]) {
2353         default:
2354                 nr = i_data[EXT3_IND_BLOCK];
2355                 if (nr) {
2356                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2357                         i_data[EXT3_IND_BLOCK] = 0;
2358                 }
2359         case EXT3_IND_BLOCK:
2360                 nr = i_data[EXT3_DIND_BLOCK];
2361                 if (nr) {
2362                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2363                         i_data[EXT3_DIND_BLOCK] = 0;
2364                 }
2365         case EXT3_DIND_BLOCK:
2366                 nr = i_data[EXT3_TIND_BLOCK];
2367                 if (nr) {
2368                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2369                         i_data[EXT3_TIND_BLOCK] = 0;
2370                 }
2371         case EXT3_TIND_BLOCK:
2372                 ;
2373         }
2374
2375         ext3_discard_reservation(inode);
2376
2377         mutex_unlock(&ei->truncate_mutex);
2378         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2379         ext3_mark_inode_dirty(handle, inode);
2380
2381         /*
2382          * In a multi-transaction truncate, we only make the final transaction
2383          * synchronous
2384          */
2385         if (IS_SYNC(inode))
2386                 handle->h_sync = 1;
2387 out_stop:
2388         /*
2389          * If this was a simple ftruncate(), and the file will remain alive
2390          * then we need to clear up the orphan record which we created above.
2391          * However, if this was a real unlink then we were called by
2392          * ext3_delete_inode(), and we allow that function to clean up the
2393          * orphan info for us.
2394          */
2395         if (inode->i_nlink)
2396                 ext3_orphan_del(handle, inode);
2397
2398         ext3_journal_stop(handle);
2399 }
2400
2401 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2402                 unsigned long ino, struct ext3_iloc *iloc)
2403 {
2404         unsigned long desc, group_desc, block_group;
2405         unsigned long offset;
2406         ext3_fsblk_t block;
2407         struct buffer_head *bh;
2408         struct ext3_group_desc * gdp;
2409
2410         if (!ext3_valid_inum(sb, ino)) {
2411                 /*
2412                  * This error is already checked for in namei.c unless we are
2413                  * looking at an NFS filehandle, in which case no error
2414                  * report is needed
2415                  */
2416                 return 0;
2417         }
2418
2419         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2420         if (block_group >= EXT3_SB(sb)->s_groups_count) {
2421                 ext3_error(sb,"ext3_get_inode_block","group >= groups count");
2422                 return 0;
2423         }
2424         smp_rmb();
2425         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2426         desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2427         bh = EXT3_SB(sb)->s_group_desc[group_desc];
2428         if (!bh) {
2429                 ext3_error (sb, "ext3_get_inode_block",
2430                             "Descriptor not loaded");
2431                 return 0;
2432         }
2433
2434         gdp = (struct ext3_group_desc *)bh->b_data;
2435         /*
2436          * Figure out the offset within the block group inode table
2437          */
2438         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2439                 EXT3_INODE_SIZE(sb);
2440         block = le32_to_cpu(gdp[desc].bg_inode_table) +
2441                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2442
2443         iloc->block_group = block_group;
2444         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2445         return block;
2446 }
2447
2448 /*
2449  * ext3_get_inode_loc returns with an extra refcount against the inode's
2450  * underlying buffer_head on success. If 'in_mem' is true, we have all
2451  * data in memory that is needed to recreate the on-disk version of this
2452  * inode.
2453  */
2454 static int __ext3_get_inode_loc(struct inode *inode,
2455                                 struct ext3_iloc *iloc, int in_mem)
2456 {
2457         ext3_fsblk_t block;
2458         struct buffer_head *bh;
2459
2460         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2461         if (!block)
2462                 return -EIO;
2463
2464         bh = sb_getblk(inode->i_sb, block);
2465         if (!bh) {
2466                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2467                                 "unable to read inode block - "
2468                                 "inode=%lu, block="E3FSBLK,
2469                                  inode->i_ino, block);
2470                 return -EIO;
2471         }
2472         if (!buffer_uptodate(bh)) {
2473                 lock_buffer(bh);
2474                 if (buffer_uptodate(bh)) {
2475                         /* someone brought it uptodate while we waited */
2476                         unlock_buffer(bh);
2477                         goto has_buffer;
2478                 }
2479
2480                 /*
2481                  * If we have all information of the inode in memory and this
2482                  * is the only valid inode in the block, we need not read the
2483                  * block.
