This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/vs_dlimit.h>
23 #include <linux/vs_tag.h>
24
25 /*
26  * balloc.c contains the blocks allocation and deallocation routines
27  */
28
29 /*
30  * Calculate the block group number and offset, given a block number
31  */
32 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
33                 unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
34 {
35         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
36         ext4_grpblk_t offset;
37
38         blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
39         offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
40         if (offsetp)
41                 *offsetp = offset;
42         if (blockgrpp)
43                 *blockgrpp = blocknr;
44
45 }
46
47 /*
48  * The free blocks are managed by bitmaps.  A file system contains several
49  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
50  * block for inodes, N blocks for the inode table and data blocks.
51  *
52  * The file system contains group descriptors which are located after the
53  * super block.  Each descriptor contains the number of the bitmap block and
54  * the free blocks count in the block.  The descriptors are loaded in memory
55  * when a file system is mounted (see ext4_read_super).
56  */
57
58
59 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
60
61 /**
62  * ext4_get_group_desc() -- load group descriptor from disk
63  * @sb:                 super block
64  * @block_group:        given block group
65  * @bh:                 pointer to the buffer head to store the block
66  *                      group descriptor
67  */
68 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
69                                              unsigned int block_group,
70                                              struct buffer_head ** bh)
71 {
72         unsigned long group_desc;
73         unsigned long offset;
74         struct ext4_group_desc * desc;
75         struct ext4_sb_info *sbi = EXT4_SB(sb);
76
77         if (block_group >= sbi->s_groups_count) {
78                 ext4_error (sb, "ext4_get_group_desc",
79                             "block_group >= groups_count - "
80                             "block_group = %d, groups_count = %lu",
81                             block_group, sbi->s_groups_count);
82
83                 return NULL;
84         }
85         smp_rmb();
86
87         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
88         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
89         if (!sbi->s_group_desc[group_desc]) {
90                 ext4_error (sb, "ext4_get_group_desc",
91                             "Group descriptor not loaded - "
92                             "block_group = %d, group_desc = %lu, desc = %lu",
93                              block_group, group_desc, offset);
94                 return NULL;
95         }
96
97         desc = (struct ext4_group_desc *)(
98                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
99                 offset * EXT4_DESC_SIZE(sb));
100         if (bh)
101                 *bh = sbi->s_group_desc[group_desc];
102         return desc;
103 }
104
105 /**
106  * read_block_bitmap()
107  * @sb:                 super block
108  * @block_group:        given block group
109  *
110  * Read the bitmap for a given block_group, reading into the specified
111  * slot in the superblock's bitmap cache.
112  *
113  * Return buffer_head on success or NULL in case of failure.
114  */
115 static struct buffer_head *
116 read_block_bitmap(struct super_block *sb, unsigned int block_group)
117 {
118         struct ext4_group_desc * desc;
119         struct buffer_head * bh = NULL;
120
121         desc = ext4_get_group_desc (sb, block_group, NULL);
122         if (!desc)
123                 goto error_out;
124         bh = sb_bread(sb, ext4_block_bitmap(sb, desc));
125         if (!bh)
126                 ext4_error (sb, "read_block_bitmap",
127                             "Cannot read block bitmap - "
128                             "block_group = %d, block_bitmap = %llu",
129                             block_group,
130                             ext4_block_bitmap(sb, desc));
131 error_out:
132         return bh;
133 }
134 /*
135  * The reservation window structure operations
136  * --------------------------------------------
137  * Operations include:
138  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
139  *
140  * We use a red-black tree to represent per-filesystem reservation
141  * windows.
142  *
143  */
144
145 /**
146  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
147  * @rb_root:            root of per-filesystem reservation rb tree
148  * @verbose:            verbose mode
149  * @fn:                 function which wishes to dump the reservation map
150  *
151  * If verbose is turned on, it will print the whole block reservation
152  * windows(start, end). Otherwise, it will only print out the "bad" windows,
153  * those windows that overlap with their immediate neighbors.
154  */
155 #if 1
156 static void __rsv_window_dump(struct rb_root *root, int verbose,
157                               const char *fn)
158 {
159         struct rb_node *n;
160         struct ext4_reserve_window_node *rsv, *prev;
161         int bad;
162
163 restart:
164         n = rb_first(root);
165         bad = 0;
166         prev = NULL;
167
168         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
169         while (n) {
170                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
171                 if (verbose)
172                         printk("reservation window 0x%p "
173                                "start:  %llu, end:  %llu\n",
174                                rsv, rsv->rsv_start, rsv->rsv_end);
175                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
176                         printk("Bad reservation %p (start >= end)\n",
177                                rsv);
178                         bad = 1;
179                 }
180                 if (prev && prev->rsv_end >= rsv->rsv_start) {
181                         printk("Bad reservation %p (prev->end >= start)\n",
182                                rsv);
183                         bad = 1;
184                 }
185                 if (bad) {
186                         if (!verbose) {
187                                 printk("Restarting reservation walk in verbose mode\n");
188                                 verbose = 1;
189                                 goto restart;
190                         }
191                 }
192                 n = rb_next(n);
193                 prev = rsv;
194         }
195         printk("Window map complete.\n");
196         if (bad)
197                 BUG();
198 }
199 #define rsv_window_dump(root, verbose) \
200         __rsv_window_dump((root), (verbose), __FUNCTION__)
201 #else
202 #define rsv_window_dump(root, verbose) do {} while (0)
203 #endif
204
205 /**
206  * goal_in_my_reservation()
207  * @rsv:                inode's reservation window
208  * @grp_goal:           given goal block relative to the allocation block group
209  * @group:              the current allocation block group
210  * @sb:                 filesystem super block
211  *
212  * Test if the given goal block (group relative) is within the file's
213  * own block reservation window range.
214  *
215  * If the reservation window is outside the goal allocation group, return 0;
216  * grp_goal (given goal block) could be -1, which means no specific
217  * goal block. In this case, always return 1.
218  * If the goal block is within the reservation window, return 1;
219  * otherwise, return 0;
220  */
221 static int
222 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
223                         unsigned int group, struct super_block * sb)
224 {
225         ext4_fsblk_t group_first_block, group_last_block;
226
227         group_first_block = ext4_group_first_block_no(sb, group);
228         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
229
230         if ((rsv->_rsv_start > group_last_block) ||
231             (rsv->_rsv_end < group_first_block))
232                 return 0;
233         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
234                 || (grp_goal + group_first_block > rsv->_rsv_end)))
235                 return 0;
236         return 1;
237 }
238
239 /**
240  * search_reserve_window()
241  * @rb_root:            root of reservation tree
242  * @goal:               target allocation block
243  *
244  * Find the reserved window which includes the goal, or the previous one
245  * if the goal is not in any window.
246  * Returns NULL if there are no windows or if all windows start after the goal.
247  */
248 static struct ext4_reserve_window_node *
249 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
250 {
251         struct rb_node *n = root->rb_node;
252         struct ext4_reserve_window_node *rsv;
253
254         if (!n)
255                 return NULL;
256
257         do {
258                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
259
260                 if (goal < rsv->rsv_start)
261                         n = n->rb_left;
262                 else if (goal > rsv->rsv_end)
263                         n = n->rb_right;
264                 else
265                         return rsv;
266         } while (n);
267         /*
268          * We've fallen off the end of the tree: the goal wasn't inside
269          * any particular node.  OK, the previous node must be to one
270          * side of the interval containing the goal.  If it's the RHS,
271          * we need to back up one.
