vserver 2.0 rc7
[linux-2.6.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/kmod.h>
15 #include <linux/reboot.h>
16 #include <linux/prctl.h>
17 #include <linux/init.h>
18 #include <linux/highuid.h>
19 #include <linux/fs.h>
20 #include <linux/workqueue.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30
31 #include <linux/compat.h>
32 #include <linux/syscalls.h>
33 #include <linux/vs_cvirt.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
38
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
56 #endif
57
58 /*
59  * this is where the system-wide overflow UID and GID are defined, for
60  * architectures that now have 32-bit UID/GID but didn't in the past
61  */
62
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
65
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
70
71 /*
72  * the same as above, but for filesystems which can only store a 16-bit
73  * UID and GID. as such, this is needed on all architectures
74  */
75
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
78
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
81
82 /*
83  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
84  */
85
86 int C_A_D = 1;
87 int cad_pid = 1;
88
89 /*
90  *      Notifier list for kernel code which wants to be called
91  *      at shutdown. This is used to stop any idling DMA operations
92  *      and the like. 
93  */
94
95 static struct notifier_block *reboot_notifier_list;
96 static DEFINE_RWLOCK(notifier_lock);
97
98 /**
99  *      notifier_chain_register - Add notifier to a notifier chain
100  *      @list: Pointer to root list pointer
101  *      @n: New entry in notifier chain
102  *
103  *      Adds a notifier to a notifier chain.
104  *
105  *      Currently always returns zero.
106  */
107  
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
109 {
110         write_lock(&notifier_lock);
111         while(*list)
112         {
113                 if(n->priority > (*list)->priority)
114                         break;
115                 list= &((*list)->next);
116         }
117         n->next = *list;
118         *list=n;
119         write_unlock(&notifier_lock);
120         return 0;
121 }
122
123 EXPORT_SYMBOL(notifier_chain_register);
124
125 /**
126  *      notifier_chain_unregister - Remove notifier from a notifier chain
127  *      @nl: Pointer to root list pointer
128  *      @n: New entry in notifier chain
129  *
130  *      Removes a notifier from a notifier chain.
131  *
132  *      Returns zero on success, or %-ENOENT on failure.
133  */
134  
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
136 {
137         write_lock(&notifier_lock);
138         while((*nl)!=NULL)
139         {
140                 if((*nl)==n)
141                 {
142                         *nl=n->next;
143                         write_unlock(&notifier_lock);
144                         return 0;
145                 }
146                 nl=&((*nl)->next);
147         }
148         write_unlock(&notifier_lock);
149         return -ENOENT;
150 }
151
152 EXPORT_SYMBOL(notifier_chain_unregister);
153
154 /**
155  *      notifier_call_chain - Call functions in a notifier chain
156  *      @n: Pointer to root pointer of notifier chain
157  *      @val: Value passed unmodified to notifier function
158  *      @v: Pointer passed unmodified to notifier function
159  *
160  *      Calls each function in a notifier chain in turn.
161  *
162  *      If the return value of the notifier can be and'd
163  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
164  *      will return immediately, with the return value of
165  *      the notifier function which halted execution.
166  *      Otherwise, the return value is the return value
167  *      of the last notifier function called.
168  */
169  
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 {
172         int ret=NOTIFY_DONE;
173         struct notifier_block *nb = *n;
174
175         while(nb)
176         {
177                 ret=nb->notifier_call(nb,val,v);
178                 if(ret&NOTIFY_STOP_MASK)
179                 {
180                         return ret;
181                 }
182                 nb=nb->next;
183         }
184         return ret;
185 }
186
187 EXPORT_SYMBOL(notifier_call_chain);
188
189 /**
190  *      register_reboot_notifier - Register function to be called at reboot time
191  *      @nb: Info about notifier function to be called
192  *
193  *      Registers a function with the list of functions
194  *      to be called at reboot time.
195  *
196  *      Currently always returns zero, as notifier_chain_register
197  *      always returns zero.
198  */
199  
200 int register_reboot_notifier(struct notifier_block * nb)
201 {
202         return notifier_chain_register(&reboot_notifier_list, nb);
203 }
204
205 EXPORT_SYMBOL(register_reboot_notifier);
206
207 /**
208  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
209  *      @nb: Hook to be unregistered
210  *
211  *      Unregisters a previously registered reboot
212  *      notifier function.
