patch-2.6.6-vs1.9.0
[linux-2.6.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/pagemap.h>
33 #include <linux/quotaops.h>
34 #include <linux/string.h>
35 #include <linux/buffer_head.h>
36 #include <linux/writeback.h>
37 #include <linux/mpage.h>
38 #include <linux/uio.h>
39 #include <linux/vserver/xid.h>
40 #include "xattr.h"
41 #include "acl.h"
42
43 /*
44  * Test whether an inode is a fast symlink.
45  */
46 static inline int ext3_inode_is_fast_symlink(struct inode *inode)
47 {
48         int ea_blocks = EXT3_I(inode)->i_file_acl ?
49                 (inode->i_sb->s_blocksize >> 9) : 0;
50
51         return (S_ISLNK(inode->i_mode) &&
52                 inode->i_blocks - ea_blocks == 0);
53 }
54
55 /* The ext3 forget function must perform a revoke if we are freeing data
56  * which has been journaled.  Metadata (eg. indirect blocks) must be
57  * revoked in all cases. 
58  *
59  * "bh" may be NULL: a metadata block may have been freed from memory
60  * but there may still be a record of it in the journal, and that record
61  * still needs to be revoked.
62  */
63
64 int ext3_forget(handle_t *handle, int is_metadata,
65                        struct inode *inode, struct buffer_head *bh,
66                        int blocknr)
67 {
68         int err;
69
70         BUFFER_TRACE(bh, "enter");
71
72         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
73                   "data mode %lx\n",
74                   bh, is_metadata, inode->i_mode,
75                   test_opt(inode->i_sb, DATA_FLAGS));
76
77         /* Never use the revoke function if we are doing full data
78          * journaling: there is no need to, and a V1 superblock won't
79          * support it.  Otherwise, only skip the revoke on un-journaled
80          * data blocks. */
81
82         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
83             (!is_metadata && !ext3_should_journal_data(inode))) {
84                 if (bh) {
85                         BUFFER_TRACE(bh, "call journal_forget");
86                         ext3_journal_forget(handle, bh);
87                 }
88                 return 0;
89         }
90
91         /*
92          * data!=journal && (is_metadata || should_journal_data(inode))
93          */
94         BUFFER_TRACE(bh, "call ext3_journal_revoke");
95         err = ext3_journal_revoke(handle, blocknr, bh);
96         if (err)
97                 ext3_abort(inode->i_sb, __FUNCTION__,
98                            "error %d when attempting revoke", err);
99         BUFFER_TRACE(bh, "exit");
100         return err;
101 }
102
103 /*
104  * Work out how many blocks we need to progress with the next chunk of a
105  * truncate transaction.
106  */
107
108 static unsigned long blocks_for_truncate(struct inode *inode) 
109 {
110         unsigned long needed;
111
112         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
113
114         /* Give ourselves just enough room to cope with inodes in which
115          * i_blocks is corrupt: we've seen disk corruptions in the past
116          * which resulted in random data in an inode which looked enough
117          * like a regular file for ext3 to try to delete it.  Things
118          * will go a bit crazy if that happens, but at least we should
119          * try not to panic the whole kernel. */
120         if (needed < 2)
121                 needed = 2;
122
123         /* But we need to bound the transaction so we don't overflow the
124          * journal. */
125         if (needed > EXT3_MAX_TRANS_DATA) 
126                 needed = EXT3_MAX_TRANS_DATA;
127
128         return EXT3_DATA_TRANS_BLOCKS + needed;
129 }
130
131 /* 
132  * Truncate transactions can be complex and absolutely huge.  So we need to
133  * be able to restart the transaction at a conventient checkpoint to make
134  * sure we don't overflow the journal.
135  *
136  * start_transaction gets us a new handle for a truncate transaction,
137  * and extend_transaction tries to extend the existing one a bit.  If
138  * extend fails, we need to propagate the failure up and restart the
139  * transaction in the top-level truncate loop. --sct 
140  */
141
142 static handle_t *start_transaction(struct inode *inode) 
143 {
144         handle_t *result;
145
146         result = ext3_journal_start(inode, blocks_for_truncate(inode));
147         if (!IS_ERR(result))
148                 return result;
149
150         ext3_std_error(inode->i_sb, PTR_ERR(result));
151         return result;
152 }
153
154 /*
155  * Try to extend this transaction for the purposes of truncation.
156  *
157  * Returns 0 if we managed to create more room.  If we can't create more
158  * room, and the transaction must be restarted we return 1.
159  */
160 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
161 {
162         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
163                 return 0;
164         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
165                 return 0;
166         return 1;
167 }
168
169 /*
170  * Restart the transaction associated with *handle.  This does a commit,
171  * so before we call here everything must be consistently dirtied against
172  * this transaction.
173  */
174 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
175 {
176         jbd_debug(2, "restarting handle %p\n", handle);
177         return ext3_journal_restart(handle, blocks_for_truncate(inode));
178 }
179
180 /*
181  * Called at each iput()
182  *
183  * The inode may be "bad" if ext3_read_inode() saw an error from
184  * ext3_get_inode(), so we need to check that to avoid freeing random disk
185  * blocks.
186  */
187 void ext3_put_inode(struct inode *inode)
188 {
189         if (!is_bad_inode(inode))
190                 ext3_discard_prealloc(inode);
191 }
192
193 static void ext3_truncate_nocheck (struct inode *inode);
194
195 /*
196  * Called at the last iput() if i_nlink is zero.
197  */
198 void ext3_delete_inode (struct inode * inode)
199 {
200         handle_t *handle;
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = start_transaction(inode);
206         if (IS_ERR(handle)) {
207                 /* If we're going to skip the normal cleanup, we still
208                  * need to make sure that the in-core orphan linked list
209                  * is properly cleaned up. */
210                 ext3_orphan_del(NULL, inode);
211
212                 ext3_std_error(inode->i_sb, PTR_ERR(handle));
213                 goto no_delete;
214         }
215
216         if (IS_SYNC(inode))
217                 handle->h_sync = 1;
218         inode->i_size = 0;
219         if (inode->i_blocks)
220                 ext3_truncate_nocheck(inode);
221         /*
222          * Kill off the orphan record which ext3_truncate created.
223          * AKPM: I think this can be inside the above `if'.
224          * Note that ext3_orphan_del() has to be able to cope with the
225          * deletion of a non-existent orphan - this is because we don't
226          * know if ext3_truncate() actually created an orphan record.
227          * (Well, we could do this if we need to, but heck - it works)
228          */
229         ext3_orphan_del(handle, inode);
230         EXT3_I(inode)->i_dtime  = get_seconds();
231
232         /* 
233          * One subtle ordering requirement: if anything has gone wrong
234          * (transaction abort, IO errors, whatever), then we can still
235          * do these next steps (the fs will already have been marked as
236          * having errors), but we can't free the inode if the mark_dirty
237          * fails.  
238          */
239         if (ext3_mark_inode_dirty(handle, inode))
240                 /* If that failed, just do the required in-core inode clear. */
241                 clear_inode(inode);
242         else
243                 ext3_free_inode(handle, inode);
244         ext3_journal_stop(handle);
245         return;
246 no_delete:
247         clear_inode(inode);     /* We must guarantee clearing of inode... */
248 }
249
250 void ext3_discard_prealloc (struct inode * inode)
251 {
252 #ifdef EXT3_PREALLOCATE
253         struct ext3_inode_info *ei = EXT3_I(inode);
254         /* Writer: ->i_prealloc* */
255         if (ei->i_prealloc_count) {
256                 unsigned short total = ei->i_prealloc_count;
257                 unsigned long block = ei->i_prealloc_block;
258                 ei->i_prealloc_count = 0;
259                 ei->i_prealloc_block = 0;
260                 /* Writer: end */
261                 ext3_free_blocks (inode, block, total);
262         }
263 #endif
264 }
265
266 static int ext3_alloc_block (handle_t *handle,
267                         struct inode * inode, unsigned long goal, int *err)
268 {
269         unsigned long result;
270
271 #ifdef EXT3_PREALLOCATE
272 #ifdef EXT3FS_DEBUG
273         static unsigned long alloc_hits, alloc_attempts;
274 #endif
275         struct ext3_inode_info *ei = EXT3_I(inode);
276         /* Writer: ->i_prealloc* */
277         if (ei->i_prealloc_count &&
278             (goal == ei->i_prealloc_block ||
279              goal + 1 == ei->i_prealloc_block))
280         {
281                 result = ei->i_prealloc_block++;
282                 ei->i_prealloc_count--;
283                 /* Writer: end */
284                 ext3_debug ("preallocation hit (%lu/%lu).\n",
285                             ++alloc_hits, ++alloc_attempts);
286         } else {
287                 ext3_discard_prealloc (inode);
288                 ext3_debug ("preallocation miss (%lu/%lu).\n",
289                             alloc_hits, ++alloc_attempts);
290                 if (S_ISREG(inode->i_mode))
291                         result = ext3_new_block (inode, goal, 
292                                  &ei->i_prealloc_count,
293                                  &ei->i_prealloc_block, err);
294                 else
295                         result = ext3_new_block (inode, goal, 0, 0, err);
296                 /*
297                  * AKPM: this is somewhat sticky.  I'm not surprised it was
298                  * disabled in 2.2's ext3.  Need to integrate b_committed_data
299                  * guarding with preallocation, if indeed preallocation is
300                  * effective.
301                  */
302         }
303 #else
304         result = ext3_new_block (handle, inode, goal, 0, 0, err);
305 #endif
306         return result;
307 }
308
309
310 typedef struct {
311         u32     *p;
312         u32     key;
313         struct buffer_head *bh;
314 } Indirect;
315
316 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
317 {
318         p->key = *(p->p = v);
319         p->bh = bh;
320 }
321
322 static inline int verify_chain(Indirect *from, Indirect *to)
323 {
324         while (from <= to && from->key == *from->p)
325                 from++;
326         return (from > to);
327 }
328
329 /**
330  *      ext3_block_to_path - parse the block number into array of offsets
331  *      @inode: inode in question (we are only interested in its superblock)
332  *      @i_block: block number to be parsed
333  *      @offsets: array to store the offsets in
334  *      @boundary: set this non-zero if the referred-to block is likely to be
335  *             followed (on disk) by an indirect block.
336  *
337  *      To store the locations of file's data ext3 uses a data structure common
338  *      for UNIX filesystems - tree of pointers anchored in the inode, with
339  *      data blocks at leaves and indirect blocks in intermediate nodes.
340  *      This function translates the block number into path in that tree -
341  *      return value is the path length and @offsets[n] is the offset of
342  *      pointer to (n+1)th node in the nth one. If @block is out of range
343  *      (negative or too large) warning is printed and zero returned.
344  *
345  *      Note: function doesn't find node addresses, so no IO is needed. All
346  *      we need to know is the capacity of indirect blocks (taken from the
347  *      inode->i_sb).
348  */
349
350 /*
351  * Portability note: the last comparison (check that we fit into triple
352  * indirect block) is spelled differently, because otherwise on an
353  * architecture with 32-bit longs and 8Kb pages we might get into trouble
354  * if our filesystem had 8Kb blocks. We might use long long, but that would
355  * kill us on x86. Oh, well, at least the sign propagation does not matter -
356  * i_block would have to be negative in the very beginning, so we would not
357  * get there at all.
358  */
359
360 static int ext3_block_to_path(struct inode *inode,
361                         long i_block, int offsets[4], int *boundary)
362 {
363         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
364         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
365         const long direct_blocks = EXT3_NDIR_BLOCKS,
366                 indirect_blocks = ptrs,
367                 double_blocks = (1 << (ptrs_bits * 2));
368         int n = 0;
369         int final = 0;
370
371         if (i_block < 0) {
372                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
373         } else if (i_block < direct_blocks) {
374                 offsets[n++] = i_block;
375                 final = direct_blocks;
376         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
377                 offsets[n++] = EXT3_IND_BLOCK;
378                 offsets[n++] = i_block;
379                 final = ptrs;
380         } else if ((i_block -= indirect_blocks) < double_blocks) {
381                 offsets[n++] = EXT3_DIND_BLOCK;
382                 offsets[n++] = i_block >> ptrs_bits;
383                 offsets[n++] = i_block & (ptrs - 1);
384                 final = ptrs;
385         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
386                 offsets[n++] = EXT3_TIND_BLOCK;
387                 offsets[n++] = i_block >> (ptrs_bits * 2);
388                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
389                 offsets[n++] = i_block & (ptrs - 1);
390                 final = ptrs;
391         } else {
392                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
393         }
394         if (boundary)
395                 *boundary = (i_block & (ptrs - 1)) == (final - 1);
396         return n;
397 }
398
399 /**
400  *      ext3_get_branch - read the chain of indirect blocks leading to data
401  *      @inode: inode in question
402  *      @depth: depth of the chain (1 - direct pointer, etc.)
403  *      @offsets: offsets of pointers in inode/indirect blocks
404  *      @chain: place to store the result
405  *      @err: here we store the error value
406  *
407  *      Function fills the array of triples <key, p, bh> and returns %NULL
408  *      if everything went OK or the pointer to the last filled triple
409  *      (incomplete one) otherwise. Upon the return chain[i].key contains
410  *      the number of (i+1)-th block in the chain (as it is stored in memory,
411  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
412  *      number (it points into struct inode for i==0 and into the bh->b_data
413  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
414  *      block for i>0 and NULL for i==0. In other words, it holds the block
415  *      numbers of the chain, addresses they were taken from (and where we can
416  *      verify that chain did not change) and buffer_heads hosting these
417  *      numbers.
