vserver 1.9.3
[linux-2.6.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/compat.h>
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/smp_lock.h>
14 #include <linux/notifier.h>
15 #include <linux/kmod.h>
16 #include <linux/reboot.h>
17 #include <linux/prctl.h>
18 #include <linux/init.h>
19 #include <linux/highuid.h>
20 #include <linux/fs.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/times.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/vs_base.h>
28 #include <linux/vs_cvirt.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32 #include <asm/unistd.h>
33
34 #ifndef SET_UNALIGN_CTL
35 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
36 #endif
37 #ifndef GET_UNALIGN_CTL
38 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
39 #endif
40 #ifndef SET_FPEMU_CTL
41 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
42 #endif
43 #ifndef GET_FPEMU_CTL
44 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
45 #endif
46 #ifndef SET_FPEXC_CTL
47 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
48 #endif
49 #ifndef GET_FPEXC_CTL
50 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
51 #endif
52
53 /*
54  * this is where the system-wide overflow UID and GID are defined, for
55  * architectures that now have 32-bit UID/GID but didn't in the past
56  */
57
58 int overflowuid = DEFAULT_OVERFLOWUID;
59 int overflowgid = DEFAULT_OVERFLOWGID;
60
61 #ifdef CONFIG_UID16
62 EXPORT_SYMBOL(overflowuid);
63 EXPORT_SYMBOL(overflowgid);
64 #endif
65
66 /*
67  * the same as above, but for filesystems which can only store a 16-bit
68  * UID and GID. as such, this is needed on all architectures
69  */
70
71 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
72 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
73
74 EXPORT_SYMBOL(fs_overflowuid);
75 EXPORT_SYMBOL(fs_overflowgid);
76
77 /*
78  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
79  */
80
81 int C_A_D = 1;
82 int cad_pid = 1;
83
84 /*
85  *      Notifier list for kernel code which wants to be called
86  *      at shutdown. This is used to stop any idling DMA operations
87  *      and the like. 
88  */
89
90 static struct notifier_block *reboot_notifier_list;
91 rwlock_t notifier_lock = RW_LOCK_UNLOCKED;
92
93 /**
94  *      notifier_chain_register - Add notifier to a notifier chain
95  *      @list: Pointer to root list pointer
96  *      @n: New entry in notifier chain
97  *
98  *      Adds a notifier to a notifier chain.
99  *
100  *      Currently always returns zero.
101  */
102  
103 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
104 {
105         write_lock(&notifier_lock);
106         while(*list)
107         {
108                 if(n->priority > (*list)->priority)
109                         break;
110                 list= &((*list)->next);
111         }
112         n->next = *list;
113         *list=n;
114         write_unlock(&notifier_lock);
115         return 0;
116 }
117
118 EXPORT_SYMBOL(notifier_chain_register);
119
120 /**
121  *      notifier_chain_unregister - Remove notifier from a notifier chain
122  *      @nl: Pointer to root list pointer
123  *      @n: New entry in notifier chain
124  *
125  *      Removes a notifier from a notifier chain.
126  *
127  *      Returns zero on success, or %-ENOENT on failure.
128  */
129  
130 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
131 {
132         write_lock(&notifier_lock);
133         while((*nl)!=NULL)
134         {
135                 if((*nl)==n)
136                 {
137                         *nl=n->next;
138                         write_unlock(&notifier_lock);
139                         return 0;
140                 }
141                 nl=&((*nl)->next);
142         }
143         write_unlock(&notifier_lock);
144         return -ENOENT;
145 }
146
147 EXPORT_SYMBOL(notifier_chain_unregister);
148
149 /**
150  *      notifier_call_chain - Call functions in a notifier chain
151  *      @n: Pointer to root pointer of notifier chain
152  *      @val: Value passed unmodified to notifier function
153  *      @v: Pointer passed unmodified to notifier function
154  *
155  *      Calls each function in a notifier chain in turn.
156  *
157  *      If the return value of the notifier can be and'd
158  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
159  *      will return immediately, with the return value of
160  *      the notifier function which halted execution.
161  *      Otherwise, the return value is the return value
162  *      of the last notifier function called.
163  */
164  
165 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
166 {
167         int ret=NOTIFY_DONE;
168         struct notifier_block *nb = *n;
169
170         while(nb)
171         {
172                 ret=nb->notifier_call(nb,val,v);
173                 if(ret&NOTIFY_STOP_MASK)
174                 {
175                         return ret;
176                 }
177                 nb=nb->next;
178         }
179         return ret;
180 }
181
182 EXPORT_SYMBOL(notifier_call_chain);
183
184 /**
185  *      register_reboot_notifier - Register function to be called at reboot time
186  *      @nb: Info about notifier function to be called
187  *
188  *      Registers a function with the list of functions
189  *      to be called at reboot time.
190  *
191  *      Currently always returns zero, as notifier_chain_register
192  *      always returns zero.
193  */
194  
195 int register_reboot_notifier(struct notifier_block * nb)
196 {
197         return notifier_chain_register(&reboot_notifier_list, nb);
198 }
199
200 EXPORT_SYMBOL(register_reboot_notifier);
201
202 /**
203  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
204  *      @nb: Hook to be unregistered
205  *
206  *      Unregisters a previously registered reboot
207  *      notifier function.
208  *
209  *      Returns zero on success, or %-ENOENT on failure.
