vserver 1.9.3
[linux-2.6.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    akpm@zip.com.au
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
42 static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
43 {
44         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46
47         if (bio->bi_size)
48                 return 1;
49
50         do {
51                 struct page *page = bvec->bv_page;
52
53                 if (--bvec >= bio->bi_io_vec)
54                         prefetchw(&bvec->bv_page->flags);
55
56                 if (uptodate) {
57                         SetPageUptodate(page);
58                 } else {
59                         ClearPageUptodate(page);
60                         SetPageError(page);
61                 }
62                 unlock_page(page);
63         } while (bvec >= bio->bi_io_vec);
64         bio_put(bio);
65         return 0;
66 }
67
68 static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
69 {
70         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
71         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
72
73         if (bio->bi_size)
74                 return 1;
75
76         do {
77                 struct page *page = bvec->bv_page;
78
79                 if (--bvec >= bio->bi_io_vec)
80                         prefetchw(&bvec->bv_page->flags);
81
82                 if (!uptodate)
83                         SetPageError(page);
84                 end_page_writeback(page);
85         } while (bvec >= bio->bi_io_vec);
86         bio_put(bio);
87         return 0;
88 }
89
90 struct bio *mpage_bio_submit(int rw, struct bio *bio)
91 {
92         bio->bi_end_io = mpage_end_io_read;
93         if (rw == WRITE)
94                 bio->bi_end_io = mpage_end_io_write;
95         submit_bio(rw, bio);
96         return NULL;
97 }
98
99 static struct bio *
100 mpage_alloc(struct block_device *bdev,
101                 sector_t first_sector, int nr_vecs, int gfp_flags)
102 {
103         struct bio *bio;
104
105         bio = bio_alloc(gfp_flags, nr_vecs);
106
107         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
108                 while (!bio && (nr_vecs /= 2))
109                         bio = bio_alloc(gfp_flags, nr_vecs);
110         }
111
112         if (bio) {
113                 bio->bi_bdev = bdev;
114                 bio->bi_sector = first_sector;
115         }
116         return bio;
117 }
118
119 /*
120  * support function for mpage_readpages.  The fs supplied get_block might
121  * return an up to date buffer.  This is used to map that buffer into
122  * the page, which allows readpage to avoid triggering a duplicate call
123  * to get_block.
124  *
125  * The idea is to avoid adding buffers to pages that don't already have
126  * them.  So when the buffer is up to date and the page size == block size,
127  * this marks the page up to date instead of adding new buffers.
128  */
129 static void 
130 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
131 {
132         struct inode *inode = page->mapping->host;
133         struct buffer_head *page_bh, *head;
134         int block = 0;
135
136         if (!page_has_buffers(page)) {
137                 /*
138                  * don't make any buffers if there is only one buffer on
139                  * the page and the page just needs to be set up to date
140                  */
141                 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
142                     buffer_uptodate(bh)) {
143                         SetPageUptodate(page);    
144                         return;
145                 }
146                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
147         }
148         head = page_buffers(page);
149         page_bh = head;
150         do {
151                 if (block == page_block) {
152                         page_bh->b_state = bh->b_state;
153                         page_bh->b_bdev = bh->b_bdev;
154                         page_bh->b_blocknr = bh->b_blocknr;
155                         break;
156                 }
157                 page_bh = page_bh->b_this_page;
158                 block++;
159         } while (page_bh != head);
160 }
161
162 /**
163  * mpage_readpages - populate an address space with some pages, and
164  *                       start reads against them.
165  *
166  * @mapping: the address_space
167  * @pages: The address of a list_head which contains the target pages.  These
168  *   pages have their ->index populated and are otherwise uninitialised.
169  *
170  *   The page at @pages->prev has the lowest file offset, and reads should be
171  *   issued in @pages->prev to @pages->next order.
172  *
173  * @nr_pages: The number of pages at *@pages
174  * @get_block: The filesystem's block mapper function.
175  *
176  * This function walks the pages and the blocks within each page, building and
177  * emitting large BIOs.
178  *
179  * If anything unusual happens, such as:
180  *
181  * - encountering a page which has buffers
182  * - encountering a page which has a non-hole after a hole
183  * - encountering a page with non-contiguous blocks
184  *
185  * then this code just gives up and calls the buffer_head-based read function.
186  * It does handle a page which has holes at the end - that is a common case:
187  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
188  *
189  * BH_Boundary explanation:
190  *
191  * There is a problem.  The mpage read code assembles several pages, gets all
192  * their disk mappings, and then submits them all.  That's fine, but obtaining
193  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
194  *
195  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
196  * submitted in the following order:
197  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
198  * because the indirect block has to be read to get the mappings of blocks
199  * 13,14,15,16.  Obviously, this impacts performance.