272          */
273         if (rsv->rsv_start > goal) {
274                 n = rb_prev(&rsv->rsv_node);
275                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
276         }
277         return rsv;
278 }
279
280 /**
281  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
282  * @sb:                 super block
283  * @rsv:                reservation window to add
284  *
285  * Must be called with rsv_lock hold.
286  */
287 void ext4_rsv_window_add(struct super_block *sb,
288                     struct ext4_reserve_window_node *rsv)
289 {
290         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
291         struct rb_node *node = &rsv->rsv_node;
292         ext4_fsblk_t start = rsv->rsv_start;
293
294         struct rb_node ** p = &root->rb_node;
295         struct rb_node * parent = NULL;
296         struct ext4_reserve_window_node *this;
297
298         while (*p)
299         {
300                 parent = *p;
301                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
302
303                 if (start < this->rsv_start)
304                         p = &(*p)->rb_left;
305                 else if (start > this->rsv_end)
306                         p = &(*p)->rb_right;
307                 else {
308                         rsv_window_dump(root, 1);
309                         BUG();
310                 }
311         }
312
313         rb_link_node(node, parent, p);
314         rb_insert_color(node, root);
315 }
316
317 /**
318  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
319  * @sb:                 super block
320  * @rsv:                reservation window to remove
321  *
322  * Mark the block reservation window as not allocated, and unlink it
323  * from the filesystem reservation window rb tree. Must be called with
324  * rsv_lock hold.
325  */
326 static void rsv_window_remove(struct super_block *sb,
327                               struct ext4_reserve_window_node *rsv)
328 {
329         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
330         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
331         rsv->rsv_alloc_hit = 0;
332         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
333 }
334
335 /*
336  * rsv_is_empty() -- Check if the reservation window is allocated.
337  * @rsv:                given reservation window to check
338  *
339  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
340  */
341 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
342 {
343         /* a valid reservation end block could not be 0 */
344         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
345 }
346
347 /**
348  * ext4_init_block_alloc_info()
349  * @inode:              file inode structure
350  *
351  * Allocate and initialize the  reservation window structure, and
352  * link the window to the ext4 inode structure at last
353  *
354  * The reservation window structure is only dynamically allocated
355  * and linked to ext4 inode the first time the open file
356  * needs a new block. So, before every ext4_new_block(s) call, for
357  * regular files, we should check whether the reservation window
358  * structure exists or not. In the latter case, this function is called.
359  * Fail to do so will result in block reservation being turned off for that
360  * open file.
361  *
362  * This function is called from ext4_get_blocks_handle(), also called
363  * when setting the reservation window size through ioctl before the file
364  * is open for write (needs block allocation).
365  *
366  * Needs truncate_mutex protection prior to call this function.
367  */
368 void ext4_init_block_alloc_info(struct inode *inode)
369 {
370         struct ext4_inode_info *ei = EXT4_I(inode);
371         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
372         struct super_block *sb = inode->i_sb;
373
374         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
375         if (block_i) {
376                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
377
378                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
379                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
380
381                 /*
382                  * if filesystem is mounted with NORESERVATION, the goal
383                  * reservation window size is set to zero to indicate
384                  * block reservation is off
385                  */
386                 if (!test_opt(sb, RESERVATION))
387                         rsv->rsv_goal_size = 0;
388                 else
389                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
390                 rsv->rsv_alloc_hit = 0;
391                 block_i->last_alloc_logical_block = 0;
392                 block_i->last_alloc_physical_block = 0;
393         }
394         ei->i_block_alloc_info = block_i;
395 }
396
397 /**
398  * ext4_discard_reservation()
399  * @inode:              inode
400  *
401  * Discard(free) block reservation window on last file close, or truncate
402  * or at last iput().
403  *
404  * It is being called in three cases:
405  *      ext4_release_file(): last writer close the file
406  *      ext4_clear_inode(): last iput(), when nobody link to this file.
407  *      ext4_truncate(): when the block indirect map is about to change.
408  *
409  */
410 void ext4_discard_reservation(struct inode *inode)
411 {
412         struct ext4_inode_info *ei = EXT4_I(inode);
413         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
414         struct ext4_reserve_window_node *rsv;
415         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
416
417         if (!block_i)
418                 return;
419
420         rsv = &block_i->rsv_window_node;
421         if (!rsv_is_empty(&rsv->rsv_window)) {
422                 spin_lock(rsv_lock);
423                 if (!rsv_is_empty(&rsv->rsv_window))
424                         rsv_window_remove(inode->i_sb, rsv);
425                 spin_unlock(rsv_lock);
426         }
427 }
428
429 /**
430  * ext4_free_blocks_sb() -- Free given blocks and update quota
431  * @handle:                     handle to this transaction
432  * @sb:                         super block
433  * @block:                      start physcial block to free
434  * @count:                      number of blocks to free
435  * @pdquot_freed_blocks:        pointer to quota
436  */
437 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
438                          ext4_fsblk_t block, unsigned long count,
439                          unsigned long *pdquot_freed_blocks)
440 {
441         struct buffer_head *bitmap_bh = NULL;
442         struct buffer_head *gd_bh;
443         unsigned long block_group;
444         ext4_grpblk_t bit;
445         unsigned long i;
446         unsigned long overflow;
447         struct ext4_group_desc * desc;
448         struct ext4_super_block * es;
449         struct ext4_sb_info *sbi;
450         int err = 0, ret;
451         ext4_grpblk_t group_freed;
452
453         *pdquot_freed_blocks = 0;
454         sbi = EXT4_SB(sb);
455         es = sbi->s_es;
456         if (block < le32_to_cpu(es->s_first_data_block) ||
457             block + count < block ||
458             block + count > ext4_blocks_count(es)) {
459                 ext4_error (sb, "ext4_free_blocks",
460                             "Freeing blocks not in datazone - "
461                             "block = %llu, count = %lu", block, count);
462                 goto error_return;
463         }
464
465         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
466
467 do_more:
468         overflow = 0;
469         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
470         /*
471          * Check to see if we are freeing blocks across a group
472          * boundary.
473          */
474         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
475                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
476                 count -= overflow;
477         }
478         brelse(bitmap_bh);
479         bitmap_bh = read_block_bitmap(sb, block_group);
480         if (!bitmap_bh)
481                 goto error_return;
482         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
483         if (!desc)
484                 goto error_return;
485
486         if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
487             in_range(ext4_inode_bitmap(sb, desc), block, count) ||
488             in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
489             in_range(block + count - 1, ext4_inode_table(sb, desc),
490                      sbi->s_itb_per_group))
491                 ext4_error (sb, "ext4_free_blocks",
492                             "Freeing blocks in system zones - "
493                             "Block = %llu, count = %lu",
494                             block, count);
495
496         /*
497          * We are about to start releasing blocks in the bitmap,
498          * so we need undo access.
499          */
500         /* @@@ check errors */
501         BUFFER_TRACE(bitmap_bh, "getting undo access");
502         err = ext4_journal_get_undo_access(handle, bitmap_bh);
503         if (err)
504                 goto error_return;
505
506         /*
507          * We are about to modify some metadata.  Call the journal APIs
508          * to unshare ->b_data if a currently-committing transaction is
509          * using it
510          */
511         BUFFER_TRACE(gd_bh, "get_write_access");
512         err = ext4_journal_get_write_access(handle, gd_bh);
513         if (err)
514                 goto error_return;
515
516         jbd_lock_bh_state(bitmap_bh);
517
518         for (i = 0, group_freed = 0; i < count; i++) {
519                 /*
520                  * An HJ special.  This is expensive...
