vserver 2.0 rc7
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44 #include <linux/vs_network.h>
45 #include <linux/vs_limit.h>
46 #include <linux/vs_memory.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;      /* Handle normal Linux uptimes. */
59 int nr_threads;                 /* The idle threads do not count.. */
60
61 int max_threads;                /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71         int cpu;
72         int total = 0;
73
74         for_each_online_cpu(cpu)
75                 total += per_cpu(process_counts, cpu);
76
77         return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106         free_thread_info(tsk->thread_info);
107         clr_vx_info(&tsk->vx_info);
108         clr_nx_info(&tsk->nx_info);
109         free_task_struct(tsk);
110 }
111 EXPORT_SYMBOL(free_task);
112
113 void __put_task_struct(struct task_struct *tsk)
114 {
115         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
116         WARN_ON(atomic_read(&tsk->usage));
117         WARN_ON(tsk == current);
118
119         if (unlikely(tsk->audit_context))
120                 audit_free(tsk);
121         security_task_free(tsk);
122         free_uid(tsk->user);
123         put_group_info(tsk->group_info);
124
125         if (!profile_handoff_task(tsk))
126                 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
134 #endif
135         /* create a slab on which task_structs can be allocated */
136         task_struct_cachep =
137                 kmem_cache_create("task_struct", sizeof(struct task_struct),
138                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141         /*
142          * The default maximum number of threads is set to a safe
143          * value: the thread structures can take up at most half
144          * of memory.
145          */
146         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148         /*
149          * we need to allow at least 20 threads to boot a system
150          */
151         if(max_threads < 20)
152                 max_threads = 20;
153
154         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156         init_task.signal->rlim[RLIMIT_SIGPENDING] =
157                 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162         struct task_struct *tsk;
163         struct thread_info *ti;
164
165         prepare_to_copy(orig);
166
167         tsk = alloc_task_struct();
168         if (!tsk)
169                 return NULL;
170
171         ti = alloc_thread_info(tsk);
172         if (!ti) {
173                 free_task_struct(tsk);
174                 return NULL;
175         }
176
177         *ti = *orig->thread_info;
178         *tsk = *orig;
179         tsk->thread_info = ti;
180         ti->task = tsk;
181
182         /* One for us, one for whoever does the "release_task()" (usually parent) */
183         atomic_set(&tsk->usage,2);
184         return tsk;
185 }
186
187 #ifdef CONFIG_MMU
188 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
189 {
190         struct vm_area_struct * mpnt, *tmp, **pprev;
191         struct rb_node **rb_link, *rb_parent;
192         int retval;
193         unsigned long charge;
194         struct mempolicy *pol;
195
196         down_write(&oldmm->mmap_sem);
197         flush_cache_mm(current->mm);
198         mm->locked_vm = 0;
199         mm->mmap = NULL;
200         mm->mmap_cache = NULL;
201         mm->free_area_cache = oldmm->mmap_base;
202         mm->map_count = 0;
203         __set_mm_counter(mm, rss, 0);
204         __set_mm_counter(mm, anon_rss, 0);
205         cpus_clear(mm->cpu_vm_mask);
206         mm->mm_rb = RB_ROOT;
207         rb_link = &mm->mm_rb.rb_node;
208         rb_parent = NULL;
209         pprev = &mm->mmap;
210
211         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
212                 struct file *file;
213
214                 if (mpnt->vm_flags & VM_DONTCOPY) {
215                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
216                                                         -vma_pages(mpnt));
217                         continue;
218                 }
219                 charge = 0;
220                 if (mpnt->vm_flags & VM_ACCOUNT) {
221                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222                         if (security_vm_enough_memory(len))
223                                 goto fail_nomem;
224                         charge = len;
225                 }
226                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227                 if (!tmp)
228                         goto fail_nomem;
229                 *tmp = *mpnt;
230                 pol = mpol_copy(vma_policy(mpnt));
231                 retval = PTR_ERR(pol);
232                 if (IS_ERR(pol))
233                         goto fail_nomem_policy;
234                 vma_set_policy(tmp, pol);
235                 tmp->vm_flags &= ~VM_LOCKED;
236                 tmp->vm_mm = mm;
237                 tmp->vm_next = NULL;
238                 anon_vma_link(tmp);
239                 file = tmp->vm_file;
240                 if (file) {
241                         struct inode *inode = file->f_dentry->d_inode;
242                         get_file(file);
243                         if (tmp->vm_flags & VM_DENYWRITE)
244                                 atomic_dec(&inode->i_writecount);
245       
246                         /* insert tmp into the share list, just after mpnt */
247                         spin_lock(&file->f_mapping->i_mmap_lock);
248                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
249                         flush_dcache_mmap_lock(file->f_mapping);
250                         vma_prio_tree_add(tmp, mpnt);
251                         flush_dcache_mmap_unlock(file->f_mapping);
252                         spin_unlock(&file->f_mapping->i_mmap_lock);
253                 }
254
255                 /*
256                  * Link in the new vma and copy the page table entries:
257                  * link in first so that swapoff can see swap entries,
258                  * and try_to_unmap_one's find_vma find the new vma.
