vserver 2.0 rc7
[linux-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2004 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32
33 /*
34  *      The xfs_buf.c code provides an abstract buffer cache model on top
35  *      of the Linux page cache.  Cached metadata blocks for a file system
36  *      are hashed to the inode for the block device.  xfs_buf.c assembles
37  *      buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
38  *
39  *      Written by Steve Lord, Jim Mostek, Russell Cattelan
40  *                  and Rajagopal Ananthanarayanan ("ananth") at SGI.
41  *
42  */
43
44 #include <linux/stddef.h>
45 #include <linux/errno.h>
46 #include <linux/slab.h>
47 #include <linux/pagemap.h>
48 #include <linux/init.h>
49 #include <linux/vmalloc.h>
50 #include <linux/bio.h>
51 #include <linux/sysctl.h>
52 #include <linux/proc_fs.h>
53 #include <linux/workqueue.h>
54 #include <linux/percpu.h>
55 #include <linux/blkdev.h>
56 #include <linux/hash.h>
57
58 #include "xfs_linux.h"
59
60 /*
61  * File wide globals
62  */
63
64 STATIC kmem_cache_t *pagebuf_cache;
65 STATIC kmem_shaker_t pagebuf_shake;
66 STATIC int pagebuf_daemon_wakeup(int, unsigned int);
67 STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
68 STATIC struct workqueue_struct *pagebuf_logio_workqueue;
69 STATIC struct workqueue_struct *pagebuf_dataio_workqueue;
70
71 /*
72  * Pagebuf debugging
73  */
74
75 #ifdef PAGEBUF_TRACE
76 void
77 pagebuf_trace(
78         xfs_buf_t       *pb,
79         char            *id,
80         void            *data,
81         void            *ra)
82 {
83         ktrace_enter(pagebuf_trace_buf,
84                 pb, id,
85                 (void *)(unsigned long)pb->pb_flags,
86                 (void *)(unsigned long)pb->pb_hold.counter,
87                 (void *)(unsigned long)pb->pb_sema.count.counter,
88                 (void *)current,
89                 data, ra,
90                 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
91                 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
92                 (void *)(unsigned long)pb->pb_buffer_length,
93                 NULL, NULL, NULL, NULL, NULL);
94 }
95 ktrace_t *pagebuf_trace_buf;
96 #define PAGEBUF_TRACE_SIZE      4096
97 #define PB_TRACE(pb, id, data)  \
98         pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
99 #else
100 #define PB_TRACE(pb, id, data)  do { } while (0)
101 #endif
102
103 #ifdef PAGEBUF_LOCK_TRACKING
104 # define PB_SET_OWNER(pb)       ((pb)->pb_last_holder = current->pid)
105 # define PB_CLEAR_OWNER(pb)     ((pb)->pb_last_holder = -1)
106 # define PB_GET_OWNER(pb)       ((pb)->pb_last_holder)
107 #else
108 # define PB_SET_OWNER(pb)       do { } while (0)
109 # define PB_CLEAR_OWNER(pb)     do { } while (0)
110 # define PB_GET_OWNER(pb)       do { } while (0)
111 #endif
112
113 /*
114  * Pagebuf allocation / freeing.
115  */
116
117 #define pb_to_gfp(flags) \
118         ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
119           ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
120
121 #define pb_to_km(flags) \
122          (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
123
124
125 #define pagebuf_allocate(flags) \
126         kmem_zone_alloc(pagebuf_cache, pb_to_km(flags))
127 #define pagebuf_deallocate(pb) \
128         kmem_zone_free(pagebuf_cache, (pb));
129
130 /*
131  * Page Region interfaces.
132  *
133  * For pages in filesystems where the blocksize is smaller than the
134  * pagesize, we use the page->private field (long) to hold a bitmap
135  * of uptodate regions within the page.
136  *
137  * Each such region is "bytes per page / bits per long" bytes long.
138  *
139  * NBPPR == number-of-bytes-per-page-region
140  * BTOPR == bytes-to-page-region (rounded up)
141  * BTOPRT == bytes-to-page-region-truncated (rounded down)
142  */
143 #if (BITS_PER_LONG == 32)
144 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
145 #elif (BITS_PER_LONG == 64)
146 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
147 #else
148 #error BITS_PER_LONG must be 32 or 64
149 #endif
150 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
151 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
152 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
153
154 STATIC unsigned long
155 page_region_mask(
156         size_t          offset,
157         size_t          length)
158 {
159         unsigned long   mask;
160         int             first, final;
161
162         first = BTOPR(offset);
163         final = BTOPRT(offset + length - 1);
164         first = min(first, final);
165
166         mask = ~0UL;
167         mask <<= BITS_PER_LONG - (final - first);
168         mask >>= BITS_PER_LONG - (final);
169
170         ASSERT(offset + length <= PAGE_CACHE_SIZE);
171         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
172
173         return mask;
174 }
175
176 STATIC inline void
177 set_page_region(
178         struct page     *page,
179         size_t          offset,
180         size_t          length)
181 {
182         page->private |= page_region_mask(offset, length);
183         if (page->private == ~0UL)
184                 SetPageUptodate(page);
185 }
186
187 STATIC inline int
188 test_page_region(
189         struct page     *page,
190         size_t          offset,
191         size_t          length)
192 {
193         unsigned long   mask = page_region_mask(offset, length);
194
195         return (mask && (page->private & mask) == mask);
196 }
197
198 /*
199  * Mapping of multi-page buffers into contiguous virtual space
200  */
201
202 typedef struct a_list {
203         void            *vm_addr;
204         struct a_list   *next;
205 } a_list_t;
206
207 STATIC a_list_t         *as_free_head;
208 STATIC int              as_list_len;
209 STATIC DEFINE_SPINLOCK(as_lock);
210
211 /*
212  * Try to batch vunmaps because they are costly.
213  */
214 STATIC void
215 free_address(
216         void            *addr)
217 {
218         a_list_t        *aentry;
219
220         aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
221         if (likely(aentry)) {
222                 spin_lock(&as_lock);
223                 aentry->next = as_free_head;
224                 aentry->vm_addr = addr;
225                 as_free_head = aentry;
226                 as_list_len++;
227                 spin_unlock(&as_lock);
228         } else {
229                 vunmap(addr);
230         }
231 }
232
233 STATIC void
234 purge_addresses(void)
235 {
236         a_list_t        *aentry, *old;
237
238         if (as_free_head == NULL)
239                 return;
240
241         spin_lock(&as_lock);
242         aentry = as_free_head;
243         as_free_head = NULL;
244         as_list_len = 0;
245         spin_unlock(&as_lock);
246
247         while ((old = aentry) != NULL) {
248                 vunmap(aentry->vm_addr);
249                 aentry = aentry->next;
250                 kfree(old);
251         }
252 }
253
254 /*
255  *      Internal pagebuf object manipulation
256  */
257
258 STATIC void
259 _pagebuf_initialize(
260         xfs_buf_t               *pb,
261         xfs_buftarg_t           *target,
262         loff_t                  range_base,
263         size_t                  range_length,
264         page_buf_flags_t        flags)
265 {
266         /*
267          * We don't want certain flags to appear in pb->pb_flags.
268          */
269         flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
270
271         memset(pb, 0, sizeof(xfs_buf_t));
272         atomic_set(&pb->pb_hold, 1);
273         init_MUTEX_LOCKED(&pb->pb_iodonesema);
274         INIT_LIST_HEAD(&pb->pb_list);
275         INIT_LIST_HEAD(&pb->pb_hash_list);
276         init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
277         PB_SET_OWNER(pb);
278         pb->pb_target = target;
279         pb->pb_file_offset = range_base;
280         /*
281          * Set buffer_length and count_desired to the same value initially.
282          * I/O routines should use count_desired, which will be the same in
283          * most cases but may be reset (e.g. XFS recovery).