2484                  */
2485                 if (in_mem) {
2486                         struct buffer_head *bitmap_bh;
2487                         struct ext3_group_desc *desc;
2488                         int inodes_per_buffer;
2489                         int inode_offset, i;
2490                         int block_group;
2491                         int start;
2492
2493                         block_group = (inode->i_ino - 1) /
2494                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2495                         inodes_per_buffer = bh->b_size /
2496                                 EXT3_INODE_SIZE(inode->i_sb);
2497                         inode_offset = ((inode->i_ino - 1) %
2498                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2499                         start = inode_offset & ~(inodes_per_buffer - 1);
2500
2501                         /* Is the inode bitmap in cache? */
2502                         desc = ext3_get_group_desc(inode->i_sb,
2503                                                 block_group, NULL);
2504                         if (!desc)
2505                                 goto make_io;
2506
2507                         bitmap_bh = sb_getblk(inode->i_sb,
2508                                         le32_to_cpu(desc->bg_inode_bitmap));
2509                         if (!bitmap_bh)
2510                                 goto make_io;
2511
2512                         /*
2513                          * If the inode bitmap isn't in cache then the
2514                          * optimisation may end up performing two reads instead
2515                          * of one, so skip it.
2516                          */
2517                         if (!buffer_uptodate(bitmap_bh)) {
2518                                 brelse(bitmap_bh);
2519                                 goto make_io;
2520                         }
2521                         for (i = start; i < start + inodes_per_buffer; i++) {
2522                                 if (i == inode_offset)
2523                                         continue;
2524                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2525                                         break;
2526                         }
2527                         brelse(bitmap_bh);
2528                         if (i == start + inodes_per_buffer) {
2529                                 /* all other inodes are free, so skip I/O */
2530                                 memset(bh->b_data, 0, bh->b_size);
2531                                 set_buffer_uptodate(bh);
2532                                 unlock_buffer(bh);
2533                                 goto has_buffer;
2534                         }
2535                 }
2536
2537 make_io:
2538                 /*
2539                  * There are other valid inodes in the buffer, this inode
2540                  * has in-inode xattrs, or we don't have this inode in memory.
2541                  * Read the block from disk.
2542                  */
2543                 get_bh(bh);
2544                 bh->b_end_io = end_buffer_read_sync;
2545                 submit_bh(READ_META, bh);
2546                 wait_on_buffer(bh);
2547                 if (!buffer_uptodate(bh)) {
2548                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2549                                         "unable to read inode block - "
2550                                         "inode=%lu, block="E3FSBLK,
2551                                         inode->i_ino, block);
2552                         brelse(bh);
2553                         return -EIO;
2554                 }
2555         }
2556 has_buffer:
2557         iloc->bh = bh;
2558         return 0;
2559 }
2560
2561 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2562 {
2563         /* We have all inode data except xattrs in memory here. */
2564         return __ext3_get_inode_loc(inode, iloc,
2565                 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2566 }
2567
2568 void ext3_set_inode_flags(struct inode *inode)
2569 {
2570         unsigned int flags = EXT3_I(inode)->i_flags;
2571
2572         inode->i_flags &= ~(S_IMMUTABLE | S_IUNLINK | S_BARRIER |
2573                 S_SYNC | S_APPEND | S_NOATIME | S_DIRSYNC);
2574
2575         if (flags & EXT3_IMMUTABLE_FL)
2576                 inode->i_flags |= S_IMMUTABLE;
2577         if (flags & EXT3_IUNLINK_FL)
2578                 inode->i_flags |= S_IUNLINK;
2579         if (flags & EXT3_BARRIER_FL)
2580                 inode->i_flags |= S_BARRIER;
2581
2582         if (flags & EXT3_SYNC_FL)
2583                 inode->i_flags |= S_SYNC;
2584         if (flags & EXT3_APPEND_FL)
2585                 inode->i_flags |= S_APPEND;
2586         if (flags & EXT3_NOATIME_FL)
2587                 inode->i_flags |= S_NOATIME;
2588         if (flags & EXT3_DIRSYNC_FL)
2589                 inode->i_flags |= S_DIRSYNC;
2590 }
2591
2592 int ext3_sync_flags(struct inode *inode)
2593 {
2594         unsigned int oldflags, newflags;
2595         int err = 0;
2596