521                  */
522 #ifdef CONFIG_JBD_DEBUG
523                 jbd_unlock_bh_state(bitmap_bh);
524                 {
525                         struct buffer_head *debug_bh;
526                         debug_bh = sb_find_get_block(sb, block + i);
527                         if (debug_bh) {
528                                 BUFFER_TRACE(debug_bh, "Deleted!");
529                                 if (!bh2jh(bitmap_bh)->b_committed_data)
530                                         BUFFER_TRACE(debug_bh,
531                                                 "No commited data in bitmap");
532                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
533                                 __brelse(debug_bh);
534                         }
535                 }
536                 jbd_lock_bh_state(bitmap_bh);
537 #endif
538                 if (need_resched()) {
539                         jbd_unlock_bh_state(bitmap_bh);
540                         cond_resched();
541                         jbd_lock_bh_state(bitmap_bh);
542                 }
543                 /* @@@ This prevents newly-allocated data from being
544                  * freed and then reallocated within the same
545                  * transaction.
546                  *
547                  * Ideally we would want to allow that to happen, but to
548                  * do so requires making jbd2_journal_forget() capable of
549                  * revoking the queued write of a data block, which
550                  * implies blocking on the journal lock.  *forget()
551                  * cannot block due to truncate races.
552                  *
553                  * Eventually we can fix this by making jbd2_journal_forget()
554                  * return a status indicating whether or not it was able
555                  * to revoke the buffer.  On successful revoke, it is
556                  * safe not to set the allocation bit in the committed
557                  * bitmap, because we know that there is no outstanding
558                  * activity on the buffer any more and so it is safe to
559                  * reallocate it.
560                  */
561                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
562                 J_ASSERT_BH(bitmap_bh,
563                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
564                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
565                                 bh2jh(bitmap_bh)->b_committed_data);
566
567                 /*
568                  * We clear the bit in the bitmap after setting the committed
569                  * data bit, because this is the reverse order to that which
570                  * the allocator uses.
571                  */
572                 BUFFER_TRACE(bitmap_bh, "clear bit");
573                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
574                                                 bit + i, bitmap_bh->b_data)) {
575                         jbd_unlock_bh_state(bitmap_bh);
576                         ext4_error(sb, __FUNCTION__,
577                                    "bit already cleared for block %llu",
578                                    (ext4_fsblk_t)(block + i));
579                         jbd_lock_bh_state(bitmap_bh);
580                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
581                 } else {
582                         group_freed++;
583                 }
584         }
585         jbd_unlock_bh_state(bitmap_bh);
586
587         spin_lock(sb_bgl_lock(sbi, block_group));
588         desc->bg_free_blocks_count =
589                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
590                         group_freed);
591         spin_unlock(sb_bgl_lock(sbi, block_group));
592         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
593
594         /* We dirtied the bitmap block */
595         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
596         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
597
598         /* And the group descriptor block */
599         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
600         ret = ext4_journal_dirty_metadata(handle, gd_bh);
601         if (!err) err = ret;
602         *pdquot_freed_blocks += group_freed;
603
604         if (overflow && !err) {
605                 block += count;
606                 count = overflow;
607                 goto do_more;
608         }
609         sb->s_dirt = 1;
610 error_return:
611         brelse(bitmap_bh);
612         ext4_std_error(sb, err);
613         return;
614 }
615
616 /**
617  * ext4_free_blocks() -- Free given blocks and update quota
618  * @handle:             handle for this transaction
619  * @inode:              inode
620  * @block:              start physical block to free
621  * @count:              number of blocks to count
622  */
623 void ext4_free_blocks(handle_t *handle, struct inode *inode,
624                         ext4_fsblk_t block, unsigned long count)
625 {
626         struct super_block * sb;
627         unsigned long dquot_freed_blocks;
628
629         sb = inode->i_sb;
630         if (!sb) {
631                 printk ("ext4_free_blocks: nonexistent device");
632                 return;
633         }
634         ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
635         if (dquot_freed_blocks) {
636                 DLIMIT_FREE_BLOCK(inode, dquot_freed_blocks);
637                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
638         }
639         return;
640 }
641
642 /**
643  * ext4_test_allocatable()
644  * @nr:                 given allocation block group
645  * @bh:                 bufferhead contains the bitmap of the given block group
646  *
647  * For ext4 allocations, we must not reuse any blocks which are
648  * allocated in the bitmap buffer's "last committed data" copy.  This
649  * prevents deletes from freeing up the page for reuse until we have
650  * committed the delete transaction.
651  *
652  * If we didn't do this, then deleting something and reallocating it as
653  * data would allow the old block to be overwritten before the
654  * transaction committed (because we force data to disk before commit).
655  * This would lead to corruption if we crashed between overwriting the
656  * data and committing the delete.
657  *
658  * @@@ We may want to make this allocation behaviour conditional on
659  * data-writes at some point, and disable it for metadata allocations or
660  * sync-data inodes.
661  */
662 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
663 {
664         int ret;
665         struct journal_head *jh = bh2jh(bh);
666
667         if (ext4_test_bit(nr, bh->b_data))
668                 return 0;
669
670         jbd_lock_bh_state(bh);
671         if (!jh->b_committed_data)
672                 ret = 1;
673         else
674                 ret = !ext4_test_bit(nr, jh->b_committed_data);
675         jbd_unlock_bh_state(bh);
676         return ret;
677 }
678
679 /**
680  * bitmap_search_next_usable_block()
681  * @start:              the starting block (group relative) of the search
682  * @bh:                 bufferhead contains the block group bitmap
683  * @maxblocks:          the ending block (group relative) of the reservation
684  *
685  * The bitmap search --- search forward alternately through the actual
686  * bitmap on disk and the last-committed copy in journal, until we find a
687  * bit free in both bitmaps.
688  */
689 static ext4_grpblk_t
690 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
691                                         ext4_grpblk_t maxblocks)
692 {
693         ext4_grpblk_t next;
694         struct journal_head *jh = bh2jh(bh);
695
696         while (start < maxblocks) {
697                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
698                 if (next >= maxblocks)
699                         return -1;
700                 if (ext4_test_allocatable(next, bh))
701                         return next;
702                 jbd_lock_bh_state(bh);
703                 if (jh->b_committed_data)
704                         start = ext4_find_next_zero_bit(jh->b_committed_data,
705                                                         maxblocks, next);
706                 jbd_unlock_bh_state(bh);
707         }
708         return -1;
709 }
710
711 /**
712  * find_next_usable_block()
713  * @start:              the starting block (group relative) to find next
714  *                      allocatable block in bitmap.
715  * @bh:                 bufferhead contains the block group bitmap
716  * @maxblocks:          the ending block (group relative) for the search
717  *
718  * Find an allocatable block in a bitmap.  We honor both the bitmap and
719  * its last-committed copy (if that exists), and perform the "most
720  * appropriate allocation" algorithm of looking for a free block near
721  * the initial goal; then for a free byte somewhere in the bitmap; then
722  * for any free bit in the bitmap.