284          */
285         pb->pb_buffer_length = pb->pb_count_desired = range_length;
286         pb->pb_flags = flags | PBF_NONE;
287         pb->pb_bn = XFS_BUF_DADDR_NULL;
288         atomic_set(&pb->pb_pin_count, 0);
289         init_waitqueue_head(&pb->pb_waiters);
290
291         XFS_STATS_INC(pb_create);
292         PB_TRACE(pb, "initialize", target);
293 }
294
295 /*
296  * Allocate a page array capable of holding a specified number
297  * of pages, and point the page buf at it.
298  */
299 STATIC int
300 _pagebuf_get_pages(
301         xfs_buf_t               *pb,
302         int                     page_count,
303         page_buf_flags_t        flags)
304 {
305         /* Make sure that we have a page list */
306         if (pb->pb_pages == NULL) {
307                 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
308                 pb->pb_page_count = page_count;
309                 if (page_count <= PB_PAGES) {
310                         pb->pb_pages = pb->pb_page_array;
311                 } else {
312                         pb->pb_pages = kmem_alloc(sizeof(struct page *) *
313                                         page_count, pb_to_km(flags));
314                         if (pb->pb_pages == NULL)
315                                 return -ENOMEM;
316                 }
317                 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
318         }
319         return 0;
320 }
321
322 /*
323  *      Frees pb_pages if it was malloced.
324  */
325 STATIC void
326 _pagebuf_free_pages(
327         xfs_buf_t       *bp)
328 {
329         if (bp->pb_pages != bp->pb_page_array) {
330                 kmem_free(bp->pb_pages,
331                           bp->pb_page_count * sizeof(struct page *));
332         }
333 }
334
335 /*
336  *      Releases the specified buffer.
337  *
338  *      The modification state of any associated pages is left unchanged.
339  *      The buffer most not be on any hash - use pagebuf_rele instead for
340  *      hashed and refcounted buffers
341  */
342 void
343 pagebuf_free(
344         xfs_buf_t               *bp)
345 {
346         PB_TRACE(bp, "free", 0);
347
348         ASSERT(list_empty(&bp->pb_hash_list));
349
350         if (bp->pb_flags & _PBF_PAGE_CACHE) {
351                 uint            i;
352
353                 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
354                         free_address(bp->pb_addr - bp->pb_offset);
355
356                 for (i = 0; i < bp->pb_page_count; i++)
357                         page_cache_release(bp->pb_pages[i]);
358                 _pagebuf_free_pages(bp);
359         } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
360                  /*
361                   * XXX(hch): bp->pb_count_desired might be incorrect (see
362                   * pagebuf_associate_memory for details), but fortunately
363                   * the Linux version of kmem_free ignores the len argument..
364                   */
365                 kmem_free(bp->pb_addr, bp->pb_count_desired);
366                 _pagebuf_free_pages(bp);
367         }
368
369         pagebuf_deallocate(bp);
370 }
371
372 /*
373  *      Finds all pages for buffer in question and builds it's page list.
374  */
375 STATIC int
376 _pagebuf_lookup_pages(
377         xfs_buf_t               *bp,
378         uint                    flags)
379 {
380         struct address_space    *mapping = bp->pb_target->pbr_mapping;
381         size_t                  blocksize = bp->pb_target->pbr_bsize;
382         size_t                  size = bp->pb_count_desired;
383         size_t                  nbytes, offset;
384         int                     gfp_mask = pb_to_gfp(flags);
385         unsigned short          page_count, i;
386         pgoff_t                 first;
387         loff_t                  end;
388         int                     error;
389
390         end = bp->pb_file_offset + bp->pb_buffer_length;
391         page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
392
393         error = _pagebuf_get_pages(bp, page_count, flags);
394         if (unlikely(error))
395                 return error;
396         bp->pb_flags |= _PBF_PAGE_CACHE;
397
398         offset = bp->pb_offset;
399         first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
400
401         for (i = 0; i < bp->pb_page_count; i++) {
402                 struct page     *page;
403                 uint            retries = 0;
404
405               retry:
406                 page = find_or_create_page(mapping, first + i, gfp_mask);
407                 if (unlikely(page == NULL)) {
408                         if (flags & PBF_READ_AHEAD) {
409                                 bp->pb_page_count = i;
410                                 for (i = 0; i < bp->pb_page_count; i++)
411                                         unlock_page(bp->pb_pages[i]);
412                                 return -ENOMEM;
413                         }
414
415                         /*
416                          * This could deadlock.
417                          *
418                          * But until all the XFS lowlevel code is revamped to
419                          * handle buffer allocation failures we can't do much.
420                          */
421                         if (!(++retries % 100))
422                                 printk(KERN_ERR
423                                         "XFS: possible memory allocation "
424                                         "deadlock in %s (mode:0x%x)\n",
425                                         __FUNCTION__, gfp_mask);
426
427                         XFS_STATS_INC(pb_page_retries);
428                         pagebuf_daemon_wakeup(0, gfp_mask);
429                         blk_congestion_wait(WRITE, HZ/50);
430                         goto retry;
431                 }
432
433                 XFS_STATS_INC(pb_page_found);
434
435                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
436                 size -= nbytes;
437
438                 if (!PageUptodate(page)) {
439                         page_count--;
440                         if (blocksize >= PAGE_CACHE_SIZE) {
441                                 if (flags & PBF_READ)
442                                         bp->pb_locked = 1;
443                         } else if (!PagePrivate(page)) {
444                                 if (test_page_region(page, offset, nbytes))
445                                         page_count++;
446                         }
447                 }
448
449                 bp->pb_pages[i] = page;
450                 offset = 0;
451         }
452
453         if (!bp->pb_locked) {
454                 for (i = 0; i < bp->pb_page_count; i++)
455                         unlock_page(bp->pb_pages[i]);
456         }
457
458         if (page_count) {
459                 /* if we have any uptodate pages, mark that in the buffer */
460                 bp->pb_flags &= ~PBF_NONE;
461
462                 /* if some pages aren't uptodate, mark that in the buffer */
463                 if (page_count != bp->pb_page_count)
464                         bp->pb_flags |= PBF_PARTIAL;
465         }
466
467         PB_TRACE(bp, "lookup_pages", (long)page_count);
468         return error;
469 }
470
471 /*
472  *      Map buffer into kernel address-space if nessecary.
473  */
474 STATIC int
475 _pagebuf_map_pages(
476         xfs_buf_t               *bp,
477         uint                    flags)
478 {
479         /* A single page buffer is always mappable */
480         if (bp->pb_page_count == 1) {
481                 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
482                 bp->pb_flags |= PBF_MAPPED;
483         } else if (flags & PBF_MAPPED) {
484                 if (as_list_len > 64)
485                         purge_addresses();
486                 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
487                                 VM_MAP, PAGE_KERNEL);
488                 if (unlikely(bp->pb_addr == NULL))
489                         return -ENOMEM;
490                 bp->pb_addr += bp->pb_offset;
491                 bp->pb_flags |= PBF_MAPPED;
492         }
493
494         return 0;
495 }
496
497 /*
498  *      Finding and Reading Buffers
499  */
500
501 /*
502  *      _pagebuf_find
503  *
504  *      Looks up, and creates if absent, a lockable buffer for
505  *      a given range of an inode.  The buffer is returned
506  *      locked.  If other overlapping buffers exist, they are
507  *      released before the new buffer is created and locked,
508  *      which may imply that this call will block until those buffers
509  *      are unlocked.  No I/O is implied by this call.