213  *
214  *      Returns zero on success, or %-ENOENT on failure.
215  */
216  
217 int unregister_reboot_notifier(struct notifier_block * nb)
218 {
219         return notifier_chain_unregister(&reboot_notifier_list, nb);
220 }
221
222 EXPORT_SYMBOL(unregister_reboot_notifier);
223
224 static int set_one_prio(struct task_struct *p, int niceval, int error)
225 {
226         int no_nice;
227
228         if (p->uid != current->euid &&
229                 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
230                 error = -EPERM;
231                 goto out;
232         }
233         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
234                 if (vx_flags(VXF_IGNEG_NICE, 0))
235                         error = 0;
236                 else
237                         error = -EACCES;
238                 goto out;
239         }
240         no_nice = security_task_setnice(p, niceval);
241         if (no_nice) {
242                 error = no_nice;
243                 goto out;
244         }
245         if (error == -ESRCH)
246                 error = 0;
247         set_user_nice(p, niceval);
248 out:
249         return error;
250 }
251
252 asmlinkage long sys_setpriority(int which, int who, int niceval)
253 {
254         struct task_struct *g, *p;
255         struct user_struct *user;
256         int error = -EINVAL;
257
258         if (which > 2 || which < 0)
259                 goto out;
260
261         /* normalize: avoid signed division (rounding problems) */
262         error = -ESRCH;
263         if (niceval < -20)
264                 niceval = -20;
265         if (niceval > 19)
266                 niceval = 19;
267
268         read_lock(&tasklist_lock);
269         switch (which) {
270                 case PRIO_PROCESS:
271                         if (!who)
272                                 who = current->pid;
273                         p = find_task_by_pid(who);
274                         if (p)
275                                 error = set_one_prio(p, niceval, error);
276                         break;
277                 case PRIO_PGRP:
278                         if (!who)
279                                 who = process_group(current);
280                         do_each_task_pid(who, PIDTYPE_PGID, p) {
281                                 error = set_one_prio(p, niceval, error);
282                         } while_each_task_pid(who, PIDTYPE_PGID, p);
283                         break;
284                 case PRIO_USER:
285                         user = current->user;
286                         if (!who)
287                                 who = current->uid;
288                         else
289                                 if ((who != current->uid) &&
290                                         !(user = find_user(vx_current_xid(), who)))
291                                         goto out_unlock;        /* No processes for this user */
292
293                         do_each_thread(g, p)
294                                 if (p->uid == who)
295                                         error = set_one_prio(p, niceval, error);
296                         while_each_thread(g, p);
297                         if (who != current->uid)
298                                 free_uid(user);         /* For find_user() */
299                         break;
300         }
301 out_unlock:
302         read_unlock(&tasklist_lock);
303 out:
304         return error;
305 }
306
307 /*
308  * Ugh. To avoid negative return values, "getpriority()" will
309  * not return the normal nice-value, but a negated value that
310  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
311  * to stay compatible.
312  */
313 asmlinkage long sys_getpriority(int which, int who)
314 {
315         struct task_struct *g, *p;
316         struct user_struct *user;
317         long niceval, retval = -ESRCH;
318
319         if (which > 2 || which < 0)
320                 return -EINVAL;
321
322         read_lock(&tasklist_lock);
323         switch (which) {
324                 case PRIO_PROCESS:
325                         if (!who)
326                                 who = current->pid;
327                         p = find_task_by_pid(who);
328                         if (p) {
329                                 niceval = 20 - task_nice(p);
330                                 if (niceval > retval)
331                                         retval = niceval;
332                         }
333                         break;
334                 case PRIO_PGRP:
335                         if (!who)
336                                 who = process_group(current);
337                         do_each_task_pid(who, PIDTYPE_PGID, p) {
338                                 niceval = 20 - task_nice(p);
339                                 if (niceval > retval)
340                                         retval = niceval;
341                         } while_each_task_pid(who, PIDTYPE_PGID, p);
342                         break;
343                 case PRIO_USER:
344                         user = current->user;
345                         if (!who)
346                                 who = current->uid;
347                         else
348                                 if ((who != current->uid) &&
349                                         !(user = find_user(vx_current_xid(), who)))
350                                         goto out_unlock;        /* No processes for this user */
351
352                         do_each_thread(g, p)
353                                 if (p->uid == who) {
354                                         niceval = 20 - task_nice(p);
355                                         if (niceval > retval)
356                                                 retval = niceval;
357                                 }
358                         while_each_thread(g, p);
359                         if (who != current->uid)
360                                 free_uid(user);         /* for find_user() */
361                         break;
362         }
363 out_unlock:
364         read_unlock(&tasklist_lock);
365
366         return retval;
367 }
368
369 long vs_reboot(unsigned int, void *);
370
371 /*
372  * Reboot system call: for obvious reasons only root may call it,
373  * and even root needs to set up some magic numbers in the registers
374  * so that some mistake won't make this reboot the whole machine.
