Merge to Fedora kernel-2.6.18-1.2224_FC5 patched with stable patch-2.6.18.1-vs2.0...
[linux-2.6.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_cap.h"
47 #include "xfs_mac.h"
48 #include "xfs_attr.h"
49 #include "xfs_buf_item.h"
50 #include "xfs_utils.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59
60 STATIC struct quotactl_ops xfs_quotactl_operations;
61 STATIC struct super_operations xfs_super_operations;
62 STATIC kmem_zone_t *xfs_vnode_zone;
63 STATIC kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
65
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68         struct super_block      *sb,
69         int                     silent)
70 {
71         struct xfs_mount_args   *args;
72
73         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74         args->logbufs = args->logbufsize = -1;
75         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
76
77         /* Copy the already-parsed mount(2) flags we're interested in */
78         if (sb->s_flags & MS_DIRSYNC)
79                 args->flags |= XFSMNT_DIRSYNC;
80         if (sb->s_flags & MS_SYNCHRONOUS)
81                 args->flags |= XFSMNT_WSYNC;
82         if (silent)
83                 args->flags |= XFSMNT_QUIET;
84         args->flags |= XFSMNT_32BITINODES;
85
86         return args;
87 }
88
89 __uint64_t
90 xfs_max_file_offset(
91         unsigned int            blockshift)
92 {
93         unsigned int            pagefactor = 1;
94         unsigned int            bitshift = BITS_PER_LONG - 1;
95
96         /* Figure out maximum filesize, on Linux this can depend on
97          * the filesystem blocksize (on 32 bit platforms).
98          * __block_prepare_write does this in an [unsigned] long...
99          *      page->index << (PAGE_CACHE_SHIFT - bbits)
100          * So, for page sized blocks (4K on 32 bit platforms),
101          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103          * but for smaller blocksizes it is less (bbits = log2 bsize).
104          * Note1: get_block_t takes a long (implicit cast from above)
105          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106          * can optionally convert the [unsigned] long from above into
107          * an [unsigned] long long.
108          */
109
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112         ASSERT(sizeof(sector_t) == 8);
113         pagefactor = PAGE_CACHE_SIZE;
114         bitshift = BITS_PER_LONG;
115 # else
116         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
119
120         return (((__uint64_t)pagefactor) << bitshift) - 1;
121 }
122
123 STATIC __inline__ void
124 xfs_set_inodeops(
125         struct inode            *inode)
126 {
127         switch (inode->i_mode & S_IFMT) {
128         case S_IFREG:
129                 inode->i_op = &xfs_inode_operations;
130                 inode->i_fop = &xfs_file_operations;
131                 inode->i_mapping->a_ops = &xfs_address_space_operations;
132                 break;
133         case S_IFDIR:
134                 inode->i_op = &xfs_dir_inode_operations;
135                 inode->i_fop = &xfs_dir_file_operations;
136                 break;
137         case S_IFLNK:
138                 inode->i_op = &xfs_symlink_inode_operations;
139                 if (inode->i_blocks)
140                         inode->i_mapping->a_ops = &xfs_address_space_operations;
141                 break;
142         default:
143                 inode->i_op = &xfs_inode_operations;
144                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145                 break;
146         }
147 }
148
149 STATIC __inline__ void
150 xfs_revalidate_inode(
151         xfs_mount_t             *mp,
152         bhv_vnode_t             *vp,
153         xfs_inode_t             *ip)
154 {
155         struct inode            *inode = vn_to_inode(vp);
156
157         inode->i_mode   = ip->i_d.di_mode;
158         inode->i_nlink  = ip->i_d.di_nlink;
159         inode->i_uid    = ip->i_d.di_uid;
160         inode->i_gid    = ip->i_d.di_gid;
161         inode->i_xid    = ip->i_d.di_xid;
162
163         switch (inode->i_mode & S_IFMT) {
164         case S_IFBLK:
165         case S_IFCHR:
166                 inode->i_rdev =
167                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168                               sysv_minor(ip->i_df.if_u2.if_rdev));
169                 break;
170         default:
171                 inode->i_rdev = 0;
172                 break;
173         }
174
175         inode->i_generation = ip->i_d.di_gen;
176         i_size_write(inode, ip->i_d.di_size);
177         inode->i_blocks =
178                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
180         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
181         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
182         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
183         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
184         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
185         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186                 inode->i_flags |= S_IMMUTABLE;
187         else
188                 inode->i_flags &= ~S_IMMUTABLE;
189         if (ip->i_d.di_flags & XFS_DIFLAG_IUNLINK)
190                 inode->i_flags |= S_IUNLINK;
191         else
192                 inode->i_flags &= ~S_IUNLINK;
193         if (ip->i_d.di_flags & XFS_DIFLAG_BARRIER)
194                 inode->i_flags |= S_BARRIER;
195         else
196                 inode->i_flags &= ~S_BARRIER;
197         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
198                 inode->i_flags |= S_APPEND;
199         else
200                 inode->i_flags &= ~S_APPEND;
201         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
202                 inode->i_flags |= S_SYNC;
203         else
204                 inode->i_flags &= ~S_SYNC;
205         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
206                 inode->i_flags |= S_NOATIME;
207         else
208                 inode->i_flags &= ~S_NOATIME;
209         vp->v_flag &= ~VMODIFIED;
210 }
211
212 void
213 xfs_initialize_vnode(
214         bhv_desc_t              *bdp,
215         bhv_vnode_t             *vp,
216         bhv_desc_t              *inode_bhv,
217         int                     unlock)
218 {
219         xfs_inode_t             *ip = XFS_BHVTOI(inode_bhv);
220         struct inode            *inode = vn_to_inode(vp);
221
222         if (!inode_bhv->bd_vobj) {
223                 vp->v_vfsp = bhvtovfs(bdp);
224                 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
225                 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
226         }
227
228         /*
229          * We need to set the ops vectors, and unlock the inode, but if
230          * we have been called during the new inode create process, it is
231          * too early to fill in the Linux inode.  We will get called a
232          * second time once the inode is properly set up, and then we can
233          * finish our work.
234          */
235         if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
236                 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
237                 xfs_set_inodeops(inode);
238
239                 ip->i_flags &= ~XFS_INEW;
240                 barrier();
241
242                 unlock_new_inode(inode);
243         }
244 }
245
246 int
247 xfs_blkdev_get(
248         xfs_mount_t             *mp,
249         const char              *name,
250         struct block_device     **bdevp)
251 {
252         int                     error = 0;
253
254         *bdevp = open_bdev_excl(name, 0, mp);
255         if (IS_ERR(*bdevp)) {
256                 error = PTR_ERR(*bdevp);
257                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
258         }
259
260         return -error;
261 }
262
263 void
264 xfs_blkdev_put(
265         struct block_device     *bdev)
266 {
267         if (bdev)
268                 close_bdev_excl(bdev);
269 }
270
271 /*
272  * Try to write out the superblock using barriers.
273  */
274 STATIC int
275 xfs_barrier_test(
276         xfs_mount_t     *mp)
277 {
278         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
279         int             error;
280
281         XFS_BUF_UNDONE(sbp);
282         XFS_BUF_UNREAD(sbp);
283         XFS_BUF_UNDELAYWRITE(sbp);
284         XFS_BUF_WRITE(sbp);
285         XFS_BUF_UNASYNC(sbp);
286         XFS_BUF_ORDERED(sbp);
287
288         xfsbdstrat(mp, sbp);
289         error = xfs_iowait(sbp);
290
291         /*
292          * Clear all the flags we set and possible error state in the
293          * buffer.  We only did the write to try out whether barriers
294          * worked and shouldn't leave any traces in the superblock
295          * buffer.