510  */
511 xfs_buf_t *
512 _pagebuf_find(
513         xfs_buftarg_t           *btp,   /* block device target          */
514         loff_t                  ioff,   /* starting offset of range     */
515         size_t                  isize,  /* length of range              */
516         page_buf_flags_t        flags,  /* PBF_TRYLOCK                  */
517         xfs_buf_t               *new_pb)/* newly allocated buffer       */
518 {
519         loff_t                  range_base;
520         size_t                  range_length;
521         xfs_bufhash_t           *hash;
522         xfs_buf_t               *pb, *n;
523
524         range_base = (ioff << BBSHIFT);
525         range_length = (isize << BBSHIFT);
526
527         /* Check for IOs smaller than the sector size / not sector aligned */
528         ASSERT(!(range_length < (1 << btp->pbr_sshift)));
529         ASSERT(!(range_base & (loff_t)btp->pbr_smask));
530
531         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
532
533         spin_lock(&hash->bh_lock);
534
535         list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
536                 ASSERT(btp == pb->pb_target);
537                 if (pb->pb_file_offset == range_base &&
538                     pb->pb_buffer_length == range_length) {
539                         /*
540                          * If we look at something bring it to the
541                          * front of the list for next time.
542                          */
543                         atomic_inc(&pb->pb_hold);
544                         list_move(&pb->pb_hash_list, &hash->bh_list);
545                         goto found;
546                 }
547         }
548
549         /* No match found */
550         if (new_pb) {
551                 _pagebuf_initialize(new_pb, btp, range_base,
552                                 range_length, flags);
553                 new_pb->pb_hash = hash;
554                 list_add(&new_pb->pb_hash_list, &hash->bh_list);
555         } else {
556                 XFS_STATS_INC(pb_miss_locked);
557         }
558
559         spin_unlock(&hash->bh_lock);
560         return new_pb;
561
562 found:
563         spin_unlock(&hash->bh_lock);
564
565         /* Attempt to get the semaphore without sleeping,
566          * if this does not work then we need to drop the
567          * spinlock and do a hard attempt on the semaphore.
568          */
569         if (down_trylock(&pb->pb_sema)) {
570                 if (!(flags & PBF_TRYLOCK)) {
571                         /* wait for buffer ownership */
572                         PB_TRACE(pb, "get_lock", 0);
573                         pagebuf_lock(pb);
574                         XFS_STATS_INC(pb_get_locked_waited);
575                 } else {
576                         /* We asked for a trylock and failed, no need
577                          * to look at file offset and length here, we
578                          * know that this pagebuf at least overlaps our
579                          * pagebuf and is locked, therefore our buffer
580                          * either does not exist, or is this buffer
581                          */
582
583                         pagebuf_rele(pb);
584                         XFS_STATS_INC(pb_busy_locked);
585                         return (NULL);
586                 }
587         } else {
588                 /* trylock worked */
589                 PB_SET_OWNER(pb);
590         }
591
592         if (pb->pb_flags & PBF_STALE)
593                 pb->pb_flags &= PBF_MAPPED;
594         PB_TRACE(pb, "got_lock", 0);
595         XFS_STATS_INC(pb_get_locked);
596         return (pb);
597 }
598
599 /*
600  *      xfs_buf_get_flags assembles a buffer covering the specified range.
601  *
602  *      Storage in memory for all portions of the buffer will be allocated,
603  *      although backing storage may not be.
604  */
605 xfs_buf_t *
606 xfs_buf_get_flags(                      /* allocate a buffer            */
607         xfs_buftarg_t           *target,/* target for buffer            */
608         loff_t                  ioff,   /* starting offset of range     */
609         size_t                  isize,  /* length of range              */
610         page_buf_flags_t        flags)  /* PBF_TRYLOCK                  */
611 {
612         xfs_buf_t               *pb, *new_pb;
613         int                     error = 0, i;
614
615         new_pb = pagebuf_allocate(flags);
616         if (unlikely(!new_pb))
617                 return NULL;
618
619         pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
620         if (pb == new_pb) {
621                 error = _pagebuf_lookup_pages(pb, flags);
622                 if (error)
623                         goto no_buffer;
624         } else {
625                 pagebuf_deallocate(new_pb);
626                 if (unlikely(pb == NULL))
627                         return NULL;
628         }
629
630         for (i = 0; i < pb->pb_page_count; i++)
631                 mark_page_accessed(pb->pb_pages[i]);
632
633         if (!(pb->pb_flags & PBF_MAPPED)) {
634                 error = _pagebuf_map_pages(pb, flags);
635                 if (unlikely(error)) {
636                         printk(KERN_WARNING "%s: failed to map pages\n",
637                                         __FUNCTION__);
638                         goto no_buffer;
639                 }
640         }
641
642         XFS_STATS_INC(pb_get);
643
644         /*
645          * Always fill in the block number now, the mapped cases can do
646          * their own overlay of this later.
647          */
648         pb->pb_bn = ioff;
649         pb->pb_count_desired = pb->pb_buffer_length;
650
651         PB_TRACE(pb, "get", (unsigned long)flags);
652         return pb;
653
654  no_buffer:
655         if (flags & (PBF_LOCK | PBF_TRYLOCK))
656                 pagebuf_unlock(pb);
657         pagebuf_rele(pb);
658         return NULL;
659 }
660
661 xfs_buf_t *
662 xfs_buf_read_flags(
663         xfs_buftarg_t           *target,
664         loff_t                  ioff,
665         size_t                  isize,
666         page_buf_flags_t        flags)
667 {
668         xfs_buf_t               *pb;
669
670         flags |= PBF_READ;
671
672         pb = xfs_buf_get_flags(target, ioff, isize, flags);
673         if (pb) {
674                 if (PBF_NOT_DONE(pb)) {
675                         PB_TRACE(pb, "read", (unsigned long)flags);
676                         XFS_STATS_INC(pb_get_read);
677                         pagebuf_iostart(pb, flags);
678                 } else if (flags & PBF_ASYNC) {
679                         PB_TRACE(pb, "read_async", (unsigned long)flags);
680                         /*
681                          * Read ahead call which is already satisfied,
682                          * drop the buffer
683                          */
684                         goto no_buffer;
685                 } else {
686                         PB_TRACE(pb, "read_done", (unsigned long)flags);
687                         /* We do not want read in the flags */
688                         pb->pb_flags &= ~PBF_READ;
689                 }
690         }
691
692         return pb;
693
694  no_buffer:
695         if (flags & (PBF_LOCK | PBF_TRYLOCK))
696                 pagebuf_unlock(pb);
697         pagebuf_rele(pb);
698         return NULL;
699 }
700
701 /*
702  * Create a skeletal pagebuf (no pages associated with it).
703  */
704 xfs_buf_t *
705 pagebuf_lookup(
706         xfs_buftarg_t           *target,
707         loff_t                  ioff,
708         size_t                  isize,
709         page_buf_flags_t        flags)
710 {
711         xfs_buf_t               *pb;
712
713         pb = pagebuf_allocate(flags);
714         if (pb) {
715                 _pagebuf_initialize(pb, target, ioff, isize, flags);
716         }
717         return pb;
718 }
719
720 /*
721  * If we are not low on memory then do the readahead in a deadlock
722  * safe manner.