375  * You can also set the meaning of the ctrl-alt-del-key here.
376  *
377  * reboot doesn't sync: do that yourself before calling this.
378  */
379 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
380 {
381         char buffer[256];
382
383         /* We only trust the superuser with rebooting the system. */
384         if (!capable(CAP_SYS_BOOT))
385                 return -EPERM;
386
387         /* For safety, we require "magic" arguments. */
388         if (magic1 != LINUX_REBOOT_MAGIC1 ||
389             (magic2 != LINUX_REBOOT_MAGIC2 &&
390                         magic2 != LINUX_REBOOT_MAGIC2A &&
391                         magic2 != LINUX_REBOOT_MAGIC2B &&
392                         magic2 != LINUX_REBOOT_MAGIC2C))
393                 return -EINVAL;
394
395         if (!vx_check(0, VX_ADMIN|VX_WATCH))
396                 return vs_reboot(cmd, arg);
397
398         lock_kernel();
399         switch (cmd) {
400         case LINUX_REBOOT_CMD_RESTART:
401                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
402                 system_state = SYSTEM_RESTART;
403                 device_shutdown();
404                 printk(KERN_EMERG "Restarting system.\n");
405                 machine_restart(NULL);
406                 break;
407
408         case LINUX_REBOOT_CMD_CAD_ON:
409                 C_A_D = 1;
410                 break;
411
412         case LINUX_REBOOT_CMD_CAD_OFF:
413                 C_A_D = 0;
414                 break;
415
416         case LINUX_REBOOT_CMD_HALT:
417                 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
418                 system_state = SYSTEM_HALT;
419                 device_shutdown();
420                 printk(KERN_EMERG "System halted.\n");
421                 machine_halt();
422                 unlock_kernel();
423                 do_exit(0);
424                 break;
425
426         case LINUX_REBOOT_CMD_POWER_OFF:
427                 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
428                 system_state = SYSTEM_POWER_OFF;
429                 device_shutdown();
430                 printk(KERN_EMERG "Power down.\n");
431                 machine_power_off();
432                 unlock_kernel();
433                 do_exit(0);
434                 break;
435
436         case LINUX_REBOOT_CMD_RESTART2:
437                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
438                         unlock_kernel();
439                         return -EFAULT;
440                 }
441                 buffer[sizeof(buffer) - 1] = '\0';
442
443                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
444                 system_state = SYSTEM_RESTART;
445                 device_shutdown();
446                 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
447                 machine_restart(buffer);
448                 break;
449
450 #ifdef CONFIG_SOFTWARE_SUSPEND
451         case LINUX_REBOOT_CMD_SW_SUSPEND:
452                 {
453                         int ret = software_suspend();
454                         unlock_kernel();
455                         return ret;
456                 }
457 #endif
458
459         default:
460                 unlock_kernel();
461                 return -EINVAL;
462         }
463         unlock_kernel();
464         return 0;
465 }
466
467 static void deferred_cad(void *dummy)
468 {
469         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
470         machine_restart(NULL);
471 }
472
473 /*
474  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
475  * As it's called within an interrupt, it may NOT sync: the only choice
476  * is whether to reboot at once, or just ignore the ctrl-alt-del.
