Fedora kernel-2.6.17-1.2142_FC4 patched with stable patch-2.6.17.4-vs2.0.2-rc26.diff
[linux-2.6.git] / include / asm-arm / dma-mapping.h
1 #ifndef ASMARM_DMA_MAPPING_H
2 #define ASMARM_DMA_MAPPING_H
3
4 #ifdef __KERNEL__
5
6 #include <linux/config.h>
7 #include <linux/mm.h> /* need struct page */
8
9 #include <asm/scatterlist.h>
10
11 /*
12  * DMA-consistent mapping functions.  These allocate/free a region of
13  * uncached, unwrite-buffered mapped memory space for use with DMA
14  * devices.  This is the "generic" version.  The PCI specific version
15  * is in pci.h
16  */
17 extern void consistent_sync(void *kaddr, size_t size, int rw);
18
19 /*
20  * Return whether the given device DMA address mask can be supported
21  * properly.  For example, if your device can only drive the low 24-bits
22  * during bus mastering, then you would pass 0x00ffffff as the mask
23  * to this function.
24  *
25  * FIXME: This should really be a platform specific issue - we should
26  * return false if GFP_DMA allocations may not satisfy the supplied 'mask'.
27  */
28 static inline int dma_supported(struct device *dev, u64 mask)
29 {
30         return dev->dma_mask && *dev->dma_mask != 0;
31 }
32
33 static inline int dma_set_mask(struct device *dev, u64 dma_mask)
34 {
35         if (!dev->dma_mask || !dma_supported(dev, dma_mask))
36                 return -EIO;
37
38         *dev->dma_mask = dma_mask;
39
40         return 0;
41 }
42
43 static inline int dma_get_cache_alignment(void)
44 {
45         return 32;
46 }
47
48 static inline int dma_is_consistent(dma_addr_t handle)
49 {
50         return !!arch_is_coherent();
51 }
52
53 /*
54  * DMA errors are defined by all-bits-set in the DMA address.
55  */
56 static inline int dma_mapping_error(dma_addr_t dma_addr)
57 {
58         return dma_addr == ~0;
59 }
60
61 /**
62  * dma_alloc_coherent - allocate consistent memory for DMA
63  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64  * @size: required memory size
65  * @handle: bus-specific DMA address
66  *
67  * Allocate some uncached, unbuffered memory for a device for
68  * performing DMA.  This function allocates pages, and will
69  * return the CPU-viewed address, and sets @handle to be the
70  * device-viewed address.
71  */
72 extern void *
73 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);
74
75 /**
76  * dma_free_coherent - free memory allocated by dma_alloc_coherent
77  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
78  * @size: size of memory originally requested in dma_alloc_coherent
79  * @cpu_addr: CPU-view address returned from dma_alloc_coherent
80  * @handle: device-view address returned from dma_alloc_coherent
81  *
82  * Free (and unmap) a DMA buffer previously allocated by
83  * dma_alloc_coherent().
84  *
85  * References to memory and mappings associated with cpu_addr/handle
86  * during and after this call executing are illegal.
87  */
88 extern void
89 dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
90                   dma_addr_t handle);
91
92 /**
93  * dma_mmap_coherent - map a coherent DMA allocation into user space
94  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95  * @vma: vm_area_struct describing requested user mapping
96  * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
97  * @handle: device-view address returned from dma_alloc_coherent
98  * @size: size of memory originally requested in dma_alloc_coherent
99  *
100  * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
101  * into user space.  The coherent DMA buffer must not be freed by the
102  * driver until the user space mapping has been released.
103  */
104 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
105                       void *cpu_addr, dma_addr_t handle, size_t size);
106
107
108 /**
109  * dma_alloc_writecombine - allocate writecombining memory for DMA
110  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
111  * @size: required memory size
112  * @handle: bus-specific DMA address
113  *
114  * Allocate some uncached, buffered memory for a device for
115  * performing DMA.  This function allocates pages, and will
116  * return the CPU-viewed address, and sets @handle to be the
117  * device-viewed address.
118  */
119 extern void *
120 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);
121
122 #define dma_free_writecombine(dev,size,cpu_addr,handle) \
123         dma_free_coherent(dev,size,cpu_addr,handle)
124
125 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
126                           void *cpu_addr, dma_addr_t handle, size_t size);
127
128
129 /**
130  * dma_map_single - map a single buffer for streaming DMA
131  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
132  * @cpu_addr: CPU direct mapped address of buffer
133  * @size: size of buffer to map
134  * @dir: DMA transfer direction
135  *
136  * Ensure that any data held in the cache is appropriately discarded
137  * or written back.
138  *
139  * The device owns this memory once this call has completed.  The CPU
140  * can regain ownership by calling dma_unmap_single() or
141  * dma_sync_single_for_cpu().