296          */
297         XFS_BUF_DONE(sbp);
298         XFS_BUF_ERROR(sbp, 0);
299         XFS_BUF_UNORDERED(sbp);
300
301         xfs_buf_relse(sbp);
302         return error;
303 }
304
305 void
306 xfs_mountfs_check_barriers(xfs_mount_t *mp)
307 {
308         int error;
309
310         if (mp->m_logdev_targp != mp->m_ddev_targp) {
311                 xfs_fs_cmn_err(CE_NOTE, mp,
312                   "Disabling barriers, not supported with external log device");
313                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
314                 return;
315         }
316
317         if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
318                                         QUEUE_ORDERED_NONE) {
319                 xfs_fs_cmn_err(CE_NOTE, mp,
320                   "Disabling barriers, not supported by the underlying device");
321                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
322                 return;
323         }
324
325         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
326                 xfs_fs_cmn_err(CE_NOTE, mp,
327                   "Disabling barriers, underlying device is readonly");
328                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
329                 return;
330         }
331
332         error = xfs_barrier_test(mp);
333         if (error) {
334                 xfs_fs_cmn_err(CE_NOTE, mp,
335                   "Disabling barriers, trial barrier write failed");
336                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
337                 return;
338         }
339 }
340
341 void
342 xfs_blkdev_issue_flush(
343         xfs_buftarg_t           *buftarg)
344 {
345         blkdev_issue_flush(buftarg->bt_bdev, NULL);
346 }
347
348 STATIC struct inode *
349 xfs_fs_alloc_inode(
350         struct super_block      *sb)
351 {
352         bhv_vnode_t             *vp;
353
354         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
355         if (unlikely(!vp))
356                 return NULL;
357         return vn_to_inode(vp);
358 }
359
360 STATIC void
361 xfs_fs_destroy_inode(
362         struct inode            *inode)
363 {
364         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
365 }
366
367 STATIC void
368 xfs_fs_inode_init_once(
369         void                    *vnode,
370         kmem_zone_t             *zonep,
371         unsigned long           flags)
372 {
373         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
374                       SLAB_CTOR_CONSTRUCTOR)
375                 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
376 }
377
378 STATIC int
379 xfs_init_zones(void)
380 {
381         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
382                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
383                                         KM_ZONE_SPREAD,
384                                         xfs_fs_inode_init_once);
385         if (!xfs_vnode_zone)
386                 goto out;
387
388         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
389         if (!xfs_ioend_zone)
390                 goto out_destroy_vnode_zone;
391
392         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
393                                                   xfs_ioend_zone);
394         if (!xfs_ioend_pool)
395                 goto out_free_ioend_zone;
396         return 0;
397
398  out_free_ioend_zone:
399         kmem_zone_destroy(xfs_ioend_zone);
400  out_destroy_vnode_zone:
401         kmem_zone_destroy(xfs_vnode_zone);
402  out:
403         return -ENOMEM;
404 }
405
406 STATIC void
407 xfs_destroy_zones(void)
408 {
409         mempool_destroy(xfs_ioend_pool);
410         kmem_zone_destroy(xfs_vnode_zone);
411         kmem_zone_destroy(xfs_ioend_zone);
412 }
413
414 /*
415  * Attempt to flush the inode, this will actually fail
416  * if the inode is pinned, but we dirty the inode again
417  * at the point when it is unpinned after a log write,
418  * since this is when the inode itself becomes flushable.
419  */
420 STATIC int
421 xfs_fs_write_inode(
422         struct inode            *inode,
423         int                     sync)
424 {
425         bhv_vnode_t             *vp = vn_from_inode(inode);
426         int                     error = 0, flags = FLUSH_INODE;
427
428         if (vp) {
429                 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
430                 if (sync)
431                         flags |= FLUSH_SYNC;
432                 error = bhv_vop_iflush(vp, flags);
433                 if (error == EAGAIN)
434                         error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
435         }
436         return -error;
437 }
438
439 STATIC void
440 xfs_fs_clear_inode(
441         struct inode            *inode)
442 {
443         bhv_vnode_t             *vp = vn_from_inode(inode);
444
445         vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
446
447         XFS_STATS_INC(vn_rele);
448         XFS_STATS_INC(vn_remove);
449         XFS_STATS_INC(vn_reclaim);
450         XFS_STATS_DEC(vn_active);
451
452         /*
453          * This can happen because xfs_iget_core calls xfs_idestroy if we
454          * find an inode with di_mode == 0 but without IGET_CREATE set.