418  *
419  *      Function stops when it stumbles upon zero pointer (absent block)
420  *              (pointer to last triple returned, *@err == 0)
421  *      or when it gets an IO error reading an indirect block
422  *              (ditto, *@err == -EIO)
423  *      or when it notices that chain had been changed while it was reading
424  *              (ditto, *@err == -EAGAIN)
425  *      or when it reads all @depth-1 indirect blocks successfully and finds
426  *      the whole chain, all way to the data (returns %NULL, *err == 0).
427  */
428 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
429                                  Indirect chain[4], int *err)
430 {
431         struct super_block *sb = inode->i_sb;
432         Indirect *p = chain;
433         struct buffer_head *bh;
434
435         *err = 0;
436         /* i_data is not going away, no lock needed */
437         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
438         if (!p->key)
439                 goto no_block;
440         while (--depth) {
441                 bh = sb_bread(sb, le32_to_cpu(p->key));
442                 if (!bh)
443                         goto failure;
444                 /* Reader: pointers */
445                 if (!verify_chain(chain, p))
446                         goto changed;
447                 add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
448                 /* Reader: end */
449                 if (!p->key)
450                         goto no_block;
451         }
452         return NULL;
453
454 changed:
455         brelse(bh);
456         *err = -EAGAIN;
457         goto no_block;
458 failure:
459         *err = -EIO;
460 no_block:
461         return p;
462 }
463
464 /**
465  *      ext3_find_near - find a place for allocation with sufficient locality
466  *      @inode: owner
467  *      @ind: descriptor of indirect block.
468  *
469  *      This function returns the prefered place for block allocation.
470  *      It is used when heuristic for sequential allocation fails.
471  *      Rules are:
472  *        + if there is a block to the left of our position - allocate near it.
473  *        + if pointer will live in indirect block - allocate near that block.
474  *        + if pointer will live in inode - allocate in the same
475  *          cylinder group. 
476  *
477  * In the latter case we colour the starting block by the callers PID to
478  * prevent it from clashing with concurrent allocations for a different inode
479  * in the same block group.   The PID is used here so that functionally related
480  * files will be close-by on-disk.
481  *
482  *      Caller must make sure that @ind is valid and will stay that way.
483  */
484
485 static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
486 {
487         struct ext3_inode_info *ei = EXT3_I(inode);
488         u32 *start = ind->bh ? (u32*) ind->bh->b_data : ei->i_data;
489         u32 *p;
490         unsigned long bg_start;
491         unsigned long colour;
492
493         /* Try to find previous block */
494         for (p = ind->p - 1; p >= start; p--)
495                 if (*p)
496                         return le32_to_cpu(*p);
497
498         /* No such thing, so let's try location of indirect block */
499         if (ind->bh)
500                 return ind->bh->b_blocknr;
501
502         /*
503          * It is going to be refered from inode itself? OK, just put it into
504          * the same cylinder group then.
505          */
506         bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
507                 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
508         colour = (current->pid % 16) *
509                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
510         return bg_start + colour;
511 }
512
513 /**
514  *      ext3_find_goal - find a prefered place for allocation.
515  *      @inode: owner
516  *      @block:  block we want
517  *      @chain:  chain of indirect blocks
518  *      @partial: pointer to the last triple within a chain
519  *      @goal:  place to store the result.
520  *
521  *      Normally this function find the prefered place for block allocation,
522  *      stores it in *@goal and returns zero. If the branch had been changed
523  *      under us we return -EAGAIN.
524  */
525
526 static int ext3_find_goal(struct inode *inode, long block, Indirect chain[4],
527                           Indirect *partial, unsigned long *goal)
528 {
529         struct ext3_inode_info *ei = EXT3_I(inode);
530         /* Writer: ->i_next_alloc* */
531         if (block == ei->i_next_alloc_block + 1) {
532                 ei->i_next_alloc_block++;
533                 ei->i_next_alloc_goal++;
534         }
535         /* Writer: end */
536         /* Reader: pointers, ->i_next_alloc* */
537         if (verify_chain(chain, partial)) {
538                 /*
539                  * try the heuristic for sequential allocation,
540                  * failing that at least try to get decent locality.
541                  */
542                 if (block == ei->i_next_alloc_block)
543                         *goal = ei->i_next_alloc_goal;
544                 if (!*goal)
545                         *goal = ext3_find_near(inode, partial);
546                 return 0;
547         }
548         /* Reader: end */
549         return -EAGAIN;
550 }
551
552 /**
553  *      ext3_alloc_branch - allocate and set up a chain of blocks.
554  *      @inode: owner
555  *      @num: depth of the chain (number of blocks to allocate)
556  *      @offsets: offsets (in the blocks) to store the pointers to next.
557  *      @branch: place to store the chain in.
558  *
559  *      This function allocates @num blocks, zeroes out all but the last one,
560  *      links them into chain and (if we are synchronous) writes them to disk.
561  *      In other words, it prepares a branch that can be spliced onto the
562  *      inode. It stores the information about that chain in the branch[], in
563  *      the same format as ext3_get_branch() would do. We are calling it after
564  *      we had read the existing part of chain and partial points to the last
565  *      triple of that (one with zero ->key). Upon the exit we have the same
566  *      picture as after the successful ext3_get_block(), excpet that in one
567  *      place chain is disconnected - *branch->p is still zero (we did not
568  *      set the last link), but branch->key contains the number that should
569  *      be placed into *branch->p to fill that gap.
570  *
571  *      If allocation fails we free all blocks we've allocated (and forget
572  *      their buffer_heads) and return the error value the from failed
573  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
574  *      as described above and return 0.
575  */
576
577 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
578                              int num,
579                              unsigned long goal,
580                              int *offsets,
581                              Indirect *branch)
582 {
583         int blocksize = inode->i_sb->s_blocksize;
584         int n = 0, keys = 0;
585         int err = 0;
586         int i;
587         int parent = ext3_alloc_block(handle, inode, goal, &err);
588
589         branch[0].key = cpu_to_le32(parent);
590         if (parent) {
591                 for (n = 1; n < num; n++) {
592                         struct buffer_head *bh;
593                         /* Allocate the next block */
594                         int nr = ext3_alloc_block(handle, inode, parent, &err);
595                         if (!nr)
596                                 break;
597                         branch[n].key = cpu_to_le32(nr);
598                         keys = n+1;
599
600                         /*
601                          * Get buffer_head for parent block, zero it out
602                          * and set the pointer to new one, then send
603                          * parent to disk.  
604                          */
605                         bh = sb_getblk(inode->i_sb, parent);
606                         branch[n].bh = bh;
607                         lock_buffer(bh);
608                         BUFFER_TRACE(bh, "call get_create_access");
609                         err = ext3_journal_get_create_access(handle, bh);
610                         if (err) {
611                                 unlock_buffer(bh);
612                                 brelse(bh);
613                                 break;
614                         }
615
616                         memset(bh->b_data, 0, blocksize);
617                         branch[n].p = (u32*) bh->b_data + offsets[n];
618                         *branch[n].p = branch[n].key;
619                         BUFFER_TRACE(bh, "marking uptodate");
620                         set_buffer_uptodate(bh);
621                         unlock_buffer(bh);
622
623                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
624                         err = ext3_journal_dirty_metadata(handle, bh);
625                         if (err)
626                                 break;
627
628                         parent = nr;
629                 }
630         }
631         if (n == num)
632                 return 0;
633
634         /* Allocation failed, free what we already allocated */
635         for (i = 1; i < keys; i++) {
636                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
637                 ext3_journal_forget(handle, branch[i].bh);
638         }
639         for (i = 0; i < keys; i++)
640                 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
641         return err;
642 }
643
644 /**
645  *      ext3_splice_branch - splice the allocated branch onto inode.
646  *      @inode: owner
647  *      @block: (logical) number of block we are adding
648  *      @chain: chain of indirect blocks (with a missing link - see
649  *              ext3_alloc_branch)
650  *      @where: location of missing link
651  *      @num:   number of blocks we are adding
652  *
653  *      This function verifies that chain (up to the missing link) had not
654  *      changed, fills the missing link and does all housekeeping needed in
655  *      inode (->i_blocks, etc.). In case of success we end up with the full
656  *      chain to new block and return 0. Otherwise (== chain had been changed)
657  *      we free the new blocks (forgetting their buffer_heads, indeed) and
658  *      return -EAGAIN.
659  */
660
661 static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
662                               Indirect chain[4], Indirect *where, int num)
663 {
664         int i;
665         int err = 0;
666         struct ext3_inode_info *ei = EXT3_I(inode);
667
668         /*
669          * If we're splicing into a [td]indirect block (as opposed to the
670          * inode) then we need to get write access to the [td]indirect block
671          * before the splice.
672          */
673         if (where->bh) {
674                 BUFFER_TRACE(where->bh, "get_write_access");
675                 err = ext3_journal_get_write_access(handle, where->bh);
676                 if (err)
677                         goto err_out;
678         }
679         /* Verify that place we are splicing to is still there and vacant */
680
681         /* Writer: pointers, ->i_next_alloc* */
682         if (!verify_chain(chain, where-1) || *where->p)
683                 /* Writer: end */
684                 goto changed;
685
686         /* That's it */
687
688         *where->p = where->key;
689         ei->i_next_alloc_block = block;
690         ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key);
691         /* Writer: end */
692
693         /* We are done with atomic stuff, now do the rest of housekeeping */
694
695         inode->i_ctime = CURRENT_TIME;
696         ext3_mark_inode_dirty(handle, inode);
697
698         /* had we spliced it onto indirect block? */
699         if (where->bh) {
700                 /*
701                  * akpm: If we spliced it onto an indirect block, we haven't
702                  * altered the inode.  Note however that if it is being spliced
703                  * onto an indirect block at the very end of the file (the
704                  * file is growing) then we *will* alter the inode to reflect
705                  * the new i_size.  But that is not done here - it is done in
706                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
707                  */
708                 jbd_debug(5, "splicing indirect only\n");
709                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
710                 err = ext3_journal_dirty_metadata(handle, where->bh);
711                 if (err) 
712                         goto err_out;
713         } else {
714                 /*
715                  * OK, we spliced it into the inode itself on a direct block.
716                  * Inode was dirtied above.
717                  */
718                 jbd_debug(5, "splicing direct\n");
719         }
720         return err;
721
722 changed:
723         /*
724          * AKPM: if where[i].bh isn't part of the current updating
725          * transaction then we explode nastily.  Test this code path.
726          */
727         jbd_debug(1, "the chain changed: try again\n");
728         err = -EAGAIN;
729
730 err_out:
731         for (i = 1; i < num; i++) {
732                 BUFFER_TRACE(where[i].bh, "call journal_forget");
733                 ext3_journal_forget(handle, where[i].bh);
734         }
735         /* For the normal collision cleanup case, we free up the blocks.
736          * On genuine filesystem errors we don't even think about doing
737          * that. */
738         if (err == -EAGAIN)
739                 for (i = 0; i < num; i++)
740                         ext3_free_blocks(handle, inode, 
741                                          le32_to_cpu(where[i].key), 1);
742         return err;
743 }
744
745 /*
746  * Allocation strategy is simple: if we have to allocate something, we will
747  * have to go the whole way to leaf. So let's do it before attaching anything
748  * to tree, set linkage between the newborn blocks, write them if sync is
749  * required, recheck the path, free and repeat if check fails, otherwise
750  * set the last missing link (that will protect us from any truncate-generated
751  * removals - all blocks on the path are immune now) and possibly force the
752  * write on the parent block.
753  * That has a nice additional property: no special recovery from the failed
754  * allocations is needed - we simply release blocks and do not touch anything
755  * reachable from inode.
756  *
757  * akpm: `handle' can be NULL if create == 0.
758  *
759  * The BKL may not be held on entry here.  Be sure to take it early.
760  */
761
762 static int
763 ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
764                 struct buffer_head *bh_result, int create, int extend_disksize)
765 {
766         int err = -EIO;
767         int offsets[4];
768         Indirect chain[4];
769         Indirect *partial;
770         unsigned long goal;
771         int left;
772         int boundary = 0;
773         int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
774         struct ext3_inode_info *ei = EXT3_I(inode);
775
776         J_ASSERT(handle != NULL || create == 0);
777
778         if (depth == 0)
779                 goto out;
780
781 reread:
782         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
783
784         /* Simplest case - block found, no allocation needed */
785         if (!partial) {
786                 clear_buffer_new(bh_result);
787 got_it:
788                 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
789                 if (boundary)
790                         set_buffer_boundary(bh_result);
791                 /* Clean up and exit */
792                 partial = chain+depth-1; /* the whole chain */
793                 goto cleanup;
794         }
795
796         /* Next simple case - plain lookup or failed read of indirect block */
797         if (!create || err == -EIO) {
798 cleanup:
799                 while (partial > chain) {
800                         BUFFER_TRACE(partial->bh, "call brelse");
801                         brelse(partial->bh);
802                         partial--;
803                 }
804                 BUFFER_TRACE(bh_result, "returned");
805 out:
806                 return err;
807         }
808
809         /*
810          * Indirect block might be removed by truncate while we were
811          * reading it. Handling of that case (forget what we've got and
812          * reread) is taken out of the main path.