723  */
724 static ext4_grpblk_t
725 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
726                         ext4_grpblk_t maxblocks)
727 {
728         ext4_grpblk_t here, next;
729         char *p, *r;
730
731         if (start > 0) {
732                 /*
733                  * The goal was occupied; search forward for a free
734                  * block within the next XX blocks.
735                  *
736                  * end_goal is more or less random, but it has to be
737                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
738                  * next 64-bit boundary is simple..
739                  */
740                 ext4_grpblk_t end_goal = (start + 63) & ~63;
741                 if (end_goal > maxblocks)
742                         end_goal = maxblocks;
743                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
744                 if (here < end_goal && ext4_test_allocatable(here, bh))
745                         return here;
746                 ext4_debug("Bit not found near goal\n");
747         }
748
749         here = start;
750         if (here < 0)
751                 here = 0;
752
753         p = ((char *)bh->b_data) + (here >> 3);
754         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
755         next = (r - ((char *)bh->b_data)) << 3;
756
757         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
758                 return next;
759
760         /*
761          * The bitmap search --- search forward alternately through the actual
762          * bitmap and the last-committed copy until we find a bit free in
763          * both
764          */
765         here = bitmap_search_next_usable_block(here, bh, maxblocks);
766         return here;
767 }
768
769 /**
770  * claim_block()
771  * @block:              the free block (group relative) to allocate
772  * @bh:                 the bufferhead containts the block group bitmap
773  *
774  * We think we can allocate this block in this bitmap.  Try to set the bit.
775  * If that succeeds then check that nobody has allocated and then freed the
776  * block since we saw that is was not marked in b_committed_data.  If it _was_
777  * allocated and freed then clear the bit in the bitmap again and return
778  * zero (failure).
779  */
780 static inline int
781 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
782 {
783         struct journal_head *jh = bh2jh(bh);
784         int ret;
785
786         if (ext4_set_bit_atomic(lock, block, bh->b_data))
787                 return 0;
788         jbd_lock_bh_state(bh);
789         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
790                 ext4_clear_bit_atomic(lock, block, bh->b_data);
791                 ret = 0;
792         } else {
793                 ret = 1;
794         }
795         jbd_unlock_bh_state(bh);
796         return ret;
797 }
798
799 /**
800  * ext4_try_to_allocate()
801  * @sb:                 superblock
802  * @handle:             handle to this transaction
803  * @group:              given allocation block group
804  * @bitmap_bh:          bufferhead holds the block bitmap
805  * @grp_goal:           given target block within the group
806  * @count:              target number of blocks to allocate
807  * @my_rsv:             reservation window
808  *
809  * Attempt to allocate blocks within a give range. Set the range of allocation
810  * first, then find the first free bit(s) from the bitmap (within the range),
811  * and at last, allocate the blocks by claiming the found free bit as allocated.
812  *
813  * To set the range of this allocation:
814  *      if there is a reservation window, only try to allocate block(s) from the
815  *      file's own reservation window;
816  *      Otherwise, the allocation range starts from the give goal block, ends at
817  *      the block group's last block.
818  *
819  * If we failed to allocate the desired block then we may end up crossing to a
820  * new bitmap.  In that case we must release write access to the old one via
821  * ext4_journal_release_buffer(), else we'll run out of credits.
822  */
823 static ext4_grpblk_t
824 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
825                         struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
826                         unsigned long *count, struct ext4_reserve_window *my_rsv)
827 {
828         ext4_fsblk_t group_first_block;
829         ext4_grpblk_t start, end;
830         unsigned long num = 0;
831
832         /* we do allocation within the reservation window if we have a window */
833         if (my_rsv) {
834                 group_first_block = ext4_group_first_block_no(sb, group);
835                 if (my_rsv->_rsv_start >= group_first_block)
836                         start = my_rsv->_rsv_start - group_first_block;
837                 else
838                         /* reservation window cross group boundary */
839                         start = 0;
840                 end = my_rsv->_rsv_end - group_first_block + 1;
841                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
842                         /* reservation window crosses group boundary */
843                         end = EXT4_BLOCKS_PER_GROUP(sb);
844                 if ((start <= grp_goal) && (grp_goal < end))
845                         start = grp_goal;
846                 else
847                         grp_goal = -1;
848         } else {
849                 if (grp_goal > 0)
850                         start = grp_goal;
851                 else
852                         start = 0;
853                 end = EXT4_BLOCKS_PER_GROUP(sb);
854         }
855
856         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
857
858 repeat:
859         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
860                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
861                 if (grp_goal < 0)
862                         goto fail_access;
863                 if (!my_rsv) {
864                         int i;
865
866                         for (i = 0; i < 7 && grp_goal > start &&
867                                         ext4_test_allocatable(grp_goal - 1,
868                                                                 bitmap_bh);
869                                         i++, grp_goal--)
870                                 ;
871                 }
872         }
873         start = grp_goal;
874
875         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
876                 grp_goal, bitmap_bh)) {
877                 /*
878                  * The block was allocated by another thread, or it was
879                  * allocated and then freed by another thread
880                  */
881                 start++;
882                 grp_goal++;
883                 if (start >= end)
884                         goto fail_access;
885                 goto repeat;
886         }
887         num++;
888         grp_goal++;
889         while (num < *count && grp_goal < end
890                 && ext4_test_allocatable(grp_goal, bitmap_bh)
891                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
892                                 grp_goal, bitmap_bh)) {
893                 num++;
894                 grp_goal++;
895         }
896         *count = num;
897         return grp_goal - num;
898 fail_access:
899         *count = num;
900         return -1;
901 }
902
903 /**
904  *      find_next_reservable_window():
905  *              find a reservable space within the given range.
906  *              It does not allocate the reservation window for now:
907  *              alloc_new_reservation() will do the work later.
908  *
909  *      @search_head: the head of the searching list;
910  *              This is not necessarily the list head of the whole filesystem
911  *
912  *              We have both head and start_block to assist the search
913  *              for the reservable space. The list starts from head,
914  *              but we will shift to the place where start_block is,
915  *              then start from there, when looking for a reservable space.
916  *
917  *      @size: the target new reservation window size
918  *
919  *      @group_first_block: the first block we consider to start
920  *                      the real search from
921  *
922  *      @last_block:
923  *              the maximum block number that our goal reservable space
924  *              could start from. This is normally the last block in this
925  *              group. The search will end when we found the start of next
926  *              possible reservable space is out of this boundary.
927  *              This could handle the cross boundary reservation window
928  *              request.
929  *
930  *      basically we search from the given range, rather than the whole
931  *      reservation double linked list, (start_block, last_block)
932  *      to find a free region that is of my size and has not
933  *      been reserved.
934  *
935  */
936 static int find_next_reservable_window(
937                                 struct ext4_reserve_window_node *search_head,
938                                 struct ext4_reserve_window_node *my_rsv,
939                                 struct super_block * sb,
940                                 ext4_fsblk_t start_block,
941                                 ext4_fsblk_t last_block)
942 {
943         struct rb_node *next;
944         struct ext4_reserve_window_node *rsv, *prev;
945         ext4_fsblk_t cur;
946         int size = my_rsv->rsv_goal_size;
947
948         /* TODO: make the start of the reservation window byte-aligned */
949         /* cur = *start_block & ~7;*/
950         cur = start_block;
951         rsv = search_head;
952         if (!rsv)
953                 return -1;
954
955         while (1) {
956                 if (cur <= rsv->rsv_end)
957                         cur = rsv->rsv_end + 1;
958
959                 /* TODO?