455          */
456         if (VNHEAD(vp))
457                 bhv_vop_inactive(vp, NULL);
458
459         VN_LOCK(vp);
460         vp->v_flag &= ~VMODIFIED;
461         VN_UNLOCK(vp, 0);
462
463         if (VNHEAD(vp))
464                 if (bhv_vop_reclaim(vp))
465                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
466
467         ASSERT(VNHEAD(vp) == NULL);
468
469 #ifdef XFS_VNODE_TRACE
470         ktrace_free(vp->v_trace);
471 #endif
472 }
473
474 /*
475  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
476  * Doing this has two advantages:
477  * - It saves on stack space, which is tight in certain situations
478  * - It can be used (with care) as a mechanism to avoid deadlocks.
479  * Flushing while allocating in a full filesystem requires both.
480  */
481 STATIC void
482 xfs_syncd_queue_work(
483         struct bhv_vfs  *vfs,
484         void            *data,
485         void            (*syncer)(bhv_vfs_t *, void *))
486 {
487         struct bhv_vfs_sync_work *work;
488
489         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
490         INIT_LIST_HEAD(&work->w_list);
491         work->w_syncer = syncer;
492         work->w_data = data;
493         work->w_vfs = vfs;
494         spin_lock(&vfs->vfs_sync_lock);
495         list_add_tail(&work->w_list, &vfs->vfs_sync_list);
496         spin_unlock(&vfs->vfs_sync_lock);
497         wake_up_process(vfs->vfs_sync_task);
498 }
499
500 /*
501  * Flush delayed allocate data, attempting to free up reserved space
502  * from existing allocations.  At this point a new allocation attempt
503  * has failed with ENOSPC and we are in the process of scratching our
504  * heads, looking about for more room...
505  */
506 STATIC void
507 xfs_flush_inode_work(
508         bhv_vfs_t       *vfs,
509         void            *inode)
510 {
511         filemap_flush(((struct inode *)inode)->i_mapping);
512         iput((struct inode *)inode);
513 }
514
515 void
516 xfs_flush_inode(
517         xfs_inode_t     *ip)
518 {
519         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
520         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
521
522         igrab(inode);
523         xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
524         delay(msecs_to_jiffies(500));
525 }
526
527 /*
528  * This is the "bigger hammer" version of xfs_flush_inode_work...
529  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
530  */
531 STATIC void
532 xfs_flush_device_work(
533         bhv_vfs_t       *vfs,
534         void            *inode)
535 {
536         sync_blockdev(vfs->vfs_super->s_bdev);
537         iput((struct inode *)inode);
538 }
539
540 void
541 xfs_flush_device(
542         xfs_inode_t     *ip)
543 {
544         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
545         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
546
547         igrab(inode);
548         xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
549         delay(msecs_to_jiffies(500));
550         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
551 }
552
553 STATIC void
554 vfs_sync_worker(
555         bhv_vfs_t       *vfsp,
556         void            *unused)
557 {
558         int             error;
559
560         if (!(vfsp->vfs_flag & VFS_RDONLY))
561                 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
562                                         SYNC_ATTR | SYNC_REFCACHE, NULL);
563         vfsp->vfs_sync_seq++;
564         wmb();
565         wake_up(&vfsp->vfs_wait_single_sync_task);
566 }
567
568 STATIC int
569 xfssyncd(
570         void                    *arg)
571 {
572         long                    timeleft;
573         bhv_vfs_t               *vfsp = (bhv_vfs_t *) arg;
574         bhv_vfs_sync_work_t     *work, *n;
575         LIST_HEAD               (tmp);
576
577         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
578         for (;;) {
579                 timeleft = schedule_timeout_interruptible(timeleft);
580                 /* swsusp */
581                 try_to_freeze();
582                 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
583                         break;
584
585                 spin_lock(&vfsp->vfs_sync_lock);
586                 /*
587                  * We can get woken by laptop mode, to do a sync -
588                  * that's the (only!) case where the list would be
589                  * empty with time remaining.