259                  */
260                 spin_lock(&mm->page_table_lock);
261                 *pprev = tmp;
262                 pprev = &tmp->vm_next;
263
264                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
265                 rb_link = &tmp->vm_rb.rb_right;
266                 rb_parent = &tmp->vm_rb;
267
268                 mm->map_count++;
269                 retval = copy_page_range(mm, current->mm, tmp);
270                 spin_unlock(&mm->page_table_lock);
271
272                 if (tmp->vm_ops && tmp->vm_ops->open)
273                         tmp->vm_ops->open(tmp);
274
275                 if (retval)
276                         goto out;
277         }
278         retval = 0;
279
280 out:
281         flush_tlb_mm(current->mm);
282         up_write(&oldmm->mmap_sem);
283         return retval;
284 fail_nomem_policy:
285         kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287         retval = -ENOMEM;
288         vm_unacct_memory(charge);
289         goto out;
290 }
291
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 {
294         mm->pgd = pgd_alloc(mm);
295         if (unlikely(!mm->pgd))
296                 return -ENOMEM;
297         return 0;
298 }
299
300 static inline void mm_free_pgd(struct mm_struct * mm)
301 {
302         pgd_free(mm->pgd);
303 }
304 #else
305 #define dup_mmap(mm, oldmm)     (0)
306 #define mm_alloc_pgd(mm)        (0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
309
310  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311
312 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
314
315 #include <linux/init_task.h>
316
317 static struct mm_struct * mm_init(struct mm_struct * mm)
318 {
319         atomic_set(&mm->mm_users, 1);
320         atomic_set(&mm->mm_count, 1);
321         init_rwsem(&mm->mmap_sem);
322         INIT_LIST_HEAD(&mm->mmlist);
323         mm->core_waiters = 0;
324         mm->nr_ptes = 0;
325         spin_lock_init(&mm->page_table_lock);
326         rwlock_init(&mm->ioctx_list_lock);
327         mm->ioctx_list = NULL;
328         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
329         mm->free_area_cache = TASK_UNMAPPED_BASE;
330
331         if (likely(!mm_alloc_pgd(mm))) {
332                 mm->def_flags = 0;
333                 set_vx_info(&mm->mm_vx_info, current->vx_info);
334                 return mm;
335         }
336         free_mm(mm);
337         return NULL;
338 }
339
340 /*
341  * Allocate and initialize an mm_struct.
342  */
343 struct mm_struct * mm_alloc(void)
344 {
345         struct mm_struct * mm;
346
347         mm = allocate_mm();
348         if (mm) {
349                 memset(mm, 0, sizeof(*mm));
350                 mm = mm_init(mm);
351         }
352         return mm;
353 }
354
355 /*
356  * Called when the last reference to the mm
357  * is dropped: either by a lazy thread or by
358  * mmput. Free the page directory and the mm.
359  */
360 void fastcall __mmdrop(struct mm_struct *mm)
361 {
362         BUG_ON(mm == &init_mm);
363         mm_free_pgd(mm);
364         destroy_context(mm);
365         clr_vx_info(&mm->mm_vx_info);
366         free_mm(mm);
367 }
368
369 /*
370  * Decrement the use count and release all resources for an mm.
371  */
372 void mmput(struct mm_struct *mm)
373 {
374         if (atomic_dec_and_test(&mm->mm_users)) {
375                 exit_aio(mm);
376                 exit_mmap(mm);
377                 if (!list_empty(&mm->mmlist)) {
378                         spin_lock(&mmlist_lock);
379                         list_del(&mm->mmlist);
380                         spin_unlock(&mmlist_lock);
381                 }
382                 put_swap_token(mm);
383                 mmdrop(mm);
384         }
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387
388 /**
389  * get_task_mm - acquire a reference to the task's mm
390  *
391  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
392  * this kernel workthread has transiently adopted a user mm with use_mm,
393  * to do its AIO) is not set and if so returns a reference to it, after
394  * bumping up the use count.  User must release the mm via mmput()
395  * after use.  Typically used by /proc and ptrace.
396  */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399         struct mm_struct *mm;
400
401         task_lock(task);
402         mm = task->mm;
403         if (mm) {
404                 if (task->flags & PF_BORROWED_MM)
405                         mm = NULL;
406                 else
407                         atomic_inc(&mm->mm_users);
408         }
409         task_unlock(task);
410         return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413
414 /* Please note the differences between mmput and mm_release.
415  * mmput is called whenever we stop holding onto a mm_struct,
416  * error success whatever.
417  *
418  * mm_release is called after a mm_struct has been removed
419  * from the current process.