960                  * in the case we could not find a reservable space
961                  * that is what is expected, during the re-search, we could
962                  * remember what's the largest reservable space we could have
963                  * and return that one.
964                  *
965                  * For now it will fail if we could not find the reservable
966                  * space with expected-size (or more)...
967                  */
968                 if (cur > last_block)
969                         return -1;              /* fail */
970
971                 prev = rsv;
972                 next = rb_next(&rsv->rsv_node);
973                 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
974
975                 /*
976                  * Reached the last reservation, we can just append to the
977                  * previous one.
978                  */
979                 if (!next)
980                         break;
981
982                 if (cur + size <= rsv->rsv_start) {
983                         /*
984                          * Found a reserveable space big enough.  We could
985                          * have a reservation across the group boundary here
986                          */
987                         break;
988                 }
989         }
990         /*
991          * we come here either :
992          * when we reach the end of the whole list,
993          * and there is empty reservable space after last entry in the list.
994          * append it to the end of the list.
995          *
996          * or we found one reservable space in the middle of the list,
997          * return the reservation window that we could append to.
998          * succeed.
999          */
1000
1001         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1002                 rsv_window_remove(sb, my_rsv);
1003
1004         /*
1005          * Let's book the whole avaliable window for now.  We will check the
1006          * disk bitmap later and then, if there are free blocks then we adjust
1007          * the window size if it's larger than requested.
1008          * Otherwise, we will remove this node from the tree next time
1009          * call find_next_reservable_window.
1010          */
1011         my_rsv->rsv_start = cur;
1012         my_rsv->rsv_end = cur + size - 1;
1013         my_rsv->rsv_alloc_hit = 0;
1014
1015         if (prev != my_rsv)
1016                 ext4_rsv_window_add(sb, my_rsv);
1017
1018         return 0;
1019 }
1020
1021 /**
1022  *      alloc_new_reservation()--allocate a new reservation window
1023  *
1024  *              To make a new reservation, we search part of the filesystem
1025  *              reservation list (the list that inside the group). We try to
1026  *              allocate a new reservation window near the allocation goal,
1027  *              or the beginning of the group, if there is no goal.
1028  *
1029  *              We first find a reservable space after the goal, then from
1030  *              there, we check the bitmap for the first free block after
1031  *              it. If there is no free block until the end of group, then the
1032  *              whole group is full, we failed. Otherwise, check if the free
1033  *              block is inside the expected reservable space, if so, we
1034  *              succeed.
1035  *              If the first free block is outside the reservable space, then
1036  *              start from the first free block, we search for next available
1037  *              space, and go on.
1038  *
1039  *      on succeed, a new reservation will be found and inserted into the list
1040  *      It contains at least one free block, and it does not overlap with other
1041  *      reservation windows.
1042  *
1043  *      failed: we failed to find a reservation window in this group
1044  *
1045  *      @rsv: the reservation
1046  *
1047  *      @grp_goal: The goal (group-relative).  It is where the search for a
1048  *              free reservable space should start from.
1049  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1050  *              no grp_goal(grp_goal = -1), we start from the first block
1051  *              of the group.
1052  *
1053  *      @sb: the super block
1054  *      @group: the group we are trying to allocate in
1055  *      @bitmap_bh: the block group block bitmap
1056  *
1057  */
1058 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1059                 ext4_grpblk_t grp_goal, struct super_block *sb,
1060                 unsigned int group, struct buffer_head *bitmap_bh)
1061 {
1062         struct ext4_reserve_window_node *search_head;
1063         ext4_fsblk_t group_first_block, group_end_block, start_block;
1064         ext4_grpblk_t first_free_block;
1065         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1066         unsigned long size;
1067         int ret;
1068         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1069
1070         group_first_block = ext4_group_first_block_no(sb, group);
1071         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1072
1073         if (grp_goal < 0)
1074                 start_block = group_first_block;
1075         else
1076                 start_block = grp_goal + group_first_block;
1077
1078         size = my_rsv->rsv_goal_size;
1079
1080         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1081                 /*
1082                  * if the old reservation is cross group boundary
1083                  * and if the goal is inside the old reservation window,
1084                  * we will come here when we just failed to allocate from
1085                  * the first part of the window. We still have another part
1086                  * that belongs to the next group. In this case, there is no
1087                  * point to discard our window and try to allocate a new one
1088                  * in this group(which will fail). we should
1089                  * keep the reservation window, just simply move on.
1090                  *
1091                  * Maybe we could shift the start block of the reservation
1092                  * window to the first block of next group.
1093                  */
1094
1095                 if ((my_rsv->rsv_start <= group_end_block) &&
1096                                 (my_rsv->rsv_end > group_end_block) &&
1097                                 (start_block >= my_rsv->rsv_start))
1098                         return -1;
1099
1100                 if ((my_rsv->rsv_alloc_hit >
1101                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1102                         /*
1103                          * if the previously allocation hit ratio is
1104                          * greater than 1/2, then we double the size of
1105                          * the reservation window the next time,
1106                          * otherwise we keep the same size window
1107                          */
1108                         size = size * 2;
1109                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1110                                 size = EXT4_MAX_RESERVE_BLOCKS;
1111                         my_rsv->rsv_goal_size= size;
1112                 }
1113         }
1114
1115         spin_lock(rsv_lock);
1116         /*
1117          * shift the search start to the window near the goal block
1118          */
1119         search_head = search_reserve_window(fs_rsv_root, start_block);
1120
1121         /*
1122          * find_next_reservable_window() simply finds a reservable window
1123          * inside the given range(start_block, group_end_block).
1124          *
1125          * To make sure the reservation window has a free bit inside it, we
1126          * need to check the bitmap after we found a reservable window.
1127          */
1128 retry:
1129         ret = find_next_reservable_window(search_head, my_rsv, sb,
1130                                                 start_block, group_end_block);
1131
1132         if (ret == -1) {
1133                 if (!rsv_is_empty(&my_rsv->rsv_window))
1134                         rsv_window_remove(sb, my_rsv);
1135                 spin_unlock(rsv_lock);
1136                 return -1;
1137         }
1138
1139         /*
1140          * On success, find_next_reservable_window() returns the
1141          * reservation window where there is a reservable space after it.
1142          * Before we reserve this reservable space, we need
1143          * to make sure there is at least a free block inside this region.
1144          *
1145          * searching the first free bit on the block bitmap and copy of
1146          * last committed bitmap alternatively, until we found a allocatable
1147          * block. Search start from the start block of the reservable space
1148          * we just found.
1149          */
1150         spin_unlock(rsv_lock);
1151         first_free_block = bitmap_search_next_usable_block(
1152                         my_rsv->rsv_start - group_first_block,
1153                         bitmap_bh, group_end_block - group_first_block + 1);
1154
1155         if (first_free_block < 0) {
1156                 /*
1157                  * no free block left on the bitmap, no point
1158                  * to reserve the space. return failed.