2597         oldflags = EXT3_I(inode)->i_flags;
2598         newflags = oldflags & ~(EXT3_IMMUTABLE_FL |
2599                 EXT3_IUNLINK_FL | EXT3_BARRIER_FL);
2600
2601         if (IS_IMMUTABLE(inode))
2602                 newflags |= EXT3_IMMUTABLE_FL;
2603         if (IS_IUNLINK(inode))
2604                 newflags |= EXT3_IUNLINK_FL;
2605         if (IS_BARRIER(inode))
2606                 newflags |= EXT3_BARRIER_FL;
2607
2608         if (oldflags ^ newflags) {
2609                 handle_t *handle;
2610                 struct ext3_iloc iloc;
2611
2612                 handle = ext3_journal_start(inode, 1);
2613                 if (IS_ERR(handle))
2614                         return PTR_ERR(handle);
2615                 if (IS_SYNC(inode))
2616                         handle->h_sync = 1;
2617                 err = ext3_reserve_inode_write(handle, inode, &iloc);
2618                 if (err)
2619                         goto flags_err;
2620
2621                 EXT3_I(inode)->i_flags = newflags;
2622                 inode->i_ctime = CURRENT_TIME;
2623
2624                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2625         flags_err:
2626                 ext3_journal_stop(handle);
2627         }
2628         return err;
2629 }
2630
2631 void ext3_read_inode(struct inode * inode)
2632 {
2633         struct ext3_iloc iloc;
2634         struct ext3_inode *raw_inode;
2635         struct ext3_inode_info *ei = EXT3_I(inode);
2636         struct buffer_head *bh;
2637         int block;
2638         uid_t uid;
2639         gid_t gid;
2640
2641 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2642         ei->i_acl = EXT3_ACL_NOT_CACHED;
2643         ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2644 #endif
2645         ei->i_block_alloc_info = NULL;
2646
2647         if (__ext3_get_inode_loc(inode, &iloc, 0))
2648                 goto bad_inode;
2649         bh = iloc.bh;
2650         raw_inode = ext3_raw_inode(&iloc);
2651         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2652         uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2653         gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2654         if(!(test_opt (inode->i_sb, NO_UID32))) {
2655                 uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2656                 gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2657         }
2658         inode->i_uid = INOTAG_UID(DX_TAG(inode), uid, gid);
2659         inode->i_gid = INOTAG_GID(DX_TAG(inode), uid, gid);
2660         inode->i_tag = INOTAG_TAG(DX_TAG(inode), uid, gid,
2661                 le16_to_cpu(raw_inode->i_raw_tag));
2662
2663         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2664         inode->i_size = le32_to_cpu(raw_inode->i_size);
2665         inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2666         inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2667         inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2668         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2669
2670         ei->i_state = 0;
2671         ei->i_dir_start_lookup = 0;
2672         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2673         /* We now have enough fields to check if the inode was active or not.
2674          * This is needed because nfsd might try to access dead inodes
2675          * the test is that same one that e2fsck uses
2676          * NeilBrown 1999oct15
2677          */
2678         if (inode->i_nlink == 0) {
2679                 if (inode->i_mode == 0 ||
2680                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2681                         /* this inode is deleted */
2682                         brelse (bh);
2683                         goto bad_inode;
2684                 }
2685                 /* The only unlinked inodes we let through here have
2686                  * valid i_mode and are being read by the orphan
2687                  * recovery code: that's fine, we're about to complete
2688                  * the process of deleting those. */
2689         }
2690         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2691         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2692 #ifdef EXT3_FRAGMENTS
2693         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2694         ei->i_frag_no = raw_inode->i_frag;
2695         ei->i_frag_size = raw_inode->i_fsize;
2696 #endif
2697         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2698         if (!S_ISREG(inode->i_mode)) {
2699                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2700         } else {
2701                 inode->i_size |=
2702                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2703         }
2704         ei->i_disksize = inode->i_size;
2705         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2706         ei->i_block_group = iloc.block_group;
2707         /*
2708          * NOTE! The in-memory inode i_data array is in little-endian order
2709          * even on big-endian machines: we do NOT byteswap the block numbers!