813          */
814         if (err == -EAGAIN)
815                 goto changed;
816
817         down(&ei->truncate_sem);
818         if (ext3_find_goal(inode, iblock, chain, partial, &goal) < 0) {
819                 up(&ei->truncate_sem);
820                 goto changed;
821         }
822
823         left = (chain + depth) - partial;
824
825         /*
826          * Block out ext3_truncate while we alter the tree
827          */
828         err = ext3_alloc_branch(handle, inode, left, goal,
829                                         offsets+(partial-chain), partial);
830
831         /* The ext3_splice_branch call will free and forget any buffers
832          * on the new chain if there is a failure, but that risks using
833          * up transaction credits, especially for bitmaps where the
834          * credits cannot be returned.  Can we handle this somehow?  We
835          * may need to return -EAGAIN upwards in the worst case.  --sct */
836         if (!err)
837                 err = ext3_splice_branch(handle, inode, iblock, chain,
838                                          partial, left);
839         /* i_disksize growing is protected by truncate_sem
840          * don't forget to protect it if you're about to implement
841          * concurrent ext3_get_block() -bzzz */
842         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
843                 ei->i_disksize = inode->i_size;
844         up(&ei->truncate_sem);
845         if (err == -EAGAIN)
846                 goto changed;
847         if (err)
848                 goto cleanup;
849
850         set_buffer_new(bh_result);
851         goto got_it;
852
853 changed:
854         while (partial > chain) {
855                 jbd_debug(1, "buffer chain changed, retrying\n");
856                 BUFFER_TRACE(partial->bh, "brelsing");
857                 brelse(partial->bh);
858                 partial--;
859         }
860         goto reread;
861 }
862
863 static int ext3_get_block(struct inode *inode, sector_t iblock,
864                         struct buffer_head *bh_result, int create)
865 {
866         handle_t *handle = 0;
867         int ret;
868
869         if (create) {
870                 handle = ext3_journal_current_handle();
871                 J_ASSERT(handle != 0);
872         }
873         ret = ext3_get_block_handle(handle, inode, iblock,
874                                 bh_result, create, 1);
875         return ret;
876 }
877
878 #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
879
880 static int
881 ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
882                 unsigned long max_blocks, struct buffer_head *bh_result,
883                 int create)
884 {
885         handle_t *handle = journal_current_handle();
886         int ret = 0;
887
888         if (handle && handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
889                 /*
890                  * Getting low on buffer credits...
891                  */
892                 if (!ext3_journal_extend(handle, DIO_CREDITS)) {
893                         /*
894                          * Couldn't extend the transaction.  Start a new one
895                          */
896                         ret = ext3_journal_restart(handle, DIO_CREDITS);
897                 }
898         }
899         if (ret == 0)
900                 ret = ext3_get_block_handle(handle, inode, iblock,
901                                         bh_result, create, 0);
902         if (ret == 0)
903                 bh_result->b_size = (1 << inode->i_blkbits);
904         return ret;
905 }
906
907
908 /*
909  * `handle' can be NULL if create is zero
910  */
911 struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
912                                 long block, int create, int * errp)
913 {
914         struct buffer_head dummy;
915         int fatal = 0, err;
916
917         J_ASSERT(handle != NULL || create == 0);
918
919         dummy.b_state = 0;
920         dummy.b_blocknr = -1000;
921         buffer_trace_init(&dummy.b_history);
922         *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
923         if (!*errp && buffer_mapped(&dummy)) {
924                 struct buffer_head *bh;
925                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
926                 if (buffer_new(&dummy)) {
927                         J_ASSERT(create != 0);
928                         J_ASSERT(handle != 0);
929
930                         /* Now that we do not always journal data, we
931                            should keep in mind whether this should
932                            always journal the new buffer as metadata.
933                            For now, regular file writes use
934                            ext3_get_block instead, so it's not a
935                            problem. */
936                         lock_buffer(bh);
937                         BUFFER_TRACE(bh, "call get_create_access");
938                         fatal = ext3_journal_get_create_access(handle, bh);
939                         if (!fatal && !buffer_uptodate(bh)) {
940                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
941                                 set_buffer_uptodate(bh);
942                         }
943                         unlock_buffer(bh);
944                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
945                         err = ext3_journal_dirty_metadata(handle, bh);
946                         if (!fatal)
947                                 fatal = err;
948                 } else {
949                         BUFFER_TRACE(bh, "not a new buffer");
950                 }
951                 if (fatal) {
952                         *errp = fatal;
953                         brelse(bh);
954                         bh = NULL;
955                 }
956                 return bh;
957         }
958         return NULL;
959 }
960
961 struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
962                                int block, int create, int *err)
963 {
964         struct buffer_head * bh;
965         int prev_blocks;
966
967         prev_blocks = inode->i_blocks;
968
969         bh = ext3_getblk (handle, inode, block, create, err);
970         if (!bh)
971                 return bh;
972 #ifdef EXT3_PREALLOCATE
973         /*
974          * If the inode has grown, and this is a directory, then use a few
975          * more of the preallocated blocks to keep directory fragmentation
976          * down.  The preallocated blocks are guaranteed to be contiguous.
977          */
978         if (create &&
979             S_ISDIR(inode->i_mode) &&
980             inode->i_blocks > prev_blocks &&
981             EXT3_HAS_COMPAT_FEATURE(inode->i_sb,
982                                     EXT3_FEATURE_COMPAT_DIR_PREALLOC)) {
983                 int i;
984                 struct buffer_head *tmp_bh;
985
986                 for (i = 1;
987                      EXT3_I(inode)->i_prealloc_count &&
988                      i < EXT3_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks;
989                      i++) {
990                         /*
991                          * ext3_getblk will zero out the contents of the
992                          * directory for us
993                          */
994                         tmp_bh = ext3_getblk(handle, inode,
995                                                 block+i, create, err);
996                         if (!tmp_bh) {
997                                 brelse (bh);
998                                 return 0;
999                         }
1000                         brelse (tmp_bh);
1001                 }
1002         }
1003 #endif
1004         if (buffer_uptodate(bh))
1005                 return bh;
1006         ll_rw_block (READ, 1, &bh);
1007         wait_on_buffer (bh);
1008         if (buffer_uptodate(bh))
1009                 return bh;
1010         brelse (bh);
1011         *err = -EIO;
1012         return NULL;
1013 }
1014
1015 static int walk_page_buffers(   handle_t *handle,
1016                                 struct buffer_head *head,
1017                                 unsigned from,
1018                                 unsigned to,
1019                                 int *partial,
1020                                 int (*fn)(      handle_t *handle,
1021                                                 struct buffer_head *bh))
1022 {
1023         struct buffer_head *bh;
1024         unsigned block_start, block_end;
1025         unsigned blocksize = head->b_size;
1026         int err, ret = 0;
1027         struct buffer_head *next;
1028
1029         for (   bh = head, block_start = 0;
1030                 ret == 0 && (bh != head || !block_start);
1031                 block_start = block_end, bh = next)
1032         {
1033                 next = bh->b_this_page;
1034                 block_end = block_start + blocksize;
1035                 if (block_end <= from || block_start >= to) {
1036                         if (partial && !buffer_uptodate(bh))
1037                                 *partial = 1;
1038                         continue;
1039                 }
1040                 err = (*fn)(handle, bh);
1041                 if (!ret)
1042                         ret = err;
1043         }
1044         return ret;
1045 }
1046
1047 /*
1048  * To preserve ordering, it is essential that the hole instantiation and
1049  * the data write be encapsulated in a single transaction.  We cannot
1050  * close off a transaction and start a new one between the ext3_get_block()
1051  * and the commit_write().  So doing the journal_start at the start of
1052  * prepare_write() is the right place.
1053  *
1054  * Also, this function can nest inside ext3_writepage() ->
1055  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1056  * has generated enough buffer credits to do the whole page.  So we won't
1057  * block on the journal in that case, which is good, because the caller may
1058  * be PF_MEMALLOC.
1059  *
1060  * By accident, ext3 can be reentered when a transaction is open via
1061  * quota file writes.  If we were to commit the transaction while thus
1062  * reentered, there can be a deadlock - we would be holding a quota
1063  * lock, and the commit would never complete if another thread had a
1064  * transaction open and was blocking on the quota lock - a ranking
1065  * violation.
1066  *
1067  * So what we do is to rely on the fact that journal_stop/journal_start
1068  * will _not_ run commit under these circumstances because handle->h_ref
1069  * is elevated.  We'll still have enough credits for the tiny quotafile
1070  * write.  
1071  */
1072
1073 static int do_journal_get_write_access(handle_t *handle, 
1074                                        struct buffer_head *bh)
1075 {
1076         if (!buffer_mapped(bh) || buffer_freed(bh))
1077                 return 0;
1078         return ext3_journal_get_write_access(handle, bh);
1079 }
1080
1081 static int ext3_prepare_write(struct file *file, struct page *page,
1082                               unsigned from, unsigned to)
1083 {
1084         struct inode *inode = page->mapping->host;
1085         int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1086         handle_t *handle;
1087
1088         handle = ext3_journal_start(inode, needed_blocks);
1089         if (IS_ERR(handle)) {
1090                 ret = PTR_ERR(handle);
1091                 goto out;
1092         }
1093         ret = block_prepare_write(page, from, to, ext3_get_block);
1094         if (ret != 0)
1095                 goto prepare_write_failed;
1096
1097         if (ext3_should_journal_data(inode)) {
1098                 ret = walk_page_buffers(handle, page_buffers(page),
1099                                 from, to, NULL, do_journal_get_write_access);
1100         }
1101 prepare_write_failed:
1102         if (ret)
1103                 ext3_journal_stop(handle);
1104 out:
1105         return ret;
1106 }
1107
1108 static int
1109 ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1110 {
1111         int err = journal_dirty_data(handle, bh);
1112         if (err)
1113                 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1114                                                 bh, handle,err);
1115         return err;
1116 }
1117
1118 /* For commit_write() in data=journal mode */
1119 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1120 {
1121         if (!buffer_mapped(bh) || buffer_freed(bh))
1122                 return 0;
1123         set_buffer_uptodate(bh);
1124         return ext3_journal_dirty_metadata(handle, bh);
1125 }
1126
1127 /*
1128  * We need to pick up the new inode size which generic_commit_write gave us
1129  * `file' can be NULL - eg, when called from page_symlink().
1130  *
1131  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1132  * buffers are managed internally.
1133  */
1134
1135 static int ext3_ordered_commit_write(struct file *file, struct page *page,
1136                              unsigned from, unsigned to)
1137 {
1138         handle_t *handle = ext3_journal_current_handle();
1139         struct inode *inode = page->mapping->host;
1140         int ret = 0, ret2;
1141
1142         ret = walk_page_buffers(handle, page_buffers(page),
1143                 from, to, NULL, ext3_journal_dirty_data);
1144
1145         if (ret == 0) {
1146                 /*
1147                  * generic_commit_write() will run mark_inode_dirty() if i_size
1148                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1149                  * into that.
1150                  */
1151                 loff_t new_i_size;
1152
1153                 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1154                 if (new_i_size > EXT3_I(inode)->i_disksize)
1155                         EXT3_I(inode)->i_disksize = new_i_size;
1156                 ret = generic_commit_write(file, page, from, to);
1157         }
1158         ret2 = ext3_journal_stop(handle);
1159         if (!ret)
1160                 ret = ret2;
1161         return ret;
1162 }
1163
1164 static int ext3_writeback_commit_write(struct file *file, struct page *page,
1165                              unsigned from, unsigned to)
1166 {
1167         handle_t *handle = ext3_journal_current_handle();
1168         struct inode *inode = page->mapping->host;
1169         int ret = 0, ret2;
1170         loff_t new_i_size;
1171
1172         new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1173         if (new_i_size > EXT3_I(inode)->i_disksize)
1174                 EXT3_I(inode)->i_disksize = new_i_size;
1175         ret = generic_commit_write(file, page, from, to);
1176         ret2 = ext3_journal_stop(handle);
1177         if (!ret)
1178                 ret = ret2;
1179         return ret;
1180 }
1181
1182 static int ext3_journalled_commit_write(struct file *file,
1183                         struct page *page, unsigned from, unsigned to)
1184 {
1185         handle_t *handle = ext3_journal_current_handle();
1186         struct inode *inode = page->mapping->host;
1187         int ret = 0, ret2;
1188         int partial = 0;
1189         loff_t pos;
1190
1191         /*
1192          * Here we duplicate the generic_commit_write() functionality
1193          */
1194         pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1195
1196         ret = walk_page_buffers(handle, page_buffers(page), from,
1197                                 to, &partial, commit_write_fn);
1198         if (!partial)
1199                 SetPageUptodate(page);
1200         if (pos > inode->i_size)
1201                 i_size_write(inode, pos);
1202         EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1203         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1204                 EXT3_I(inode)->i_disksize = inode->i_size;
1205                 ret2 = ext3_mark_inode_dirty(handle, inode);
1206                 if (!ret) 
1207                         ret = ret2;
1208         }
1209         ret2 = ext3_journal_stop(handle);
1210         if (!ret)
1211                 ret = ret2;
1212         return ret;
1213 }
1214
1215 /* 
1216  * bmap() is special.  It gets used by applications such as lilo and by
1217  * the swapper to find the on-disk block of a specific piece of data.
1218  *
1219  * Naturally, this is dangerous if the block concerned is still in the
1220  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1221  * filesystem and enables swap, then they may get a nasty shock when the
1222  * data getting swapped to that swapfile suddenly gets overwritten by
1223  * the original zero's written out previously to the journal and
1224  * awaiting writeback in the kernel's buffer cache. 