210  */
211  
212 int unregister_reboot_notifier(struct notifier_block * nb)
213 {
214         return notifier_chain_unregister(&reboot_notifier_list, nb);
215 }
216
217 EXPORT_SYMBOL(unregister_reboot_notifier);
218
219 asmlinkage long sys_ni_syscall(void)
220 {
221         return -ENOSYS;
222 }
223
224 cond_syscall(sys_nfsservctl)
225 cond_syscall(sys_quotactl)
226 cond_syscall(sys_acct)
227 cond_syscall(sys_lookup_dcookie)
228 cond_syscall(sys_swapon)
229 cond_syscall(sys_swapoff)
230 cond_syscall(sys_init_module)
231 cond_syscall(sys_delete_module)
232 cond_syscall(sys_socketpair)
233 cond_syscall(sys_bind)
234 cond_syscall(sys_listen)
235 cond_syscall(sys_accept)
236 cond_syscall(sys_connect)
237 cond_syscall(sys_getsockname)
238 cond_syscall(sys_getpeername)
239 cond_syscall(sys_sendto)
240 cond_syscall(sys_send)
241 cond_syscall(sys_recvfrom)
242 cond_syscall(sys_recv)
243 cond_syscall(sys_socket)
244 cond_syscall(sys_setsockopt)
245 cond_syscall(sys_getsockopt)
246 cond_syscall(sys_shutdown)
247 cond_syscall(sys_sendmsg)
248 cond_syscall(sys_recvmsg)
249 cond_syscall(sys_socketcall)
250 cond_syscall(sys_futex)
251 cond_syscall(compat_sys_futex)
252 cond_syscall(sys_epoll_create)
253 cond_syscall(sys_epoll_ctl)
254 cond_syscall(sys_epoll_wait)
255 cond_syscall(sys_semget)
256 cond_syscall(sys_semop)
257 cond_syscall(sys_semtimedop)
258 cond_syscall(sys_semctl)
259 cond_syscall(sys_msgget)
260 cond_syscall(sys_msgsnd)
261 cond_syscall(sys_msgrcv)
262 cond_syscall(sys_msgctl)
263 cond_syscall(sys_shmget)
264 cond_syscall(sys_shmdt)
265 cond_syscall(sys_shmctl)
266 cond_syscall(sys_mq_open)
267 cond_syscall(sys_mq_unlink)
268 cond_syscall(sys_mq_timedsend)
269 cond_syscall(sys_mq_timedreceive)
270 cond_syscall(sys_mq_notify)
271 cond_syscall(sys_mq_getsetattr)
272 cond_syscall(compat_sys_mq_open)
273 cond_syscall(compat_sys_mq_timedsend)
274 cond_syscall(compat_sys_mq_timedreceive)
275 cond_syscall(compat_sys_mq_notify)
276 cond_syscall(compat_sys_mq_getsetattr)
277 cond_syscall(sys_mbind)
278 cond_syscall(sys_get_mempolicy)
279 cond_syscall(sys_set_mempolicy)
280 cond_syscall(compat_mbind)
281 cond_syscall(compat_get_mempolicy)
282 cond_syscall(compat_set_mempolicy)
283
284 /* arch-specific weak syscall entries */
285 cond_syscall(sys_pciconfig_read)
286 cond_syscall(sys_pciconfig_write)
287 cond_syscall(sys_pciconfig_iobase)
288
289 static int set_one_prio(struct task_struct *p, int niceval, int error)
290 {
291         int no_nice;
292
293         if (p->uid != current->euid &&
294                 p->uid != current->uid && !capable(CAP_SYS_NICE)) {
295                 error = -EPERM;
296                 goto out;
297         }
298         if (niceval < task_nice(p) && !capable(CAP_SYS_NICE)) {
299                 if (vx_flags(VXF_IGNEG_NICE, 0))
300                         error = 0;
301                 else
302                         error = -EACCES;
303                 goto out;
304         }
305         no_nice = security_task_setnice(p, niceval);
306         if (no_nice) {
307                 error = no_nice;
308                 goto out;
309         }
310         if (error == -ESRCH)
311                 error = 0;
312         set_user_nice(p, niceval);
313 out:
314         return error;
315 }
316
317 asmlinkage long sys_setpriority(int which, int who, int niceval)
318 {
319         struct task_struct *g, *p;
320         struct user_struct *user;
321         int error = -EINVAL;
322
323         if (which > 2 || which < 0)
324                 goto out;
325
326         /* normalize: avoid signed division (rounding problems) */
327         error = -ESRCH;
328         if (niceval < -20)
329                 niceval = -20;
330         if (niceval > 19)
331                 niceval = 19;
332
333         read_lock(&tasklist_lock);
334         switch (which) {
335                 case PRIO_PROCESS:
336                         if (!who)
337                                 who = current->pid;
338                         p = find_task_by_pid(who);
339                         if (p)
340                                 error = set_one_prio(p, niceval, error);
341                         break;
342                 case PRIO_PGRP:
343                         if (!who)
344                                 who = process_group(current);
345                         do_each_task_pid(who, PIDTYPE_PGID, p) {
346                                 error = set_one_prio(p, niceval, error);
347                         } while_each_task_pid(who, PIDTYPE_PGID, p);
348                         break;
349                 case PRIO_USER:
350                         if (!who)
351                                 user = current->user;
352                         else
353                                 user = find_user(vx_current_xid(), who);
354
355                         if (!user)
356                                 goto out_unlock;
357
358                         do_each_thread(g, p)
359                                 if (p->uid == who)
360                                         error = set_one_prio(p, niceval, error);
361                         while_each_thread(g, p);
362                         if (who)
363                                 free_uid(user);         /* For find_user() */
364                         break;
365         }
366 out_unlock:
367         read_unlock(&tasklist_lock);
368 out:
369         return error;
370 }
371
372 /*
373  * Ugh. To avoid negative return values, "getpriority()" will
374  * not return the normal nice-value, but a negated value that
375  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
376  * to stay compatible.
377  */
378 asmlinkage long sys_getpriority(int which, int who)
379 {
380         struct task_struct *g, *p;
381         struct user_struct *user;
382         long niceval, retval = -ESRCH;
383
384         if (which > 2 || which < 0)
385                 return -EINVAL;
386
387         read_lock(&tasklist_lock);
388         switch (which) {
389                 case PRIO_PROCESS:
390                         if (!who)
391                                 who = current->pid;
392                         p = find_task_by_pid(who);
393                         if (p) {
394                                 niceval = 20 - task_nice(p);
395                                 if (niceval > retval)
396                                         retval = niceval;
397                         }
398                         break;
399                 case PRIO_PGRP:
400                         if (!who)
401                                 who = process_group(current);
402                         do_each_task_pid(who, PIDTYPE_PGID, p) {
403                                 niceval = 20 - task_nice(p);
404                                 if (niceval > retval)
405                                         retval = niceval;
406                         } while_each_task_pid(who, PIDTYPE_PGID, p);
407                         break;
408                 case PRIO_USER:
409                         if (!who)
410                                 user = current->user;
411                         else
412                                 user = find_user(vx_current_xid(), who);
413
414                         if (!user)
415                                 goto out_unlock;
416
417                         do_each_thread(g, p)
418                                 if (p->uid == who) {
419                                         niceval = 20 - task_nice(p);
420                                         if (niceval > retval)
421                                                 retval = niceval;
422                                 }
423                         while_each_thread(g, p);
424                         if (who)
425                                 free_uid(user);         /* for find_user() */
426                         break;
427         }
428 out_unlock:
429         read_unlock(&tasklist_lock);
430
431         return retval;
432 }
433
434 long vs_reboot(unsigned int, void *);
435
436 /*
437  * Reboot system call: for obvious reasons only root may call it,
438  * and even root needs to set up some magic numbers in the registers
439  * so that some mistake won't make this reboot the whole machine.
440  * You can also set the meaning of the ctrl-alt-del-key here.
441  *
442  * reboot doesn't sync: do that yourself before calling this.