2710          */
2711         for (block = 0; block < EXT3_N_BLOCKS; block++)
2712                 ei->i_data[block] = raw_inode->i_block[block];
2713         INIT_LIST_HEAD(&ei->i_orphan);
2714
2715         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2716             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2717                 /*
2718                  * When mke2fs creates big inodes it does not zero out
2719                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2720                  * so ignore those first few inodes.
2721                  */
2722                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2723                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2724                     EXT3_INODE_SIZE(inode->i_sb))
2725                         goto bad_inode;
2726                 if (ei->i_extra_isize == 0) {
2727                         /* The extra space is currently unused. Use it. */
2728                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2729                                             EXT3_GOOD_OLD_INODE_SIZE;
2730                 } else {
2731                         __le32 *magic = (void *)raw_inode +
2732                                         EXT3_GOOD_OLD_INODE_SIZE +
2733                                         ei->i_extra_isize;
2734                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2735                                  ei->i_state |= EXT3_STATE_XATTR;
2736                 }
2737         } else
2738                 ei->i_extra_isize = 0;
2739
2740         if (S_ISREG(inode->i_mode)) {
2741                 inode->i_op = &ext3_file_inode_operations;
2742                 inode->i_fop = &ext3_file_operations;
2743                 ext3_set_aops(inode);
2744         } else if (S_ISDIR(inode->i_mode)) {
2745                 inode->i_op = &ext3_dir_inode_operations;
2746                 inode->i_fop = &ext3_dir_operations;
2747         } else if (S_ISLNK(inode->i_mode)) {
2748                 if (ext3_inode_is_fast_symlink(inode))
2749                         inode->i_op = &ext3_fast_symlink_inode_operations;
2750                 else {
2751                         inode->i_op = &ext3_symlink_inode_operations;
2752                         ext3_set_aops(inode);
2753                 }
2754         } else {
2755                 inode->i_op = &ext3_special_inode_operations;
2756                 if (raw_inode->i_block[0])
2757                         init_special_inode(inode, inode->i_mode,
2758                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2759                 else
2760                         init_special_inode(inode, inode->i_mode,
2761                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2762         }
2763         brelse (iloc.bh);
2764         ext3_set_inode_flags(inode);
2765         return;
2766
2767 bad_inode:
2768         make_bad_inode(inode);
2769         return;
2770 }
2771
2772 /*
2773  * Post the struct inode info into an on-disk inode location in the
2774  * buffer-cache.  This gobbles the caller's reference to the
2775  * buffer_head in the inode location struct.
2776  *
2777  * The caller must have write access to iloc->bh.