200  * 
201  * So what we do it to allow the filesystem's get_block() function to set
202  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
203  * after this one will require I/O against a block which is probably close to
204  * this one.  So you should push what I/O you have currently accumulated.
205  *
206  * This all causes the disk requests to be issued in the correct order.
207  */
208 static struct bio *
209 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
210                         sector_t *last_block_in_bio, get_block_t get_block)
211 {
212         struct inode *inode = page->mapping->host;
213         const unsigned blkbits = inode->i_blkbits;
214         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
215         const unsigned blocksize = 1 << blkbits;
216         sector_t block_in_file;
217         sector_t last_block;
218         sector_t blocks[MAX_BUF_PER_PAGE];
219         unsigned page_block;
220         unsigned first_hole = blocks_per_page;
221         struct block_device *bdev = NULL;
222         struct buffer_head bh;
223         int length;
224         int fully_mapped = 1;
225
226         if (page_has_buffers(page))
227                 goto confused;
228
229         block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits);
230         last_block = (i_size_read(inode) + blocksize - 1) >> blkbits;
231
232         bh.b_page = page;
233         for (page_block = 0; page_block < blocks_per_page;
234                                 page_block++, block_in_file++) {
235                 bh.b_state = 0;
236                 if (block_in_file < last_block) {
237                         if (get_block(inode, block_in_file, &bh, 0))
238                                 goto confused;
239                 }
240
241                 if (!buffer_mapped(&bh)) {
242                         fully_mapped = 0;
243                         if (first_hole == blocks_per_page)
244                                 first_hole = page_block;
245                         continue;
246                 }
247
248                 /* some filesystems will copy data into the page during
249                  * the get_block call, in which case we don't want to
250                  * read it again.  map_buffer_to_page copies the data
251                  * we just collected from get_block into the page's buffers
252                  * so readpage doesn't have to repeat the get_block call
253                  */
254                 if (buffer_uptodate(&bh)) {
255                         map_buffer_to_page(page, &bh, page_block);
256                         goto confused;
257                 }
258         
259                 if (first_hole != blocks_per_page)
260                         goto confused;          /* hole -> non-hole */
261
262                 /* Contiguous blocks? */
263                 if (page_block && blocks[page_block-1] != bh.b_blocknr-1)
264                         goto confused;
265                 blocks[page_block] = bh.b_blocknr;
266                 bdev = bh.b_bdev;
267         }
268
269         if (first_hole != blocks_per_page) {
270                 char *kaddr = kmap_atomic(page, KM_USER0);
271                 memset(kaddr + (first_hole << blkbits), 0,
272                                 PAGE_CACHE_SIZE - (first_hole << blkbits));
273                 flush_dcache_page(page);
274                 kunmap_atomic(kaddr, KM_USER0);
275                 if (first_hole == 0) {
276                         SetPageUptodate(page);
277                         unlock_page(page);
278                         goto out;
279                 }
280         } else if (fully_mapped) {
281                 SetPageMappedToDisk(page);
282         }
283
284         /*
285          * This page will go to BIO.  Do we need to send this BIO off first?