590                  */
591                 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
592                         if (!timeleft)
593                                 timeleft = xfs_syncd_centisecs *
594                                                         msecs_to_jiffies(10);
595                         INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
596                         list_add_tail(&vfsp->vfs_sync_work.w_list,
597                                         &vfsp->vfs_sync_list);
598                 }
599                 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
600                         list_move(&work->w_list, &tmp);
601                 spin_unlock(&vfsp->vfs_sync_lock);
602
603                 list_for_each_entry_safe(work, n, &tmp, w_list) {
604                         (*work->w_syncer)(vfsp, work->w_data);
605                         list_del(&work->w_list);
606                         if (work == &vfsp->vfs_sync_work)
607                                 continue;
608                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
609                 }
610         }
611
612         return 0;
613 }
614
615 STATIC int
616 xfs_fs_start_syncd(
617         bhv_vfs_t               *vfsp)
618 {
619         vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
620         vfsp->vfs_sync_work.w_vfs = vfsp;
621         vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
622         if (IS_ERR(vfsp->vfs_sync_task))
623                 return -PTR_ERR(vfsp->vfs_sync_task);
624         return 0;
625 }
626
627 STATIC void
628 xfs_fs_stop_syncd(
629         bhv_vfs_t               *vfsp)
630 {
631         kthread_stop(vfsp->vfs_sync_task);
632 }
633
634 STATIC void
635 xfs_fs_put_super(
636         struct super_block      *sb)
637 {
638         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
639         int                     error;
640
641         xfs_fs_stop_syncd(vfsp);
642         bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
643         error = bhv_vfs_unmount(vfsp, 0, NULL);
644         if (error) {
645                 printk("XFS: unmount got error=%d\n", error);
646                 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
647         } else {
648                 vfs_deallocate(vfsp);
649         }
650 }
651
652 STATIC void
653 xfs_fs_write_super(
654         struct super_block      *sb)
655 {
656         if (!(sb->s_flags & MS_RDONLY))
657                 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
658         sb->s_dirt = 0;
659 }
660
661 STATIC int
662 xfs_fs_sync_super(
663         struct super_block      *sb,
664         int                     wait)
665 {
666         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
667         int                     error;
668         int                     flags;
669
670         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
671                 flags = SYNC_QUIESCE;
672         else
673                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
674
675         error = bhv_vfs_sync(vfsp, flags, NULL);
676         sb->s_dirt = 0;
677
678         if (unlikely(laptop_mode)) {
679                 int     prev_sync_seq = vfsp->vfs_sync_seq;
680
681                 /*
682                  * The disk must be active because we're syncing.
683                  * We schedule xfssyncd now (now that the disk is
684                  * active) instead of later (when it might not be).
685                  */
686                 wake_up_process(vfsp->vfs_sync_task);
687                 /*
688                  * We have to wait for the sync iteration to complete.
689                  * If we don't, the disk activity caused by the sync
690                  * will come after the sync is completed, and that
691                  * triggers another sync from laptop mode.