723  */
724 void
725 pagebuf_readahead(
726         xfs_buftarg_t           *target,
727         loff_t                  ioff,
728         size_t                  isize,
729         page_buf_flags_t        flags)
730 {
731         struct backing_dev_info *bdi;
732
733         bdi = target->pbr_mapping->backing_dev_info;
734         if (bdi_read_congested(bdi))
735                 return;
736
737         flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
738         xfs_buf_read_flags(target, ioff, isize, flags);
739 }
740
741 xfs_buf_t *
742 pagebuf_get_empty(
743         size_t                  len,
744         xfs_buftarg_t           *target)
745 {
746         xfs_buf_t               *pb;
747
748         pb = pagebuf_allocate(0);
749         if (pb)
750                 _pagebuf_initialize(pb, target, 0, len, 0);
751         return pb;
752 }
753
754 static inline struct page *
755 mem_to_page(
756         void                    *addr)
757 {
758         if (((unsigned long)addr < VMALLOC_START) ||
759             ((unsigned long)addr >= VMALLOC_END)) {
760                 return virt_to_page(addr);
761         } else {
762                 return vmalloc_to_page(addr);
763         }
764 }
765
766 int
767 pagebuf_associate_memory(
768         xfs_buf_t               *pb,
769         void                    *mem,
770         size_t                  len)
771 {
772         int                     rval;
773         int                     i = 0;
774         size_t                  ptr;
775         size_t                  end, end_cur;
776         off_t                   offset;
777         int                     page_count;
778
779         page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
780         offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
781         if (offset && (len > PAGE_CACHE_SIZE))
782                 page_count++;
783
784         /* Free any previous set of page pointers */
785         if (pb->pb_pages)
786                 _pagebuf_free_pages(pb);
787
788         pb->pb_pages = NULL;
789         pb->pb_addr = mem;
790
791         rval = _pagebuf_get_pages(pb, page_count, 0);
792         if (rval)
793                 return rval;
794
795         pb->pb_offset = offset;
796         ptr = (size_t) mem & PAGE_CACHE_MASK;
797         end = PAGE_CACHE_ALIGN((size_t) mem + len);
798         end_cur = end;
799         /* set up first page */
800         pb->pb_pages[0] = mem_to_page(mem);
801
802         ptr += PAGE_CACHE_SIZE;
803         pb->pb_page_count = ++i;
804         while (ptr < end) {
805                 pb->pb_pages[i] = mem_to_page((void *)ptr);
806                 pb->pb_page_count = ++i;
807                 ptr += PAGE_CACHE_SIZE;
808         }
809         pb->pb_locked = 0;
810
811         pb->pb_count_desired = pb->pb_buffer_length = len;
812         pb->pb_flags |= PBF_MAPPED;
813
814         return 0;
815 }
816
817 xfs_buf_t *
818 pagebuf_get_no_daddr(
819         size_t                  len,
820         xfs_buftarg_t           *target)
821 {
822         size_t                  malloc_len = len;
823         xfs_buf_t               *bp;
824         void                    *data;
825         int                     error;
826
827         bp = pagebuf_allocate(0);
828         if (unlikely(bp == NULL))
829                 goto fail;
830         _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
831
832  try_again:
833         data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
834         if (unlikely(data == NULL))
835                 goto fail_free_buf;
836
837         /* check whether alignment matches.. */
838         if ((__psunsigned_t)data !=
839             ((__psunsigned_t)data & ~target->pbr_smask)) {
840                 /* .. else double the size and try again */
841                 kmem_free(data, malloc_len);
842                 malloc_len <<= 1;
843                 goto try_again;
844         }
845
846         error = pagebuf_associate_memory(bp, data, len);
847         if (error)
848                 goto fail_free_mem;
849         bp->pb_flags |= _PBF_KMEM_ALLOC;
850
851         pagebuf_unlock(bp);
852
853         PB_TRACE(bp, "no_daddr", data);
854         return bp;
855  fail_free_mem:
856         kmem_free(data, malloc_len);
857  fail_free_buf:
858         pagebuf_free(bp);
859  fail:
860         return NULL;
861 }
862
863 /*
864  *      pagebuf_hold
865  *
866  *      Increment reference count on buffer, to hold the buffer concurrently
867  *      with another thread which may release (free) the buffer asynchronously.
868  *
869  *      Must hold the buffer already to call this function.
870  */
871 void
872 pagebuf_hold(
873         xfs_buf_t               *pb)
874 {
875         atomic_inc(&pb->pb_hold);
876         PB_TRACE(pb, "hold", 0);
877 }
878
879 /*
880  *      pagebuf_rele
881  *
882  *      pagebuf_rele releases a hold on the specified buffer.  If the
883  *      the hold count is 1, pagebuf_rele calls pagebuf_free.
884  */
885 void
886 pagebuf_rele(
887         xfs_buf_t               *pb)
888 {
889         xfs_bufhash_t           *hash = pb->pb_hash;
890
891         PB_TRACE(pb, "rele", pb->pb_relse);
892
893         /*
894          * pagebuf_lookup buffers are not hashed, not delayed write,
895          * and don't have their own release routines.  Special case.
896          */
897         if (unlikely(!hash)) {
898                 ASSERT(!pb->pb_relse);
899                 if (atomic_dec_and_test(&pb->pb_hold))
900                         xfs_buf_free(pb);
901                 return;
902         }
903
904         if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
905                 int             do_free = 1;
906
907                 if (pb->pb_relse) {
908                         atomic_inc(&pb->pb_hold);
909                         spin_unlock(&hash->bh_lock);
910                         (*(pb->pb_relse)) (pb);
911                         spin_lock(&hash->bh_lock);
912                         do_free = 0;
913                 }
914
915                 if (pb->pb_flags & PBF_DELWRI) {
916                         pb->pb_flags |= PBF_ASYNC;
917                         atomic_inc(&pb->pb_hold);
918                         pagebuf_delwri_queue(pb, 0);
919                         do_free = 0;
920                 } else if (pb->pb_flags & PBF_FS_MANAGED) {
921                         do_free = 0;
922                 }
923
924                 if (do_free) {
925                         list_del_init(&pb->pb_hash_list);
926                         spin_unlock(&hash->bh_lock);
927                         pagebuf_free(pb);
928                 } else {
929                         spin_unlock(&hash->bh_lock);
930                 }
931         }
932 }
933
934
935 /*
936  *      Mutual exclusion on buffers.  Locking model:
937  *
938  *      Buffers associated with inodes for which buffer locking
939  *      is not enabled are not protected by semaphores, and are
940  *      assumed to be exclusively owned by the caller.  There is a
941  *      spinlock in the buffer, used by the caller when concurrent
942  *      access is possible.
943  */
944
945 /*
946  *      pagebuf_cond_lock
947  *
948  *      pagebuf_cond_lock locks a buffer object, if it is not already locked.
949  *      Note that this in no way
950  *      locks the underlying pages, so it is only useful for synchronizing
951  *      concurrent use of page buffer objects, not for synchronizing independent
952  *      access to the underlying pages.
953  */
954 int
955 pagebuf_cond_lock(                      /* lock buffer, if not locked   */
956                                         /* returns -EBUSY if locked)    */
957         xfs_buf_t               *pb)
958 {
959         int                     locked;
960
961         locked = down_trylock(&pb->pb_sema) == 0;
962         if (locked) {
963                 PB_SET_OWNER(pb);
964         }
965         PB_TRACE(pb, "cond_lock", (long)locked);
966         return(locked ? 0 : -EBUSY);
967 }
968
969 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
970 /*
971  *      pagebuf_lock_value
972  *
973  *      Return lock value for a pagebuf
974  */
975 int
976 pagebuf_lock_value(
977         xfs_buf_t               *pb)
978 {
979         return(atomic_read(&pb->pb_sema.count));
980 }
981 #endif
982
983 /*
984  *      pagebuf_lock
985  *
986  *      pagebuf_lock locks a buffer object.  Note that this in no way
987  *      locks the underlying pages, so it is only useful for synchronizing
988  *      concurrent use of page buffer objects, not for synchronizing independent
989  *      access to the underlying pages.
990  */
991 int
992 pagebuf_lock(
993         xfs_buf_t               *pb)
994 {
995         PB_TRACE(pb, "lock", 0);
996         if (atomic_read(&pb->pb_io_remaining))
997                 blk_run_address_space(pb->pb_target->pbr_mapping);
998         down(&pb->pb_sema);
999         PB_SET_OWNER(pb);
1000         PB_TRACE(pb, "locked", 0);
1001         return 0;
1002 }
1003
1004 /*
1005  *      pagebuf_unlock
1006  *
1007  *      pagebuf_unlock releases the lock on the buffer object created by
1008  *      pagebuf_lock or pagebuf_cond_lock (not any
1009  *      pinning of underlying pages created by pagebuf_pin).