1225  *
1226  * So, if we see any bmap calls here on a modified, data-journaled file,
1227  * take extra steps to flush any blocks which might be in the cache. 
1228  */
1229 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1230 {
1231         struct inode *inode = mapping->host;
1232         journal_t *journal;
1233         int err;
1234
1235         if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1236                 /* 
1237                  * This is a REALLY heavyweight approach, but the use of
1238                  * bmap on dirty files is expected to be extremely rare:
1239                  * only if we run lilo or swapon on a freshly made file
1240                  * do we expect this to happen. 
1241                  *
1242                  * (bmap requires CAP_SYS_RAWIO so this does not
1243                  * represent an unprivileged user DOS attack --- we'd be
1244                  * in trouble if mortal users could trigger this path at
1245                  * will.) 
1246                  *
1247                  * NB. EXT3_STATE_JDATA is not set on files other than
1248                  * regular files.  If somebody wants to bmap a directory
1249                  * or symlink and gets confused because the buffer
1250                  * hasn't yet been flushed to disk, they deserve
1251                  * everything they get.
1252                  */
1253
1254                 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1255                 journal = EXT3_JOURNAL(inode);
1256                 journal_lock_updates(journal);
1257                 err = journal_flush(journal);
1258                 journal_unlock_updates(journal);
1259
1260                 if (err)
1261                         return 0;
1262         }
1263
1264         return generic_block_bmap(mapping,block,ext3_get_block);
1265 }
1266
1267 static int bget_one(handle_t *handle, struct buffer_head *bh)
1268 {
1269         get_bh(bh);
1270         return 0;
1271 }
1272
1273 static int bput_one(handle_t *handle, struct buffer_head *bh)
1274 {
1275         put_bh(bh);
1276         return 0;
1277 }
1278
1279 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1280 {
1281         if (buffer_mapped(bh))
1282                 return ext3_journal_dirty_data(handle, bh);
1283         return 0;
1284 }
1285
1286 /*
1287  * Note that we always start a transaction even if we're not journalling
1288  * data.  This is to preserve ordering: any hole instantiation within
1289  * __block_write_full_page -> ext3_get_block() should be journalled
1290  * along with the data so we don't crash and then get metadata which
1291  * refers to old data.
1292  *
1293  * In all journalling modes block_write_full_page() will start the I/O.
1294  *
1295  * Problem:
1296  *
1297  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1298  *              ext3_writepage()
1299  *
1300  * Similar for:
1301  *
1302  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1303  *
1304  * Same applies to ext3_get_block().  We will deadlock on various things like
1305  * lock_journal and i_truncate_sem.
1306  *
1307  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1308  * allocations fail.
1309  *
1310  * 16May01: If we're reentered then journal_current_handle() will be
1311  *          non-zero. We simply *return*.
1312  *
1313  * 1 July 2001: @@@ FIXME:
1314  *   In journalled data mode, a data buffer may be metadata against the
1315  *   current transaction.  But the same file is part of a shared mapping
1316  *   and someone does a writepage() on it.
1317  *
1318  *   We will move the buffer onto the async_data list, but *after* it has
1319  *   been dirtied. So there's a small window where we have dirty data on
1320  *   BJ_Metadata.
1321  *
1322  *   Note that this only applies to the last partial page in the file.  The
1323  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1324  *   broken code anyway: it's wrong for msync()).
1325  *
1326  *   It's a rare case: affects the final partial page, for journalled data
1327  *   where the file is subject to bith write() and writepage() in the same
1328  *   transction.  To fix it we'll need a custom block_write_full_page().
1329  *   We'll probably need that anyway for journalling writepage() output.
1330  *
1331  * We don't honour synchronous mounts for writepage().  That would be
1332  * disastrous.  Any write() or metadata operation will sync the fs for
1333  * us.
1334  *
1335  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1336  * we don't need to open a transaction here.
1337  */
1338 static int ext3_ordered_writepage(struct page *page,
1339                         struct writeback_control *wbc)
1340 {
1341         struct inode *inode = page->mapping->host;
1342         struct buffer_head *page_bufs;
1343         handle_t *handle = NULL;
1344         int ret = 0;
1345         int err;
1346
1347         J_ASSERT(PageLocked(page));
1348
1349         /*
1350          * We give up here if we're reentered, because it might be for a
1351          * different filesystem.
1352          */
1353         if (ext3_journal_current_handle())
1354                 goto out_fail;
1355
1356         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1357
1358         if (IS_ERR(handle)) {
1359                 ret = PTR_ERR(handle);
1360                 goto out_fail;
1361         }
1362
1363         if (!page_has_buffers(page)) {
1364                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1365                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1366         }
1367         page_bufs = page_buffers(page);
1368         walk_page_buffers(handle, page_bufs, 0,
1369                         PAGE_CACHE_SIZE, NULL, bget_one);
1370
1371         ret = block_write_full_page(page, ext3_get_block, wbc);
1372
1373         /*
1374          * The page can become unlocked at any point now, and
1375          * truncate can then come in and change things.  So we
1376          * can't touch *page from now on.  But *page_bufs is
1377          * safe due to elevated refcount.
1378          */
1379
1380         /*
1381          * And attach them to the current transaction.  But only if 
1382          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1383          * and generally junk.
1384          */
1385         if (ret == 0) {
1386                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1387                                         NULL, journal_dirty_data_fn);
1388                 if (!ret)
1389                         ret = err;
1390         }
1391         walk_page_buffers(handle, page_bufs, 0,
1392                         PAGE_CACHE_SIZE, NULL, bput_one);
1393         err = ext3_journal_stop(handle);
1394         if (!ret)
1395                 ret = err;
1396         return ret;
1397
1398 out_fail:
1399         redirty_page_for_writepage(wbc, page);
1400         unlock_page(page);
1401         return ret;
1402 }
1403
1404 static int ext3_writeback_writepage(struct page *page,
1405                                 struct writeback_control *wbc)
1406 {
1407         struct inode *inode = page->mapping->host;
1408         handle_t *handle = NULL;
1409         int ret = 0;
1410         int err;
1411
1412         if (ext3_journal_current_handle())
1413                 goto out_fail;
1414
1415         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1416         if (IS_ERR(handle)) {
1417                 ret = PTR_ERR(handle);
1418                 goto out_fail;
1419         }
1420
1421         ret = block_write_full_page(page, ext3_get_block, wbc);
1422         err = ext3_journal_stop(handle);
1423         if (!ret)
1424                 ret = err;
1425         return ret;
1426
1427 out_fail:
1428         redirty_page_for_writepage(wbc, page);
1429         unlock_page(page);
1430         return ret;
1431 }
1432
1433 static int ext3_journalled_writepage(struct page *page,
1434                                 struct writeback_control *wbc)
1435 {
1436         struct inode *inode = page->mapping->host;
1437         handle_t *handle = NULL;
1438         int ret = 0;
1439         int err;
1440
1441         if (ext3_journal_current_handle())
1442                 goto no_write;
1443
1444         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1445         if (IS_ERR(handle)) {
1446                 ret = PTR_ERR(handle);
1447                 goto no_write;
1448         }
1449
1450         if (!page_has_buffers(page) || PageChecked(page)) {
1451                 /*
1452                  * It's mmapped pagecache.  Add buffers and journal it.  There
1453                  * doesn't seem much point in redirtying the page here.
1454                  */
1455                 ClearPageChecked(page);
1456                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1457                                         ext3_get_block);
1458                 if (ret != 0)
1459                         goto out_unlock;
1460                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1461                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1462
1463                 err = walk_page_buffers(handle, page_buffers(page), 0,
1464                                 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1465                 if (ret == 0)
1466                         ret = err;
1467                 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1468                 unlock_page(page);
1469         } else {
1470                 /*
1471                  * It may be a page full of checkpoint-mode buffers.  We don't
1472                  * really know unless we go poke around in the buffer_heads.
1473                  * But block_write_full_page will do the right thing.
1474                  */
1475                 ret = block_write_full_page(page, ext3_get_block, wbc);
1476         }
1477         err = ext3_journal_stop(handle);
1478         if (!ret)
1479                 ret = err;
1480 out:
1481         return ret;
1482
1483 no_write:
1484         redirty_page_for_writepage(wbc, page);
1485 out_unlock:
1486         unlock_page(page);
1487         goto out;
1488 }
1489
1490 static int ext3_readpage(struct file *file, struct page *page)
1491 {
1492         return mpage_readpage(page, ext3_get_block);
1493 }
1494
1495 static int
1496 ext3_readpages(struct file *file, struct address_space *mapping,
1497                 struct list_head *pages, unsigned nr_pages)
1498 {
1499         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1500 }
1501
1502 static int ext3_invalidatepage(struct page *page, unsigned long offset)
1503 {
1504         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1505
1506         /*
1507          * If it's a full truncate we just forget about the pending dirtying
1508          */
1509         if (offset == 0)
1510                 ClearPageChecked(page);
1511
1512         return journal_invalidatepage(journal, page, offset);
1513 }
1514
1515 static int ext3_releasepage(struct page *page, int wait)
1516 {
1517         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1518
1519         WARN_ON(PageChecked(page));
1520         return journal_try_to_free_buffers(journal, page, wait);
1521 }
1522
1523 /*
1524  * If the O_DIRECT write will extend the file then add this inode to the
1525  * orphan list.  So recovery will truncate it back to the original size
1526  * if the machine crashes during the write.
1527  *
1528  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1529  * crashes then stale disk data _may_ be exposed inside the file.
1530  */
1531 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1532                         const struct iovec *iov, loff_t offset,
1533                         unsigned long nr_segs)
1534 {
1535         struct file *file = iocb->ki_filp;
1536         struct inode *inode = file->f_mapping->host;
1537         struct ext3_inode_info *ei = EXT3_I(inode);
1538         handle_t *handle = NULL;
1539         ssize_t ret;
1540         int orphan = 0;
1541         size_t count = iov_length(iov, nr_segs);
1542
1543         if (rw == WRITE) {
1544                 loff_t final_size = offset + count;
1545
1546                 handle = ext3_journal_start(inode, DIO_CREDITS);
1547                 if (IS_ERR(handle)) {
1548                         ret = PTR_ERR(handle);
1549                         goto out;
1550                 }
1551                 if (final_size > inode->i_size) {
1552                         ret = ext3_orphan_add(handle, inode);
1553                         if (ret)
1554                                 goto out_stop;
1555                         orphan = 1;
1556                         ei->i_disksize = inode->i_size;
1557                 }
1558         }
1559
1560         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 
1561                                  offset, nr_segs,
1562                                  ext3_direct_io_get_blocks, NULL);
1563
1564 out_stop:
1565         if (handle) {
1566                 int err;
1567
1568                 if (orphan) 
1569                         ext3_orphan_del(handle, inode);
1570                 if (orphan && ret > 0) {
1571                         loff_t end = offset + ret;
1572                         if (end > inode->i_size) {
1573                                 ei->i_disksize = end;
1574                                 i_size_write(inode, end);
1575                                 err = ext3_mark_inode_dirty(handle, inode);
1576                                 if (!ret) 
1577                                         ret = err;
1578                         }
1579                 }
1580                 err = ext3_journal_stop(handle);
1581                 if (ret == 0)
1582                         ret = err;
1583         }
1584 out:
1585         return ret;
1586 }
1587
1588 /*
1589  * Pages can be marked dirty completely asynchronously from ext3's journalling
1590  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1591  * much here because ->set_page_dirty is called under VFS locks.  The page is
1592  * not necessarily locked.
1593  *
1594  * We cannot just dirty the page and leave attached buffers clean, because the
1595  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1596  * or jbddirty because all the journalling code will explode.
1597  *
1598  * So what we do is to mark the page "pending dirty" and next time writepage
1599  * is called, propagate that into the buffers appropriately.
1600  */
1601 static int ext3_journalled_set_page_dirty(struct page *page)
1602 {
1603         SetPageChecked(page);
1604         return __set_page_dirty_nobuffers(page);
1605 }
1606
1607 static struct address_space_operations ext3_ordered_aops = {
1608         .readpage       = ext3_readpage,
1609         .readpages      = ext3_readpages,
1610         .writepage      = ext3_ordered_writepage,
1611         .sync_page      = block_sync_page,
1612         .prepare_write  = ext3_prepare_write,
1613         .commit_write   = ext3_ordered_commit_write,
1614         .bmap           = ext3_bmap,
1615         .invalidatepage = ext3_invalidatepage,
1616         .releasepage    = ext3_releasepage,
1617         .direct_IO      = ext3_direct_IO,
1618 };
1619
1620 static struct address_space_operations ext3_writeback_aops = {
1621         .readpage       = ext3_readpage,
1622         .readpages      = ext3_readpages,
1623         .writepage      = ext3_writeback_writepage,
1624         .sync_page      = block_sync_page,
1625         .prepare_write  = ext3_prepare_write,
1626         .commit_write   = ext3_writeback_commit_write,
1627         .bmap           = ext3_bmap,
1628         .invalidatepage = ext3_invalidatepage,
1629         .releasepage    = ext3_releasepage,
1630         .direct_IO      = ext3_direct_IO,
1631 };
1632
1633 static struct address_space_operations ext3_journalled_aops = {
1634         .readpage       = ext3_readpage,
1635         .readpages      = ext3_readpages,
1636         .writepage      = ext3_journalled_writepage,
1637         .sync_page      = block_sync_page,
1638         .prepare_write  = ext3_prepare_write,
1639         .commit_write   = ext3_journalled_commit_write,
1640         .set_page_dirty = ext3_journalled_set_page_dirty,
1641         .bmap           = ext3_bmap,
1642         .invalidatepage = ext3_invalidatepage,
1643         .releasepage    = ext3_releasepage,
1644 };
1645
1646 void ext3_set_aops(struct inode *inode)
1647 {
1648         if (ext3_should_order_data(inode))
1649                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1650         else if (ext3_should_writeback_data(inode))
1651                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1652         else
1653                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1654 }
1655
1656 /*
1657  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1658  * up to the end of the block which corresponds to `from'.