443  */
444 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
445 {
446         char buffer[256];
447
448         /* We only trust the superuser with rebooting the system. */
449         if (!capable(CAP_SYS_BOOT))
450                 return -EPERM;
451
452         /* For safety, we require "magic" arguments. */
453         if (magic1 != LINUX_REBOOT_MAGIC1 ||
454             (magic2 != LINUX_REBOOT_MAGIC2 &&
455                         magic2 != LINUX_REBOOT_MAGIC2A &&
456                         magic2 != LINUX_REBOOT_MAGIC2B &&
457                         magic2 != LINUX_REBOOT_MAGIC2C))
458                 return -EINVAL;
459
460         if (!vx_check(0, VX_ADMIN|VX_WATCH))
461                 return vs_reboot(cmd, arg);
462
463         lock_kernel();
464         switch (cmd) {
465         case LINUX_REBOOT_CMD_RESTART:
466                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
467                 system_state = SYSTEM_RESTART;
468                 device_shutdown();
469                 printk(KERN_EMERG "Restarting system.\n");
470                 machine_restart(NULL);
471                 break;
472
473         case LINUX_REBOOT_CMD_CAD_ON:
474                 C_A_D = 1;
475                 break;
476
477         case LINUX_REBOOT_CMD_CAD_OFF:
478                 C_A_D = 0;
479                 break;
480
481         case LINUX_REBOOT_CMD_HALT:
482                 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
483                 system_state = SYSTEM_HALT;
484                 device_shutdown();
485                 printk(KERN_EMERG "System halted.\n");
486                 machine_halt();
487                 unlock_kernel();
488                 do_exit(0);
489                 break;
490
491         case LINUX_REBOOT_CMD_POWER_OFF:
492                 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
493                 system_state = SYSTEM_POWER_OFF;
494                 device_shutdown();
495                 printk(KERN_EMERG "Power down.\n");
496                 machine_power_off();
497                 unlock_kernel();
498                 do_exit(0);
499                 break;
500
501         case LINUX_REBOOT_CMD_RESTART2:
502                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
503                         unlock_kernel();
504                         return -EFAULT;
505                 }
506                 buffer[sizeof(buffer) - 1] = '\0';
507
508                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
509                 system_state = SYSTEM_RESTART;
510                 device_shutdown();
511                 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
512                 machine_restart(buffer);
513                 break;
514
515 #ifdef CONFIG_SOFTWARE_SUSPEND
516         case LINUX_REBOOT_CMD_SW_SUSPEND:
517                 {
518                         int ret = software_suspend();
519                         unlock_kernel();
520                         return ret;
521                 }
522 #endif
523
524         default:
525                 unlock_kernel();
526                 return -EINVAL;
527         }
528         unlock_kernel();
529         return 0;
530 }
531
532 static void deferred_cad(void *dummy)
533 {
534         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
535         machine_restart(NULL);
536 }
537
538 /*
539  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
540  * As it's called within an interrupt, it may NOT sync: the only choice
541  * is whether to reboot at once, or just ignore the ctrl-alt-del.
542  */
543 void ctrl_alt_del(void)
544 {
545         static DECLARE_WORK(cad_work, deferred_cad, NULL);
546
547         if (C_A_D)
548                 schedule_work(&cad_work);
549         else
550                 kill_proc(cad_pid, SIGINT, 1);
551 }
552         
553
554 /*
555  * Unprivileged users may change the real gid to the effective gid
556  * or vice versa.  (BSD-style)
557  *
558  * If you set the real gid at all, or set the effective gid to a value not
559  * equal to the real gid, then the saved gid is set to the new effective gid.
560  *
561  * This makes it possible for a setgid program to completely drop its
562  * privileges, which is often a useful assertion to make when you are doing
563  * a security audit over a program.
564  *
565  * The general idea is that a program which uses just setregid() will be
566  * 100% compatible with BSD.  A program which uses just setgid() will be
567  * 100% compatible with POSIX with saved IDs. 
568  *
569  * SMP: There are not races, the GIDs are checked only by filesystem
570  *      operations (as far as semantic preservation is concerned).
571  */
572 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
573 {
574         int old_rgid = current->gid;
575         int old_egid = current->egid;
576         int new_rgid = old_rgid;
577         int new_egid = old_egid;
578         int retval;
579
580         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
581         if (retval)
582                 return retval;
583
584         if (rgid != (gid_t) -1) {
585                 if ((old_rgid == rgid) ||
586                     (current->egid==rgid) ||
587                     capable(CAP_SETGID))
588                         new_rgid = rgid;
589                 else
590                         return -EPERM;
591         }
592         if (egid != (gid_t) -1) {
593                 if ((old_rgid == egid) ||
594                     (current->egid == egid) ||
595                     (current->sgid == egid) ||
596                     capable(CAP_SETGID))
597                         new_egid = egid;
598                 else {
599                         return -EPERM;
600                 }
601         }
602         if (new_egid != old_egid)
603         {
604                 current->mm->dumpable = 0;
605                 wmb();
606         }
607         if (rgid != (gid_t) -1 ||
608             (egid != (gid_t) -1 && egid != old_rgid))
609                 current->sgid = new_egid;
610         current->fsgid = new_egid;
611         current->egid = new_egid;
612         current->gid = new_rgid;
613         return 0;
614 }
615
616 /*
617  * setgid() is implemented like SysV w/ SAVED_IDS 
618  *
619  * SMP: Same implicit races as above.
620  */
621 asmlinkage long sys_setgid(gid_t gid)
622 {
623         int old_egid = current->egid;
624         int retval;
625
626         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
627         if (retval)
628                 return retval;
629
630         if (capable(CAP_SETGID))
631         {
632                 if(old_egid != gid)
633                 {
634                         current->mm->dumpable=0;
635                         wmb();
636                 }
637                 current->gid = current->egid = current->sgid = current->fsgid = gid;
638         }
639         else if ((gid == current->gid) || (gid == current->sgid))
640         {
641                 if(old_egid != gid)
642                 {
643                         current->mm->dumpable=0;
644                         wmb();
645                 }
646                 current->egid = current->fsgid = gid;
647         }
648         else
649                 return -EPERM;
650         return 0;
651 }
652   
653 static int set_user(uid_t new_ruid, int dumpclear)
654 {
655         struct user_struct *new_user;
656
657         new_user = alloc_uid(vx_current_xid(), new_ruid);
658         if (!new_user)
659                 return -EAGAIN;
660
661         if (atomic_read(&new_user->processes) >=
662                                 current->rlim[RLIMIT_NPROC].rlim_cur &&
663                         new_user != &root_user) {
664                 free_uid(new_user);
665                 return -EAGAIN;
666         }
667
668         switch_uid(new_user);
669
670         if(dumpclear)
671         {
672                 current->mm->dumpable = 0;
673                 wmb();
674         }
675         current->uid = new_ruid;
676         return 0;
677 }
678
679 /*
680  * Unprivileged users may change the real uid to the effective uid
681  * or vice versa.  (BSD-style)
682  *
683  * If you set the real uid at all, or set the effective uid to a value not
684  * equal to the real uid, then the saved uid is set to the new effective uid.