692                  */
693                 wait_event(vfsp->vfs_wait_single_sync_task,
694                                 vfsp->vfs_sync_seq != prev_sync_seq);
695         }
696
697         return -error;
698 }
699
700 STATIC int
701 xfs_fs_statfs(
702         struct dentry           *dentry,
703         struct kstatfs          *statp)
704 {
705         return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
706                                 vn_from_inode(dentry->d_inode));
707 }
708
709 STATIC int
710 xfs_fs_remount(
711         struct super_block      *sb,
712         int                     *flags,
713         char                    *options)
714 {
715         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
716         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
717         int                     error;
718
719         error = bhv_vfs_parseargs(vfsp, options, args, 1);
720         if ((args->flags2 & XFSMNT2_TAGXID) &&
721                 !(sb->s_flags & MS_TAGXID)) {
722                 printk("XFS: %s: tagxid not permitted on remount.\n",
723                         sb->s_id);
724                 error = EINVAL;
725         }
726         if (!error)
727                 error = bhv_vfs_mntupdate(vfsp, flags, args);
728         kmem_free(args, sizeof(*args));
729         return -error;
730 }
731
732 STATIC void
733 xfs_fs_lockfs(
734         struct super_block      *sb)
735 {
736         bhv_vfs_freeze(vfs_from_sb(sb));
737 }
738
739 STATIC int
740 xfs_fs_show_options(
741         struct seq_file         *m,
742         struct vfsmount         *mnt)
743 {
744         return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
745 }
746
747 STATIC int
748 xfs_fs_quotasync(
749         struct super_block      *sb,
750         int                     type)
751 {
752         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
753 }
754
755 STATIC int
756 xfs_fs_getxstate(
757         struct super_block      *sb,
758         struct fs_quota_stat    *fqs)
759 {
760         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
761 }
762
763 STATIC int
764 xfs_fs_setxstate(
765         struct super_block      *sb,
766         unsigned int            flags,
767         int                     op)
768 {
769         return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
770 }
771
772 STATIC int
773 xfs_fs_getxquota(
774         struct super_block      *sb,
775         int                     type,
776         qid_t                   id,
777         struct fs_disk_quota    *fdq)
778 {
779         return -bhv_vfs_quotactl(vfs_from_sb(sb),
780                                  (type == USRQUOTA) ? Q_XGETQUOTA :
781                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
782                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
783 }
784
785 STATIC int
786 xfs_fs_setxquota(
787         struct super_block      *sb,
788         int                     type,
789         qid_t                   id,
790         struct fs_disk_quota    *fdq)
791 {
792         return -bhv_vfs_quotactl(vfs_from_sb(sb),
793                                  (type == USRQUOTA) ? Q_XSETQLIM :
794                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
795                                    Q_XSETPQLIM), id, (caddr_t)fdq);
796 }
797
798 STATIC int
799 xfs_fs_fill_super(
800         struct super_block      *sb,
801         void                    *data,
802         int                     silent)
803 {
804         struct bhv_vnode        *rootvp;
805         struct bhv_vfs          *vfsp = vfs_allocate(sb);
806         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
807         struct kstatfs          statvfs;
808         int                     error;
809
810         bhv_insert_all_vfsops(vfsp);
811
812         error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
813         if (error) {
814                 bhv_remove_all_vfsops(vfsp, 1);
815                 goto fail_vfsop;
816         }
817
818         sb_min_blocksize(sb, BBSIZE);
819         sb->s_export_op = &xfs_export_operations;
820         sb->s_qcop = &xfs_quotactl_operations;
821         sb->s_op = &xfs_super_operations;
822
823         error = bhv_vfs_mount(vfsp, args, NULL);
824         if (error) {
825                 bhv_remove_all_vfsops(vfsp, 1);
826                 goto fail_vfsop;
827         }
828
829         error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
830         if (error)
831                 goto fail_unmount;
832
833         sb->s_dirt = 1;
834         sb->s_magic = statvfs.f_type;