1159                  */
1160                 spin_lock(rsv_lock);
1161                 if (!rsv_is_empty(&my_rsv->rsv_window))
1162                         rsv_window_remove(sb, my_rsv);
1163                 spin_unlock(rsv_lock);
1164                 return -1;              /* failed */
1165         }
1166
1167         start_block = first_free_block + group_first_block;
1168         /*
1169          * check if the first free block is within the
1170          * free space we just reserved
1171          */
1172         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1173                 return 0;               /* success */
1174         /*
1175          * if the first free bit we found is out of the reservable space
1176          * continue search for next reservable space,
1177          * start from where the free block is,
1178          * we also shift the list head to where we stopped last time
1179          */
1180         search_head = my_rsv;
1181         spin_lock(rsv_lock);
1182         goto retry;
1183 }
1184
1185 /**
1186  * try_to_extend_reservation()
1187  * @my_rsv:             given reservation window
1188  * @sb:                 super block
1189  * @size:               the delta to extend
1190  *
1191  * Attempt to expand the reservation window large enough to have
1192  * required number of free blocks
1193  *
1194  * Since ext4_try_to_allocate() will always allocate blocks within
1195  * the reservation window range, if the window size is too small,
1196  * multiple blocks allocation has to stop at the end of the reservation
1197  * window. To make this more efficient, given the total number of
1198  * blocks needed and the current size of the window, we try to
1199  * expand the reservation window size if necessary on a best-effort
1200  * basis before ext4_new_blocks() tries to allocate blocks,
1201  */
1202 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1203                         struct super_block *sb, int size)
1204 {
1205         struct ext4_reserve_window_node *next_rsv;
1206         struct rb_node *next;
1207         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1208
1209         if (!spin_trylock(rsv_lock))
1210                 return;
1211
1212         next = rb_next(&my_rsv->rsv_node);
1213
1214         if (!next)
1215                 my_rsv->rsv_end += size;
1216         else {
1217                 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1218
1219                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1220                         my_rsv->rsv_end += size;
1221                 else
1222                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1223         }
1224         spin_unlock(rsv_lock);
1225 }
1226
1227 /**
1228  * ext4_try_to_allocate_with_rsv()
1229  * @sb:                 superblock
1230  * @handle:             handle to this transaction
1231  * @group:              given allocation block group
1232  * @bitmap_bh:          bufferhead holds the block bitmap
1233  * @grp_goal:           given target block within the group
1234  * @count:              target number of blocks to allocate
1235  * @my_rsv:             reservation window
1236  * @errp:               pointer to store the error code
1237  *
1238  * This is the main function used to allocate a new block and its reservation
1239  * window.
1240  *
1241  * Each time when a new block allocation is need, first try to allocate from
1242  * its own reservation.  If it does not have a reservation window, instead of
1243  * looking for a free bit on bitmap first, then look up the reservation list to
1244  * see if it is inside somebody else's reservation window, we try to allocate a
1245  * reservation window for it starting from the goal first. Then do the block
1246  * allocation within the reservation window.
1247  *
1248  * This will avoid keeping on searching the reservation list again and
1249  * again when somebody is looking for a free block (without
1250  * reservation), and there are lots of free blocks, but they are all
1251  * being reserved.
1252  *
1253  * We use a red-black tree for the per-filesystem reservation list.
1254  *
1255  */
1256 static ext4_grpblk_t
1257 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1258                         unsigned int group, struct buffer_head *bitmap_bh,
1259                         ext4_grpblk_t grp_goal,
1260                         struct ext4_reserve_window_node * my_rsv,
1261                         unsigned long *count, int *errp)
1262 {
1263         ext4_fsblk_t group_first_block, group_last_block;
1264         ext4_grpblk_t ret = 0;
1265         int fatal;
1266         unsigned long num = *count;
1267
1268         *errp = 0;
1269
1270         /*
1271          * Make sure we use undo access for the bitmap, because it is critical
1272          * that we do the frozen_data COW on bitmap buffers in all cases even
1273          * if the buffer is in BJ_Forget state in the committing transaction.
1274          */
1275         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1276         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1277         if (fatal) {
1278                 *errp = fatal;
1279                 return -1;
1280         }
1281
1282         /*
1283          * we don't deal with reservation when
1284          * filesystem is mounted without reservation
1285          * or the file is not a regular file
1286          * or last attempt to allocate a block with reservation turned on failed
1287          */
1288         if (my_rsv == NULL ) {
1289                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1290                                                 grp_goal, count, NULL);
1291                 goto out;
1292         }
1293         /*
1294          * grp_goal is a group relative block number (if there is a goal)
1295          * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1296          * first block is a filesystem wide block number
1297          * first block is the block number of the first block in this group
1298          */
1299         group_first_block = ext4_group_first_block_no(sb, group);
1300         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1301
1302         /*
1303          * Basically we will allocate a new block from inode's reservation
1304          * window.
1305          *
1306          * We need to allocate a new reservation window, if:
1307          * a) inode does not have a reservation window; or
1308          * b) last attempt to allocate a block from existing reservation
1309          *    failed; or
1310          * c) we come here with a goal and with a reservation window
1311          *
1312          * We do not need to allocate a new reservation window if we come here
1313          * at the beginning with a goal and the goal is inside the window, or
1314          * we don't have a goal but already have a reservation window.
1315          * then we could go to allocate from the reservation window directly.
1316          */
1317         while (1) {
1318                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1319                         !goal_in_my_reservation(&my_rsv->rsv_window,
1320                                                 grp_goal, group, sb)) {
1321                         if (my_rsv->rsv_goal_size < *count)
1322                                 my_rsv->rsv_goal_size = *count;
1323                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1324                                                         group, bitmap_bh);
1325                         if (ret < 0)
1326                                 break;                  /* failed */
1327
1328                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1329                                                         grp_goal, group, sb))
1330                                 grp_goal = -1;
1331                 } else if (grp_goal >= 0) {
1332                         int curr = my_rsv->rsv_end -
1333                                         (grp_goal + group_first_block) + 1;
1334
1335                         if (curr < *count)
1336                                 try_to_extend_reservation(my_rsv, sb,
1337                                                         *count - curr);
1338                 }
1339
1340                 if ((my_rsv->rsv_start > group_last_block) ||
1341                                 (my_rsv->rsv_end < group_first_block)) {
1342                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1343                         BUG();
1344                 }
1345                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1346                                            grp_goal, &num, &my_rsv->rsv_window);
1347                 if (ret >= 0) {
1348                         my_rsv->rsv_alloc_hit += num;
1349                         *count = num;
1350                         break;                          /* succeed */
1351                 }
1352                 num = *count;
1353         }
1354 out:
1355         if (ret >= 0) {
1356                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1357                                         "bitmap block");
1358                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1359                 if (fatal) {
1360                         *errp = fatal;
1361                         return -1;
1362                 }
1363                 return ret;
1364         }
1365
1366         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1367         ext4_journal_release_buffer(handle, bitmap_bh);
1368         return ret;
1369 }
1370
1371 /**
1372  * ext4_has_free_blocks()
1373  * @sbi:                in-core super block structure.
1374  *
1375  * Check if filesystem has at least 1 free block available for allocation.