420  *
421  * This difference is important for error handling, when we
422  * only half set up a mm_struct for a new process and need to restore
423  * the old one.  Because we mmput the new mm_struct before
424  * restoring the old one. . .
425  * Eric Biederman 10 January 1998
426  */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429         struct completion *vfork_done = tsk->vfork_done;
430
431         /* Get rid of any cached register state */
432         deactivate_mm(tsk, mm);
433
434         /* notify parent sleeping on vfork() */
435         if (vfork_done) {
436                 tsk->vfork_done = NULL;
437                 complete(vfork_done);
438         }
439         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440                 u32 __user * tidptr = tsk->clear_child_tid;
441                 tsk->clear_child_tid = NULL;
442
443                 /*
444                  * We don't check the error code - if userspace has
445                  * not set up a proper pointer then tough luck.
446                  */
447                 put_user(0, tidptr);
448                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449         }
450 }
451
452 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
453 {
454         struct mm_struct * mm, *oldmm;
455         int retval;
456
457         tsk->min_flt = tsk->maj_flt = 0;
458         tsk->nvcsw = tsk->nivcsw = 0;
459
460         tsk->mm = NULL;
461         tsk->active_mm = NULL;
462
463         /*
464          * Are we cloning a kernel thread?
465          *
466          * We need to steal a active VM for that..
467          */
468         oldmm = current->mm;
469         if (!oldmm)
470                 return 0;
471
472         if (clone_flags & CLONE_VM) {
473                 atomic_inc(&oldmm->mm_users);
474                 mm = oldmm;
475                 /*
476                  * There are cases where the PTL is held to ensure no
477                  * new threads start up in user mode using an mm, which
478                  * allows optimizing out ipis; the tlb_gather_mmu code
479                  * is an example.
480                  */
481                 spin_unlock_wait(&oldmm->page_table_lock);
482                 goto good_mm;
483         }
484
485         retval = -ENOMEM;
486         mm = allocate_mm();
487         if (!mm)
488                 goto fail_nomem;
489
490         /* Copy the current MM stuff.. */
491         memcpy(mm, oldmm, sizeof(*mm));
492         mm->mm_vx_info = NULL;
493         if (!mm_init(mm))
494                 goto fail_nomem;
495
496         if (init_new_context(tsk,mm))
497                 goto fail_nocontext;
498
499         retval = dup_mmap(mm, oldmm);
500         if (retval)
501                 goto free_pt;
502
503         mm->hiwater_rss = get_mm_counter(mm,rss);
504         mm->hiwater_vm = mm->total_vm;
505
506 good_mm:
507         tsk->mm = mm;
508         tsk->active_mm = mm;
509         return 0;
510
511 free_pt:
512         mmput(mm);
513 fail_nomem:
514         return retval;
515
516 fail_nocontext:
517         /*
518          * If init_new_context() failed, we cannot use mmput() to free the mm
519          * because it calls destroy_context()
520          */
521         clr_vx_info(&mm->mm_vx_info);
522         mm_free_pgd(mm);
523         free_mm(mm);
524         return retval;
525 }
526
527 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
528 {
529         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
530         /* We don't need to lock fs - think why ;-) */
531         if (fs) {
532                 atomic_set(&fs->count, 1);
533                 rwlock_init(&fs->lock);
534                 fs->umask = old->umask;
535                 read_lock(&old->lock);
536                 fs->rootmnt = mntget(old->rootmnt);
537                 fs->root = dget(old->root);
538                 fs->pwdmnt = mntget(old->pwdmnt);
539                 fs->pwd = dget(old->pwd);
540                 if (old->altroot) {
541                         fs->altrootmnt = mntget(old->altrootmnt);
542                         fs->altroot = dget(old->altroot);
543                 } else {
544                         fs->altrootmnt = NULL;
545                         fs->altroot = NULL;
546                 }
547                 read_unlock(&old->lock);
548         }
549         return fs;
550 }
551
552 struct fs_struct *copy_fs_struct(struct fs_struct *old)
553 {
554         return __copy_fs_struct(old);
555 }
556
557 EXPORT_SYMBOL_GPL(copy_fs_struct);
558
559 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
560 {
561         if (clone_flags & CLONE_FS) {
562                 atomic_inc(&current->fs->count);
563                 return 0;
564         }
565         tsk->fs = __copy_fs_struct(current->fs);
566         if (!tsk->fs)
567                 return -ENOMEM;
568         return 0;
569 }
570
571 static int count_open_files(struct files_struct *files, int size)
572 {
573         int i;
574
575         /* Find the last open fd */
576         for (i = size/(8*sizeof(long)); i > 0; ) {
577                 if (files->open_fds->fds_bits[--i])
578                         break;
579         }
580         i = (i+1) * 8 * sizeof(long);
581         return i;
582 }
583
584 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
585 {
586         struct files_struct *oldf, *newf;
587         struct file **old_fds, **new_fds;
588         int open_files, size, i, error = 0, expand;
589
590         /*
591          * A background process may not have any files ...