2778  */
2779 static int ext3_do_update_inode(handle_t *handle,
2780                                 struct inode *inode,
2781                                 struct ext3_iloc *iloc)
2782 {
2783         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2784         struct ext3_inode_info *ei = EXT3_I(inode);
2785         struct buffer_head *bh = iloc->bh;
2786         uid_t uid = TAGINO_UID(DX_TAG(inode), inode->i_uid, inode->i_tag);
2787         gid_t gid = TAGINO_GID(DX_TAG(inode), inode->i_gid, inode->i_tag);
2788         int err = 0, rc, block;
2789
2790         /* For fields not not tracking in the in-memory inode,
2791          * initialise them to zero for new inodes. */
2792         if (ei->i_state & EXT3_STATE_NEW)
2793                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2794
2795         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2796         if(!(test_opt(inode->i_sb, NO_UID32))) {
2797                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
2798                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
2799 /*
2800  * Fix up interoperability with old kernels. Otherwise, old inodes get
2801  * re-used with the upper 16 bits of the uid/gid intact
2802  */
2803                 if(!ei->i_dtime) {
2804                         raw_inode->i_uid_high =
2805                                 cpu_to_le16(high_16_bits(uid));
2806                         raw_inode->i_gid_high =
2807                                 cpu_to_le16(high_16_bits(gid));
2808                 } else {
2809                         raw_inode->i_uid_high = 0;
2810                         raw_inode->i_gid_high = 0;
2811                 }
2812         } else {
2813                 raw_inode->i_uid_low =
2814                         cpu_to_le16(fs_high2lowuid(uid));
2815                 raw_inode->i_gid_low =
2816                         cpu_to_le16(fs_high2lowgid(gid));
2817                 raw_inode->i_uid_high = 0;
2818                 raw_inode->i_gid_high = 0;
2819         }
2820 #ifdef CONFIG_TAGGING_INTERN
2821         raw_inode->i_raw_tag = cpu_to_le16(inode->i_tag);
2822 #endif
2823         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2824         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2825         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2826         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2827         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2828         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2829         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2830         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2831 #ifdef EXT3_FRAGMENTS
2832         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2833         raw_inode->i_frag = ei->i_frag_no;
2834         raw_inode->i_fsize = ei->i_frag_size;
2835 #endif
2836         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2837         if (!S_ISREG(inode->i_mode)) {
2838                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2839         } else {
2840                 raw_inode->i_size_high =
2841                         cpu_to_le32(ei->i_disksize >> 32);
2842                 if (ei->i_disksize > 0x7fffffffULL) {
2843                         struct super_block *sb = inode->i_sb;
2844                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2845                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2846                             EXT3_SB(sb)->s_es->s_rev_level ==
2847                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2848                                /* If this is the first large file
2849                                 * created, add a flag to the superblock.
2850                                 */
2851                                 err = ext3_journal_get_write_access(handle,
2852                                                 EXT3_SB(sb)->s_sbh);
2853                                 if (err)
2854                                         goto out_brelse;
2855                                 ext3_update_dynamic_rev(sb);
2856                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
2857                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2858                                 sb->s_dirt = 1;
2859                                 handle->h_sync = 1;
2860                                 err = ext3_journal_dirty_metadata(handle,
2861                                                 EXT3_SB(sb)->s_sbh);
2862                         }
2863                 }
2864         }
2865         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2866         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2867                 if (old_valid_dev(inode->i_rdev)) {
2868                         raw_inode->i_block[0] =
2869                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2870                         raw_inode->i_block[1] = 0;
2871                 } else {
2872                         raw_inode->i_block[0] = 0;
2873                         raw_inode->i_block[1] =
2874                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2875                         raw_inode->i_block[2] = 0;
2876                 }
2877         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2878                 raw_inode->i_block[block] = ei->i_data[block];
2879
2880         if (ei->i_extra_isize)
2881                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2882
2883         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2884         rc = ext3_journal_dirty_metadata(handle, bh);
2885         if (!err)
2886                 err = rc;
2887         ei->i_state &= ~EXT3_STATE_NEW;
2888
2889 out_brelse:
2890         brelse (bh);
2891         ext3_std_error(inode->i_sb, err);
2892         return err;
2893 }
2894
2895 /*
2896  * ext3_write_inode()
2897  *
2898  * We are called from a few places:
2899  *
2900  * - Within generic_file_write() for O_SYNC files.
2901  *   Here, there will be no transaction running. We wait for any running
2902  *   trasnaction to commit.
2903  *
2904  * - Within sys_sync(), kupdate and such.
2905  *   We wait on commit, if tol to.
2906  *
2907  * - Within prune_icache() (PF_MEMALLOC == true)
2908  *   Here we simply return.  We can't afford to block kswapd on the
2909  *   journal commit.
2910  *
2911  * In all cases it is actually safe for us to return without doing anything,
2912  * because the inode has been copied into a raw inode buffer in
2913  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2914  * knfsd.
2915  *
2916  * Note that we are absolutely dependent upon all inode dirtiers doing the
2917  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2918  * which we are interested.