477  */
478 void ctrl_alt_del(void)
479 {
480         static DECLARE_WORK(cad_work, deferred_cad, NULL);
481
482         if (C_A_D)
483                 schedule_work(&cad_work);
484         else
485                 kill_proc(cad_pid, SIGINT, 1);
486 }
487         
488
489 /*
490  * Unprivileged users may change the real gid to the effective gid
491  * or vice versa.  (BSD-style)
492  *
493  * If you set the real gid at all, or set the effective gid to a value not
494  * equal to the real gid, then the saved gid is set to the new effective gid.
495  *
496  * This makes it possible for a setgid program to completely drop its
497  * privileges, which is often a useful assertion to make when you are doing
498  * a security audit over a program.
499  *
500  * The general idea is that a program which uses just setregid() will be
501  * 100% compatible with BSD.  A program which uses just setgid() will be
502  * 100% compatible with POSIX with saved IDs. 
503  *
504  * SMP: There are not races, the GIDs are checked only by filesystem
505  *      operations (as far as semantic preservation is concerned).
506  */
507 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
508 {
509         int old_rgid = current->gid;
510         int old_egid = current->egid;
511         int new_rgid = old_rgid;
512         int new_egid = old_egid;
513         int retval;
514
515         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
516         if (retval)
517                 return retval;
518
519         if (rgid != (gid_t) -1) {
520                 if ((old_rgid == rgid) ||
521                     (current->egid==rgid) ||
522                     capable(CAP_SETGID))
523                         new_rgid = rgid;
524                 else
525                         return -EPERM;
526         }
527         if (egid != (gid_t) -1) {
528                 if ((old_rgid == egid) ||
529                     (current->egid == egid) ||
530                     (current->sgid == egid) ||
531                     capable(CAP_SETGID))
532                         new_egid = egid;
533                 else {
534                         return -EPERM;
535                 }
536         }
537         if (new_egid != old_egid)
538         {
539                 current->mm->dumpable = 0;
540                 smp_wmb();
541         }
542         if (rgid != (gid_t) -1 ||
543             (egid != (gid_t) -1 && egid != old_rgid))
544                 current->sgid = new_egid;
545         current->fsgid = new_egid;
546         current->egid = new_egid;
547         current->gid = new_rgid;
548         key_fsgid_changed(current);
549         return 0;
550 }
551
552 /*
553  * setgid() is implemented like SysV w/ SAVED_IDS 
554  *
555  * SMP: Same implicit races as above.
556  */
557 asmlinkage long sys_setgid(gid_t gid)
558 {
559         int old_egid = current->egid;
560         int retval;
561
562         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
563         if (retval)
564                 return retval;
565
566         if (capable(CAP_SETGID))
567         {
568                 if(old_egid != gid)
569                 {
570                         current->mm->dumpable=0;
571                         smp_wmb();
572                 }
573                 current->gid = current->egid = current->sgid = current->fsgid = gid;
574         }
575         else if ((gid == current->gid) || (gid == current->sgid))
576         {
577                 if(old_egid != gid)
578                 {
579                         current->mm->dumpable=0;
580                         smp_wmb();
581                 }
582                 current->egid = current->fsgid = gid;
583         }
584         else
585                 return -EPERM;
586
587         key_fsgid_changed(current);
588         return 0;
589 }
590   
591 static int set_user(uid_t new_ruid, int dumpclear)
592 {
593         struct user_struct *new_user;
594
595         new_user = alloc_uid(vx_current_xid(), new_ruid);
596         if (!new_user)
597                 return -EAGAIN;
598
599         if (atomic_read(&new_user->processes) >=
600                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
601                         new_user != &root_user) {
602                 free_uid(new_user);
603                 return -EAGAIN;
604         }
605
606         switch_uid(new_user);
607
608         if(dumpclear)
609         {
610                 current->mm->dumpable = 0;
611                 smp_wmb();
612         }
613         current->uid = new_ruid;
614         return 0;
615 }
616
617 /*
618  * Unprivileged users may change the real uid to the effective uid
619  * or vice versa.  (BSD-style)
620  *
621  * If you set the real uid at all, or set the effective uid to a value not
622  * equal to the real uid, then the saved uid is set to the new effective uid.
623  *
624  * This makes it possible for a setuid program to completely drop its
625  * privileges, which is often a useful assertion to make when you are doing
626  * a security audit over a program.