1659  * This required during truncate. We need to physically zero the tail end
1660  * of that block so it doesn't yield old data if the file is later grown.
1661  */
1662 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1663                 struct address_space *mapping, loff_t from)
1664 {
1665         unsigned long index = from >> PAGE_CACHE_SHIFT;
1666         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1667         unsigned blocksize, iblock, length, pos;
1668         struct inode *inode = mapping->host;
1669         struct buffer_head *bh;
1670         int err;
1671         void *kaddr;
1672
1673         blocksize = inode->i_sb->s_blocksize;
1674         length = blocksize - (offset & (blocksize - 1));
1675         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1676
1677         if (!page_has_buffers(page))
1678                 create_empty_buffers(page, blocksize, 0);
1679
1680         /* Find the buffer that contains "offset" */
1681         bh = page_buffers(page);
1682         pos = blocksize;
1683         while (offset >= pos) {
1684                 bh = bh->b_this_page;
1685                 iblock++;
1686                 pos += blocksize;
1687         }
1688
1689         err = 0;
1690         if (buffer_freed(bh)) {
1691                 BUFFER_TRACE(bh, "freed: skip");
1692                 goto unlock;
1693         }
1694
1695         if (!buffer_mapped(bh)) {
1696                 BUFFER_TRACE(bh, "unmapped");
1697                 ext3_get_block(inode, iblock, bh, 0);
1698                 /* unmapped? It's a hole - nothing to do */
1699                 if (!buffer_mapped(bh)) {
1700                         BUFFER_TRACE(bh, "still unmapped");
1701                         goto unlock;
1702                 }
1703         }
1704
1705         /* Ok, it's mapped. Make sure it's up-to-date */
1706         if (PageUptodate(page))
1707                 set_buffer_uptodate(bh);
1708
1709         if (!buffer_uptodate(bh)) {
1710                 err = -EIO;
1711                 ll_rw_block(READ, 1, &bh);
1712                 wait_on_buffer(bh);
1713                 /* Uhhuh. Read error. Complain and punt. */
1714                 if (!buffer_uptodate(bh))
1715                         goto unlock;
1716         }
1717
1718         if (ext3_should_journal_data(inode)) {
1719                 BUFFER_TRACE(bh, "get write access");
1720                 err = ext3_journal_get_write_access(handle, bh);
1721                 if (err)
1722                         goto unlock;
1723         }
1724
1725         kaddr = kmap_atomic(page, KM_USER0);
1726         memset(kaddr + offset, 0, length);
1727         flush_dcache_page(page);
1728         kunmap_atomic(kaddr, KM_USER0);
1729
1730         BUFFER_TRACE(bh, "zeroed end of block");
1731
1732         err = 0;
1733         if (ext3_should_journal_data(inode)) {
1734                 err = ext3_journal_dirty_metadata(handle, bh);
1735         } else {
1736                 if (ext3_should_order_data(inode))
1737                         err = ext3_journal_dirty_data(handle, bh);
1738                 mark_buffer_dirty(bh);
1739         }
1740
1741 unlock:
1742         unlock_page(page);
1743         page_cache_release(page);
1744         return err;
1745 }
1746
1747 /*
1748  * Probably it should be a library function... search for first non-zero word
1749  * or memcmp with zero_page, whatever is better for particular architecture.
1750  * Linus?
1751  */
1752 static inline int all_zeroes(u32 *p, u32 *q)
1753 {
1754         while (p < q)
1755                 if (*p++)
1756                         return 0;
1757         return 1;
1758 }
1759
1760 /**
1761  *      ext3_find_shared - find the indirect blocks for partial truncation.
1762  *      @inode:   inode in question
1763  *      @depth:   depth of the affected branch
1764  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1765  *      @chain:   place to store the pointers to partial indirect blocks
1766  *      @top:     place to the (detached) top of branch
1767  *
1768  *      This is a helper function used by ext3_truncate().
1769  *
1770  *      When we do truncate() we may have to clean the ends of several
1771  *      indirect blocks but leave the blocks themselves alive. Block is
1772  *      partially truncated if some data below the new i_size is refered
1773  *      from it (and it is on the path to the first completely truncated
1774  *      data block, indeed).  We have to free the top of that path along
1775  *      with everything to the right of the path. Since no allocation
1776  *      past the truncation point is possible until ext3_truncate()
1777  *      finishes, we may safely do the latter, but top of branch may
1778  *      require special attention - pageout below the truncation point
1779  *      might try to populate it.
1780  *
1781  *      We atomically detach the top of branch from the tree, store the
1782  *      block number of its root in *@top, pointers to buffer_heads of
1783  *      partially truncated blocks - in @chain[].bh and pointers to
1784  *      their last elements that should not be removed - in
1785  *      @chain[].p. Return value is the pointer to last filled element
1786  *      of @chain.
1787  *
1788  *      The work left to caller to do the actual freeing of subtrees:
1789  *              a) free the subtree starting from *@top
1790  *              b) free the subtrees whose roots are stored in
1791  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1792  *              c) free the subtrees growing from the inode past the @chain[0].
1793  *                      (no partially truncated stuff there).  */
1794
1795 static Indirect *ext3_find_shared(struct inode *inode,
1796                                 int depth,
1797                                 int offsets[4],
1798                                 Indirect chain[4],
1799                                 u32 *top)
1800 {
1801         Indirect *partial, *p;
1802         int k, err;
1803
1804         *top = 0;
1805         /* Make k index the deepest non-null offest + 1 */
1806         for (k = depth; k > 1 && !offsets[k-1]; k--)
1807                 ;
1808         partial = ext3_get_branch(inode, k, offsets, chain, &err);
1809         /* Writer: pointers */
1810         if (!partial)
1811                 partial = chain + k-1;
1812         /*
1813          * If the branch acquired continuation since we've looked at it -
1814          * fine, it should all survive and (new) top doesn't belong to us.
1815          */
1816         if (!partial->key && *partial->p)
1817                 /* Writer: end */
1818                 goto no_top;
1819         for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
1820                 ;
1821         /*
1822          * OK, we've found the last block that must survive. The rest of our
1823          * branch should be detached before unlocking. However, if that rest
1824          * of branch is all ours and does not grow immediately from the inode
1825          * it's easier to cheat and just decrement partial->p.
1826          */
1827         if (p == chain + k - 1 && p > chain) {
1828                 p->p--;
1829         } else {
1830                 *top = *p->p;
1831                 /* Nope, don't do this in ext3.  Must leave the tree intact */
1832 #if 0
1833                 *p->p = 0;
1834 #endif
1835         }
1836         /* Writer: end */
1837
1838         while(partial > p)
1839         {
1840                 brelse(partial->bh);
1841                 partial--;
1842         }
1843 no_top:
1844         return partial;
1845 }
1846
1847 /*
1848  * Zero a number of block pointers in either an inode or an indirect block.
1849  * If we restart the transaction we must again get write access to the
1850  * indirect block for further modification.
1851  *
1852  * We release `count' blocks on disk, but (last - first) may be greater
1853  * than `count' because there can be holes in there.
1854  */
1855 static void
1856 ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1857                 unsigned long block_to_free, unsigned long count,
1858                 u32 *first, u32 *last)
1859 {
1860         u32 *p;
1861         if (try_to_extend_transaction(handle, inode)) {
1862                 if (bh) {
1863                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1864                         ext3_journal_dirty_metadata(handle, bh);
1865                 }
1866                 ext3_mark_inode_dirty(handle, inode);
1867                 ext3_journal_test_restart(handle, inode);
1868                 if (bh) {
1869                         BUFFER_TRACE(bh, "retaking write access");
1870                         ext3_journal_get_write_access(handle, bh);
1871                 }
1872         }
1873
1874         /*
1875          * Any buffers which are on the journal will be in memory. We find
1876          * them on the hash table so journal_revoke() will run journal_forget()
1877          * on them.  We've already detached each block from the file, so
1878          * bforget() in journal_forget() should be safe.
1879          *
1880          * AKPM: turn on bforget in journal_forget()!!!
1881          */
1882         for (p = first; p < last; p++) {
1883                 u32 nr = le32_to_cpu(*p);
1884                 if (nr) {
1885                         struct buffer_head *bh;
1886
1887                         *p = 0;
1888                         bh = sb_find_get_block(inode->i_sb, nr);
1889                         ext3_forget(handle, 0, inode, bh, nr);
1890                 }
1891         }
1892
1893         ext3_free_blocks(handle, inode, block_to_free, count);
1894 }
1895
1896 /**
1897  * ext3_free_data - free a list of data blocks
1898  * @handle:     handle for this transaction
1899  * @inode:      inode we are dealing with
1900  * @this_bh:    indirect buffer_head which contains *@first and *@last
1901  * @first:      array of block numbers
1902  * @last:       points immediately past the end of array
1903  *
1904  * We are freeing all blocks refered from that array (numbers are stored as
1905  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1906  *
1907  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1908  * blocks are contiguous then releasing them at one time will only affect one
1909  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1910  * actually use a lot of journal space.
1911  *
1912  * @this_bh will be %NULL if @first and @last point into the inode's direct
1913  * block pointers.
1914  */
1915 static void ext3_free_data(handle_t *handle, struct inode *inode,
1916                            struct buffer_head *this_bh, u32 *first, u32 *last)
1917 {
1918         unsigned long block_to_free = 0;    /* Starting block # of a run */
1919         unsigned long count = 0;            /* Number of blocks in the run */ 
1920         u32 *block_to_free_p = NULL;        /* Pointer into inode/ind
1921                                                corresponding to
1922                                                block_to_free */
1923         unsigned long nr;                   /* Current block # */
1924         u32 *p;                             /* Pointer into inode/ind
1925                                                for current block */
1926         int err;
1927
1928         if (this_bh) {                          /* For indirect block */
1929                 BUFFER_TRACE(this_bh, "get_write_access");
1930                 err = ext3_journal_get_write_access(handle, this_bh);
1931                 /* Important: if we can't update the indirect pointers
1932                  * to the blocks, we can't free them. */
1933                 if (err)
1934                         return;
1935         }
1936
1937         for (p = first; p < last; p++) {
1938                 nr = le32_to_cpu(*p);
1939                 if (nr) {
1940                         /* accumulate blocks to free if they're contiguous */
1941                         if (count == 0) {
1942                                 block_to_free = nr;
1943                                 block_to_free_p = p;
1944                                 count = 1;
1945                         } else if (nr == block_to_free + count) {
1946                                 count++;
1947                         } else {
1948                                 ext3_clear_blocks(handle, inode, this_bh, 
1949                                                   block_to_free,
1950                                                   count, block_to_free_p, p);
1951                                 block_to_free = nr;
1952                                 block_to_free_p = p;
1953                                 count = 1;
1954                         }
1955                 }
1956         }
1957
1958         if (count > 0)
1959                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1960                                   count, block_to_free_p, p);
1961
1962         if (this_bh) {
1963                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1964                 ext3_journal_dirty_metadata(handle, this_bh);
1965         }
1966 }
1967
1968 /**
1969  *      ext3_free_branches - free an array of branches
1970  *      @handle: JBD handle for this transaction
1971  *      @inode: inode we are dealing with
1972  *      @parent_bh: the buffer_head which contains *@first and *@last
1973  *      @first: array of block numbers
1974  *      @last:  pointer immediately past the end of array
1975  *      @depth: depth of the branches to free
1976  *
1977  *      We are freeing all blocks refered from these branches (numbers are
1978  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1979  *      appropriately.
1980  */
1981 static void ext3_free_branches(handle_t *handle, struct inode *inode,
1982                                struct buffer_head *parent_bh,
1983                                u32 *first, u32 *last, int depth)
1984 {
1985         unsigned long nr;
1986         u32 *p;
1987
1988         if (is_handle_aborted(handle))
1989                 return;
1990
1991         if (depth--) {
1992                 struct buffer_head *bh;
1993                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1994                 p = last;
1995                 while (--p >= first) {
1996                         nr = le32_to_cpu(*p);
1997                         if (!nr)
1998                                 continue;               /* A hole */
1999
2000                         /* Go read the buffer for the next level down */
2001                         bh = sb_bread(inode->i_sb, nr);
2002
2003                         /*
2004                          * A read failure? Report error and clear slot
2005                          * (should be rare).
2006                          */
2007                         if (!bh) {
2008                                 ext3_error(inode->i_sb, "ext3_free_branches",
2009                                            "Read failure, inode=%ld, block=%ld",
2010                                            inode->i_ino, nr);
2011                                 continue;
2012                         }
2013
2014                         /* This zaps the entire block.  Bottom up. */
2015                         BUFFER_TRACE(bh, "free child branches");
2016                         ext3_free_branches(handle, inode, bh, (u32*)bh->b_data,
2017                                            (u32*)bh->b_data + addr_per_block,
2018                                            depth);
2019
2020                         /*
2021                          * We've probably journalled the indirect block several
2022                          * times during the truncate.  But it's no longer
2023                          * needed and we now drop it from the transaction via
2024                          * journal_revoke().