2919  *
2920  * It would be a bug for them to not do this.  The code:
2921  *
2922  *      mark_inode_dirty(inode)
2923  *      stuff();
2924  *      inode->i_size = expr;
2925  *
2926  * is in error because a kswapd-driven write_inode() could occur while
2927  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2928  * will no longer be on the superblock's dirty inode list.
2929  */
2930 int ext3_write_inode(struct inode *inode, int wait)
2931 {
2932         if (current->flags & PF_MEMALLOC)
2933                 return 0;
2934
2935         if (ext3_journal_current_handle()) {
2936                 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2937                 dump_stack();
2938                 return -EIO;
2939         }
2940
2941         if (!wait)
2942                 return 0;
2943
2944         return ext3_force_commit(inode->i_sb);
2945 }
2946
2947 /*
2948  * ext3_setattr()
2949  *
2950  * Called from notify_change.
2951  *
2952  * We want to trap VFS attempts to truncate the file as soon as
2953  * possible.  In particular, we want to make sure that when the VFS
2954  * shrinks i_size, we put the inode on the orphan list and modify
2955  * i_disksize immediately, so that during the subsequent flushing of
2956  * dirty pages and freeing of disk blocks, we can guarantee that any
2957  * commit will leave the blocks being flushed in an unused state on
2958  * disk.  (On recovery, the inode will get truncated and the blocks will
2959  * be freed, so we have a strong guarantee that no future commit will
2960  * leave these blocks visible to the user.)
2961  *
2962  * Called with inode->sem down.
2963  */
2964 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2965 {
2966         struct inode *inode = dentry->d_inode;
2967         int error, rc = 0;
2968         const unsigned int ia_valid = attr->ia_valid;
2969
2970         error = inode_change_ok(inode, attr);
2971         if (error)
2972                 return error;
2973
2974         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2975                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid) ||
2976                 (ia_valid & ATTR_TAG && attr->ia_tag != inode->i_tag)) {
2977                 handle_t *handle;
2978
2979                 /* (user+group)*(old+new) structure, inode write (sb,
2980                  * inode block, ? - but truncate inode update has it) */
2981                 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
2982                                         EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
2983                 if (IS_ERR(handle)) {
2984                         error = PTR_ERR(handle);
2985                         goto err_out;
2986                 }
2987                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2988                 if (error) {
2989                         ext3_journal_stop(handle);
2990                         return error;
2991                 }
2992                 /* Update corresponding info in inode so that everything is in
2993                  * one transaction */
2994                 if (attr->ia_valid & ATTR_UID)
2995                         inode->i_uid = attr->ia_uid;
2996                 if (attr->ia_valid & ATTR_GID)
2997                         inode->i_gid = attr->ia_gid;
2998                 if ((attr->ia_valid & ATTR_TAG) && IS_TAGGED(inode))
2999                         inode->i_tag = attr->ia_tag;
3000                 error = ext3_mark_inode_dirty(handle, inode);
3001                 ext3_journal_stop(handle);
3002         }
3003
3004         if (S_ISREG(inode->i_mode) &&
3005             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3006                 handle_t *handle;
3007
3008                 handle = ext3_journal_start(inode, 3);
3009                 if (IS_ERR(handle)) {
3010                         error = PTR_ERR(handle);
3011                         goto err_out;
3012                 }
3013
3014                 error = ext3_orphan_add(handle, inode);
3015                 EXT3_I(inode)->i_disksize = attr->ia_size;
3016                 rc = ext3_mark_inode_dirty(handle, inode);
3017                 if (!error)
3018                         error = rc;
3019                 ext3_journal_stop(handle);
3020         }
3021
3022         rc = inode_setattr(inode, attr);
3023
3024         /* If inode_setattr's call to ext3_truncate failed to get a
3025          * transaction handle at all, we need to clean up the in-core
3026          * orphan list manually. */
3027         if (inode->i_nlink)
3028                 ext3_orphan_del(NULL, inode);
3029
3030         if (!rc && (ia_valid & ATTR_MODE))
3031                 rc = ext3_acl_chmod(inode);
3032
3033 err_out:
3034         ext3_std_error(inode->i_sb, error);
3035         if (!error)
3036                 error = rc;
3037         return error;
3038 }
3039
3040
3041 /*
3042  * How many blocks doth make a writepage()?