627  *
628  * The general idea is that a program which uses just setreuid() will be
629  * 100% compatible with BSD.  A program which uses just setuid() will be
630  * 100% compatible with POSIX with saved IDs. 
631  */
632 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
633 {
634         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
635         int retval;
636
637         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
638         if (retval)
639                 return retval;
640
641         new_ruid = old_ruid = current->uid;
642         new_euid = old_euid = current->euid;
643         old_suid = current->suid;
644
645         if (ruid != (uid_t) -1) {
646                 new_ruid = ruid;
647                 if ((old_ruid != ruid) &&
648                     (current->euid != ruid) &&
649                     !capable(CAP_SETUID))
650                         return -EPERM;
651         }
652
653         if (euid != (uid_t) -1) {
654                 new_euid = euid;
655                 if ((old_ruid != euid) &&
656                     (current->euid != euid) &&
657                     (current->suid != euid) &&
658                     !capable(CAP_SETUID))
659                         return -EPERM;
660         }
661
662         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
663                 return -EAGAIN;
664
665         if (new_euid != old_euid)
666         {
667                 current->mm->dumpable=0;
668                 smp_wmb();
669         }
670         current->fsuid = current->euid = new_euid;
671         if (ruid != (uid_t) -1 ||
672             (euid != (uid_t) -1 && euid != old_ruid))
673                 current->suid = current->euid;
674         current->fsuid = current->euid;
675
676         key_fsuid_changed(current);
677
678         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
679 }
680
681
682                 
683 /*
684  * setuid() is implemented like SysV with SAVED_IDS 
685  * 
686  * Note that SAVED_ID's is deficient in that a setuid root program
687  * like sendmail, for example, cannot set its uid to be a normal 
688  * user and then switch back, because if you're root, setuid() sets
689  * the saved uid too.  If you don't like this, blame the bright people
690  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
691  * will allow a root program to temporarily drop privileges and be able to
692  * regain them by swapping the real and effective uid.  
693  */
694 asmlinkage long sys_setuid(uid_t uid)
695 {
696         int old_euid = current->euid;
697         int old_ruid, old_suid, new_ruid, new_suid;
698         int retval;
699
700         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
701         if (retval)
702                 return retval;
703
704         old_ruid = new_ruid = current->uid;
705         old_suid = current->suid;
706         new_suid = old_suid;
707         
708         if (capable(CAP_SETUID)) {
709                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
710                         return -EAGAIN;
711                 new_suid = uid;
712         } else if ((uid != current->uid) && (uid != new_suid))
713                 return -EPERM;
714
715         if (old_euid != uid)
716         {
717                 current->mm->dumpable = 0;
718                 smp_wmb();
719         }
720         current->fsuid = current->euid = uid;
721         current->suid = new_suid;
722
723         key_fsuid_changed(current);
724
725         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
726 }
727
728
729 /*
730  * This function implements a generic ability to update ruid, euid,
731  * and suid.  This allows you to implement the 4.4 compatible seteuid().
732  */
733 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
734 {
735         int old_ruid = current->uid;
736         int old_euid = current->euid;
737         int old_suid = current->suid;
738         int retval;
739
740         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
741         if (retval)
742                 return retval;
743
744         if (!capable(CAP_SETUID)) {
745                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
746                     (ruid != current->euid) && (ruid != current->suid))
747                         return -EPERM;
748                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
749                     (euid != current->euid) && (euid != current->suid))
750                         return -EPERM;
751                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
752                     (suid != current->euid) && (suid != current->suid))
753                         return -EPERM;
754         }
755         if (ruid != (uid_t) -1) {
756                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
757                         return -EAGAIN;
758         }
759         if (euid != (uid_t) -1) {
760                 if (euid != current->euid)
761                 {
762                         current->mm->dumpable = 0;
763                         smp_wmb();
764                 }
765                 current->euid = euid;
766         }
767         current->fsuid = current->euid;
768         if (suid != (uid_t) -1)
769                 current->suid = suid;
770
771         key_fsuid_changed(current);
772
773         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
774 }
775
776 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
777 {
778         int retval;
779
780         if (!(retval = put_user(current->uid, ruid)) &&
781             !(retval = put_user(current->euid, euid)))
782                 retval = put_user(current->suid, suid);
783
784         return retval;
785 }
786
787 /*
788  * Same as above, but for rgid, egid, sgid.