1376  */
1377 static int ext4_has_free_blocks(struct super_block *sb)
1378 {
1379         struct ext4_sb_info *sbi = EXT4_SB(sb);
1380         ext4_fsblk_t free_blocks, root_blocks;
1381         int cond;
1382
1383         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1384         root_blocks = ext4_r_blocks_count(sbi->s_es);
1385
1386         vxdprintk(VXD_CBIT(dlim, 3),
1387                 "ext4_has_free_blocks(%p): free=%llu, root=%llu",
1388                 sb, free_blocks, root_blocks);
1389
1390         DLIMIT_ADJUST_BLOCK(sb, dx_current_tag(), &free_blocks, &root_blocks);
1391
1392         cond = (free_blocks < root_blocks + 1 &&
1393                 !capable(CAP_SYS_RESOURCE) &&
1394                 sbi->s_resuid != current->fsuid &&
1395                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid)));
1396
1397         vxdprintk(VXD_CBIT(dlim, 3),
1398                 "ext4_has_free_blocks(%p): %llu<%llu+1, %c, %u!=%u r=%d",
1399                 sb, free_blocks, root_blocks,
1400                 !capable(CAP_SYS_RESOURCE)?'1':'0',
1401                 sbi->s_resuid, current->fsuid, cond?0:1);
1402
1403         return (cond ? 0 : 1);
1404 }
1405
1406 /**
1407  * ext4_should_retry_alloc()
1408  * @sb:                 super block
1409  * @retries             number of attemps has been made
1410  *
1411  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1412  * it is profitable to retry the operation, this function will wait
1413  * for the current or commiting transaction to complete, and then
1414  * return TRUE.
1415  *
1416  * if the total number of retries exceed three times, return FALSE.
1417  */
1418 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1419 {
1420         if (!ext4_has_free_blocks(sb) || (*retries)++ > 3)
1421                 return 0;
1422
1423         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1424
1425         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1426 }
1427
1428 /**
1429  * ext4_new_blocks() -- core block(s) allocation function
1430  * @handle:             handle to this transaction
1431  * @inode:              file inode
1432  * @goal:               given target block(filesystem wide)
1433  * @count:              target number of blocks to allocate
1434  * @errp:               error code
1435  *
1436  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1437  * allocate block(s) from the block group contains the goal block first. If that
1438  * fails, it will try to allocate block(s) from other block groups without
1439  * any specific goal block.
1440  *
1441  */
1442 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1443                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1444 {
1445         struct buffer_head *bitmap_bh = NULL;
1446         struct buffer_head *gdp_bh;
1447         unsigned long group_no;
1448         int goal_group;
1449         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1450         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1451         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1452         int bgi;                        /* blockgroup iteration index */
1453         int fatal = 0, err;
1454         int performed_allocation = 0;
1455         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1456         struct super_block *sb;
1457         struct ext4_group_desc *gdp;
1458         struct ext4_super_block *es;
1459         struct ext4_sb_info *sbi;
1460         struct ext4_reserve_window_node *my_rsv = NULL;
1461         struct ext4_block_alloc_info *block_i;
1462         unsigned short windowsz = 0;
1463 #ifdef EXT4FS_DEBUG
1464         static int goal_hits, goal_attempts;
1465 #endif
1466         unsigned long ngroups;
1467         unsigned long num = *count;
1468
1469         *errp = -ENOSPC;
1470         sb = inode->i_sb;
1471         if (!sb) {
1472                 printk("ext4_new_block: nonexistent device");
1473                 return 0;
1474         }
1475
1476         /*
1477          * Check quota for allocation of this block.
1478          */
1479         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1480                 *errp = -EDQUOT;
1481                 return 0;
1482         }
1483         if (DLIMIT_ALLOC_BLOCK(inode, 1))
1484             goto out_dlimit;
1485
1486         sbi = EXT4_SB(sb);
1487         es = EXT4_SB(sb)->s_es;
1488         ext4_debug("goal=%lu.\n", goal);
1489         /*
1490          * Allocate a block from reservation only when
1491          * filesystem is mounted with reservation(default,-o reservation), and
1492          * it's a regular file, and
1493          * the desired window size is greater than 0 (One could use ioctl
1494          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1495          * reservation on that particular file)
1496          */
1497         block_i = EXT4_I(inode)->i_block_alloc_info;
1498         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1499                 my_rsv = &block_i->rsv_window_node;
1500
1501         if (!ext4_has_free_blocks(sb)) {
1502                 *errp = -ENOSPC;
1503                 goto out;
1504         }
1505
1506         /*
1507          * First, test whether the goal block is free.
1508          */
1509         if (goal < le32_to_cpu(es->s_first_data_block) ||
1510             goal >= ext4_blocks_count(es))
1511                 goal = le32_to_cpu(es->s_first_data_block);
1512         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1513         goal_group = group_no;
1514 retry_alloc:
1515         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1516         if (!gdp)
1517                 goto io_error;
1518
1519         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1520         /*
1521          * if there is not enough free blocks to make a new resevation
1522          * turn off reservation for this allocation
1523          */
1524         if (my_rsv && (free_blocks < windowsz)
1525                 && (rsv_is_empty(&my_rsv->rsv_window)))
1526                 my_rsv = NULL;
1527
1528         if (free_blocks > 0) {
1529                 bitmap_bh = read_block_bitmap(sb, group_no);
1530                 if (!bitmap_bh)
1531                         goto io_error;
1532                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1533                                         group_no, bitmap_bh, grp_target_blk,
1534                                         my_rsv, &num, &fatal);
1535                 if (fatal)
1536                         goto out;
1537                 if (grp_alloc_blk >= 0)
1538                         goto allocated;
1539         }
1540
1541         ngroups = EXT4_SB(sb)->s_groups_count;
1542         smp_rmb();
1543
1544         /*
1545          * Now search the rest of the groups.  We assume that
1546          * i and gdp correctly point to the last group visited.
1547          */
1548         for (bgi = 0; bgi < ngroups; bgi++) {
1549                 group_no++;
1550                 if (group_no >= ngroups)
1551                         group_no = 0;
1552                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1553                 if (!gdp)
1554                         goto io_error;
1555                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1556                 /*
1557                  * skip this group if the number of
1558                  * free blocks is less than half of the reservation
1559                  * window size.
1560                  */
1561                 if (free_blocks <= (windowsz/2))
1562                         continue;
1563
1564                 brelse(bitmap_bh);
1565                 bitmap_bh = read_block_bitmap(sb, group_no);
1566                 if (!bitmap_bh)
1567                         goto io_error;
1568                 /*
1569                  * try to allocate block(s) from this group, without a goal(-1).
1570                  */
1571                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1572                                         group_no, bitmap_bh, -1, my_rsv,
1573                                         &num, &fatal);
1574                 if (fatal)
1575                         goto out;
1576                 if (grp_alloc_blk >= 0)
1577                         goto allocated;
1578         }
1579         /*
1580          * We may end up a bogus ealier ENOSPC error due to
1581          * filesystem is "full" of reservations, but
1582          * there maybe indeed free blocks avaliable on disk
1583          * In this case, we just forget about the reservations
1584          * just do block allocation as without reservations.