286          */
287         if (bio && (*last_block_in_bio != blocks[0] - 1))
288                 bio = mpage_bio_submit(READ, bio);
289
290 alloc_new:
291         if (bio == NULL) {
292                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
293                                 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
294                                 GFP_KERNEL);
295                 if (bio == NULL)
296                         goto confused;
297         }
298
299         length = first_hole << blkbits;
300         if (bio_add_page(bio, page, length, 0) < length) {
301                 bio = mpage_bio_submit(READ, bio);
302                 goto alloc_new;
303         }
304
305         if (buffer_boundary(&bh) || (first_hole != blocks_per_page))
306                 bio = mpage_bio_submit(READ, bio);
307         else
308                 *last_block_in_bio = blocks[blocks_per_page - 1];
309 out:
310         return bio;
311
312 confused:
313         if (bio)
314                 bio = mpage_bio_submit(READ, bio);
315         if (!PageUptodate(page))
316                 block_read_full_page(page, get_block);
317         else
318                 unlock_page(page);
319         goto out;
320 }
321
322 int
323 mpage_readpages(struct address_space *mapping, struct list_head *pages,
324                                 unsigned nr_pages, get_block_t get_block)
325 {
326         struct bio *bio = NULL;
327         unsigned page_idx;
328         sector_t last_block_in_bio = 0;
329         struct pagevec lru_pvec;
330
331         pagevec_init(&lru_pvec, 0);
332         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
333                 struct page *page = list_entry(pages->prev, struct page, lru);
334
335                 prefetchw(&page->flags);
336                 list_del(&page->lru);
337                 if (!add_to_page_cache(page, mapping,
338                                         page->index, GFP_KERNEL)) {
339                         bio = do_mpage_readpage(bio, page,
340                                         nr_pages - page_idx,
341                                         &last_block_in_bio, get_block);
342                         if (!pagevec_add(&lru_pvec, page))
343                                 __pagevec_lru_add(&lru_pvec);
344                 } else {
345                         page_cache_release(page);
346                 }
347         }
348         pagevec_lru_add(&lru_pvec);
349         BUG_ON(!list_empty(pages));
350         if (bio)
351                 mpage_bio_submit(READ, bio);
352         return 0;
353 }
354 EXPORT_SYMBOL(mpage_readpages);
355
356 /*
357  * This isn't called much at all
358  */
359 int mpage_readpage(struct page *page, get_block_t get_block)
360 {
361         struct bio *bio = NULL;
362         sector_t last_block_in_bio = 0;
363
364         bio = do_mpage_readpage(bio, page, 1,
365                         &last_block_in_bio, get_block);
366         if (bio)
367                 mpage_bio_submit(READ, bio);
368         return 0;
369 }
370 EXPORT_SYMBOL(mpage_readpage);
371
372 /*
373  * Writing is not so simple.
374  *
375  * If the page has buffers then they will be used for obtaining the disk
376  * mapping.  We only support pages which are fully mapped-and-dirty, with a
377  * special case for pages which are unmapped at the end: end-of-file.
378  *
379  * If the page has no buffers (preferred) then the page is mapped here.
380  *
381  * If all blocks are found to be contiguous then the page can go into the
382  * BIO.  Otherwise fall back to the mapping's writepage().
383  * 
384  * FIXME: This code wants an estimate of how many pages are still to be
385  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
386  * just allocate full-size (16-page) BIOs.
387  */
388 static struct bio *
389 mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block,
390         sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc)
391 {
392         struct address_space *mapping = page->mapping;
393         struct inode *inode = page->mapping->host;
394         const unsigned blkbits = inode->i_blkbits;
395         unsigned long end_index;
396         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
397         sector_t last_block;
398         sector_t block_in_file;
399         sector_t blocks[MAX_BUF_PER_PAGE];
400         unsigned page_block;
401         unsigned first_unmapped = blocks_per_page;
402         struct block_device *bdev = NULL;
403         int boundary = 0;
404         sector_t boundary_block = 0;
405         struct block_device *boundary_bdev = NULL;
406         int length;
407         struct buffer_head map_bh;
408         loff_t i_size = i_size_read(inode);
409
410         if (page_has_buffers(page)) {
411                 struct buffer_head *head = page_buffers(page);
412                 struct buffer_head *bh = head;
413
414                 /* If they're all mapped and dirty, do it */
415                 page_block = 0;
416                 do {
417                         BUG_ON(buffer_locked(bh));
418                         if (!buffer_mapped(bh)) {
419                                 /*
420                                  * unmapped dirty buffers are created by
421                                  * __set_page_dirty_buffers -> mmapped data
422                                  */
423                                 if (buffer_dirty(bh))
424                                         goto confused;
425                                 if (first_unmapped == blocks_per_page)
426                                         first_unmapped = page_block;
427                                 continue;
428                         }
429
430                         if (first_unmapped != blocks_per_page)
431                                 goto confused;  /* hole -> non-hole */
432
433                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
434                                 goto confused;
435                         if (page_block) {
436                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
437                                         goto confused;
438                         }
439                         blocks[page_block++] = bh->b_blocknr;
440                         boundary = buffer_boundary(bh);
441                         if (boundary) {
442                                 boundary_block = bh->b_blocknr;
443                                 boundary_bdev = bh->b_bdev;
444                         }
445                         bdev = bh->b_bdev;
446                 } while ((bh = bh->b_this_page) != head);
447
448                 if (first_unmapped)
449                         goto page_is_mapped;
450
451                 /*
452                  * Page has buffers, but they are all unmapped. The page was
453                  * created by pagein or read over a hole which was handled by
454                  * block_read_full_page().  If this address_space is also
455                  * using mpage_readpages then this can rarely happen.