835         sb->s_blocksize = statvfs.f_bsize;
836         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
837         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
838         sb->s_time_gran = 1;
839         set_posix_acl_flag(sb);
840
841         error = bhv_vfs_root(vfsp, &rootvp);
842         if (error)
843                 goto fail_unmount;
844
845         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
846         if (!sb->s_root) {
847                 error = ENOMEM;
848                 goto fail_vnrele;
849         }
850         if (is_bad_inode(sb->s_root->d_inode)) {
851                 error = EINVAL;
852                 goto fail_vnrele;
853         }
854         if ((error = xfs_fs_start_syncd(vfsp)))
855                 goto fail_vnrele;
856         vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
857
858         kmem_free(args, sizeof(*args));
859         return 0;
860
861 fail_vnrele:
862         if (sb->s_root) {
863                 dput(sb->s_root);
864                 sb->s_root = NULL;
865         } else {
866                 VN_RELE(rootvp);
867         }
868
869 fail_unmount:
870         bhv_vfs_unmount(vfsp, 0, NULL);
871
872 fail_vfsop:
873         vfs_deallocate(vfsp);
874         kmem_free(args, sizeof(*args));
875         return -error;
876 }
877
878 STATIC int
879 xfs_fs_get_sb(
880         struct file_system_type *fs_type,
881         int                     flags,
882         const char              *dev_name,
883         void                    *data,
884         struct vfsmount         *mnt)
885 {
886         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
887                            mnt);
888 }
889
890 STATIC struct super_operations xfs_super_operations = {
891         .alloc_inode            = xfs_fs_alloc_inode,
892         .destroy_inode          = xfs_fs_destroy_inode,
893         .write_inode            = xfs_fs_write_inode,
894         .clear_inode            = xfs_fs_clear_inode,
895         .put_super              = xfs_fs_put_super,
896         .write_super            = xfs_fs_write_super,
897         .sync_fs                = xfs_fs_sync_super,
898         .write_super_lockfs     = xfs_fs_lockfs,
899         .statfs                 = xfs_fs_statfs,
900         .remount_fs             = xfs_fs_remount,
901         .show_options           = xfs_fs_show_options,
902 };
903
904 STATIC struct quotactl_ops xfs_quotactl_operations = {
905         .quota_sync             = xfs_fs_quotasync,
906         .get_xstate             = xfs_fs_getxstate,
907         .set_xstate             = xfs_fs_setxstate,
908         .get_xquota             = xfs_fs_getxquota,
909         .set_xquota             = xfs_fs_setxquota,
910 };
911
912 STATIC struct file_system_type xfs_fs_type = {
913         .owner                  = THIS_MODULE,
914         .name                   = "xfs",
915         .get_sb                 = xfs_fs_get_sb,
916         .kill_sb                = kill_block_super,
917         .fs_flags               = FS_REQUIRES_DEV,
918 };
919
920
921 STATIC int __init
922 init_xfs_fs( void )
923 {
924         int                     error;
925         struct sysinfo          si;
926         static char             message[] __initdata = KERN_INFO \
927                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
928
929         printk(message);
930
931         si_meminfo(&si);
932         xfs_physmem = si.totalram;
933
934         ktrace_init(64);
935
936         error = xfs_init_zones();
937         if (error < 0)
938                 goto undo_zones;
939
940         error = xfs_buf_init();
941         if (error < 0)
942                 goto undo_buffers;
943
944         vn_init();
945         xfs_init();
946         uuid_init();
947         vfs_initquota();
948
949         error = register_filesystem(&xfs_fs_type);
950         if (error)
951                 goto undo_register;
952         return 0;
953
954 undo_register:
955         xfs_buf_terminate();
956
957 undo_buffers:
958         xfs_destroy_zones();
959
960 undo_zones:
961         return error;
962 }
963
964 STATIC void __exit
965 exit_xfs_fs( void )
966 {
967         vfs_exitquota();
968         unregister_filesystem(&xfs_fs_type);
969         xfs_cleanup();
970         xfs_buf_terminate();
971         xfs_destroy_zones();
972         ktrace_uninit();
973 }
974
975 module_init(init_xfs_fs);
976 module_exit(exit_xfs_fs);
977
978 MODULE_AUTHOR("Silicon Graphics, Inc.");
979 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
980 MODULE_LICENSE("GPL");