2025                          *
2026                          * That's easy if it's exclusively part of this
2027                          * transaction.  But if it's part of the committing
2028                          * transaction then journal_forget() will simply
2029                          * brelse() it.  That means that if the underlying
2030                          * block is reallocated in ext3_get_block(),
2031                          * unmap_underlying_metadata() will find this block
2032                          * and will try to get rid of it.  damn, damn.
2033                          *
2034                          * If this block has already been committed to the
2035                          * journal, a revoke record will be written.  And
2036                          * revoke records must be emitted *before* clearing
2037                          * this block's bit in the bitmaps.
2038                          */
2039                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2040
2041                         /*
2042                          * Everything below this this pointer has been
2043                          * released.  Now let this top-of-subtree go.
2044                          *
2045                          * We want the freeing of this indirect block to be
2046                          * atomic in the journal with the updating of the
2047                          * bitmap block which owns it.  So make some room in
2048                          * the journal.
2049                          *
2050                          * We zero the parent pointer *after* freeing its
2051                          * pointee in the bitmaps, so if extend_transaction()
2052                          * for some reason fails to put the bitmap changes and
2053                          * the release into the same transaction, recovery
2054                          * will merely complain about releasing a free block,
2055                          * rather than leaking blocks.
2056                          */
2057                         if (is_handle_aborted(handle))
2058                                 return;
2059                         if (try_to_extend_transaction(handle, inode)) {
2060                                 ext3_mark_inode_dirty(handle, inode);
2061                                 ext3_journal_test_restart(handle, inode);
2062                         }
2063
2064                         ext3_free_blocks(handle, inode, nr, 1);
2065
2066                         if (parent_bh) {
2067                                 /*
2068                                  * The block which we have just freed is
2069                                  * pointed to by an indirect block: journal it
2070                                  */
2071                                 BUFFER_TRACE(parent_bh, "get_write_access");
2072                                 if (!ext3_journal_get_write_access(handle,
2073                                                                    parent_bh)){
2074                                         *p = 0;
2075                                         BUFFER_TRACE(parent_bh,
2076                                         "call ext3_journal_dirty_metadata");
2077                                         ext3_journal_dirty_metadata(handle, 
2078                                                                     parent_bh);
2079                                 }
2080                         }
2081                 }
2082         } else {
2083                 /* We have reached the bottom of the tree. */
2084                 BUFFER_TRACE(parent_bh, "free data blocks");
2085                 ext3_free_data(handle, inode, parent_bh, first, last);
2086         }
2087 }
2088
2089 /*
2090  * ext3_truncate()
2091  *
2092  * We block out ext3_get_block() block instantiations across the entire
2093  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2094  * simultaneously on behalf of the same inode.
2095  *
2096  * As we work through the truncate and commmit bits of it to the journal there
2097  * is one core, guiding principle: the file's tree must always be consistent on
2098  * disk.  We must be able to restart the truncate after a crash.
2099  *
2100  * The file's tree may be transiently inconsistent in memory (although it
2101  * probably isn't), but whenever we close off and commit a journal transaction,
2102  * the contents of (the filesystem + the journal) must be consistent and
2103  * restartable.  It's pretty simple, really: bottom up, right to left (although
2104  * left-to-right works OK too).
2105  *
2106  * Note that at recovery time, journal replay occurs *before* the restart of
2107  * truncate against the orphan inode list.
2108  *
2109  * The committed inode has the new, desired i_size (which is the same as
2110  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2111  * that this inode's truncate did not complete and it will again call
2112  * ext3_truncate() to have another go.  So there will be instantiated blocks
2113  * to the right of the truncation point in a crashed ext3 filesystem.  But
2114  * that's fine - as long as they are linked from the inode, the post-crash
2115  * ext3_truncate() run will find them and release them.
2116  */
2117
2118 void ext3_truncate_nocheck(struct inode * inode)
2119 {
2120         handle_t *handle;
2121         struct ext3_inode_info *ei = EXT3_I(inode);
2122         u32 *i_data = ei->i_data;
2123         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2124         struct address_space *mapping = inode->i_mapping;
2125         int offsets[4];
2126         Indirect chain[4];
2127         Indirect *partial;
2128         int nr = 0;
2129         int n;
2130         long last_block;
2131         unsigned blocksize = inode->i_sb->s_blocksize;
2132         struct page *page;
2133
2134         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2135             S_ISLNK(inode->i_mode)))
2136                 return;
2137         if (ext3_inode_is_fast_symlink(inode))
2138                 return;
2139
2140         ext3_discard_prealloc(inode);
2141
2142         /*
2143          * We have to lock the EOF page here, because lock_page() nests
2144          * outside journal_start().
2145          */
2146         if ((inode->i_size & (blocksize - 1)) == 0) {
2147                 /* Block boundary? Nothing to do */
2148                 page = NULL;
2149         } else {
2150                 page = grab_cache_page(mapping,
2151                                 inode->i_size >> PAGE_CACHE_SHIFT);
2152                 if (!page)
2153                         return;
2154         }
2155
2156         handle = start_transaction(inode);
2157         if (IS_ERR(handle)) {
2158                 if (page) {
2159                         clear_highpage(page);
2160                         flush_dcache_page(page);
2161                         unlock_page(page);
2162                         page_cache_release(page);
2163                 }
2164                 return;         /* AKPM: return what? */
2165         }
2166
2167         last_block = (inode->i_size + blocksize-1)
2168                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2169
2170         if (page)
2171                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2172
2173         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2174         if (n == 0)
2175                 goto out_stop;  /* error */
2176
2177         /*
2178          * OK.  This truncate is going to happen.  We add the inode to the
2179          * orphan list, so that if this truncate spans multiple transactions,
2180          * and we crash, we will resume the truncate when the filesystem
2181          * recovers.  It also marks the inode dirty, to catch the new size.
2182          *
2183          * Implication: the file must always be in a sane, consistent
2184          * truncatable state while each transaction commits.
2185          */
2186         if (ext3_orphan_add(handle, inode))
2187                 goto out_stop;
2188
2189         /*
2190          * The orphan list entry will now protect us from any crash which
2191          * occurs before the truncate completes, so it is now safe to propagate
2192          * the new, shorter inode size (held for now in i_size) into the
2193          * on-disk inode. We do this via i_disksize, which is the value which
2194          * ext3 *really* writes onto the disk inode.
2195          */
2196         ei->i_disksize = inode->i_size;
2197
2198         /*
2199          * From here we block out all ext3_get_block() callers who want to
2200          * modify the block allocation tree.
2201          */
2202         down(&ei->truncate_sem);
2203
2204         if (n == 1) {           /* direct blocks */
2205                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2206                                i_data + EXT3_NDIR_BLOCKS);
2207                 goto do_indirects;
2208         }
2209
2210         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2211         /* Kill the top of shared branch (not detached) */
2212         if (nr) {
2213                 if (partial == chain) {
2214                         /* Shared branch grows from the inode */
2215                         ext3_free_branches(handle, inode, NULL,
2216                                            &nr, &nr+1, (chain+n-1) - partial);
2217                         *partial->p = 0;
2218                         /*
2219                          * We mark the inode dirty prior to restart,
2220                          * and prior to stop.  No need for it here.
2221                          */
2222                 } else {
2223                         /* Shared branch grows from an indirect block */
2224                         BUFFER_TRACE(partial->bh, "get_write_access");
2225                         ext3_free_branches(handle, inode, partial->bh,
2226                                         partial->p,
2227                                         partial->p+1, (chain+n-1) - partial);
2228                 }
2229         }
2230         /* Clear the ends of indirect blocks on the shared branch */
2231         while (partial > chain) {
2232                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2233                                    (u32*)partial->bh->b_data + addr_per_block,
2234                                    (chain+n-1) - partial);
2235                 BUFFER_TRACE(partial->bh, "call brelse");
2236                 brelse (partial->bh);
2237                 partial--;
2238         }
2239 do_indirects:
2240         /* Kill the remaining (whole) subtrees */
2241         switch (offsets[0]) {
2242                 default:
2243                         nr = i_data[EXT3_IND_BLOCK];
2244                         if (nr) {
2245                                 ext3_free_branches(handle, inode, NULL,
2246                                                    &nr, &nr+1, 1);
2247                                 i_data[EXT3_IND_BLOCK] = 0;
2248                         }
2249                 case EXT3_IND_BLOCK:
2250                         nr = i_data[EXT3_DIND_BLOCK];
2251                         if (nr) {
2252                                 ext3_free_branches(handle, inode, NULL,
2253                                                    &nr, &nr+1, 2);
2254                                 i_data[EXT3_DIND_BLOCK] = 0;
2255                         }
2256                 case EXT3_DIND_BLOCK:
2257                         nr = i_data[EXT3_TIND_BLOCK];
2258                         if (nr) {
2259                                 ext3_free_branches(handle, inode, NULL,
2260                                                    &nr, &nr+1, 3);
2261                                 i_data[EXT3_TIND_BLOCK] = 0;
2262                         }
2263                 case EXT3_TIND_BLOCK:
2264                         ;
2265         }
2266         up(&ei->truncate_sem);
2267         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2268         ext3_mark_inode_dirty(handle, inode);
2269
2270         /* In a multi-transaction truncate, we only make the final
2271          * transaction synchronous */
2272         if (IS_SYNC(inode))
2273                 handle->h_sync = 1;
2274 out_stop:
2275         /*
2276          * If this was a simple ftruncate(), and the file will remain alive
2277          * then we need to clear up the orphan record which we created above.
2278          * However, if this was a real unlink then we were called by
2279          * ext3_delete_inode(), and we allow that function to clean up the
2280          * orphan info for us.
2281          */
2282         if (inode->i_nlink)
2283                 ext3_orphan_del(handle, inode);
2284
2285         ext3_journal_stop(handle);
2286 }
2287
2288 static unsigned long ext3_get_inode_block(struct super_block *sb,
2289                 unsigned long ino, struct ext3_iloc *iloc)
2290 {
2291         unsigned long desc, group_desc, block_group;
2292         unsigned long offset, block;
2293         struct buffer_head *bh;
2294         struct ext3_group_desc * gdp;
2295
2296         if ((ino != EXT3_ROOT_INO &&
2297                 ino != EXT3_JOURNAL_INO &&
2298                 ino < EXT3_FIRST_INO(sb)) ||
2299                 ino > le32_to_cpu(
2300                         EXT3_SB(sb)->s_es->s_inodes_count)) {
2301                 ext3_error (sb, "ext3_get_inode_block",
2302                             "bad inode number: %lu", ino);
2303                 return 0;
2304         }
2305         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2306         if (block_group >= EXT3_SB(sb)->s_groups_count) {
2307                 ext3_error (sb, "ext3_get_inode_block",
2308                             "group >= groups count");
2309                 return 0;
2310         }
2311         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2312         desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2313         bh = EXT3_SB(sb)->s_group_desc[group_desc];
2314         if (!bh) {
2315                 ext3_error (sb, "ext3_get_inode_block",
2316                             "Descriptor not loaded");
2317                 return 0;
2318         }
2319
2320         gdp = (struct ext3_group_desc *) bh->b_data;
2321         /*
2322          * Figure out the offset within the block group inode table
2323          */
2324         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2325                 EXT3_INODE_SIZE(sb);
2326         block = le32_to_cpu(gdp[desc].bg_inode_table) +
2327                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2328
2329         iloc->block_group = block_group;
2330         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2331         return block;
2332 }
2333
2334 /* 
2335  * ext3_get_inode_loc returns with an extra refcount against the inode's
2336  * underlying buffer_head on success.  If `in_mem' is false then we're purely
2337  * trying to determine the inode's location on-disk and no read need be
2338  * performed.
2339  */
2340 static int ext3_get_inode_loc(struct inode *inode,
2341                                 struct ext3_iloc *iloc, int in_mem)
2342 {
2343         unsigned long block;
2344         struct buffer_head *bh;
2345
2346         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2347         if (!block)
2348                 return -EIO;
2349
2350         bh = sb_getblk(inode->i_sb, block);
2351         if (!bh) {
2352                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2353                                 "unable to read inode block - "
2354                                 "inode=%lu, block=%lu", inode->i_ino, block);
2355                 return -EIO;
2356         }
2357         if (!buffer_uptodate(bh)) {
2358                 lock_buffer(bh);
2359                 if (buffer_uptodate(bh)) {
2360                         /* someone brought it uptodate while we waited */
2361                         unlock_buffer(bh);
2362                         goto has_buffer;
2363                 }
2364
2365                 /* we can't skip I/O if inode is on a disk only */
2366                 if (in_mem) {
2367                         struct buffer_head *bitmap_bh;
2368                         struct ext3_group_desc *desc;
2369                         int inodes_per_buffer;
2370                         int inode_offset, i;
2371                         int block_group;
2372                         int start;
2373
2374                         /*
2375                          * If this is the only valid inode in the block we
2376                          * need not read the block.