456                  */
457                 goto confused;
458         }
459
460         /*
461          * The page has no buffers: map it to disk
462          */
463         BUG_ON(!PageUptodate(page));
464         block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits);
465         last_block = (i_size - 1) >> blkbits;
466         map_bh.b_page = page;
467         for (page_block = 0; page_block < blocks_per_page; ) {
468
469                 map_bh.b_state = 0;
470                 if (get_block(inode, block_in_file, &map_bh, 1))
471                         goto confused;
472                 if (buffer_new(&map_bh))
473                         unmap_underlying_metadata(map_bh.b_bdev,
474                                                 map_bh.b_blocknr);
475                 if (buffer_boundary(&map_bh)) {
476                         boundary_block = map_bh.b_blocknr;
477                         boundary_bdev = map_bh.b_bdev;
478                 }
479                 if (page_block) {
480                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
481                                 goto confused;
482                 }
483                 blocks[page_block++] = map_bh.b_blocknr;
484                 boundary = buffer_boundary(&map_bh);
485                 bdev = map_bh.b_bdev;
486                 if (block_in_file == last_block)
487                         break;
488                 block_in_file++;
489         }
490         BUG_ON(page_block == 0);
491
492         first_unmapped = page_block;
493
494 page_is_mapped:
495         end_index = i_size >> PAGE_CACHE_SHIFT;
496         if (page->index >= end_index) {
497                 /*
498                  * The page straddles i_size.  It must be zeroed out on each
499                  * and every writepage invokation because it may be mmapped.
500                  * "A file is mapped in multiples of the page size.  For a file
501                  * that is not a multiple of the page size, the remaining memory
502                  * is zeroed when mapped, and writes to that region are not
503                  * written out to the file."
504                  */
505                 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
506                 char *kaddr;
507
508                 if (page->index > end_index || !offset)
509                         goto confused;
510                 kaddr = kmap_atomic(page, KM_USER0);
511                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
512                 flush_dcache_page(page);
513                 kunmap_atomic(kaddr, KM_USER0);
514         }
515
516         /*
517          * This page will go to BIO.  Do we need to send this BIO off first?
518          */
519         if (bio && *last_block_in_bio != blocks[0] - 1)
520                 bio = mpage_bio_submit(WRITE, bio);
521
522 alloc_new:
523         if (bio == NULL) {
524                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
525                                 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
526                 if (bio == NULL)
527                         goto confused;
528         }
529
530         /*
531          * Must try to add the page before marking the buffer clean or
532          * the confused fail path above (OOM) will be very confused when
533          * it finds all bh marked clean (i.e. it will not write anything)
534          */
535         length = first_unmapped << blkbits;
536         if (bio_add_page(bio, page, length, 0) < length) {
537                 bio = mpage_bio_submit(WRITE, bio);
538                 goto alloc_new;
539         }
540
541         /*
542          * OK, we have our BIO, so we can now mark the buffers clean.  Make
543          * sure to only clean buffers which we know we'll be writing.
544          */
545         if (page_has_buffers(page)) {
546                 struct buffer_head *head = page_buffers(page);
547                 struct buffer_head *bh = head;
548                 unsigned buffer_counter = 0;
549
550                 do {
551                         if (buffer_counter++ == first_unmapped)
552                                 break;
553                         clear_buffer_dirty(bh);
554                         bh = bh->b_this_page;
555                 } while (bh != head);
556
557                 /*
558                  * we cannot drop the bh if the page is not uptodate
559                  * or a concurrent readpage would fail to serialize with the bh
560                  * and it would read from disk before we reach the platter.
561                  */
562                 if (buffer_heads_over_limit && PageUptodate(page))
563                         try_to_free_buffers(page);
564         }
565
566         BUG_ON(PageWriteback(page));
567         set_page_writeback(page);
568         unlock_page(page);
569         if (boundary || (first_unmapped != blocks_per_page)) {
570                 bio = mpage_bio_submit(WRITE, bio);
571                 if (boundary_block) {
572                         write_boundary_block(boundary_bdev,
573                                         boundary_block, 1 << blkbits);
574                 }
575         } else {
576                 *last_block_in_bio = blocks[blocks_per_page - 1];
577         }
578         goto out;
579
580 confused:
581         if (bio)
582                 bio = mpage_bio_submit(WRITE, bio);
583         *ret = page->mapping->a_ops->writepage(page, wbc);
584         /*
585          * The caller has a ref on the inode, so *mapping is stable
586          */
587         if (*ret) {
588                 if (*ret == -ENOSPC)
589                         set_bit(AS_ENOSPC, &mapping->flags);
590                 else
591                         set_bit(AS_EIO, &mapping->flags);
592         }
593 out:
594         return bio;
595 }
596
597 /**
598  * mpage_writepages - walk the list of dirty pages of the given
599  * address space and writepage() all of them.