685  *
686  * This makes it possible for a setuid program to completely drop its
687  * privileges, which is often a useful assertion to make when you are doing
688  * a security audit over a program.
689  *
690  * The general idea is that a program which uses just setreuid() will be
691  * 100% compatible with BSD.  A program which uses just setuid() will be
692  * 100% compatible with POSIX with saved IDs. 
693  */
694 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
695 {
696         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
697         int retval;
698
699         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
700         if (retval)
701                 return retval;
702
703         new_ruid = old_ruid = current->uid;
704         new_euid = old_euid = current->euid;
705         old_suid = current->suid;
706
707         if (ruid != (uid_t) -1) {
708                 new_ruid = ruid;
709                 if ((old_ruid != ruid) &&
710                     (current->euid != ruid) &&
711                     !capable(CAP_SETUID))
712                         return -EPERM;
713         }
714
715         if (euid != (uid_t) -1) {
716                 new_euid = euid;
717                 if ((old_ruid != euid) &&
718                     (current->euid != euid) &&
719                     (current->suid != euid) &&
720                     !capable(CAP_SETUID))
721                         return -EPERM;
722         }
723
724         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
725                 return -EAGAIN;
726
727         if (new_euid != old_euid)
728         {
729                 current->mm->dumpable=0;
730                 wmb();
731         }
732         current->fsuid = current->euid = new_euid;
733         if (ruid != (uid_t) -1 ||
734             (euid != (uid_t) -1 && euid != old_ruid))
735                 current->suid = current->euid;
736         current->fsuid = current->euid;
737
738         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
739 }
740
741
742                 
743 /*
744  * setuid() is implemented like SysV with SAVED_IDS 
745  * 
746  * Note that SAVED_ID's is deficient in that a setuid root program
747  * like sendmail, for example, cannot set its uid to be a normal 
748  * user and then switch back, because if you're root, setuid() sets
749  * the saved uid too.  If you don't like this, blame the bright people
750  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
751  * will allow a root program to temporarily drop privileges and be able to
752  * regain them by swapping the real and effective uid.  
753  */
754 asmlinkage long sys_setuid(uid_t uid)
755 {
756         int old_euid = current->euid;
757         int old_ruid, old_suid, new_ruid, new_suid;
758         int retval;
759
760         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
761         if (retval)
762                 return retval;
763
764         old_ruid = new_ruid = current->uid;
765         old_suid = current->suid;
766         new_suid = old_suid;
767         
768         if (capable(CAP_SETUID)) {
769                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
770                         return -EAGAIN;
771                 new_suid = uid;
772         } else if ((uid != current->uid) && (uid != new_suid))
773                 return -EPERM;
774
775         if (old_euid != uid)
776         {
777                 current->mm->dumpable = 0;
778                 wmb();
779         }
780         current->fsuid = current->euid = uid;
781         current->suid = new_suid;
782
783         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
784 }
785
786
787 /*
788  * This function implements a generic ability to update ruid, euid,
789  * and suid.  This allows you to implement the 4.4 compatible seteuid().
790  */
791 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
792 {
793         int old_ruid = current->uid;
794         int old_euid = current->euid;
795         int old_suid = current->suid;
796         int retval;
797
798         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
799         if (retval)
800                 return retval;
801
802         if (!capable(CAP_SETUID)) {
803                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
804                     (ruid != current->euid) && (ruid != current->suid))
805                         return -EPERM;
806                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
807                     (euid != current->euid) && (euid != current->suid))
808                         return -EPERM;
809                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
810                     (suid != current->euid) && (suid != current->suid))
811                         return -EPERM;
812         }
813         if (ruid != (uid_t) -1) {
814                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
815                         return -EAGAIN;
816         }
817         if (euid != (uid_t) -1) {
818                 if (euid != current->euid)
819                 {
820                         current->mm->dumpable = 0;
821                         wmb();
822                 }
823                 current->euid = euid;
824         }
825         current->fsuid = current->euid;
826         if (suid != (uid_t) -1)
827                 current->suid = suid;
828
829         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
830 }
831
832 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
833 {
834         int retval;
835
836         if (!(retval = put_user(current->uid, ruid)) &&
837             !(retval = put_user(current->euid, euid)))
838                 retval = put_user(current->suid, suid);
839
840         return retval;
841 }
842
843 /*
844  * Same as above, but for rgid, egid, sgid.
845  */
846 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
847 {
848         int retval;
849
850         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
851         if (retval)
852                 return retval;
853
854         if (!capable(CAP_SETGID)) {
855                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
856                     (rgid != current->egid) && (rgid != current->sgid))
857                         return -EPERM;
858                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
859                     (egid != current->egid) && (egid != current->sgid))
860                         return -EPERM;
861                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
862                     (sgid != current->egid) && (sgid != current->sgid))
863                         return -EPERM;
864         }
865         if (egid != (gid_t) -1) {
866                 if (egid != current->egid)
867                 {
868                         current->mm->dumpable = 0;
869                         wmb();
870                 }
871                 current->egid = egid;
872         }
873         current->fsgid = current->egid;
874         if (rgid != (gid_t) -1)
875                 current->gid = rgid;
876         if (sgid != (gid_t) -1)
877                 current->sgid = sgid;
878         return 0;
879 }
880
881 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
882 {
883         int retval;
884
885         if (!(retval = put_user(current->gid, rgid)) &&
886             !(retval = put_user(current->egid, egid)))
887                 retval = put_user(current->sgid, sgid);
888
889         return retval;
890 }
891
892
893 /*
894  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
895  * is used for "access()" and for the NFS daemon (letting nfsd stay at
896  * whatever uid it wants to). It normally shadows "euid", except when
897  * explicitly set by setfsuid() or for access..
898  */
899 asmlinkage long sys_setfsuid(uid_t uid)
900 {
901         int old_fsuid;
902
903         old_fsuid = current->fsuid;
904         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
905                 return old_fsuid;
906
907         if (uid == current->uid || uid == current->euid ||
908             uid == current->suid || uid == current->fsuid || 
909             capable(CAP_SETUID))
910         {
911                 if (uid != old_fsuid)
912                 {
913                         current->mm->dumpable = 0;
914                         wmb();
915                 }
916                 current->fsuid = uid;
917         }
918
919         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
920
921         return old_fsuid;
922 }
923
924 /*
925  * Samma pÃ¥ svenska..