592          */
593         oldf = current->files;
594         if (!oldf)
595                 goto out;
596
597         if (clone_flags & CLONE_FILES) {
598                 atomic_inc(&oldf->count);
599                 goto out;
600         }
601
602         /*
603          * Note: we may be using current for both targets (See exec.c)
604          * This works because we cache current->files (old) as oldf. Don't
605          * break this.
606          */
607         tsk->files = NULL;
608         error = -ENOMEM;
609         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
610         if (!newf) 
611                 goto out;
612
613         atomic_set(&newf->count, 1);
614
615         spin_lock_init(&newf->file_lock);
616         newf->next_fd       = 0;
617         newf->max_fds       = NR_OPEN_DEFAULT;
618         newf->max_fdset     = __FD_SETSIZE;
619         newf->close_on_exec = &newf->close_on_exec_init;
620         newf->open_fds      = &newf->open_fds_init;
621         newf->fd            = &newf->fd_array[0];
622
623         spin_lock(&oldf->file_lock);
624
625         open_files = count_open_files(oldf, oldf->max_fdset);
626         expand = 0;
627
628         /*
629          * Check whether we need to allocate a larger fd array or fd set.
630          * Note: we're not a clone task, so the open count won't  change.
631          */
632         if (open_files > newf->max_fdset) {
633                 newf->max_fdset = 0;
634                 expand = 1;
635         }
636         if (open_files > newf->max_fds) {
637                 newf->max_fds = 0;
638                 expand = 1;
639         }
640
641         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
642         if (expand) {
643                 spin_unlock(&oldf->file_lock);
644                 spin_lock(&newf->file_lock);
645                 error = expand_files(newf, open_files-1);
646                 spin_unlock(&newf->file_lock);
647                 if (error < 0)
648                         goto out_release;
649                 spin_lock(&oldf->file_lock);
650         }
651
652         old_fds = oldf->fd;
653         new_fds = newf->fd;
654
655         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
656         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
657
658         for (i = open_files; i != 0; i--) {
659                 struct file *f = *old_fds++;
660                 if (f) {
661                         get_file(f);
662                         /* FIXME sum it first for check and performance */
663                         vx_openfd_inc(open_files - i);
664                 } else {
665                         /*
666                          * The fd may be claimed in the fd bitmap but not yet
667                          * instantiated in the files array if a sibling thread
668                          * is partway through open().  So make sure that this
669                          * fd is available to the new process.
670                          */
671                         FD_CLR(open_files - i, newf->open_fds);
672                 }
673                 *new_fds++ = f;
674         }
675         spin_unlock(&oldf->file_lock);
676
677         /* compute the remainder to be cleared */
678         size = (newf->max_fds - open_files) * sizeof(struct file *);
679
680         /* This is long word aligned thus could use a optimized version */ 
681         memset(new_fds, 0, size); 
682
683         if (newf->max_fdset > open_files) {
684                 int left = (newf->max_fdset-open_files)/8;
685                 int start = open_files / (8 * sizeof(unsigned long));
686
687                 memset(&newf->open_fds->fds_bits[start], 0, left);
688                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
689         }
690
691         tsk->files = newf;
692         error = 0;
693 out:
694         return error;
695
696 out_release:
697         free_fdset (newf->close_on_exec, newf->max_fdset);
698         free_fdset (newf->open_fds, newf->max_fdset);
699         free_fd_array(newf->fd, newf->max_fds);
700         kmem_cache_free(files_cachep, newf);
701         goto out;
702 }
703
704 /*
705  *      Helper to unshare the files of the current task.
706  *      We don't want to expose copy_files internals to
707  *      the exec layer of the kernel.