600  * 
601  * @mapping: address space structure to write
602  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
603  * @get_block: the filesystem's block mapper function.
604  *             If this is NULL then use a_ops->writepage.  Otherwise, go
605  *             direct-to-BIO.
606  *
607  * This is a library function, which implements the writepages()
608  * address_space_operation.
609  *
610  * If a page is already under I/O, generic_writepages() skips it, even
611  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
612  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
613  * and msync() need to guarantee that all the data which was dirty at the time
614  * the call was made get new I/O started against them.  If wbc->sync_mode is
615  * WB_SYNC_ALL then we were called for data integrity and we must wait for
616  * existing IO to complete.
617  */
618 int
619 mpage_writepages(struct address_space *mapping,
620                 struct writeback_control *wbc, get_block_t get_block)
621 {
622         struct backing_dev_info *bdi = mapping->backing_dev_info;
623         struct bio *bio = NULL;
624         sector_t last_block_in_bio = 0;
625         int ret = 0;
626         int done = 0;
627         int (*writepage)(struct page *page, struct writeback_control *wbc);
628         struct pagevec pvec;
629         int nr_pages;
630         pgoff_t index;
631         pgoff_t end = -1;               /* Inclusive */
632         int scanned = 0;
633         int is_range = 0;
634
635         if (wbc->nonblocking && bdi_write_congested(bdi)) {
636                 wbc->encountered_congestion = 1;
637                 return 0;
638         }
639
640         writepage = NULL;
641         if (get_block == NULL)
642                 writepage = mapping->a_ops->writepage;
643
644         pagevec_init(&pvec, 0);
645         if (wbc->sync_mode == WB_SYNC_NONE) {
646                 index = mapping->writeback_index; /* Start from prev offset */
647         } else {
648                 index = 0;                        /* whole-file sweep */
649                 scanned = 1;
650         }
651         if (wbc->start || wbc->end) {
652                 index = wbc->start >> PAGE_CACHE_SHIFT;
653                 end = wbc->end >> PAGE_CACHE_SHIFT;
654                 is_range = 1;
655                 scanned = 1;
656         }
657 retry:
658         while (!done && (index <= end) &&
659                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
660                         PAGECACHE_TAG_DIRTY,
661                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
662                 unsigned i;
663
664                 scanned = 1;
665                 for (i = 0; i < nr_pages; i++) {
666                         struct page *page = pvec.pages[i];
667
668                         /*
669                          * At this point we hold neither mapping->tree_lock nor
670                          * lock on the page itself: the page may be truncated or
671                          * invalidated (changing page->mapping to NULL), or even
672                          * swizzled back from swapper_space to tmpfs file
673                          * mapping
674                          */
675
676                         lock_page(page);
677
678                         if (unlikely(page->mapping != mapping)) {
679                                 unlock_page(page);
680                                 continue;
681                         }
682
683                         if (unlikely(is_range) && page->index > end) {
684                                 done = 1;
685                                 unlock_page(page);
686                                 continue;
687                         }
688
689                         if (wbc->sync_mode != WB_SYNC_NONE)
690                                 wait_on_page_writeback(page);
691
692                         if (PageWriteback(page) ||
693                                         !clear_page_dirty_for_io(page)) {
694                                 unlock_page(page);
695                                 continue;
696                         }
697
698                         if (writepage) {
699                                 ret = (*writepage)(page, wbc);
700                                 if (ret) {
701                                         if (ret == -ENOSPC)
702                                                 set_bit(AS_ENOSPC,
703                                                         &mapping->flags);
704                                         else
705                                                 set_bit(AS_EIO,
706                                                         &mapping->flags);
707                                 }
708                         } else {
709                                 bio = mpage_writepage(bio, page, get_block,
710                                                 &last_block_in_bio, &ret, wbc);
711                         }
712                         if (ret || (--(wbc->nr_to_write) <= 0))
713                                 done = 1;
714                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
715                                 wbc->encountered_congestion = 1;
716                                 done = 1;
717                         }
718                 }
719                 pagevec_release(&pvec);
720                 cond_resched();
721         }
722         if (!scanned && !done) {
723                 /*
724                  * We hit the last page and there is more work to be done: wrap
725                  * back to the start of the file
726                  */
727                 scanned = 1;
728                 index = 0;
729                 goto retry;
730         }
731         if (!is_range)
732                 mapping->writeback_index = index;
733         if (bio)
734                 mpage_bio_submit(WRITE, bio);
735         return ret;
736 }
737 EXPORT_SYMBOL(mpage_writepages);