1010  */
1011 void
1012 pagebuf_unlock(                         /* unlock buffer                */
1013         xfs_buf_t               *pb)    /* buffer to unlock             */
1014 {
1015         PB_CLEAR_OWNER(pb);
1016         up(&pb->pb_sema);
1017         PB_TRACE(pb, "unlock", 0);
1018 }
1019
1020
1021 /*
1022  *      Pinning Buffer Storage in Memory
1023  */
1024
1025 /*
1026  *      pagebuf_pin
1027  *
1028  *      pagebuf_pin locks all of the memory represented by a buffer in
1029  *      memory.  Multiple calls to pagebuf_pin and pagebuf_unpin, for
1030  *      the same or different buffers affecting a given page, will
1031  *      properly count the number of outstanding "pin" requests.  The
1032  *      buffer may be released after the pagebuf_pin and a different
1033  *      buffer used when calling pagebuf_unpin, if desired.
1034  *      pagebuf_pin should be used by the file system when it wants be
1035  *      assured that no attempt will be made to force the affected
1036  *      memory to disk.  It does not assure that a given logical page
1037  *      will not be moved to a different physical page.
1038  */
1039 void
1040 pagebuf_pin(
1041         xfs_buf_t               *pb)
1042 {
1043         atomic_inc(&pb->pb_pin_count);
1044         PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
1045 }
1046
1047 /*
1048  *      pagebuf_unpin
1049  *
1050  *      pagebuf_unpin reverses the locking of memory performed by
1051  *      pagebuf_pin.  Note that both functions affected the logical
1052  *      pages associated with the buffer, not the buffer itself.
1053  */
1054 void
1055 pagebuf_unpin(
1056         xfs_buf_t               *pb)
1057 {
1058         if (atomic_dec_and_test(&pb->pb_pin_count)) {
1059                 wake_up_all(&pb->pb_waiters);
1060         }
1061         PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1062 }
1063
1064 int
1065 pagebuf_ispin(
1066         xfs_buf_t               *pb)
1067 {
1068         return atomic_read(&pb->pb_pin_count);
1069 }
1070
1071 /*
1072  *      pagebuf_wait_unpin
1073  *
1074  *      pagebuf_wait_unpin waits until all of the memory associated
1075  *      with the buffer is not longer locked in memory.  It returns
1076  *      immediately if none of the affected pages are locked.
1077  */
1078 static inline void
1079 _pagebuf_wait_unpin(
1080         xfs_buf_t               *pb)
1081 {
1082         DECLARE_WAITQUEUE       (wait, current);
1083
1084         if (atomic_read(&pb->pb_pin_count) == 0)
1085                 return;
1086
1087         add_wait_queue(&pb->pb_waiters, &wait);
1088         for (;;) {
1089                 set_current_state(TASK_UNINTERRUPTIBLE);
1090                 if (atomic_read(&pb->pb_pin_count) == 0)
1091                         break;
1092                 if (atomic_read(&pb->pb_io_remaining))
1093                         blk_run_address_space(pb->pb_target->pbr_mapping);
1094                 schedule();
1095         }
1096         remove_wait_queue(&pb->pb_waiters, &wait);
1097         set_current_state(TASK_RUNNING);
1098 }
1099
1100 /*
1101  *      Buffer Utility Routines
1102  */
1103
1104 /*
1105  *      pagebuf_iodone
1106  *
1107  *      pagebuf_iodone marks a buffer for which I/O is in progress
1108  *      done with respect to that I/O.  The pb_iodone routine, if
1109  *      present, will be called as a side-effect.
1110  */
1111 STATIC void
1112 pagebuf_iodone_work(
1113         void                    *v)
1114 {
1115         xfs_buf_t               *bp = (xfs_buf_t *)v;
1116
1117         if (bp->pb_iodone)
1118                 (*(bp->pb_iodone))(bp);
1119         else if (bp->pb_flags & PBF_ASYNC)
1120                 xfs_buf_relse(bp);
1121 }
1122
1123 void
1124 pagebuf_iodone(
1125         xfs_buf_t               *pb,
1126         int                     dataio,
1127         int                     schedule)
1128 {
1129         pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1130         if (pb->pb_error == 0) {
1131                 pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
1132         }
1133
1134         PB_TRACE(pb, "iodone", pb->pb_iodone);
1135
1136         if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1137                 if (schedule) {
1138                         INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
1139                         queue_work(dataio ? pagebuf_dataio_workqueue :
1140                                 pagebuf_logio_workqueue, &pb->pb_iodone_work);
1141                 } else {
1142                         pagebuf_iodone_work(pb);
1143                 }
1144         } else {
1145                 up(&pb->pb_iodonesema);
1146         }
1147 }
1148
1149 /*
1150  *      pagebuf_ioerror
1151  *
1152  *      pagebuf_ioerror sets the error code for a buffer.
1153  */
1154 void
1155 pagebuf_ioerror(                        /* mark/clear buffer error flag */
1156         xfs_buf_t               *pb,    /* buffer to mark               */
1157         int                     error)  /* error to store (0 if none)   */
1158 {
1159         ASSERT(error >= 0 && error <= 0xffff);
1160         pb->pb_error = (unsigned short)error;
1161         PB_TRACE(pb, "ioerror", (unsigned long)error);
1162 }
1163
1164 /*
1165  *      pagebuf_iostart
1166  *
1167  *      pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1168  *      If necessary, it will arrange for any disk space allocation required,
1169  *      and it will break up the request if the block mappings require it.
1170  *      The pb_iodone routine in the buffer supplied will only be called
1171  *      when all of the subsidiary I/O requests, if any, have been completed.
1172  *      pagebuf_iostart calls the pagebuf_ioinitiate routine or
1173  *      pagebuf_iorequest, if the former routine is not defined, to start
1174  *      the I/O on a given low-level request.
1175  */
1176 int
1177 pagebuf_iostart(                        /* start I/O on a buffer          */
1178         xfs_buf_t               *pb,    /* buffer to start                */
1179         page_buf_flags_t        flags)  /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1180                                         /* PBF_WRITE, PBF_DELWRI,         */
1181                                         /* PBF_DONT_BLOCK                 */
1182 {
1183         int                     status = 0;
1184
1185         PB_TRACE(pb, "iostart", (unsigned long)flags);
1186
1187         if (flags & PBF_DELWRI) {
1188                 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1189                 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1190                 pagebuf_delwri_queue(pb, 1);
1191                 return status;
1192         }
1193
1194         pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1195                         PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1196         pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1197                         PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1198
1199         BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1200
1201         /* For writes allow an alternate strategy routine to precede
1202          * the actual I/O request (which may not be issued at all in
1203          * a shutdown situation, for example).
1204          */
1205         status = (flags & PBF_WRITE) ?
1206                 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1207
1208         /* Wait for I/O if we are not an async request.
1209          * Note: async I/O request completion will release the buffer,
1210          * and that can already be done by this point.  So using the
1211          * buffer pointer from here on, after async I/O, is invalid.