708  */
709
710 int unshare_files(void)
711 {
712         struct files_struct *files  = current->files;
713         int rc;
714
715         if(!files)
716                 BUG();
717
718         /* This can race but the race causes us to copy when we don't
719            need to and drop the copy */
720         if(atomic_read(&files->count) == 1)
721         {
722                 atomic_inc(&files->count);
723                 return 0;
724         }
725         rc = copy_files(0, current);
726         if(rc)
727                 current->files = files;
728         return rc;
729 }
730
731 EXPORT_SYMBOL(unshare_files);
732
733 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
734 {
735         struct sighand_struct *sig;
736
737         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
738                 atomic_inc(&current->sighand->count);
739                 return 0;
740         }
741         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
742         tsk->sighand = sig;
743         if (!sig)
744                 return -ENOMEM;
745         spin_lock_init(&sig->siglock);
746         atomic_set(&sig->count, 1);
747         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
748         return 0;
749 }
750
751 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
752 {
753         struct signal_struct *sig;
754         int ret;
755
756         if (clone_flags & CLONE_THREAD) {
757                 atomic_inc(&current->signal->count);
758                 atomic_inc(&current->signal->live);
759                 return 0;
760         }
761         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
762         tsk->signal = sig;
763         if (!sig)
764                 return -ENOMEM;
765
766         ret = copy_thread_group_keys(tsk);
767         if (ret < 0) {
768                 kmem_cache_free(signal_cachep, sig);
769                 return ret;
770         }
771
772         atomic_set(&sig->count, 1);
773         atomic_set(&sig->live, 1);
774         init_waitqueue_head(&sig->wait_chldexit);
775         sig->flags = 0;
776         sig->group_exit_code = 0;
777         sig->group_exit_task = NULL;
778         sig->group_stop_count = 0;
779         sig->curr_target = NULL;
780         init_sigpending(&sig->shared_pending);
781         INIT_LIST_HEAD(&sig->posix_timers);
782
783         sig->it_real_value = sig->it_real_incr = 0;
784         sig->real_timer.function = it_real_fn;
785         sig->real_timer.data = (unsigned long) tsk;
786         init_timer(&sig->real_timer);
787
788         sig->it_virt_expires = cputime_zero;
789         sig->it_virt_incr = cputime_zero;
790         sig->it_prof_expires = cputime_zero;
791         sig->it_prof_incr = cputime_zero;
792
793         sig->tty = current->signal->tty;
794         sig->pgrp = process_group(current);
795         sig->session = current->signal->session;
796         sig->leader = 0;        /* session leadership doesn't inherit */
797         sig->tty_old_pgrp = 0;
798
799         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
800         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
801         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
802         sig->sched_time = 0;
803         INIT_LIST_HEAD(&sig->cpu_timers[0]);
804         INIT_LIST_HEAD(&sig->cpu_timers[1]);
805         INIT_LIST_HEAD(&sig->cpu_timers[2]);
806
807         task_lock(current->group_leader);
808         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
809         task_unlock(current->group_leader);
810
811         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
812                 /*
813                  * New sole thread in the process gets an expiry time
814                  * of the whole CPU time limit.
815                  */
816                 tsk->it_prof_expires =
817                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
818         }
819
820         return 0;
821 }
822
823 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
824 {
825         unsigned long new_flags = p->flags;
826
827         new_flags &= ~PF_SUPERPRIV;
828         new_flags |= PF_FORKNOEXEC;
829         if (!(clone_flags & CLONE_PTRACE))
830                 p->ptrace = 0;
831         p->flags = new_flags;
832 }
833
834 asmlinkage long sys_set_tid_address(int __user *tidptr)
835 {
836         current->clear_child_tid = tidptr;
837
838         return current->pid;
839 }
840
841 /*
842  * This creates a new process as a copy of the old one,
843  * but does not actually start it yet.
844  *
845  * It copies the registers, and all the appropriate
846  * parts of the process environment (as per the clone
847  * flags). The actual kick-off is left to the caller.
848  */
849 static task_t *copy_process(unsigned long clone_flags,
850                                  unsigned long stack_start,
851                                  struct pt_regs *regs,
852                                  unsigned long stack_size,
853                                  int __user *parent_tidptr,
854                                  int __user *child_tidptr,
855                                  int pid)
856 {
857         int retval;
858         struct task_struct *p = NULL;
859         struct vx_info *vxi;
860         struct nx_info *nxi;
861
862         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
863                 return ERR_PTR(-EINVAL);
864
865         /*
866          * Thread groups must share signals as well, and detached threads
867          * can only be started up within the thread group.
868          */
869         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
870                 return ERR_PTR(-EINVAL);
871
872         /*
873          * Shared signal handlers imply shared VM. By way of the above,
874          * thread groups also imply shared VM. Blocking this case allows
875          * for various simplifications in other code.
876          */
877         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
878                 return ERR_PTR(-EINVAL);
879
880         retval = security_task_create(clone_flags);
881         if (retval)
882                 goto fork_out;
883
884         retval = -ENOMEM;
885         p = dup_task_struct(current);
886         if (!p)
887                 goto fork_out;
888
889         init_vx_info(&p->vx_info, current->vx_info);
890         init_nx_info(&p->nx_info, current->nx_info);
891
892         /* check vserver memory */
893         if (p->mm && !(clone_flags & CLONE_VM)) {
894                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
895                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
896                 else
897                         goto bad_fork_free;
898         }
899         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
900                 if (!vx_rsspages_avail(p->mm, get_mm_counter(p->mm, rss)))
901                         goto bad_fork_cleanup_vm;
902         }
903
904         retval = -EAGAIN;
905         if (!vx_nproc_avail(1))
906                 goto bad_fork_cleanup_vm;
907
908         if (atomic_read(&p->user->processes) >=
909                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
910                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
911                                 p->user != &root_user)
912                         goto bad_fork_cleanup_vm;
913         }
914
915         atomic_inc(&p->user->__count);
916         atomic_inc(&p->user->processes);
917         get_group_info(p->group_info);
918
919         /*
920          * If multiple threads are within copy_process(), then this check
921          * triggers too late. This doesn't hurt, the check is only there
922          * to stop root fork bombs.