926  */
927 asmlinkage long sys_setfsgid(gid_t gid)
928 {
929         int old_fsgid;
930
931         old_fsgid = current->fsgid;
932         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
933                 return old_fsgid;
934
935         if (gid == current->gid || gid == current->egid ||
936             gid == current->sgid || gid == current->fsgid || 
937             capable(CAP_SETGID))
938         {
939                 if (gid != old_fsgid)
940                 {
941                         current->mm->dumpable = 0;
942                         wmb();
943                 }
944                 current->fsgid = gid;
945         }
946         return old_fsgid;
947 }
948
949 asmlinkage long sys_times(struct tms __user * tbuf)
950 {
951         /*
952          *      In the SMP world we might just be unlucky and have one of
953          *      the times increment as we use it. Since the value is an
954          *      atomically safe type this is just fine. Conceptually its
955          *      as if the syscall took an instant longer to occur.
956          */
957         if (tbuf) {
958                 struct tms tmp;
959                 struct task_struct *tsk = current;
960                 struct task_struct *t;
961                 unsigned long utime, stime, cutime, cstime;
962
963                 read_lock(&tasklist_lock);
964                 utime = tsk->signal->utime;
965                 stime = tsk->signal->stime;
966                 t = tsk;
967                 do {
968                         utime += t->utime;
969                         stime += t->stime;
970                         t = next_thread(t);
971                 } while (t != tsk);
972
973                 /*
974                  * While we have tasklist_lock read-locked, no dying thread
975                  * can be updating current->signal->[us]time.  Instead,
976                  * we got their counts included in the live thread loop.
977                  * However, another thread can come in right now and
978                  * do a wait call that updates current->signal->c[us]time.
979                  * To make sure we always see that pair updated atomically,
980                  * we take the siglock around fetching them.
981                  */
982                 spin_lock_irq(&tsk->sighand->siglock);
983                 cutime = tsk->signal->cutime;
984                 cstime = tsk->signal->cstime;
985                 spin_unlock_irq(&tsk->sighand->siglock);
986                 read_unlock(&tasklist_lock);
987
988                 tmp.tms_utime = jiffies_to_clock_t(utime);
989                 tmp.tms_stime = jiffies_to_clock_t(stime);
990                 tmp.tms_cutime = jiffies_to_clock_t(cutime);
991                 tmp.tms_cstime = jiffies_to_clock_t(cstime);
992                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
993                         return -EFAULT;
994         }
995         return (long) jiffies_64_to_clock_t(get_jiffies_64());
996 }
997
998 /*
999  * This needs some heavy checking ...
1000  * I just haven't the stomach for it. I also don't fully
1001  * understand sessions/pgrp etc. Let somebody who does explain it.
1002  *
1003  * OK, I think I have the protection semantics right.... this is really
1004  * only important on a multi-user system anyway, to make sure one user
1005  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1006  *
1007  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1008  * LBT 04.03.94
1009  */
1010
1011 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1012 {
1013         struct task_struct *p;
1014         int err = -EINVAL;
1015         pid_t rpgid;
1016
1017         if (!pid)
1018                 pid = vx_map_pid(current->pid);
1019         if (!pgid)
1020                 pgid = pid;
1021         if (pgid < 0)
1022                 return -EINVAL;
1023
1024         rpgid = vx_rmap_pid(pgid);
1025
1026         /* From this point forward we keep holding onto the tasklist lock
1027          * so that our parent does not change from under us. -DaveM
1028          */
1029         write_lock_irq(&tasklist_lock);
1030
1031         err = -ESRCH;
1032         p = find_task_by_pid(pid);
1033         if (!p)
1034                 goto out;
1035
1036         err = -EINVAL;
1037         if (!thread_group_leader(p))
1038                 goto out;
1039
1040         if (p->parent == current || p->real_parent == current) {
1041                 err = -EPERM;
1042                 if (p->signal->session != current->signal->session)
1043                         goto out;
1044                 err = -EACCES;
1045                 if (p->did_exec)
1046                         goto out;
1047         } else {
1048                 err = -ESRCH;
1049                 if (p != current)
1050                         goto out;
1051         }
1052
1053         err = -EPERM;
1054         if (p->signal->leader)
1055                 goto out;
1056
1057         if (pgid != pid) {
1058                 struct task_struct *p;
1059
1060                 do_each_task_pid(rpgid, PIDTYPE_PGID, p) {
1061                         if (p->signal->session == current->signal->session)
1062                                 goto ok_pgid;
1063                 } while_each_task_pid(rpgid, PIDTYPE_PGID, p);
1064                 goto out;
1065         }
1066
1067 ok_pgid:
1068         err = security_task_setpgid(p, rpgid);
1069         if (err)
1070                 goto out;
1071
1072         if (process_group(p) != rpgid) {
1073                 detach_pid(p, PIDTYPE_PGID);
1074                 p->signal->pgrp = rpgid;
1075                 attach_pid(p, PIDTYPE_PGID, rpgid);
1076         }
1077
1078         err = 0;
1079 out:
1080         /* All paths lead to here, thus we are safe. -DaveM */
1081         write_unlock_irq(&tasklist_lock);
1082         return err;
1083 }
1084
1085 asmlinkage long sys_getpgid(pid_t pid)
1086 {
1087         if (!pid) {
1088                 return vx_rmap_pid(process_group(current));
1089         } else {
1090                 int retval;
1091                 struct task_struct *p;
1092
1093                 read_lock(&tasklist_lock);
1094                 p = find_task_by_pid(pid);
1095
1096                 retval = -ESRCH;
1097                 if (p) {
1098                         retval = security_task_getpgid(p);
1099                         if (!retval)
1100                                 retval = vx_rmap_pid(process_group(p));
1101                 }
1102                 read_unlock(&tasklist_lock);
1103                 return retval;
1104         }
1105 }
1106
1107 #ifdef __ARCH_WANT_SYS_GETPGRP
1108
1109 asmlinkage long sys_getpgrp(void)
1110 {
1111         /* SMP - assuming writes are word atomic this is fine */
1112         return process_group(current);
1113 }
1114
1115 #endif
1116
1117 asmlinkage long sys_getsid(pid_t pid)
1118 {
1119         if (!pid) {
1120                 return current->signal->session;
1121         } else {
1122                 int retval;
1123                 struct task_struct *p;
1124
1125                 read_lock(&tasklist_lock);
1126                 p = find_task_by_pid(pid);
1127
1128                 retval = -ESRCH;
1129                 if(p) {
1130                         retval = security_task_getsid(p);
1131                         if (!retval)
1132                                 retval = p->signal->session;
1133                 }
1134                 read_unlock(&tasklist_lock);
1135                 return retval;
1136         }
1137 }
1138
1139 asmlinkage long sys_setsid(void)
1140 {
1141         struct pid *pid;