1212          */
1213         if (!status && !(flags & PBF_ASYNC))
1214                 status = pagebuf_iowait(pb);
1215
1216         return status;
1217 }
1218
1219 /*
1220  * Helper routine for pagebuf_iorequest
1221  */
1222
1223 STATIC __inline__ int
1224 _pagebuf_iolocked(
1225         xfs_buf_t               *pb)
1226 {
1227         ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1228         if (pb->pb_flags & PBF_READ)
1229                 return pb->pb_locked;
1230         return 0;
1231 }
1232
1233 STATIC __inline__ void
1234 _pagebuf_iodone(
1235         xfs_buf_t               *pb,
1236         int                     schedule)
1237 {
1238         if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1239                 pb->pb_locked = 0;
1240                 pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
1241         }
1242 }
1243
1244 STATIC int
1245 bio_end_io_pagebuf(
1246         struct bio              *bio,
1247         unsigned int            bytes_done,
1248         int                     error)
1249 {
1250         xfs_buf_t               *pb = (xfs_buf_t *)bio->bi_private;
1251         unsigned int            i, blocksize = pb->pb_target->pbr_bsize;
1252         struct bio_vec          *bvec = bio->bi_io_vec;
1253
1254         if (bio->bi_size)
1255                 return 1;
1256
1257         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1258                 pb->pb_error = EIO;
1259
1260         for (i = 0; i < bio->bi_vcnt; i++, bvec++) {
1261                 struct page     *page = bvec->bv_page;
1262
1263                 if (pb->pb_error) {
1264                         SetPageError(page);
1265                 } else if (blocksize == PAGE_CACHE_SIZE) {
1266                         SetPageUptodate(page);
1267                 } else if (!PagePrivate(page) &&
1268                                 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1269                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1270                 }
1271
1272                 if (_pagebuf_iolocked(pb)) {
1273                         unlock_page(page);
1274                 }
1275         }
1276
1277         _pagebuf_iodone(pb, 1);
1278         bio_put(bio);
1279         return 0;
1280 }
1281
1282 STATIC void
1283 _pagebuf_ioapply(
1284         xfs_buf_t               *pb)
1285 {
1286         int                     i, rw, map_i, total_nr_pages, nr_pages;
1287         struct bio              *bio;
1288         int                     offset = pb->pb_offset;
1289         int                     size = pb->pb_count_desired;
1290         sector_t                sector = pb->pb_bn;
1291         unsigned int            blocksize = pb->pb_target->pbr_bsize;
1292         int                     locking = _pagebuf_iolocked(pb);
1293
1294         total_nr_pages = pb->pb_page_count;
1295         map_i = 0;
1296
1297         if (pb->pb_flags & _PBF_RUN_QUEUES) {
1298                 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1299                 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1300         } else {
1301                 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1302         }
1303
1304         /* Special code path for reading a sub page size pagebuf in --
1305          * we populate up the whole page, and hence the other metadata
1306          * in the same page.  This optimization is only valid when the
1307          * filesystem block size and the page size are equal.
1308          */
1309         if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1310             (pb->pb_flags & PBF_READ) && locking &&
1311             (blocksize == PAGE_CACHE_SIZE)) {
1312                 bio = bio_alloc(GFP_NOIO, 1);
1313
1314                 bio->bi_bdev = pb->pb_target->pbr_bdev;
1315                 bio->bi_sector = sector - (offset >> BBSHIFT);
1316                 bio->bi_end_io = bio_end_io_pagebuf;
1317                 bio->bi_private = pb;
1318
1319                 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1320                 size = 0;
1321
1322                 atomic_inc(&pb->pb_io_remaining);
1323
1324                 goto submit_io;
1325         }
1326
1327         /* Lock down the pages which we need to for the request */
1328         if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1329                 for (i = 0; size; i++) {
1330                         int             nbytes = PAGE_CACHE_SIZE - offset;
1331                         struct page     *page = pb->pb_pages[i];
1332
1333                         if (nbytes > size)
1334                                 nbytes = size;
1335
1336                         lock_page(page);
1337
1338                         size -= nbytes;
1339                         offset = 0;
1340                 }
1341                 offset = pb->pb_offset;
1342                 size = pb->pb_count_desired;
1343         }
1344
1345 next_chunk:
1346         atomic_inc(&pb->pb_io_remaining);
1347         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1348         if (nr_pages > total_nr_pages)
1349                 nr_pages = total_nr_pages;
1350
1351         bio = bio_alloc(GFP_NOIO, nr_pages);
1352         bio->bi_bdev = pb->pb_target->pbr_bdev;
1353         bio->bi_sector = sector;
1354         bio->bi_end_io = bio_end_io_pagebuf;
1355         bio->bi_private = pb;
1356
1357         for (; size && nr_pages; nr_pages--, map_i++) {
1358                 int     nbytes = PAGE_CACHE_SIZE - offset;
1359
1360                 if (nbytes > size)
1361                         nbytes = size;
1362
1363                 if (bio_add_page(bio, pb->pb_pages[map_i],
1364                                         nbytes, offset) < nbytes)
1365                         break;
1366
1367                 offset = 0;
1368                 sector += nbytes >> BBSHIFT;
1369                 size -= nbytes;
1370                 total_nr_pages--;
1371         }
1372
1373 submit_io:
1374         if (likely(bio->bi_size)) {
1375                 submit_bio(rw, bio);
1376                 if (size)
1377                         goto next_chunk;
1378         } else {
1379                 bio_put(bio);
1380                 pagebuf_ioerror(pb, EIO);
1381         }
1382 }
1383
1384 /*
1385  *      pagebuf_iorequest -- the core I/O request routine.
1386  */
1387 int
1388 pagebuf_iorequest(                      /* start real I/O               */
1389         xfs_buf_t               *pb)    /* buffer to convey to device   */
1390 {
1391         PB_TRACE(pb, "iorequest", 0);
1392
1393         if (pb->pb_flags & PBF_DELWRI) {
1394                 pagebuf_delwri_queue(pb, 1);
1395                 return 0;
1396         }
1397
1398         if (pb->pb_flags & PBF_WRITE) {
1399                 _pagebuf_wait_unpin(pb);
1400         }
1401
1402         pagebuf_hold(pb);
1403
1404         /* Set the count to 1 initially, this will stop an I/O
1405          * completion callout which happens before we have started
1406          * all the I/O from calling pagebuf_iodone too early.
1407          */
1408         atomic_set(&pb->pb_io_remaining, 1);
1409         _pagebuf_ioapply(pb);
1410         _pagebuf_iodone(pb, 0);
1411
1412         pagebuf_rele(pb);
1413         return 0;
1414 }
1415
1416 /*
1417  *      pagebuf_iowait
1418  *
1419  *      pagebuf_iowait waits for I/O to complete on the buffer supplied.
1420  *      It returns immediately if no I/O is pending.  In any case, it returns
1421  *      the error code, if any, or 0 if there is no error.
1422  */
1423 int
1424 pagebuf_iowait(
1425         xfs_buf_t               *pb)
1426 {
1427         PB_TRACE(pb, "iowait", 0);
1428         if (atomic_read(&pb->pb_io_remaining))
1429                 blk_run_address_space(pb->pb_target->pbr_mapping);
1430         down(&pb->pb_iodonesema);
1431         PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1432         return pb->pb_error;
1433 }
1434
1435 caddr_t
1436 pagebuf_offset(
1437         xfs_buf_t               *pb,
1438         size_t                  offset)
1439 {
1440         struct page             *page;
1441
1442         offset += pb->pb_offset;
1443
1444         page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1445         return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1446 }
1447
1448 /*
1449  *      pagebuf_iomove
1450  *
1451  *      Move data into or out of a buffer.
1452  */
1453 void
1454 pagebuf_iomove(
1455         xfs_buf_t               *pb,    /* buffer to process            */
1456         size_t                  boff,   /* starting buffer offset       */
1457         size_t                  bsize,  /* length to copy               */
1458         caddr_t                 data,   /* data address                 */
1459         page_buf_rw_t           mode)   /* read/write flag              */
1460 {
1461         size_t                  bend, cpoff, csize;
1462         struct page             *page;
1463
1464         bend = boff + bsize;
1465         while (boff < bend) {
1466                 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1467                 cpoff = page_buf_poff(boff + pb->pb_offset);
1468                 csize = min_t(size_t,
1469                               PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1470
1471                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1472
1473                 switch (mode) {
1474                 case PBRW_ZERO:
1475                         memset(page_address(page) + cpoff, 0, csize);
1476                         break;
1477                 case PBRW_READ:
1478                         memcpy(data, page_address(page) + cpoff, csize);
1479                         break;
1480                 case PBRW_WRITE:
1481                         memcpy(page_address(page) + cpoff, data, csize);
1482                 }
1483
1484                 boff += csize;
1485                 data += csize;
1486         }
1487 }
1488
1489 /*
1490  *      Handling of buftargs.
1491  */
1492
1493 /*
1494  * Wait for any bufs with callbacks that have been submitted but
1495  * have not yet returned... walk the hash list for the target.