923          */
924         if (nr_threads >= max_threads)
925                 goto bad_fork_cleanup_count;
926
927         if (!try_module_get(p->thread_info->exec_domain->module))
928                 goto bad_fork_cleanup_count;
929
930         if (p->binfmt && !try_module_get(p->binfmt->module))
931                 goto bad_fork_cleanup_put_domain;
932
933         p->did_exec = 0;
934         copy_flags(clone_flags, p);
935         p->pid = pid;
936         retval = -EFAULT;
937         if (clone_flags & CLONE_PARENT_SETTID)
938                 if (put_user(p->pid, parent_tidptr))
939                         goto bad_fork_cleanup;
940
941         p->proc_dentry = NULL;
942
943         INIT_LIST_HEAD(&p->children);
944         INIT_LIST_HEAD(&p->sibling);
945         p->vfork_done = NULL;
946         spin_lock_init(&p->alloc_lock);
947         spin_lock_init(&p->proc_lock);
948
949         clear_tsk_thread_flag(p, TIF_SIGPENDING);
950         init_sigpending(&p->pending);
951
952         p->utime = cputime_zero;
953         p->stime = cputime_zero;
954         p->sched_time = 0;
955         p->rchar = 0;           /* I/O counter: bytes read */
956         p->wchar = 0;           /* I/O counter: bytes written */
957         p->syscr = 0;           /* I/O counter: read syscalls */
958         p->syscw = 0;           /* I/O counter: write syscalls */
959         acct_clear_integrals(p);
960
961         p->it_virt_expires = cputime_zero;
962         p->it_prof_expires = cputime_zero;
963         p->it_sched_expires = 0;
964         INIT_LIST_HEAD(&p->cpu_timers[0]);
965         INIT_LIST_HEAD(&p->cpu_timers[1]);
966         INIT_LIST_HEAD(&p->cpu_timers[2]);
967
968         p->lock_depth = -1;             /* -1 = no lock */
969         do_posix_clock_monotonic_gettime(&p->start_time);
970         p->security = NULL;
971         p->io_context = NULL;
972         p->io_wait = NULL;
973         p->audit_context = NULL;
974 #ifdef CONFIG_NUMA
975         p->mempolicy = mpol_copy(p->mempolicy);
976         if (IS_ERR(p->mempolicy)) {
977                 retval = PTR_ERR(p->mempolicy);
978                 p->mempolicy = NULL;
979                 goto bad_fork_cleanup;
980         }
981 #endif
982
983         p->tgid = p->pid;
984         if (clone_flags & CLONE_THREAD)
985                 p->tgid = current->tgid;
986
987         if ((retval = security_task_alloc(p)))
988                 goto bad_fork_cleanup_policy;
989         if ((retval = audit_alloc(p)))
990                 goto bad_fork_cleanup_security;
991         /* copy all the process information */
992         if ((retval = copy_semundo(clone_flags, p)))
993                 goto bad_fork_cleanup_audit;
994         if ((retval = copy_files(clone_flags, p)))
995                 goto bad_fork_cleanup_semundo;
996         if ((retval = copy_fs(clone_flags, p)))
997                 goto bad_fork_cleanup_files;
998         if ((retval = copy_sighand(clone_flags, p)))
999                 goto bad_fork_cleanup_fs;
1000         if ((retval = copy_signal(clone_flags, p)))
1001                 goto bad_fork_cleanup_sighand;
1002         if ((retval = copy_mm(clone_flags, p)))
1003                 goto bad_fork_cleanup_signal;
1004         if ((retval = copy_keys(clone_flags, p)))
1005                 goto bad_fork_cleanup_mm;
1006         if ((retval = copy_namespace(clone_flags, p)))
1007                 goto bad_fork_cleanup_keys;
1008         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1009         if (retval)
1010                 goto bad_fork_cleanup_namespace;
1011
1012         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1013         /*
1014          * Clear TID on mm_release()?
1015          */
1016         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1017
1018         /*
1019          * Syscall tracing should be turned off in the child regardless
1020          * of CLONE_PTRACE.
1021          */
1022         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1023
1024         /* Our parent execution domain becomes current domain
1025            These must match for thread signalling to apply */
1026            
1027         p->parent_exec_id = p->self_exec_id;
1028
1029         /* ok, now we should be set up.. */
1030         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1031         p->pdeath_signal = 0;
1032         p->exit_state = 0;
1033
1034         /* Perform scheduler related setup */
1035         sched_fork(p);
1036
1037         /*
1038          * Ok, make it visible to the rest of the system.
1039          * We dont wake it up yet.