1142         int err = -EPERM;
1143
1144         if (!thread_group_leader(current))
1145                 return -EINVAL;
1146
1147         write_lock_irq(&tasklist_lock);
1148
1149         pid = find_pid(PIDTYPE_PGID, current->pid);
1150         if (pid)
1151                 goto out;
1152
1153         current->signal->leader = 1;
1154         __set_special_pids(current->pid, current->pid);
1155         current->signal->tty = NULL;
1156         current->signal->tty_old_pgrp = 0;
1157         err = process_group(current);
1158 out:
1159         write_unlock_irq(&tasklist_lock);
1160         return err;
1161 }
1162
1163 /*
1164  * Supplementary group IDs
1165  */
1166
1167 /* init to 2 - one for init_task, one to ensure it is never freed */
1168 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1169
1170 struct group_info *groups_alloc(int gidsetsize)
1171 {
1172         struct group_info *group_info;
1173         int nblocks;
1174         int i;
1175
1176         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1177         /* Make sure we always allocate at least one indirect block pointer */
1178         nblocks = nblocks ? : 1;
1179         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1180         if (!group_info)
1181                 return NULL;
1182         group_info->ngroups = gidsetsize;
1183         group_info->nblocks = nblocks;
1184         atomic_set(&group_info->usage, 1);
1185
1186         if (gidsetsize <= NGROUPS_SMALL) {
1187                 group_info->blocks[0] = group_info->small_block;
1188         } else {
1189                 for (i = 0; i < nblocks; i++) {
1190                         gid_t *b;
1191                         b = (void *)__get_free_page(GFP_USER);
1192                         if (!b)
1193                                 goto out_undo_partial_alloc;
1194                         group_info->blocks[i] = b;
1195                 }
1196         }
1197         return group_info;
1198
1199 out_undo_partial_alloc:
1200         while (--i >= 0) {
1201                 free_page((unsigned long)group_info->blocks[i]);
1202         }
1203         kfree(group_info);
1204         return NULL;
1205 }
1206
1207 EXPORT_SYMBOL(groups_alloc);
1208
1209 void groups_free(struct group_info *group_info)
1210 {
1211         if (group_info->blocks[0] != group_info->small_block) {
1212                 int i;
1213                 for (i = 0; i < group_info->nblocks; i++)
1214                         free_page((unsigned long)group_info->blocks[i]);
1215         }
1216         kfree(group_info);
1217 }
1218
1219 EXPORT_SYMBOL(groups_free);
1220
1221 /* export the group_info to a user-space array */
1222 static int groups_to_user(gid_t __user *grouplist,
1223     struct group_info *group_info)
1224 {
1225         int i;
1226         int count = group_info->ngroups;
1227
1228         for (i = 0; i < group_info->nblocks; i++) {
1229                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1230                 int off = i * NGROUPS_PER_BLOCK;
1231                 int len = cp_count * sizeof(*grouplist);
1232
1233                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1234                         return -EFAULT;
1235
1236                 count -= cp_count;
1237         }
1238         return 0;
1239 }
1240
1241 /* fill a group_info from a user-space array - it must be allocated already */
1242 static int groups_from_user(struct group_info *group_info,
1243     gid_t __user *grouplist)
1244  {
1245         int i;
1246         int count = group_info->ngroups;
1247
1248         for (i = 0; i < group_info->nblocks; i++) {
1249                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1250                 int off = i * NGROUPS_PER_BLOCK;
1251                 int len = cp_count * sizeof(*grouplist);
1252
1253                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1254                         return -EFAULT;
1255
1256                 count -= cp_count;
1257         }
1258         return 0;
1259 }
1260
1261 /* a simple shell-metzner sort */
1262 static void groups_sort(struct group_info *group_info)
1263 {
1264         int base, max, stride;
1265         int gidsetsize = group_info->ngroups;
1266
1267         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1268                 ; /* nothing */
1269         stride /= 3;
1270
1271         while (stride) {
1272                 max = gidsetsize - stride;
1273                 for (base = 0; base < max; base++) {
1274                         int left = base;
1275                         int right = left + stride;
1276                         gid_t tmp = GROUP_AT(group_info, right);
1277
1278                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1279                                 GROUP_AT(group_info, right) =
1280                                     GROUP_AT(group_info, left);
1281                                 right = left;
1282                                 left -= stride;
1283                         }
1284                         GROUP_AT(group_info, right) = tmp;
1285                 }
1286                 stride /= 3;
1287         }
1288 }
1289
1290 /* a simple bsearch */
1291 static int groups_search(struct group_info *group_info, gid_t grp)
1292 {
1293         int left, right;
1294
1295         if (!group_info)
1296                 return 0;
1297
1298         left = 0;
1299         right = group_info->ngroups;
1300         while (left < right) {
1301                 int mid = (left+right)/2;
1302                 int cmp = grp - GROUP_AT(group_info, mid);
1303                 if (cmp > 0)
1304                         left = mid + 1;
1305                 else if (cmp < 0)
1306                         right = mid;
1307                 else
1308                         return 1;
1309         }
1310         return 0;
1311 }
1312
1313 /* validate and set current->group_info */
1314 int set_current_groups(struct group_info *group_info)
1315 {
1316         int retval;
1317         struct group_info *old_info;
1318
1319         retval = security_task_setgroups(group_info);
1320         if (retval)
1321                 return retval;
1322
1323         groups_sort(group_info);
1324         get_group_info(group_info);
1325
1326         task_lock(current);
1327         old_info = current->group_info;
1328         current->group_info = group_info;
1329         task_unlock(current);
1330
1331         put_group_info(old_info);
1332
1333         return 0;
1334 }
1335
1336 EXPORT_SYMBOL(set_current_groups);
1337
1338 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1339 {
1340         int i = 0;
1341
1342         /*
1343          *      SMP: Nobody else can change our grouplist. Thus we are
1344          *      safe.
1345          */
1346
1347         if (gidsetsize < 0)
1348                 return -EINVAL;
1349
1350         /* no need to grab task_lock here; it cannot change */
1351         get_group_info(current->group_info);
1352         i = current->group_info->ngroups;
1353         if (gidsetsize) {
1354                 if (i > gidsetsize) {
1355                         i = -EINVAL;
1356                         goto out;
1357                 }
1358                 if (groups_to_user(grouplist, current->group_info)) {
1359                         i = -EFAULT;
1360                         goto out;
1361                 }
1362         }
1363 out:
1364         put_group_info(current->group_info);
1365         return i;
1366 }
1367
1368 /*
1369  *      SMP: Our groups are copy-on-write. We can set them safely
1370  *      without another task interfering.