1585          */
1586         if (my_rsv) {
1587                 my_rsv = NULL;
1588                 windowsz = 0;
1589                 group_no = goal_group;
1590                 goto retry_alloc;
1591         }
1592         /* No space left on the device */
1593         *errp = -ENOSPC;
1594         goto out;
1595
1596 allocated:
1597
1598         ext4_debug("using block group %d(%d)\n",
1599                         group_no, gdp->bg_free_blocks_count);
1600
1601         BUFFER_TRACE(gdp_bh, "get_write_access");
1602         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1603         if (fatal)
1604                 goto out;
1605
1606         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1607
1608         if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1609             in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1610             in_range(ret_block, ext4_inode_table(sb, gdp),
1611                      EXT4_SB(sb)->s_itb_per_group) ||
1612             in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1613                      EXT4_SB(sb)->s_itb_per_group))
1614                 ext4_error(sb, "ext4_new_block",
1615                             "Allocating block in system zone - "
1616                             "blocks from %llu, length %lu",
1617                              ret_block, num);
1618
1619         performed_allocation = 1;
1620
1621 #ifdef CONFIG_JBD_DEBUG
1622         {
1623                 struct buffer_head *debug_bh;
1624
1625                 /* Record bitmap buffer state in the newly allocated block */
1626                 debug_bh = sb_find_get_block(sb, ret_block);
1627                 if (debug_bh) {
1628                         BUFFER_TRACE(debug_bh, "state when allocated");
1629                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1630                         brelse(debug_bh);
1631                 }
1632         }
1633         jbd_lock_bh_state(bitmap_bh);
1634         spin_lock(sb_bgl_lock(sbi, group_no));
1635         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1636                 int i;
1637
1638                 for (i = 0; i < num; i++) {
1639                         if (ext4_test_bit(grp_alloc_blk+i,
1640                                         bh2jh(bitmap_bh)->b_committed_data)) {
1641                                 printk("%s: block was unexpectedly set in "
1642                                         "b_committed_data\n", __FUNCTION__);
1643                         }
1644                 }
1645         }
1646         ext4_debug("found bit %d\n", grp_alloc_blk);
1647         spin_unlock(sb_bgl_lock(sbi, group_no));
1648         jbd_unlock_bh_state(bitmap_bh);
1649 #endif
1650
1651         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1652                 ext4_error(sb, "ext4_new_block",
1653                             "block(%llu) >= blocks count(%llu) - "
1654                             "block_group = %lu, es == %p ", ret_block,
1655                         ext4_blocks_count(es), group_no, es);
1656                 goto out;
1657         }
1658
1659         /*
1660          * It is up to the caller to add the new buffer to a journal
1661          * list of some description.  We don't know in advance whether
1662          * the caller wants to use it as metadata or data.
1663          */
1664         ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1665                         ret_block, goal_hits, goal_attempts);
1666
1667         spin_lock(sb_bgl_lock(sbi, group_no));
1668         gdp->bg_free_blocks_count =
1669                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1670         spin_unlock(sb_bgl_lock(sbi, group_no));
1671         percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1672
1673         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1674         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1675         if (!fatal)
1676                 fatal = err;
1677
1678         sb->s_dirt = 1;
1679         if (fatal)
1680                 goto out;
1681
1682         *errp = 0;
1683         brelse(bitmap_bh);
1684         DQUOT_FREE_BLOCK(inode, *count-num);
1685         *count = num;
1686         return ret_block;
1687
1688 io_error:
1689         *errp = -EIO;
1690 out:
1691         if (!performed_allocation)
1692                 DLIMIT_FREE_BLOCK(inode, 1);
1693 out_dlimit:
1694         if (fatal) {
1695                 *errp = fatal;
1696                 ext4_std_error(sb, fatal);
1697         }
1698         /*
1699          * Undo the block allocation
1700          */
1701         if (!performed_allocation)
1702                 DQUOT_FREE_BLOCK(inode, *count);
1703         brelse(bitmap_bh);
1704         return 0;
1705 }
1706
1707 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1708                         ext4_fsblk_t goal, int *errp)
1709 {
1710         unsigned long count = 1;
1711
1712         return ext4_new_blocks(handle, inode, goal, &count, errp);
1713 }
1714
1715 /**
1716  * ext4_count_free_blocks() -- count filesystem free blocks
1717  * @sb:         superblock
1718  *
1719  * Adds up the number of free blocks from each block group.
1720  */
1721 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1722 {
1723         ext4_fsblk_t desc_count;
1724         struct ext4_group_desc *gdp;
1725         int i;
1726         unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1727 #ifdef EXT4FS_DEBUG
1728         struct ext4_super_block *es;
1729         ext4_fsblk_t bitmap_count;
1730         unsigned long x;
1731         struct buffer_head *bitmap_bh = NULL;
1732
1733         es = EXT4_SB(sb)->s_es;
1734         desc_count = 0;
1735         bitmap_count = 0;
1736         gdp = NULL;
1737
1738         smp_rmb();
1739         for (i = 0; i < ngroups; i++) {
1740                 gdp = ext4_get_group_desc(sb, i, NULL);
1741                 if (!gdp)
1742                         continue;
1743                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1744                 brelse(bitmap_bh);
1745                 bitmap_bh = read_block_bitmap(sb, i);
1746                 if (bitmap_bh == NULL)
1747                         continue;
1748
1749                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1750                 printk("group %d: stored = %d, counted = %lu\n",
1751                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1752                 bitmap_count += x;
1753         }
1754         brelse(bitmap_bh);
1755         printk("ext4_count_free_blocks: stored = %llu"
1756                 ", computed = %llu, %llu\n",
1757                EXT4_FREE_BLOCKS_COUNT(es),
1758                 desc_count, bitmap_count);
1759         return bitmap_count;
1760 #else
1761         desc_count = 0;
1762         smp_rmb();
1763         for (i = 0; i < ngroups; i++) {
1764                 gdp = ext4_get_group_desc(sb, i, NULL);
1765                 if (!gdp)
1766                         continue;
1767                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1768         }
1769
1770         return desc_count;
1771 #endif
1772 }
1773
1774 static inline int
1775 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1776 {
1777         ext4_grpblk_t offset;
1778
1779         ext4_get_group_no_and_offset(sb, block, NULL, &offset);
1780         return ext4_test_bit (offset, map);
1781 }
1782
1783 static inline int test_root(int a, int b)
1784 {
1785         int num = b;
1786
1787         while (a > num)
1788                 num *= b;
1789         return num == a;
1790 }
1791
1792 static int ext4_group_sparse(int group)
1793 {
1794         if (group <= 1)
1795                 return 1;
1796         if (!(group & 1))
1797                 return 0;
1798         return (test_root(group, 7) || test_root(group, 5) ||
1799                 test_root(group, 3));
1800 }
1801
1802 /**
1803  *      ext4_bg_has_super - number of blocks used by the superblock in group
1804  *      @sb: superblock for filesystem
1805  *      @group: group number to check
1806  *
1807  *      Return the number of blocks used by the superblock (primary or backup)
1808  *      in this group.  Currently this will be only 0 or 1.
1809  */
1810 int ext4_bg_has_super(struct super_block *sb, int group)
1811 {
1812         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1813                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1814                         !ext4_group_sparse(group))
1815                 return 0;
1816         return 1;
1817 }
1818
1819 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1820 {
1821         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1822         unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1823         unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1824
1825         if (group == first || group == first + 1 || group == last)
1826                 return 1;
1827         return 0;
1828 }
1829
1830 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1831 {
1832         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1833                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1834                         !ext4_group_sparse(group))
1835                 return 0;
1836         return EXT4_SB(sb)->s_gdb_count;
1837 }
1838
1839 /**
1840  *      ext4_bg_num_gdb - number of blocks used by the group table in group
1841  *      @sb: superblock for filesystem
1842  *      @group: group number to check
1843  *
1844  *      Return the number of blocks used by the group descriptor table
1845  *      (primary or backup) in this group.  In the future there may be a
1846  *      different number of descriptor blocks in each group.
1847  */
1848 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1849 {
1850         unsigned long first_meta_bg =
1851                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1852         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1853
1854         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1855                         metagroup < first_meta_bg)
1856                 return ext4_bg_num_gdb_nometa(sb,group);
1857
1858         return ext4_bg_num_gdb_meta(sb,group);
1859
1860 }