2377                          */
2378                         block_group = (inode->i_ino - 1) /
2379                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2380                         inodes_per_buffer = bh->b_size /
2381                                 EXT3_INODE_SIZE(inode->i_sb);
2382                         inode_offset = ((inode->i_ino - 1) %
2383                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2384                         start = inode_offset & ~(inodes_per_buffer - 1);
2385
2386                         /* Is the inode bitmap in cache? */
2387                         desc = ext3_get_group_desc(inode->i_sb,
2388                                                 block_group, NULL);
2389                         if (!desc)
2390                                 goto make_io;
2391
2392                         bitmap_bh = sb_getblk(inode->i_sb,
2393                                         le32_to_cpu(desc->bg_inode_bitmap));
2394                         if (!bitmap_bh)
2395                                 goto make_io;
2396
2397                         /*
2398                          * If the inode bitmap isn't in cache then the
2399                          * optimisation may end up performing two reads instead
2400                          * of one, so skip it.
2401                          */
2402                         if (!buffer_uptodate(bitmap_bh)) {
2403                                 brelse(bitmap_bh);
2404                                 goto make_io;
2405                         }
2406                         for (i = start; i < start + inodes_per_buffer; i++) {
2407                                 if (i == inode_offset)
2408                                         continue;
2409                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2410                                         break;
2411                         }
2412                         brelse(bitmap_bh);
2413                         if (i == start + inodes_per_buffer) {
2414                                 /* all other inodes are free, so skip I/O */
2415                                 memset(bh->b_data, 0, bh->b_size);
2416                                 set_buffer_uptodate(bh);
2417                                 unlock_buffer(bh);
2418                                 goto has_buffer;
2419                         }
2420                 }
2421
2422 make_io:
2423                 /*
2424                  * There are another valid inodes in the buffer so we must
2425                  * read the block from disk
2426                  */
2427                 get_bh(bh);
2428                 bh->b_end_io = end_buffer_read_sync;
2429                 submit_bh(READ, bh);
2430                 wait_on_buffer(bh);
2431                 if (!buffer_uptodate(bh)) {
2432                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2433                                         "unable to read inode block - "
2434                                         "inode=%lu, block=%lu",
2435                                         inode->i_ino, block);
2436                         brelse(bh);
2437                         return -EIO;
2438                 }
2439         }
2440 has_buffer:
2441         iloc->bh = bh;
2442         return 0;
2443 }
2444
2445 void ext3_truncate(struct inode * inode)
2446 {
2447         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2448                 return;
2449         ext3_truncate_nocheck(inode);
2450 }
2451
2452 void ext3_set_inode_flags(struct inode *inode)
2453 {
2454         unsigned int flags = EXT3_I(inode)->i_flags;
2455
2456         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2457         if (flags & EXT3_SYNC_FL)
2458                 inode->i_flags |= S_SYNC;
2459         if (flags & EXT3_APPEND_FL)
2460                 inode->i_flags |= S_APPEND;
2461         if (flags & EXT3_IMMUTABLE_FL)
2462                 inode->i_flags |= S_IMMUTABLE;
2463         if (flags & EXT3_IUNLINK_FL)
2464                 inode->i_flags |= S_IUNLINK;
2465         if (flags & EXT3_BARRIER_FL)
2466                 inode->i_flags |= S_BARRIER;
2467         if (flags & EXT3_NOATIME_FL)
2468                 inode->i_flags |= S_NOATIME;
2469         if (flags & EXT3_DIRSYNC_FL)
2470                 inode->i_flags |= S_DIRSYNC;
2471 }
2472
2473 void ext3_read_inode(struct inode * inode)
2474 {
2475         struct ext3_iloc iloc;
2476         struct ext3_inode *raw_inode;
2477         struct ext3_inode_info *ei = EXT3_I(inode);
2478         struct buffer_head *bh;
2479         int block;
2480         uid_t uid;
2481         gid_t gid;
2482
2483 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2484         ei->i_acl = EXT3_ACL_NOT_CACHED;
2485         ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2486 #endif
2487         if (ext3_get_inode_loc(inode, &iloc, 0))
2488                 goto bad_inode;
2489         bh = iloc.bh;
2490         raw_inode = ext3_raw_inode(&iloc);
2491         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2492         uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2493         gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2494         if(!(test_opt (inode->i_sb, NO_UID32))) {
2495                 uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2496                 gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2497         }
2498         inode->i_uid = INOXID_UID(uid, gid);
2499         inode->i_gid = INOXID_GID(uid, gid);
2500         if (inode->i_sb->s_flags & MS_TAGXID)
2501                 inode->i_xid = INOXID_XID(uid, gid, le16_to_cpu(raw_inode->i_raw_xid));
2502
2503         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2504         inode->i_size = le32_to_cpu(raw_inode->i_size);
2505         inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2506         inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2507         inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2508         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2509
2510         ei->i_state = 0;
2511         ei->i_next_alloc_block = 0;
2512         ei->i_next_alloc_goal = 0;
2513         ei->i_dir_start_lookup = 0;
2514         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2515         /* We now have enough fields to check if the inode was active or not.
2516          * This is needed because nfsd might try to access dead inodes
2517          * the test is that same one that e2fsck uses
2518          * NeilBrown 1999oct15
2519          */
2520         if (inode->i_nlink == 0) {
2521                 if (inode->i_mode == 0 ||
2522                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2523                         /* this inode is deleted */
2524                         brelse (bh);
2525                         goto bad_inode;
2526                 }
2527                 /* The only unlinked inodes we let through here have
2528                  * valid i_mode and are being read by the orphan
2529                  * recovery code: that's fine, we're about to complete
2530                  * the process of deleting those. */
2531         }
2532         inode->i_blksize = PAGE_SIZE;   /* This is the optimal IO size
2533                                          * (for stat), not the fs block
2534                                          * size */  
2535         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2536         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2537 #ifdef EXT3_FRAGMENTS
2538         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2539         ei->i_frag_no = raw_inode->i_frag;
2540         ei->i_frag_size = raw_inode->i_fsize;
2541 #endif
2542         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2543         if (!S_ISREG(inode->i_mode)) {
2544                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2545         } else {
2546                 inode->i_size |=
2547                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2548         }
2549         ei->i_disksize = inode->i_size;
2550         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2551 #ifdef EXT3_PREALLOCATE
2552         ei->i_prealloc_count = 0;
2553 #endif
2554         ei->i_block_group = iloc.block_group;
2555
2556         /*
2557          * NOTE! The in-memory inode i_data array is in little-endian order
2558          * even on big-endian machines: we do NOT byteswap the block numbers!
2559          */
2560         for (block = 0; block < EXT3_N_BLOCKS; block++)
2561                 ei->i_data[block] = raw_inode->i_block[block];
2562         INIT_LIST_HEAD(&ei->i_orphan);
2563
2564         if (S_ISREG(inode->i_mode)) {
2565                 inode->i_op = &ext3_file_inode_operations;
2566                 inode->i_fop = &ext3_file_operations;
2567                 ext3_set_aops(inode);
2568         } else if (S_ISDIR(inode->i_mode)) {
2569                 inode->i_op = &ext3_dir_inode_operations;
2570                 inode->i_fop = &ext3_dir_operations;
2571         } else if (S_ISLNK(inode->i_mode)) {
2572                 if (ext3_inode_is_fast_symlink(inode))
2573                         inode->i_op = &ext3_fast_symlink_inode_operations;
2574                 else {
2575                         inode->i_op = &ext3_symlink_inode_operations;
2576                         ext3_set_aops(inode);
2577                 }
2578         } else {
2579                 inode->i_op = &ext3_special_inode_operations;
2580                 if (raw_inode->i_block[0])
2581                         init_special_inode(inode, inode->i_mode,
2582                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2583                 else 
2584                         init_special_inode(inode, inode->i_mode,
2585                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2586         }
2587         brelse (iloc.bh);
2588         ext3_set_inode_flags(inode);
2589         return;
2590
2591 bad_inode:
2592         make_bad_inode(inode);
2593         return;
2594 }
2595
2596 /*
2597  * Post the struct inode info into an on-disk inode location in the
2598  * buffer-cache.  This gobbles the caller's reference to the
2599  * buffer_head in the inode location struct.
2600  *
2601  * The caller must have write access to iloc->bh.
2602  */
2603 static int ext3_do_update_inode(handle_t *handle, 
2604                                 struct inode *inode, 
2605                                 struct ext3_iloc *iloc)
2606 {
2607         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2608         struct ext3_inode_info *ei = EXT3_I(inode);
2609         struct buffer_head *bh = iloc->bh;
2610         uid_t uid = XIDINO_UID(inode->i_uid, inode->i_xid);
2611         gid_t gid = XIDINO_GID(inode->i_gid, inode->i_xid);
2612         int err = 0, rc, block;
2613
2614         /* For fields not not tracking in the in-memory inode,
2615          * initialise them to zero for new inodes. */
2616         if (ei->i_state & EXT3_STATE_NEW)
2617                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2618
2619         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2620         if(!(test_opt(inode->i_sb, NO_UID32))) {
2621                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
2622                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
2623 /*
2624  * Fix up interoperability with old kernels. Otherwise, old inodes get
2625  * re-used with the upper 16 bits of the uid/gid intact
2626  */
2627                 if(!ei->i_dtime) {
2628                         raw_inode->i_uid_high =
2629                                 cpu_to_le16(high_16_bits(uid));
2630                         raw_inode->i_gid_high =
2631                                 cpu_to_le16(high_16_bits(gid));
2632                 } else {
2633                         raw_inode->i_uid_high = 0;
2634                         raw_inode->i_gid_high = 0;
2635                 }
2636         } else {
2637                 raw_inode->i_uid_low =
2638                         cpu_to_le16(fs_high2lowuid(uid));
2639                 raw_inode->i_gid_low =
2640                         cpu_to_le16(fs_high2lowgid(gid));
2641                 raw_inode->i_uid_high = 0;
2642                 raw_inode->i_gid_high = 0;
2643         }
2644 #ifdef CONFIG_INOXID_GID32
2645         raw_inode->i_raw_xid = cpu_to_le16(inode->i_xid);
2646 #endif
2647         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2648         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2649         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2650         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2651         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2652         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2653         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2654         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2655 #ifdef EXT3_FRAGMENTS
2656         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2657         raw_inode->i_frag = ei->i_frag_no;
2658         raw_inode->i_fsize = ei->i_frag_size;
2659 #endif
2660         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2661         if (!S_ISREG(inode->i_mode)) {
2662                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2663         } else {
2664                 raw_inode->i_size_high =
2665                         cpu_to_le32(ei->i_disksize >> 32);
2666                 if (ei->i_disksize > 0x7fffffffULL) {
2667                         struct super_block *sb = inode->i_sb;
2668                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2669                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2670                             EXT3_SB(sb)->s_es->s_rev_level ==
2671                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2672                                /* If this is the first large file
2673                                 * created, add a flag to the superblock.
2674                                 */
2675                                 err = ext3_journal_get_write_access(handle,
2676                                                 EXT3_SB(sb)->s_sbh);
2677                                 if (err)
2678                                         goto out_brelse;
2679                                 ext3_update_dynamic_rev(sb);
2680                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
2681                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2682                                 sb->s_dirt = 1;
2683                                 handle->h_sync = 1;
2684                                 err = ext3_journal_dirty_metadata(handle,
2685                                                 EXT3_SB(sb)->s_sbh);
2686                         }
2687                 }
2688         }
2689         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2690         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2691                 if (old_valid_dev(inode->i_rdev)) {
2692                         raw_inode->i_block[0] =
2693                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2694                         raw_inode->i_block[1] = 0;
2695                 } else {
2696                         raw_inode->i_block[0] = 0;
2697                         raw_inode->i_block[1] =
2698                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2699                         raw_inode->i_block[2] = 0;
2700                 }
2701         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2702                 raw_inode->i_block[block] = ei->i_data[block];
2703
2704         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2705         rc = ext3_journal_dirty_metadata(handle, bh);
2706         if (!err)
2707                 err = rc;
2708         ei->i_state &= ~EXT3_STATE_NEW;
2709
2710 out_brelse:
2711         brelse (bh);
2712         ext3_std_error(inode->i_sb, err);
2713         return err;
2714 }
2715
2716 /*
2717  * ext3_write_inode()
2718  *
2719  * We are called from a few places:
2720  *
2721  * - Within generic_file_write() for O_SYNC files.
2722  *   Here, there will be no transaction running. We wait for any running
2723  *   trasnaction to commit.
2724  *
2725  * - Within sys_sync(), kupdate and such.
2726  *   We wait on commit, if tol to.
2727  *
2728  * - Within prune_icache() (PF_MEMALLOC == true)
2729  *   Here we simply return.  We can't afford to block kswapd on the
2730  *   journal commit.
2731  *
2732  * In all cases it is actually safe for us to return without doing anything,
2733  * because the inode has been copied into a raw inode buffer in
2734  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2735  * knfsd.
2736  *
2737  * Note that we are absolutely dependent upon all inode dirtiers doing the
2738  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2739  * which we are interested.
2740  *
2741  * It would be a bug for them to not do this.  The code:
2742  *
2743  *      mark_inode_dirty(inode)
2744  *      stuff();
2745  *      inode->i_size = expr;
2746  *
2747  * is in error because a kswapd-driven write_inode() could occur while
2748  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2749  * will no longer be on the superblock's dirty inode list.