1371  */
1372  
1373 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1374 {
1375         struct group_info *group_info;
1376         int retval;
1377
1378         if (!capable(CAP_SETGID))
1379                 return -EPERM;
1380         if ((unsigned)gidsetsize > NGROUPS_MAX)
1381                 return -EINVAL;
1382
1383         group_info = groups_alloc(gidsetsize);
1384         if (!group_info)
1385                 return -ENOMEM;
1386         retval = groups_from_user(group_info, grouplist);
1387         if (retval) {
1388                 put_group_info(group_info);
1389                 return retval;
1390         }
1391
1392         retval = set_current_groups(group_info);
1393         put_group_info(group_info);
1394
1395         return retval;
1396 }
1397
1398 /*
1399  * Check whether we're fsgid/egid or in the supplemental group..
1400  */
1401 int in_group_p(gid_t grp)
1402 {
1403         int retval = 1;
1404         if (grp != current->fsgid) {
1405                 get_group_info(current->group_info);
1406                 retval = groups_search(current->group_info, grp);
1407                 put_group_info(current->group_info);
1408         }
1409         return retval;
1410 }
1411
1412 EXPORT_SYMBOL(in_group_p);
1413
1414 int in_egroup_p(gid_t grp)
1415 {
1416         int retval = 1;
1417         if (grp != current->egid) {
1418                 get_group_info(current->group_info);
1419                 retval = groups_search(current->group_info, grp);
1420                 put_group_info(current->group_info);
1421         }
1422         return retval;
1423 }
1424
1425 EXPORT_SYMBOL(in_egroup_p);
1426
1427 DECLARE_RWSEM(uts_sem);
1428
1429 EXPORT_SYMBOL(uts_sem);
1430
1431 asmlinkage long sys_newuname(struct new_utsname __user * name)
1432 {
1433         int errno = 0;
1434
1435         down_read(&uts_sem);
1436         if (copy_to_user(name, vx_new_utsname(), sizeof *name))
1437                 errno = -EFAULT;
1438         up_read(&uts_sem);
1439         return errno;
1440 }
1441
1442 asmlinkage long sys_sethostname(char __user *name, int len)
1443 {
1444         int errno;
1445         char tmp[__NEW_UTS_LEN];
1446
1447         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1448                 return -EPERM;
1449         if (len < 0 || len > __NEW_UTS_LEN)
1450                 return -EINVAL;
1451         down_write(&uts_sem);
1452         errno = -EFAULT;
1453         if (!copy_from_user(tmp, name, len)) {
1454                 char *ptr = vx_new_uts(nodename);
1455
1456                 memcpy(ptr, tmp, len);
1457                 ptr[len] = 0;
1458                 errno = 0;
1459         }
1460         up_write(&uts_sem);
1461         return errno;
1462 }
1463
1464 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1465
1466 asmlinkage long sys_gethostname(char __user *name, int len)
1467 {
1468         int i, errno;
1469         char *ptr;
1470
1471         if (len < 0)
1472                 return -EINVAL;
1473         down_read(&uts_sem);
1474         ptr = vx_new_uts(nodename);
1475         i = 1 + strlen(ptr);
1476         if (i > len)
1477                 i = len;
1478         errno = 0;
1479         if (copy_to_user(name, ptr, i))
1480                 errno = -EFAULT;
1481         up_read(&uts_sem);
1482         return errno;
1483 }
1484
1485 #endif
1486
1487 /*
1488  * Only setdomainname; getdomainname can be implemented by calling
1489  * uname()
1490  */
1491 asmlinkage long sys_setdomainname(char __user *name, int len)
1492 {
1493         int errno;
1494         char tmp[__NEW_UTS_LEN];
1495
1496         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1497                 return -EPERM;
1498         if (len < 0 || len > __NEW_UTS_LEN)
1499                 return -EINVAL;
1500
1501         down_write(&uts_sem);
1502         errno = -EFAULT;
1503         if (!copy_from_user(tmp, name, len)) {
1504                 char *ptr = vx_new_uts(domainname);
1505
1506                 memcpy(ptr, tmp, len);
1507                 ptr[len] = 0;
1508                 errno = 0;
1509         }
1510         up_write(&uts_sem);
1511         return errno;
1512 }
1513
1514 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1515 {
1516         if (resource >= RLIM_NLIMITS)
1517                 return -EINVAL;
1518         else
1519                 return copy_to_user(rlim, current->rlim + resource, sizeof(*rlim))
1520                         ? -EFAULT : 0;
1521 }
1522
1523 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1524
1525 /*
1526  *      Back compatibility for getrlimit. Needed for some apps.
1527  */
1528  
1529 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1530 {
1531         struct rlimit x;
1532         if (resource >= RLIM_NLIMITS)
1533                 return -EINVAL;
1534
1535         memcpy(&x, current->rlim + resource, sizeof(*rlim));
1536         if(x.rlim_cur > 0x7FFFFFFF)
1537                 x.rlim_cur = 0x7FFFFFFF;
1538         if(x.rlim_max > 0x7FFFFFFF)
1539                 x.rlim_max = 0x7FFFFFFF;
1540         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1541 }
1542
1543 #endif
1544
1545 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1546 {
1547         struct rlimit new_rlim, *old_rlim;
1548         int retval;
1549
1550         if (resource >= RLIM_NLIMITS)
1551                 return -EINVAL;
1552         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1553                 return -EFAULT;
1554        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1555                return -EINVAL;
1556         old_rlim = current->rlim + resource;
1557         if (((new_rlim.rlim_cur > old_rlim->rlim_max) ||
1558              (new_rlim.rlim_max > old_rlim->rlim_max)) &&
1559             !capable(CAP_SYS_RESOURCE) && !vx_ccaps(VXC_SET_RLIMIT))
1560                 return -EPERM;
1561         if (resource == RLIMIT_NOFILE) {
1562                 if (new_rlim.rlim_cur > NR_OPEN || new_rlim.rlim_max > NR_OPEN)
1563                         return -EPERM;
1564         }
1565
1566         retval = security_task_setrlimit(resource, &new_rlim);
1567         if (retval)
1568                 return retval;
1569
1570         *old_rlim = new_rlim;
1571         return 0;
1572 }
1573
1574 /*
1575  * It would make sense to put struct rusage in the task_struct,
1576  * except that would make the task_struct be *really big*.  After
1577  * task_struct gets moved into malloc'ed memory, it would
1578  * make sense to do this.  It will make moving the rest of the information
1579  * a lot simpler!  (Which we're not doing right now because we're not
1580  * measuring them yet).