3043  *
3044  * With N blocks per page, it may be:
3045  * N data blocks
3046  * 2 indirect block
3047  * 2 dindirect
3048  * 1 tindirect
3049  * N+5 bitmap blocks (from the above)
3050  * N+5 group descriptor summary blocks
3051  * 1 inode block
3052  * 1 superblock.
3053  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3054  *
3055  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3056  *
3057  * With ordered or writeback data it's the same, less the N data blocks.
3058  *
3059  * If the inode's direct blocks can hold an integral number of pages then a
3060  * page cannot straddle two indirect blocks, and we can only touch one indirect
3061  * and dindirect block, and the "5" above becomes "3".
3062  *
3063  * This still overestimates under most circumstances.  If we were to pass the
3064  * start and end offsets in here as well we could do block_to_path() on each
3065  * block and work out the exact number of indirects which are touched.  Pah.
3066  */
3067
3068 static int ext3_writepage_trans_blocks(struct inode *inode)
3069 {
3070         int bpp = ext3_journal_blocks_per_page(inode);
3071         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3072         int ret;
3073
3074         if (ext3_should_journal_data(inode))
3075                 ret = 3 * (bpp + indirects) + 2;
3076         else
3077                 ret = 2 * (bpp + indirects) + 2;
3078
3079 #ifdef CONFIG_QUOTA
3080         /* We know that structure was already allocated during DQUOT_INIT so
3081          * we will be updating only the data blocks + inodes */
3082         ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3083 #endif
3084
3085         return ret;
3086 }
3087
3088 /*
3089  * The caller must have previously called ext3_reserve_inode_write().
3090  * Give this, we know that the caller already has write access to iloc->bh.
3091  */
3092 int ext3_mark_iloc_dirty(handle_t *handle,
3093                 struct inode *inode, struct ext3_iloc *iloc)
3094 {
3095         int err = 0;
3096
3097         /* the do_update_inode consumes one bh->b_count */
3098         get_bh(iloc->bh);
3099
3100         /* ext3_do_update_inode() does journal_dirty_metadata */
3101         err = ext3_do_update_inode(handle, inode, iloc);
3102         put_bh(iloc->bh);
3103         return err;
3104 }
3105
3106 /*
3107  * On success, We end up with an outstanding reference count against
3108  * iloc->bh.  This _must_ be cleaned up later.
3109  */
3110
3111 int
3112 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3113                          struct ext3_iloc *iloc)
3114 {
3115         int err = 0;
3116         if (handle) {
3117                 err = ext3_get_inode_loc(inode, iloc);
3118                 if (!err) {
3119                         BUFFER_TRACE(iloc->bh, "get_write_access");
3120                         err = ext3_journal_get_write_access(handle, iloc->bh);
3121                         if (err) {
3122                                 brelse(iloc->bh);
3123                                 iloc->bh = NULL;
3124                         }
3125                 }
3126         }
3127         ext3_std_error(inode->i_sb, err);
3128         return err;
3129 }
3130
3131 /*
3132  * What we do here is to mark the in-core inode as clean with respect to inode
3133  * dirtiness (it may still be data-dirty).
3134  * This means that the in-core inode may be reaped by prune_icache
3135  * without having to perform any I/O.  This is a very good thing,
3136  * because *any* task may call prune_icache - even ones which
3137  * have a transaction open against a different journal.
3138  *
3139  * Is this cheating?  Not really.  Sure, we haven't written the
3140  * inode out, but prune_icache isn't a user-visible syncing function.
3141  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3142  * we start and wait on commits.
3143  *
3144  * Is this efficient/effective?  Well, we're being nice to the system
3145  * by cleaning up our inodes proactively so they can be reaped
3146  * without I/O.  But we are potentially leaving up to five seconds'
3147  * worth of inodes floating about which prune_icache wants us to
3148  * write out.  One way to fix that would be to get prune_icache()
3149  * to do a write_super() to free up some memory.  It has the desired
3150  * effect.