142  */
143 #ifndef CONFIG_DMABOUNCE
144 static inline dma_addr_t
145 dma_map_single(struct device *dev, void *cpu_addr, size_t size,
146                enum dma_data_direction dir)
147 {
148         if (!arch_is_coherent())
149                 consistent_sync(cpu_addr, size, dir);
150
151         return virt_to_dma(dev, (unsigned long)cpu_addr);
152 }
153 #else
154 extern dma_addr_t dma_map_single(struct device *,void *, size_t, enum dma_data_direction);
155 #endif
156
157 /**
158  * dma_map_page - map a portion of a page for streaming DMA
159  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
160  * @page: page that buffer resides in
161  * @offset: offset into page for start of buffer
162  * @size: size of buffer to map
163  * @dir: DMA transfer direction
164  *
165  * Ensure that any data held in the cache is appropriately discarded
166  * or written back.
167  *
168  * The device owns this memory once this call has completed.  The CPU
169  * can regain ownership by calling dma_unmap_page() or
170  * dma_sync_single_for_cpu().
171  */
172 static inline dma_addr_t
173 dma_map_page(struct device *dev, struct page *page,
174              unsigned long offset, size_t size,
175              enum dma_data_direction dir)
176 {
177         return dma_map_single(dev, page_address(page) + offset, size, (int)dir);
178 }
179
180 /**
181  * dma_unmap_single - unmap a single buffer previously mapped
182  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
183  * @handle: DMA address of buffer
184  * @size: size of buffer to map
185  * @dir: DMA transfer direction
186  *
187  * Unmap a single streaming mode DMA translation.  The handle and size
188  * must match what was provided in the previous dma_map_single() call.
189  * All other usages are undefined.
190  *
191  * After this call, reads by the CPU to the buffer are guaranteed to see
192  * whatever the device wrote there.
193  */
194 #ifndef CONFIG_DMABOUNCE
195 static inline void
196 dma_unmap_single(struct device *dev, dma_addr_t handle, size_t size,
197                  enum dma_data_direction dir)
198 {
199         /* nothing to do */
200 }
201 #else
202 extern void dma_unmap_single(struct device *, dma_addr_t, size_t, enum dma_data_direction);
203 #endif
204
205 /**
206  * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
207  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
208  * @handle: DMA address of buffer
209  * @size: size of buffer to map
210  * @dir: DMA transfer direction
211  *
212  * Unmap a single streaming mode DMA translation.  The handle and size
213  * must match what was provided in the previous dma_map_single() call.
214  * All other usages are undefined.
215  *
216  * After this call, reads by the CPU to the buffer are guaranteed to see
217  * whatever the device wrote there.
218  */
219 static inline void
220 dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
221                enum dma_data_direction dir)
222 {
223         dma_unmap_single(dev, handle, size, (int)dir);
224 }
225
226 /**
227  * dma_map_sg - map a set of SG buffers for streaming mode DMA
228  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
229  * @sg: list of buffers
230  * @nents: number of buffers to map
231  * @dir: DMA transfer direction
232  *
233  * Map a set of buffers described by scatterlist in streaming
234  * mode for DMA.  This is the scatter-gather version of the
235  * above dma_map_single interface.  Here the scatter gather list
236  * elements are each tagged with the appropriate dma address
237  * and length.  They are obtained via sg_dma_{address,length}(SG).
238  *
239  * NOTE: An implementation may be able to use a smaller number of
240  *       DMA address/length pairs than there are SG table elements.
241  *       (for example via virtual mapping capabilities)
242  *       The routine returns the number of addr/length pairs actually
243  *       used, at most nents.
244  *
245  * Device ownership issues as mentioned above for dma_map_single are
246  * the same here.
247  */
248 #ifndef CONFIG_DMABOUNCE
249 static inline int
250 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
251            enum dma_data_direction dir)
252 {
253         int i;
254
255         for (i = 0; i < nents; i++, sg++) {
256                 char *virt;
257
258                 sg->dma_address = page_to_dma(dev, sg->page) + sg->offset;
259                 virt = page_address(sg->page) + sg->offset;
260
261                 if (!arch_is_coherent())
262                         consistent_sync(virt, sg->length, dir);
263         }
264
265         return nents;
266 }
267 #else
268 extern int dma_map_sg(struct device *, struct scatterlist *, int, enum dma_data_direction);
269 #endif
270
271 /**
272  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
273  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
274  * @sg: list of buffers
275  * @nents: number of buffers to map
276  * @dir: DMA transfer direction
277  *
278  * Unmap a set of streaming mode DMA translations.
279  * Again, CPU read rules concerning calls here are the same as for
280  * dma_unmap_single() above.
281  */
282 #ifndef CONFIG_DMABOUNCE
283 static inline void
284 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
285              enum dma_data_direction dir)
286 {
287
288         /* nothing to do */
289 }
290 #else
291 extern void dma_unmap_sg(struct device *, struct scatterlist *, int, enum dma_data_direction);
292 #endif
293
294
295 /**
296  * dma_sync_single_for_cpu
297  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
298  * @handle: DMA address of buffer
299  * @size: size of buffer to map
300  * @dir: DMA transfer direction
301  *
302  * Make physical memory consistent for a single streaming mode DMA
303  * translation after a transfer.