1496  */
1497 void
1498 xfs_wait_buftarg(
1499         xfs_buftarg_t   *btp)
1500 {
1501         xfs_buf_t       *bp, *n;
1502         xfs_bufhash_t   *hash;
1503         uint            i;
1504
1505         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1506                 hash = &btp->bt_hash[i];
1507 again:
1508                 spin_lock(&hash->bh_lock);
1509                 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1510                         ASSERT(btp == bp->pb_target);
1511                         if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1512                                 spin_unlock(&hash->bh_lock);
1513                                 delay(100);
1514                                 goto again;
1515                         }
1516                 }
1517                 spin_unlock(&hash->bh_lock);
1518         }
1519 }
1520
1521 /*
1522  * Allocate buffer hash table for a given target.
1523  * For devices containing metadata (i.e. not the log/realtime devices)
1524  * we need to allocate a much larger hash table.
1525  */
1526 STATIC void
1527 xfs_alloc_bufhash(
1528         xfs_buftarg_t           *btp,
1529         int                     external)
1530 {
1531         unsigned int            i;
1532
1533         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1534         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1535         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1536                                         sizeof(xfs_bufhash_t), KM_SLEEP);
1537         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1538                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1539                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1540         }
1541 }
1542
1543 STATIC void
1544 xfs_free_bufhash(
1545         xfs_buftarg_t           *btp)
1546 {
1547         kmem_free(btp->bt_hash,
1548                         (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1549         btp->bt_hash = NULL;
1550 }
1551
1552 void
1553 xfs_free_buftarg(
1554         xfs_buftarg_t           *btp,
1555         int                     external)
1556 {
1557         xfs_flush_buftarg(btp, 1);
1558         if (external)
1559                 xfs_blkdev_put(btp->pbr_bdev);
1560         xfs_free_bufhash(btp);
1561         iput(btp->pbr_mapping->host);
1562         kmem_free(btp, sizeof(*btp));
1563 }
1564
1565 void
1566 xfs_incore_relse(
1567         xfs_buftarg_t           *btp,
1568         int                     delwri_only,
1569         int                     wait)
1570 {
1571         invalidate_bdev(btp->pbr_bdev, 1);
1572         truncate_inode_pages(btp->pbr_mapping, 0LL);
1573 }
1574
1575 STATIC int
1576 xfs_setsize_buftarg_flags(
1577         xfs_buftarg_t           *btp,
1578         unsigned int            blocksize,
1579         unsigned int            sectorsize,
1580         int                     verbose)
1581 {
1582         btp->pbr_bsize = blocksize;
1583         btp->pbr_sshift = ffs(sectorsize) - 1;
1584         btp->pbr_smask = sectorsize - 1;
1585
1586         if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1587                 printk(KERN_WARNING
1588                         "XFS: Cannot set_blocksize to %u on device %s\n",
1589                         sectorsize, XFS_BUFTARG_NAME(btp));
1590                 return EINVAL;
1591         }
1592
1593         if (verbose &&
1594             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1595                 printk(KERN_WARNING
1596                         "XFS: %u byte sectors in use on device %s.  "
1597                         "This is suboptimal; %u or greater is ideal.\n",
1598                         sectorsize, XFS_BUFTARG_NAME(btp),
1599                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1600         }
1601
1602         return 0;
1603 }
1604
1605 /*
1606 * When allocating the initial buffer target we have not yet
1607 * read in the superblock, so don't know what sized sectors
1608 * are being used is at this early stage.  Play safe.
1609 */
1610 STATIC int
1611 xfs_setsize_buftarg_early(
1612         xfs_buftarg_t           *btp,
1613         struct block_device     *bdev)
1614 {
1615         return xfs_setsize_buftarg_flags(btp,
1616                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1617 }
1618
1619 int
1620 xfs_setsize_buftarg(
1621         xfs_buftarg_t           *btp,
1622         unsigned int            blocksize,
1623         unsigned int            sectorsize)
1624 {
1625         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1626 }
1627
1628 STATIC int
1629 xfs_mapping_buftarg(
1630         xfs_buftarg_t           *btp,
1631         struct block_device     *bdev)
1632 {
1633         struct backing_dev_info *bdi;
1634         struct inode            *inode;
1635         struct address_space    *mapping;
1636         static struct address_space_operations mapping_aops = {
1637                 .sync_page = block_sync_page,
1638         };
1639
1640         inode = new_inode(bdev->bd_inode->i_sb);
1641         if (!inode) {
1642                 printk(KERN_WARNING
1643                         "XFS: Cannot allocate mapping inode for device %s\n",
1644                         XFS_BUFTARG_NAME(btp));
1645                 return ENOMEM;
1646         }
1647         inode->i_mode = S_IFBLK;
1648         inode->i_bdev = bdev;
1649         inode->i_rdev = bdev->bd_dev;
1650         bdi = blk_get_backing_dev_info(bdev);
1651         if (!bdi)
1652                 bdi = &default_backing_dev_info;
1653         mapping = &inode->i_data;
1654         mapping->a_ops = &mapping_aops;
1655         mapping->backing_dev_info = bdi;
1656         mapping_set_gfp_mask(mapping, GFP_NOFS);
1657         btp->pbr_mapping = mapping;
1658         return 0;
1659 }
1660
1661 xfs_buftarg_t *
1662 xfs_alloc_buftarg(
1663         struct block_device     *bdev,
1664         int                     external)
1665 {
1666         xfs_buftarg_t           *btp;
1667
1668         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1669
1670         btp->pbr_dev =  bdev->bd_dev;
1671         btp->pbr_bdev = bdev;
1672         if (xfs_setsize_buftarg_early(btp, bdev))
1673                 goto error;
1674         if (xfs_mapping_buftarg(btp, bdev))
1675                 goto error;
1676         xfs_alloc_bufhash(btp, external);
1677         return btp;
1678
1679 error:
1680         kmem_free(btp, sizeof(*btp));
1681         return NULL;
1682 }
1683
1684
1685 /*
1686  * Pagebuf delayed write buffer handling
1687  */
1688
1689 STATIC LIST_HEAD(pbd_delwrite_queue);
1690 STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1691
1692 STATIC void
1693 pagebuf_delwri_queue(
1694         xfs_buf_t               *pb,
1695         int                     unlock)
1696 {
1697         PB_TRACE(pb, "delwri_q", (long)unlock);
1698         ASSERT(pb->pb_flags & PBF_DELWRI);
1699
1700         spin_lock(&pbd_delwrite_lock);
1701         /* If already in the queue, dequeue and place at tail */
1702         if (!list_empty(&pb->pb_list)) {
1703                 if (unlock) {
1704                         atomic_dec(&pb->pb_hold);
1705                 }
1706                 list_del(&pb->pb_list);
1707         }
1708
1709         list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1710         pb->pb_queuetime = jiffies;
1711         spin_unlock(&pbd_delwrite_lock);
1712
1713         if (unlock)
1714                 pagebuf_unlock(pb);
1715 }
1716
1717 void
1718 pagebuf_delwri_dequeue(
1719         xfs_buf_t               *pb)
1720 {
1721         int                     dequeued = 0;
1722
1723         spin_lock(&pbd_delwrite_lock);
1724         if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
1725                 list_del_init(&pb->pb_list);
1726                 dequeued = 1;
1727         }
1728         pb->pb_flags &= ~PBF_DELWRI;
1729         spin_unlock(&pbd_delwrite_lock);
1730
1731         if (dequeued)
1732                 pagebuf_rele(pb);
1733
1734         PB_TRACE(pb, "delwri_dq", (long)dequeued);
1735 }
1736
1737 STATIC void
1738 pagebuf_runall_queues(
1739         struct workqueue_struct *queue)