789  */
790 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
791 {
792         int retval;
793
794         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
795         if (retval)
796                 return retval;
797
798         if (!capable(CAP_SETGID)) {
799                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
800                     (rgid != current->egid) && (rgid != current->sgid))
801                         return -EPERM;
802                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
803                     (egid != current->egid) && (egid != current->sgid))
804                         return -EPERM;
805                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
806                     (sgid != current->egid) && (sgid != current->sgid))
807                         return -EPERM;
808         }
809         if (egid != (gid_t) -1) {
810                 if (egid != current->egid)
811                 {
812                         current->mm->dumpable = 0;
813                         smp_wmb();
814                 }
815                 current->egid = egid;
816         }
817         current->fsgid = current->egid;
818         if (rgid != (gid_t) -1)
819                 current->gid = rgid;
820         if (sgid != (gid_t) -1)
821                 current->sgid = sgid;
822
823         key_fsgid_changed(current);
824         return 0;
825 }
826
827 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
828 {
829         int retval;
830
831         if (!(retval = put_user(current->gid, rgid)) &&
832             !(retval = put_user(current->egid, egid)))
833                 retval = put_user(current->sgid, sgid);
834
835         return retval;
836 }
837
838
839 /*
840  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
841  * is used for "access()" and for the NFS daemon (letting nfsd stay at
842  * whatever uid it wants to). It normally shadows "euid", except when
843  * explicitly set by setfsuid() or for access..
844  */
845 asmlinkage long sys_setfsuid(uid_t uid)
846 {
847         int old_fsuid;
848
849         old_fsuid = current->fsuid;
850         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
851                 return old_fsuid;
852
853         if (uid == current->uid || uid == current->euid ||
854             uid == current->suid || uid == current->fsuid || 
855             capable(CAP_SETUID))
856         {
857                 if (uid != old_fsuid)
858                 {
859                         current->mm->dumpable = 0;
860                         smp_wmb();
861                 }
862                 current->fsuid = uid;
863         }
864
865         key_fsuid_changed(current);
866
867         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
868
869         return old_fsuid;
870 }
871
872 /*
873  * Samma pÃ¥ svenska..
874  */
875 asmlinkage long sys_setfsgid(gid_t gid)
876 {
877         int old_fsgid;
878
879         old_fsgid = current->fsgid;
880         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
881                 return old_fsgid;
882
883         if (gid == current->gid || gid == current->egid ||
884             gid == current->sgid || gid == current->fsgid || 
885             capable(CAP_SETGID))
886         {
887                 if (gid != old_fsgid)
888                 {
889                         current->mm->dumpable = 0;
890                         smp_wmb();
891                 }
892                 current->fsgid = gid;
893                 key_fsgid_changed(current);
894         }
895         return old_fsgid;
896 }
897
898 asmlinkage long sys_times(struct tms __user * tbuf)
899 {
900         /*
901          *      In the SMP world we might just be unlucky and have one of
902          *      the times increment as we use it. Since the value is an
903          *      atomically safe type this is just fine. Conceptually its
904          *      as if the syscall took an instant longer to occur.
905          */
906         if (tbuf) {
907                 struct tms tmp;
908                 struct task_struct *tsk = current;
909                 struct task_struct *t;
910                 cputime_t utime, stime, cutime, cstime;
911
912                 read_lock(&tasklist_lock);
913                 utime = tsk->signal->utime;
914                 stime = tsk->signal->stime;
915                 t = tsk;
916                 do {
917                         utime = cputime_add(utime, t->utime);
918                         stime = cputime_add(stime, t->stime);
919                         t = next_thread(t);
920                 } while (t != tsk);
921
922                 /*
923                  * While we have tasklist_lock read-locked, no dying thread
924                  * can be updating current->signal->[us]time.  Instead,
925                  * we got their counts included in the live thread loop.
926                  * However, another thread can come in right now and
927                  * do a wait call that updates current->signal->c[us]time.
928                  * To make sure we always see that pair updated atomically,
929                  * we take the siglock around fetching them.