304  *
305  * If you perform a dma_map_single() but wish to interrogate the
306  * buffer using the cpu, yet do not wish to teardown the PCI dma
307  * mapping, you must call this function before doing so.  At the
308  * next point you give the PCI dma address back to the card, you
309  * must first the perform a dma_sync_for_device, and then the
310  * device again owns the buffer.
311  */
312 #ifndef CONFIG_DMABOUNCE
313 static inline void
314 dma_sync_single_for_cpu(struct device *dev, dma_addr_t handle, size_t size,
315                         enum dma_data_direction dir)
316 {
317         if (!arch_is_coherent())
318                 consistent_sync((void *)dma_to_virt(dev, handle), size, dir);
319 }
320
321 static inline void
322 dma_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size,
323                            enum dma_data_direction dir)
324 {
325         if (!arch_is_coherent())
326                 consistent_sync((void *)dma_to_virt(dev, handle), size, dir);
327 }
328 #else
329 extern void dma_sync_single_for_cpu(struct device*, dma_addr_t, size_t, enum dma_data_direction);
330 extern void dma_sync_single_for_device(struct device*, dma_addr_t, size_t, enum dma_data_direction);
331 #endif
332
333
334 /**
335  * dma_sync_sg_for_cpu
336  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
337  * @sg: list of buffers
338  * @nents: number of buffers to map
339  * @dir: DMA transfer direction
340  *
341  * Make physical memory consistent for a set of streaming
342  * mode DMA translations after a transfer.
343  *
344  * The same as dma_sync_single_for_* but for a scatter-gather list,
345  * same rules and usage.
346  */
347 #ifndef CONFIG_DMABOUNCE
348 static inline void
349 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
350                     enum dma_data_direction dir)
351 {
352         int i;
353
354         for (i = 0; i < nents; i++, sg++) {
355                 char *virt = page_address(sg->page) + sg->offset;
356                 if (!arch_is_coherent())
357                         consistent_sync(virt, sg->length, dir);
358         }
359 }
360
361 static inline void
362 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
363                        enum dma_data_direction dir)
364 {
365         int i;
366
367         for (i = 0; i < nents; i++, sg++) {
368                 char *virt = page_address(sg->page) + sg->offset;
369                 if (!arch_is_coherent())
370                         consistent_sync(virt, sg->length, dir);
371         }
372 }
373 #else
374 extern void dma_sync_sg_for_cpu(struct device*, struct scatterlist*, int, enum dma_data_direction);
375 extern void dma_sync_sg_for_device(struct device*, struct scatterlist*, int, enum dma_data_direction);
376 #endif
377
378 #ifdef CONFIG_DMABOUNCE
379 /*
380  * For SA-1111, IXP425, and ADI systems  the dma-mapping functions are "magic"
381  * and utilize bounce buffers as needed to work around limited DMA windows.
382  *
383  * On the SA-1111, a bug limits DMA to only certain regions of RAM.
384  * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
385  * On some ADI engineering sytems, PCI inbound window is 32MB (12MB total RAM)
386  *
387  * The following are helper functions used by the dmabounce subystem
388  *
389  */
390
391 /**
392  * dmabounce_register_dev
393  *
394  * @dev: valid struct device pointer
395  * @small_buf_size: size of buffers to use with small buffer pool
396  * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
397  *
398  * This function should be called by low-level platform code to register
399  * a device as requireing DMA buffer bouncing. The function will allocate
400  * appropriate DMA pools for the device.
401  *
402  */
403 extern int dmabounce_register_dev(struct device *, unsigned long, unsigned long);
404
405 /**
406  * dmabounce_unregister_dev
407  *
408  * @dev: valid struct device pointer
409  *
410  * This function should be called by low-level platform code when device
411  * that was previously registered with dmabounce_register_dev is removed
412  * from the system.
413  *
414  */
415 extern void dmabounce_unregister_dev(struct device *);
416
417 /**
418  * dma_needs_bounce
419  *
420  * @dev: valid struct device pointer
421  * @dma_handle: dma_handle of unbounced buffer
422  * @size: size of region being mapped
423  *
424  * Platforms that utilize the dmabounce mechanism must implement
425  * this function.
426  *
427  * The dmabounce routines call this function whenever a dma-mapping
428  * is requested to determine whether a given buffer needs to be bounced
429  * or not. The function must return 0 if the the buffer is OK for
430  * DMA access and 1 if the buffer needs to be bounced.
431  *
432  */
433 extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
434 #endif /* CONFIG_DMABOUNCE */
435
436 #endif /* __KERNEL__ */
437 #endif