1740 {
1741         flush_workqueue(queue);
1742 }
1743
1744 /* Defines for pagebuf daemon */
1745 STATIC DECLARE_COMPLETION(pagebuf_daemon_done);
1746 STATIC struct task_struct *pagebuf_daemon_task;
1747 STATIC int pagebuf_daemon_active;
1748 STATIC int force_flush;
1749 STATIC int force_sleep;
1750
1751 STATIC int
1752 pagebuf_daemon_wakeup(
1753         int                     priority,
1754         unsigned int            mask)
1755 {
1756         if (force_sleep)
1757                 return 0;
1758         force_flush = 1;
1759         barrier();
1760         wake_up_process(pagebuf_daemon_task);
1761         return 0;
1762 }
1763
1764 STATIC int
1765 pagebuf_daemon(
1766         void                    *data)
1767 {
1768         struct list_head        tmp;
1769         unsigned long           age;
1770         xfs_buftarg_t           *target;
1771         xfs_buf_t               *pb, *n;
1772
1773         /*  Set up the thread  */
1774         daemonize("xfsbufd");
1775         current->flags |= PF_MEMALLOC;
1776
1777         pagebuf_daemon_task = current;
1778         pagebuf_daemon_active = 1;
1779         barrier();
1780
1781         INIT_LIST_HEAD(&tmp);
1782         do {
1783                 if (unlikely(current->flags & PF_FREEZE)) {
1784                         force_sleep = 1;
1785                         refrigerator(PF_FREEZE);
1786                 } else {
1787                         force_sleep = 0;
1788                 }
1789
1790                 set_current_state(TASK_INTERRUPTIBLE);
1791                 schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100);
1792
1793                 age = (xfs_buf_age_centisecs * HZ) / 100;
1794                 spin_lock(&pbd_delwrite_lock);
1795                 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1796                         PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1797                         ASSERT(pb->pb_flags & PBF_DELWRI);
1798
1799                         if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
1800                                 if (!force_flush &&
1801                                     time_before(jiffies,
1802                                                 pb->pb_queuetime + age)) {
1803                                         pagebuf_unlock(pb);
1804                                         break;
1805                                 }
1806
1807                                 pb->pb_flags &= ~PBF_DELWRI;
1808                                 pb->pb_flags |= PBF_WRITE;
1809                                 list_move(&pb->pb_list, &tmp);
1810                         }
1811                 }
1812                 spin_unlock(&pbd_delwrite_lock);
1813
1814                 while (!list_empty(&tmp)) {
1815                         pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1816                         target = pb->pb_target;
1817
1818                         list_del_init(&pb->pb_list);
1819                         pagebuf_iostrategy(pb);
1820
1821                         blk_run_address_space(target->pbr_mapping);
1822                 }
1823
1824                 if (as_list_len > 0)
1825                         purge_addresses();
1826
1827                 force_flush = 0;
1828         } while (pagebuf_daemon_active);
1829
1830         complete_and_exit(&pagebuf_daemon_done, 0);
1831 }
1832
1833 /*
1834  * Go through all incore buffers, and release buffers if they belong to
1835  * the given device. This is used in filesystem error handling to
1836  * preserve the consistency of its metadata.
1837  */
1838 int
1839 xfs_flush_buftarg(
1840         xfs_buftarg_t           *target,
1841         int                     wait)
1842 {
1843         struct list_head        tmp;
1844         xfs_buf_t               *pb, *n;
1845         int                     pincount = 0;
1846
1847         pagebuf_runall_queues(pagebuf_dataio_workqueue);
1848         pagebuf_runall_queues(pagebuf_logio_workqueue);
1849
1850         INIT_LIST_HEAD(&tmp);
1851         spin_lock(&pbd_delwrite_lock);
1852         list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1853
1854                 if (pb->pb_target != target)
1855                         continue;
1856
1857                 ASSERT(pb->pb_flags & PBF_DELWRI);
1858                 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1859                 if (pagebuf_ispin(pb)) {
1860                         pincount++;
1861                         continue;
1862                 }
1863
1864                 pb->pb_flags &= ~PBF_DELWRI;
1865                 pb->pb_flags |= PBF_WRITE;
1866                 list_move(&pb->pb_list, &tmp);
1867         }
1868         spin_unlock(&pbd_delwrite_lock);
1869
1870         /*
1871          * Dropped the delayed write list lock, now walk the temporary list
1872          */
1873         list_for_each_entry_safe(pb, n, &tmp, pb_list) {
1874                 if (wait)
1875                         pb->pb_flags &= ~PBF_ASYNC;
1876                 else
1877                         list_del_init(&pb->pb_list);
1878
1879                 pagebuf_lock(pb);
1880                 pagebuf_iostrategy(pb);
1881         }
1882
1883         /*
1884          * Remaining list items must be flushed before returning
1885          */
1886         while (!list_empty(&tmp)) {
1887                 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1888
1889                 list_del_init(&pb->pb_list);
1890                 xfs_iowait(pb);
1891                 xfs_buf_relse(pb);
1892         }
1893
1894         if (wait)
1895                 blk_run_address_space(target->pbr_mapping);
1896
1897         return pincount;
1898 }
1899
1900 STATIC int
1901 pagebuf_daemon_start(void)
1902 {
1903         int             rval;
1904
1905         pagebuf_logio_workqueue = create_workqueue("xfslogd");
1906         if (!pagebuf_logio_workqueue)
1907                 return -ENOMEM;
1908
1909         pagebuf_dataio_workqueue = create_workqueue("xfsdatad");
1910         if (!pagebuf_dataio_workqueue) {
1911                 destroy_workqueue(pagebuf_logio_workqueue);
1912                 return -ENOMEM;
1913         }
1914
1915         rval = kernel_thread(pagebuf_daemon, NULL, CLONE_FS|CLONE_FILES);
1916         if (rval < 0) {
1917                 destroy_workqueue(pagebuf_logio_workqueue);
1918                 destroy_workqueue(pagebuf_dataio_workqueue);
1919         }
1920
1921         return rval;
1922 }
1923
1924 /*
1925  * pagebuf_daemon_stop
1926  *
1927  * Note: do not mark as __exit, it is called from pagebuf_terminate.
1928  */
1929 STATIC void
1930 pagebuf_daemon_stop(void)
1931 {
1932         pagebuf_daemon_active = 0;
1933         barrier();
1934         wait_for_completion(&pagebuf_daemon_done);
1935
1936         destroy_workqueue(pagebuf_logio_workqueue);
1937         destroy_workqueue(pagebuf_dataio_workqueue);
1938 }
1939
1940 /*
1941  *      Initialization and Termination
1942  */
1943
1944 int __init
1945 pagebuf_init(void)
1946 {
1947         pagebuf_cache = kmem_cache_create("xfs_buf_t", sizeof(xfs_buf_t), 0,
1948                         SLAB_HWCACHE_ALIGN, NULL, NULL);
1949         if (pagebuf_cache == NULL) {
1950                 printk("XFS: couldn't init xfs_buf_t cache\n");
1951                 pagebuf_terminate();
1952                 return -ENOMEM;
1953         }
1954
1955 #ifdef PAGEBUF_TRACE
1956         pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1957 #endif
1958
1959         pagebuf_daemon_start();
1960
1961         pagebuf_shake = kmem_shake_register(pagebuf_daemon_wakeup);
1962         if (pagebuf_shake == NULL) {
1963                 pagebuf_terminate();
1964                 return -ENOMEM;
1965         }
1966
1967         return 0;
1968 }
1969
1970
1971 /*
1972  *      pagebuf_terminate.
1973  *
1974  *      Note: do not mark as __exit, this is also called from the __init code.
1975  */
1976 void
1977 pagebuf_terminate(void)
1978 {
1979         pagebuf_daemon_stop();
1980
1981 #ifdef PAGEBUF_TRACE
1982         ktrace_free(pagebuf_trace_buf);
1983 #endif
1984
1985         kmem_zone_destroy(pagebuf_cache);
1986         kmem_shake_deregister(pagebuf_shake);
1987 }