3151  */
3152 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3153 {
3154         struct ext3_iloc iloc;
3155         int err;
3156
3157         might_sleep();
3158         err = ext3_reserve_inode_write(handle, inode, &iloc);
3159         if (!err)
3160                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3161         return err;
3162 }
3163
3164 /*
3165  * ext3_dirty_inode() is called from __mark_inode_dirty()
3166  *
3167  * We're really interested in the case where a file is being extended.
3168  * i_size has been changed by generic_commit_write() and we thus need
3169  * to include the updated inode in the current transaction.
3170  *
3171  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3172  * are allocated to the file.
3173  *
3174  * If the inode is marked synchronous, we don't honour that here - doing
3175  * so would cause a commit on atime updates, which we don't bother doing.
3176  * We handle synchronous inodes at the highest possible level.
3177  */
3178 void ext3_dirty_inode(struct inode *inode)
3179 {
3180         handle_t *current_handle = ext3_journal_current_handle();
3181         handle_t *handle;
3182
3183         handle = ext3_journal_start(inode, 2);
3184         if (IS_ERR(handle))
3185                 goto out;
3186         if (current_handle &&
3187                 current_handle->h_transaction != handle->h_transaction) {
3188                 /* This task has a transaction open against a different fs */
3189                 printk(KERN_EMERG "%s: transactions do not match!\n",
3190                        __FUNCTION__);
3191         } else {
3192                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3193                                 current_handle);
3194                 ext3_mark_inode_dirty(handle, inode);
3195         }
3196         ext3_journal_stop(handle);
3197 out:
3198         return;
3199 }
3200
3201 #if 0
3202 /*
3203  * Bind an inode's backing buffer_head into this transaction, to prevent
3204  * it from being flushed to disk early.  Unlike
3205  * ext3_reserve_inode_write, this leaves behind no bh reference and
3206  * returns no iloc structure, so the caller needs to repeat the iloc
3207  * lookup to mark the inode dirty later.
3208  */
3209 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3210 {
3211         struct ext3_iloc iloc;
3212
3213         int err = 0;
3214         if (handle) {
3215                 err = ext3_get_inode_loc(inode, &iloc);
3216                 if (!err) {
3217                         BUFFER_TRACE(iloc.bh, "get_write_access");
3218                         err = journal_get_write_access(handle, iloc.bh);
3219                         if (!err)
3220                                 err = ext3_journal_dirty_metadata(handle,
3221                                                                   iloc.bh);
3222                         brelse(iloc.bh);
3223                 }
3224         }
3225         ext3_std_error(inode->i_sb, err);
3226         return err;
3227 }
3228 #endif
3229
3230 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3231 {
3232         journal_t *journal;
3233         handle_t *handle;
3234         int err;
3235
3236         /*
3237          * We have to be very careful here: changing a data block's
3238          * journaling status dynamically is dangerous.  If we write a
3239          * data block to the journal, change the status and then delete
3240          * that block, we risk forgetting to revoke the old log record
3241          * from the journal and so a subsequent replay can corrupt data.
3242          * So, first we make sure that the journal is empty and that
3243          * nobody is changing anything.
3244          */
3245
3246         journal = EXT3_JOURNAL(inode);
3247         if (is_journal_aborted(journal) || IS_RDONLY(inode))
3248                 return -EROFS;
3249
3250         journal_lock_updates(journal);
3251         journal_flush(journal);
3252
3253         /*
3254          * OK, there are no updates running now, and all cached data is
3255          * synced to disk.  We are now in a completely consistent state
3256          * which doesn't have anything in the journal, and we know that
3257          * no filesystem updates are running, so it is safe to modify
3258          * the inode's in-core data-journaling state flag now.
3259          */
3260
3261         if (val)
3262                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3263         else
3264                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3265         ext3_set_aops(inode);
3266
3267         journal_unlock_updates(journal);
3268
3269         /* Finally we can mark the inode as dirty. */
3270
3271         handle = ext3_journal_start(inode, 1);
3272         if (IS_ERR(handle))
3273                 return PTR_ERR(handle);
3274
3275         err = ext3_mark_inode_dirty(handle, inode);
3276         handle->h_sync = 1;
3277         ext3_journal_stop(handle);
3278         ext3_std_error(inode->i_sb, err);
3279
3280         return err;
3281 }