1581  *
1582  * This expects to be called with tasklist_lock read-locked or better,
1583  * and the siglock not locked.  It may momentarily take the siglock.
1584  *
1585  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1586  * races with threads incrementing their own counters.  But since word
1587  * reads are atomic, we either get new values or old values and we don't
1588  * care which for the sums.  We always take the siglock to protect reading
1589  * the c* fields from p->signal from races with exit.c updating those
1590  * fields when reaping, so a sample either gets all the additions of a
1591  * given child after it's reaped, or none so this sample is before reaping.
1592  */
1593
1594 void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1595 {
1596         struct task_struct *t;
1597         unsigned long flags;
1598         unsigned long utime, stime;
1599
1600         memset((char *) r, 0, sizeof *r);
1601
1602         if (unlikely(!p->signal))
1603                 return;
1604
1605         switch (who) {
1606                 case RUSAGE_CHILDREN:
1607                         spin_lock_irqsave(&p->sighand->siglock, flags);
1608                         utime = p->signal->cutime;
1609                         stime = p->signal->cstime;
1610                         r->ru_nvcsw = p->signal->cnvcsw;
1611                         r->ru_nivcsw = p->signal->cnivcsw;
1612                         r->ru_minflt = p->signal->cmin_flt;
1613                         r->ru_majflt = p->signal->cmaj_flt;
1614                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1615                         jiffies_to_timeval(utime, &r->ru_utime);
1616                         jiffies_to_timeval(stime, &r->ru_stime);
1617                         break;
1618                 case RUSAGE_SELF:
1619                         spin_lock_irqsave(&p->sighand->siglock, flags);
1620                         utime = stime = 0;
1621                         goto sum_group;
1622                 case RUSAGE_BOTH:
1623                         spin_lock_irqsave(&p->sighand->siglock, flags);
1624                         utime = p->signal->cutime;
1625                         stime = p->signal->cstime;
1626                         r->ru_nvcsw = p->signal->cnvcsw;
1627                         r->ru_nivcsw = p->signal->cnivcsw;
1628                         r->ru_minflt = p->signal->cmin_flt;
1629                         r->ru_majflt = p->signal->cmaj_flt;
1630                 sum_group:
1631                         utime += p->signal->utime;
1632                         stime += p->signal->stime;
1633                         r->ru_nvcsw += p->signal->nvcsw;
1634                         r->ru_nivcsw += p->signal->nivcsw;
1635                         r->ru_minflt += p->signal->min_flt;
1636                         r->ru_majflt += p->signal->maj_flt;
1637                         t = p;
1638                         do {
1639                                 utime += t->utime;
1640                                 stime += t->stime;
1641                                 r->ru_nvcsw += t->nvcsw;
1642                                 r->ru_nivcsw += t->nivcsw;
1643                                 r->ru_minflt += t->min_flt;
1644                                 r->ru_majflt += t->maj_flt;
1645                                 t = next_thread(t);
1646                         } while (t != p);
1647                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648                         jiffies_to_timeval(utime, &r->ru_utime);
1649                         jiffies_to_timeval(stime, &r->ru_stime);
1650                         break;
1651                 default:
1652                         BUG();
1653         }
1654 }
1655
1656 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1657 {
1658         struct rusage r;
1659         read_lock(&tasklist_lock);
1660         k_getrusage(p, who, &r);
1661         read_unlock(&tasklist_lock);
1662         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1663 }
1664
1665 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1666 {
1667         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1668                 return -EINVAL;
1669         return getrusage(current, who, ru);
1670 }
1671
1672 asmlinkage long sys_umask(int mask)
1673 {
1674         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1675         return mask;
1676 }
1677     
1678 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1679                           unsigned long arg4, unsigned long arg5)
1680 {
1681         int error;
1682         int sig;
1683
1684         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1685         if (error)
1686                 return error;
1687
1688         switch (option) {
1689                 case PR_SET_PDEATHSIG:
1690                         sig = arg2;
1691                         if (sig < 0 || sig > _NSIG) {
1692                                 error = -EINVAL;
1693                                 break;
1694                         }
1695                         current->pdeath_signal = sig;
1696                         break;
1697                 case PR_GET_PDEATHSIG:
1698                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1699                         break;
1700                 case PR_GET_DUMPABLE:
1701                         if (current->mm->dumpable)
1702                                 error = 1;
1703                         break;
1704                 case PR_SET_DUMPABLE:
1705                         if (arg2 != 0 && arg2 != 1) {
1706                                 error = -EINVAL;
1707                                 break;
1708                         }
1709                         current->mm->dumpable = arg2;
1710                         break;
1711
1712                 case PR_SET_UNALIGN:
1713                         error = SET_UNALIGN_CTL(current, arg2);
1714                         break;
1715                 case PR_GET_UNALIGN:
1716                         error = GET_UNALIGN_CTL(current, arg2);
1717                         break;
1718                 case PR_SET_FPEMU:
1719                         error = SET_FPEMU_CTL(current, arg2);
1720                         break;
1721                 case PR_GET_FPEMU:
1722                         error = GET_FPEMU_CTL(current, arg2);
1723                         break;
1724                 case PR_SET_FPEXC:
1725                         error = SET_FPEXC_CTL(current, arg2);
1726                         break;
1727                 case PR_GET_FPEXC:
1728                         error = GET_FPEXC_CTL(current, arg2);
1729                         break;
1730                 case PR_GET_TIMING:
1731                         error = PR_TIMING_STATISTICAL;
1732                         break;
1733                 case PR_SET_TIMING:
1734                         if (arg2 == PR_TIMING_STATISTICAL)
1735                                 error = 0;
1736                         else
1737                                 error = -EINVAL;
1738                         break;
1739
1740                 case PR_GET_KEEPCAPS:
1741                         if (current->keep_capabilities)
1742                                 error = 1;
1743                         break;
1744                 case PR_SET_KEEPCAPS:
1745                         if (arg2 != 0 && arg2 != 1) {
1746                                 error = -EINVAL;
1747                                 break;
1748                         }
1749                         current->keep_capabilities = arg2;
1750                         break;
1751                 case PR_SET_NAME: {
1752                         struct task_struct *me = current;
1753                         unsigned char ncomm[sizeof(me->comm)];
1754
1755                         ncomm[sizeof(me->comm)-1] = 0;
1756                         if (strncpy_from_user(ncomm, (char __user *)arg2,
1757                                                 sizeof(me->comm)-1) < 0)
1758                                 return -EFAULT;
1759                         set_task_comm(me, ncomm);
1760                         return 0;
1761                 }
1762                 default:
1763                         error = -EINVAL;
1764                         break;
1765         }
1766         return error;
1767 }