1040          */
1041         p->group_leader = p;
1042         INIT_LIST_HEAD(&p->ptrace_children);
1043         INIT_LIST_HEAD(&p->ptrace_list);
1044
1045         /* Need tasklist lock for parent etc handling! */
1046         write_lock_irq(&tasklist_lock);
1047
1048         /*
1049          * The task hasn't been attached yet, so cpus_allowed mask cannot
1050          * have changed. The cpus_allowed mask of the parent may have
1051          * changed after it was copied first time, and it may then move to
1052          * another CPU - so we re-copy it here and set the child's CPU to
1053          * the parent's CPU. This avoids alot of nasty races.
1054          */
1055         p->cpus_allowed = current->cpus_allowed;
1056         set_task_cpu(p, smp_processor_id());
1057
1058         /*
1059          * Check for pending SIGKILL! The new thread should not be allowed
1060          * to slip out of an OOM kill. (or normal SIGKILL.)
1061          */
1062         if (sigismember(&current->pending.signal, SIGKILL)) {
1063                 write_unlock_irq(&tasklist_lock);
1064                 retval = -EINTR;
1065                 goto bad_fork_cleanup_namespace;
1066         }
1067
1068         /* CLONE_PARENT re-uses the old parent */
1069         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1070                 p->real_parent = current->real_parent;
1071         else
1072                 p->real_parent = current;
1073         p->parent = p->real_parent;
1074
1075         if (clone_flags & CLONE_THREAD) {
1076                 spin_lock(&current->sighand->siglock);
1077                 /*
1078                  * Important: if an exit-all has been started then
1079                  * do not create this new thread - the whole thread
1080                  * group is supposed to exit anyway.
1081                  */
1082                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1083                         spin_unlock(&current->sighand->siglock);
1084                         write_unlock_irq(&tasklist_lock);
1085                         retval = -EAGAIN;
1086                         goto bad_fork_cleanup_namespace;
1087                 }
1088                 p->group_leader = current->group_leader;
1089
1090                 if (current->signal->group_stop_count > 0) {
1091                         /*
1092                          * There is an all-stop in progress for the group.
1093                          * We ourselves will stop as soon as we check signals.
1094                          * Make the new thread part of that group stop too.
1095                          */
1096                         current->signal->group_stop_count++;
1097                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1098                 }
1099
1100                 if (!cputime_eq(current->signal->it_virt_expires,
1101                                 cputime_zero) ||
1102                     !cputime_eq(current->signal->it_prof_expires,
1103                                 cputime_zero) ||
1104                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1105                     !list_empty(&current->signal->cpu_timers[0]) ||
1106                     !list_empty(&current->signal->cpu_timers[1]) ||
1107                     !list_empty(&current->signal->cpu_timers[2])) {
1108                         /*
1109                          * Have child wake up on its first tick to check
1110                          * for process CPU timers.
1111                          */
1112                         p->it_prof_expires = jiffies_to_cputime(1);
1113                 }
1114
1115                 spin_unlock(&current->sighand->siglock);
1116         }
1117
1118         SET_LINKS(p);
1119         if (unlikely(p->ptrace & PT_PTRACED))
1120                 __ptrace_link(p, current->parent);
1121
1122         cpuset_fork(p);
1123
1124         attach_pid(p, PIDTYPE_PID, p->pid);
1125         attach_pid(p, PIDTYPE_TGID, p->tgid);
1126         if (thread_group_leader(p)) {
1127                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1128                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1129                 if (p->pid)
1130                         __get_cpu_var(process_counts)++;
1131         }
1132
1133         nr_threads++;
1134         total_forks++;
1135
1136         /* p is copy of current */
1137         vxi = p->vx_info;
1138         if (vxi) {
1139                 claim_vx_info(vxi, p);
1140                 atomic_inc(&vxi->cvirt.nr_threads);
1141                 atomic_inc(&vxi->cvirt.total_forks);
1142                 vx_nproc_inc(p);
1143         }
1144         nxi = p->nx_info;
1145         if (nxi)
1146                 claim_nx_info(nxi, p);
1147         write_unlock_irq(&tasklist_lock);
1148         retval = 0;
1149
1150 fork_out:
1151         if (retval)
1152                 return ERR_PTR(retval);
1153         return p;
1154
1155 bad_fork_cleanup_namespace:
1156         exit_namespace(p);
1157 bad_fork_cleanup_keys:
1158         exit_keys(p);
1159 bad_fork_cleanup_mm:
1160         if (p->mm)
1161                 mmput(p->mm);
1162 bad_fork_cleanup_signal:
1163         exit_signal(p);
1164 bad_fork_cleanup_sighand:
1165         exit_sighand(p);
1166 bad_fork_cleanup_fs:
1167         exit_fs(p); /* blocking */
1168 bad_fork_cleanup_files:
1169         exit_files(p); /* blocking */
1170 bad_fork_cleanup_semundo:
1171         exit_sem(p);
1172 bad_fork_cleanup_audit:
1173         audit_free(p);
1174 bad_fork_cleanup_security:
1175         security_task_free(p);
1176 bad_fork_cleanup_policy:
1177 #ifdef CONFIG_NUMA
1178         mpol_free(p->mempolicy);
1179 #endif
1180 bad_fork_cleanup:
1181         if (p->binfmt)
1182                 module_put(p->binfmt->module);
1183 bad_fork_cleanup_put_domain:
1184         module_put(p->thread_info->exec_domain->module);
1185 bad_fork_cleanup_count:
1186         put_group_info(p->group_info);
1187         atomic_dec(&p->user->processes);
1188         free_uid(p->user);
1189 bad_fork_cleanup_vm:
1190         if (p->mm && !(clone_flags & CLONE_VM))
1191                 vx_pages_sub(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
1192 bad_fork_free:
1193         free_task(p);
1194         goto fork_out;
1195 }
1196
1197 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1198 {
1199         memset(regs, 0, sizeof(struct pt_regs));
1200         return regs;
1201 }
1202
1203 task_t * __devinit fork_idle(int cpu)
1204 {
1205         task_t *task;
1206         struct pt_regs regs;
1207
1208         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1209         if (!task)
1210                 return ERR_PTR(-ENOMEM);
1211         init_idle(task, cpu);
1212         unhash_process(task);
1213         return task;
1214 }
1215
1216 static inline int fork_traceflag (unsigned clone_flags)
1217 {
1218         if (clone_flags & CLONE_UNTRACED)
1219                 return 0;
1220         else if (clone_flags & CLONE_VFORK) {
1221                 if (current->ptrace & PT_TRACE_VFORK)
1222                         return PTRACE_EVENT_VFORK;
1223         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1224                 if (current->ptrace & PT_TRACE_CLONE)
1225                         return PTRACE_EVENT_CLONE;
1226         } else if (current->ptrace & PT_TRACE_FORK)
1227                 return PTRACE_EVENT_FORK;
1228
1229         return 0;
1230 }
1231
1232 /*
1233  *  Ok, this is the main fork-routine.
1234  *
1235  * It copies the process, and if successful kick-starts
1236  * it and waits for it to finish using the VM if required.
1237  */
1238 long do_fork(unsigned long clone_flags,
1239               unsigned long stack_start,
1240               struct pt_regs *regs,
1241               unsigned long stack_size,
1242               int __user *parent_tidptr,
1243               int __user *child_tidptr)
1244 {
1245         struct task_struct *p;
1246         int trace = 0;
1247         long pid = alloc_pidmap();
1248
1249         if (pid < 0)
1250                 return -EAGAIN;
1251         if (unlikely(current->ptrace)) {
1252                 trace = fork_traceflag (clone_flags);
1253                 if (trace)
1254                         clone_flags |= CLONE_PTRACE;
1255         }
1256
1257         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1258         /*
1259          * Do this prior waking up the new thread - the thread pointer
1260          * might get invalid after that point, if the thread exits quickly.
1261          */
1262         if (!IS_ERR(p)) {
1263                 struct completion vfork;
1264
1265                 if (clone_flags & CLONE_VFORK) {
1266                         p->vfork_done = &vfork;
1267                         init_completion(&vfork);
1268                 }
1269
1270                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1271                         /*
1272                          * We'll start up with an immediate SIGSTOP.
1273                          */
1274                         sigaddset(&p->pending.signal, SIGSTOP);
1275                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1276                 }
1277
1278                 if (!(clone_flags & CLONE_STOPPED))
1279                         wake_up_new_task(p, clone_flags);
1280                 else
1281                         p->state = TASK_STOPPED;
1282
1283                 if (unlikely (trace)) {
1284                         current->ptrace_message = pid;
1285                         ptrace_notify ((trace << 8) | SIGTRAP);
1286                 }
1287
1288                 if (clone_flags & CLONE_VFORK) {
1289                         wait_for_completion(&vfork);
1290                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1291                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1292                 }
1293         } else {
1294                 free_pidmap(pid);
1295                 pid = PTR_ERR(p);
1296         }
1297         return pid;
1298 }
1299
1300 void __init proc_caches_init(void)
1301 {
1302         sighand_cachep = kmem_cache_create("sighand_cache",
1303                         sizeof(struct sighand_struct), 0,
1304                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1305         signal_cachep = kmem_cache_create("signal_cache",
1306                         sizeof(struct signal_struct), 0,
1307                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1308         files_cachep = kmem_cache_create("files_cache", 
1309                         sizeof(struct files_struct), 0,
1310                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1311         fs_cachep = kmem_cache_create("fs_cache", 
1312                         sizeof(struct fs_struct), 0,
1313                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1314         vm_area_cachep = kmem_cache_create("vm_area_struct",
1315                         sizeof(struct vm_area_struct), 0,
1316                         SLAB_PANIC, NULL, NULL);
1317         mm_cachep = kmem_cache_create("mm_struct",
1318                         sizeof(struct mm_struct), 0,
1319                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1320 }