2750  */
2751 void ext3_write_inode(struct inode *inode, int wait)
2752 {
2753         if (current->flags & PF_MEMALLOC)
2754                 return;
2755
2756         if (ext3_journal_current_handle()) {
2757                 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2758                 dump_stack();
2759                 return;
2760         }
2761
2762         if (!wait)
2763                 return;
2764
2765         ext3_force_commit(inode->i_sb);
2766 }
2767
2768 int ext3_setattr_flags(struct inode *inode, unsigned int flags)
2769 {
2770         unsigned int oldflags, newflags;
2771         int err = 0;
2772
2773         oldflags = EXT3_I(inode)->i_flags;
2774         newflags = oldflags &
2775                 ~(EXT3_IMMUTABLE_FL | EXT3_IUNLINK_FL | EXT3_BARRIER_FL);       
2776         if (flags & ATTR_FLAG_IMMUTABLE)
2777                 newflags |= EXT3_IMMUTABLE_FL;
2778         if (flags & ATTR_FLAG_IUNLINK)
2779                 newflags |= EXT3_IUNLINK_FL;
2780         if (flags & ATTR_FLAG_BARRIER)
2781                 newflags |= EXT3_BARRIER_FL;
2782
2783         if (oldflags ^ newflags) {
2784                 handle_t *handle;
2785                 struct ext3_iloc iloc;
2786
2787                 handle = ext3_journal_start(inode, 1);
2788                 if (IS_ERR(handle))
2789                         return PTR_ERR(handle);
2790                 if (IS_SYNC(inode))
2791                         handle->h_sync = 1;
2792                 err = ext3_reserve_inode_write(handle, inode, &iloc);
2793                 if (err)
2794                         goto flags_err;
2795                 
2796                 EXT3_I(inode)->i_flags = newflags;
2797                 inode->i_ctime = CURRENT_TIME;
2798
2799                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2800         flags_err:
2801                 ext3_journal_stop(handle);
2802         }
2803         return err;
2804 }
2805
2806 /*
2807  * ext3_setattr()
2808  *
2809  * Called from notify_change.
2810  *
2811  * We want to trap VFS attempts to truncate the file as soon as
2812  * possible.  In particular, we want to make sure that when the VFS
2813  * shrinks i_size, we put the inode on the orphan list and modify
2814  * i_disksize immediately, so that during the subsequent flushing of
2815  * dirty pages and freeing of disk blocks, we can guarantee that any
2816  * commit will leave the blocks being flushed in an unused state on
2817  * disk.  (On recovery, the inode will get truncated and the blocks will
2818  * be freed, so we have a strong guarantee that no future commit will
2819  * leave these blocks visible to the user.)  
2820  *
2821  * Called with inode->sem down.
2822  */
2823 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2824 {
2825         struct inode *inode = dentry->d_inode;
2826         int error, rc = 0;
2827         const unsigned int ia_valid = attr->ia_valid;
2828
2829         error = inode_change_ok(inode, attr);
2830         if (error)
2831                 return error;
2832
2833         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2834                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2835                 handle_t *handle;
2836
2837                 /* (user+group)*(old+new) structure, inode write (sb,
2838                  * inode block, ? - but truncate inode update has it) */
2839                 handle = ext3_journal_start(inode, 4*EXT3_QUOTA_INIT_BLOCKS+3);
2840                 if (IS_ERR(handle)) {
2841                         error = PTR_ERR(handle);
2842                         goto err_out;
2843                 }
2844                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2845                 if (error) {
2846                         ext3_journal_stop(handle);
2847                         return error;
2848                 }
2849                 /* Update corresponding info in inode so that everything is in
2850                  * one transaction */
2851                 if (attr->ia_valid & ATTR_UID)
2852                         inode->i_uid = attr->ia_uid;
2853                 if (attr->ia_valid & ATTR_GID)
2854                         inode->i_gid = attr->ia_gid;
2855                 error = ext3_mark_inode_dirty(handle, inode);
2856                 ext3_journal_stop(handle);
2857         }
2858
2859         if (S_ISREG(inode->i_mode) &&
2860             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2861                 handle_t *handle;
2862
2863                 handle = ext3_journal_start(inode, 3);
2864                 if (IS_ERR(handle)) {
2865                         error = PTR_ERR(handle);
2866                         goto err_out;
2867                 }
2868
2869                 error = ext3_orphan_add(handle, inode);
2870                 EXT3_I(inode)->i_disksize = attr->ia_size;
2871                 rc = ext3_mark_inode_dirty(handle, inode);
2872                 if (!error)
2873                         error = rc;
2874                 ext3_journal_stop(handle);
2875         }
2876
2877         if (ia_valid & ATTR_ATTR_FLAG) {
2878                 rc = ext3_setattr_flags(inode, attr->ia_attr_flags);
2879                 if (!error)
2880                         error = rc;
2881         }
2882
2883         rc = inode_setattr(inode, attr);
2884
2885         /* If inode_setattr's call to ext3_truncate failed to get a
2886          * transaction handle at all, we need to clean up the in-core
2887          * orphan list manually. */
2888         if (inode->i_nlink)
2889                 ext3_orphan_del(NULL, inode);
2890
2891         if (!rc && (ia_valid & ATTR_MODE))
2892                 rc = ext3_acl_chmod(inode);
2893
2894 err_out:
2895         ext3_std_error(inode->i_sb, error);
2896         if (!error)
2897                 error = rc;
2898         return error;
2899 }
2900
2901
2902 /*
2903  * akpm: how many blocks doth make a writepage()?
2904  *
2905  * With N blocks per page, it may be:
2906  * N data blocks
2907  * 2 indirect block
2908  * 2 dindirect
2909  * 1 tindirect
2910  * N+5 bitmap blocks (from the above)
2911  * N+5 group descriptor summary blocks
2912  * 1 inode block
2913  * 1 superblock.
2914  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2915  *
2916  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2917  *
2918  * With ordered or writeback data it's the same, less the N data blocks.
2919  *
2920  * If the inode's direct blocks can hold an integral number of pages then a
2921  * page cannot straddle two indirect blocks, and we can only touch one indirect
2922  * and dindirect block, and the "5" above becomes "3".
2923  *
2924  * This still overestimates under most circumstances.  If we were to pass the
2925  * start and end offsets in here as well we could do block_to_path() on each
2926  * block and work out the exact number of indirects which are touched.  Pah.
2927  */
2928
2929 int ext3_writepage_trans_blocks(struct inode *inode)
2930 {
2931         int bpp = ext3_journal_blocks_per_page(inode);
2932         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2933         int ret;
2934
2935         if (ext3_should_journal_data(inode))
2936                 ret = 3 * (bpp + indirects) + 2;
2937         else
2938                 ret = 2 * (bpp + indirects) + 2;
2939
2940 #ifdef CONFIG_QUOTA
2941         /* We know that structure was already allocated during DQUOT_INIT so
2942          * we will be updating only the data blocks + inodes */
2943         ret += 2*EXT3_QUOTA_TRANS_BLOCKS;
2944 #endif
2945
2946         return ret;
2947 }
2948
2949 /*
2950  * The caller must have previously called ext3_reserve_inode_write().
2951  * Give this, we know that the caller already has write access to iloc->bh.
2952  */
2953 int ext3_mark_iloc_dirty(handle_t *handle,
2954                 struct inode *inode, struct ext3_iloc *iloc)
2955 {
2956         int err = 0;
2957
2958         /* the do_update_inode consumes one bh->b_count */
2959         get_bh(iloc->bh);
2960
2961         /* ext3_do_update_inode() does journal_dirty_metadata */
2962         err = ext3_do_update_inode(handle, inode, iloc);
2963         put_bh(iloc->bh);
2964         return err;
2965 }
2966
2967 /* 
2968  * On success, We end up with an outstanding reference count against
2969  * iloc->bh.  This _must_ be cleaned up later. 
2970  */
2971
2972 int
2973 ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 
2974                          struct ext3_iloc *iloc)
2975 {
2976         int err = 0;
2977         if (handle) {
2978                 err = ext3_get_inode_loc(inode, iloc, 1);
2979                 if (!err) {
2980                         BUFFER_TRACE(iloc->bh, "get_write_access");
2981                         err = ext3_journal_get_write_access(handle, iloc->bh);
2982                         if (err) {
2983                                 brelse(iloc->bh);
2984                                 iloc->bh = NULL;
2985                         }
2986                 }
2987         }
2988         ext3_std_error(inode->i_sb, err);
2989         return err;
2990 }
2991
2992 /*
2993  * akpm: What we do here is to mark the in-core inode as clean
2994  * with respect to inode dirtiness (it may still be data-dirty).
2995  * This means that the in-core inode may be reaped by prune_icache
2996  * without having to perform any I/O.  This is a very good thing,
2997  * because *any* task may call prune_icache - even ones which
2998  * have a transaction open against a different journal.
2999  *
3000  * Is this cheating?  Not really.  Sure, we haven't written the
3001  * inode out, but prune_icache isn't a user-visible syncing function.
3002  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3003  * we start and wait on commits.
3004  *
3005  * Is this efficient/effective?  Well, we're being nice to the system
3006  * by cleaning up our inodes proactively so they can be reaped
3007  * without I/O.  But we are potentially leaving up to five seconds'
3008  * worth of inodes floating about which prune_icache wants us to
3009  * write out.  One way to fix that would be to get prune_icache()
3010  * to do a write_super() to free up some memory.  It has the desired
3011  * effect.
3012  */
3013 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3014 {
3015         struct ext3_iloc iloc;
3016         int err;
3017
3018         err = ext3_reserve_inode_write(handle, inode, &iloc);
3019         if (!err)
3020                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3021         return err;
3022 }
3023
3024 /*
3025  * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
3026  *
3027  * We're really interested in the case where a file is being extended.
3028  * i_size has been changed by generic_commit_write() and we thus need
3029  * to include the updated inode in the current transaction.
3030  *
3031  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3032  * are allocated to the file.
3033  *
3034  * If the inode is marked synchronous, we don't honour that here - doing
3035  * so would cause a commit on atime updates, which we don't bother doing.
3036  * We handle synchronous inodes at the highest possible level.
3037  */
3038 void ext3_dirty_inode(struct inode *inode)
3039 {
3040         handle_t *current_handle = ext3_journal_current_handle();
3041         handle_t *handle;
3042
3043         handle = ext3_journal_start(inode, 2);
3044         if (IS_ERR(handle))
3045                 goto out;
3046         if (current_handle &&
3047                 current_handle->h_transaction != handle->h_transaction) {
3048                 /* This task has a transaction open against a different fs */
3049                 printk(KERN_EMERG "%s: transactions do not match!\n",
3050                        __FUNCTION__);
3051         } else {
3052                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3053                                 current_handle);
3054                 ext3_mark_inode_dirty(handle, inode);
3055         }
3056         ext3_journal_stop(handle);
3057 out:
3058         return;
3059 }
3060
3061 #ifdef AKPM
3062 /* 
3063  * Bind an inode's backing buffer_head into this transaction, to prevent
3064  * it from being flushed to disk early.  Unlike
3065  * ext3_reserve_inode_write, this leaves behind no bh reference and
3066  * returns no iloc structure, so the caller needs to repeat the iloc
3067  * lookup to mark the inode dirty later.
3068  */
3069 static inline int
3070 ext3_pin_inode(handle_t *handle, struct inode *inode)
3071 {
3072         struct ext3_iloc iloc;
3073
3074         int err = 0;
3075         if (handle) {
3076                 err = ext3_get_inode_loc(inode, &iloc, 1);
3077                 if (!err) {
3078                         BUFFER_TRACE(iloc.bh, "get_write_access");
3079                         err = journal_get_write_access(handle, iloc.bh);
3080                         if (!err)
3081                                 err = ext3_journal_dirty_metadata(handle, 
3082                                                                   iloc.bh);
3083                         brelse(iloc.bh);
3084                 }
3085         }
3086         ext3_std_error(inode->i_sb, err);
3087         return err;
3088 }
3089 #endif
3090
3091 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3092 {
3093         journal_t *journal;
3094         handle_t *handle;
3095         int err;
3096
3097         /*
3098          * We have to be very careful here: changing a data block's
3099          * journaling status dynamically is dangerous.  If we write a
3100          * data block to the journal, change the status and then delete
3101          * that block, we risk forgetting to revoke the old log record
3102          * from the journal and so a subsequent replay can corrupt data.
3103          * So, first we make sure that the journal is empty and that
3104          * nobody is changing anything.
3105          */
3106
3107         journal = EXT3_JOURNAL(inode);
3108         if (is_journal_aborted(journal) || IS_RDONLY(inode))
3109                 return -EROFS;
3110
3111         journal_lock_updates(journal);
3112         journal_flush(journal);
3113
3114         /*
3115          * OK, there are no updates running now, and all cached data is
3116          * synced to disk.  We are now in a completely consistent state
3117          * which doesn't have anything in the journal, and we know that
3118          * no filesystem updates are running, so it is safe to modify
3119          * the inode's in-core data-journaling state flag now.
3120          */
3121
3122         if (val)
3123                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3124         else
3125                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3126         ext3_set_aops(inode);
3127
3128         journal_unlock_updates(journal);
3129
3130         /* Finally we can mark the inode as dirty. */
3131
3132         handle = ext3_journal_start(inode, 1);
3133         if (IS_ERR(handle))
3134                 return PTR_ERR(handle);
3135
3136         err = ext3_mark_inode_dirty(handle, inode);
3137         handle->h_sync = 1;
3138         ext3_journal_stop(handle);
3139         ext3_std_error(inode->i_sb, err);
3140
3141         return err;
3142 }