930                  */
931                 spin_lock_irq(&tsk->sighand->siglock);
932                 cutime = tsk->signal->cutime;
933                 cstime = tsk->signal->cstime;
934                 spin_unlock_irq(&tsk->sighand->siglock);
935                 read_unlock(&tasklist_lock);
936
937                 tmp.tms_utime = cputime_to_clock_t(utime);
938                 tmp.tms_stime = cputime_to_clock_t(stime);
939                 tmp.tms_cutime = cputime_to_clock_t(cutime);
940                 tmp.tms_cstime = cputime_to_clock_t(cstime);
941                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
942                         return -EFAULT;
943         }
944         return (long) jiffies_64_to_clock_t(get_jiffies_64());
945 }
946
947 /*
948  * This needs some heavy checking ...
949  * I just haven't the stomach for it. I also don't fully
950  * understand sessions/pgrp etc. Let somebody who does explain it.
951  *
952  * OK, I think I have the protection semantics right.... this is really
953  * only important on a multi-user system anyway, to make sure one user
954  * can't send a signal to a process owned by another.  -TYT, 12/12/91
955  *
956  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
957  * LBT 04.03.94
958  */
959
960 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
961 {
962         struct task_struct *p;
963         int err = -EINVAL;
964         pid_t rpgid;
965
966         if (!pid)
967                 pid = vx_map_pid(current->pid);
968         if (!pgid)
969                 pgid = pid;
970         if (pgid < 0)
971                 return -EINVAL;
972
973         rpgid = vx_rmap_pid(pgid);
974
975         /* From this point forward we keep holding onto the tasklist lock
976          * so that our parent does not change from under us. -DaveM
977          */
978         write_lock_irq(&tasklist_lock);
979
980         err = -ESRCH;
981         p = find_task_by_pid(pid);
982         if (!p)
983                 goto out;
984
985         err = -EINVAL;
986         if (!thread_group_leader(p))
987                 goto out;
988
989         if (p->parent == current || p->real_parent == current) {
990                 err = -EPERM;
991                 if (p->signal->session != current->signal->session)
992                         goto out;
993                 err = -EACCES;
994                 if (p->did_exec)
995                         goto out;
996         } else {
997                 err = -ESRCH;
998                 if (p != current)
999                         goto out;
1000         }
1001
1002         err = -EPERM;
1003         if (p->signal->leader)
1004                 goto out;
1005
1006         if (pgid != pid) {
1007                 struct task_struct *p;
1008
1009                 do_each_task_pid(rpgid, PIDTYPE_PGID, p) {
1010                         if (p->signal->session == current->signal->session)
1011                                 goto ok_pgid;
1012                 } while_each_task_pid(rpgid, PIDTYPE_PGID, p);
1013                 goto out;
1014         }
1015
1016 ok_pgid:
1017         err = security_task_setpgid(p, rpgid);
1018         if (err)
1019                 goto out;
1020
1021         if (process_group(p) != rpgid) {
1022                 detach_pid(p, PIDTYPE_PGID);
1023                 p->signal->pgrp = rpgid;
1024                 attach_pid(p, PIDTYPE_PGID, rpgid);
1025         }
1026
1027         err = 0;
1028 out:
1029         /* All paths lead to here, thus we are safe. -DaveM */
1030         write_unlock_irq(&tasklist_lock);
1031         return err;
1032 }
1033
1034 asmlinkage long sys_getpgid(pid_t pid)
1035 {
1036         if (!pid) {
1037                 return vx_rmap_pid(process_group(current));
1038         } else {
1039                 int retval;
1040                 struct task_struct *p;
1041
1042                 read_lock(&tasklist_lock);
1043                 p = find_task_by_pid(pid);
1044
1045                 retval = -ESRCH;
1046                 if (p) {
1047                         retval = security_task_getpgid(p);
1048                         if (!retval)
1049                                 retval = vx_rmap_pid(process_group(p));
1050                 }
1051                 read_unlock(&tasklist_lock);
1052                 return retval;
1053         }
1054 }
1055
1056 #ifdef __ARCH_WANT_SYS_GETPGRP
1057
1058 asmlinkage long sys_getpgrp(void)
1059 {
1060         /* SMP - assuming writes are word atomic this is fine */
1061         return process_group(current);
1062 }
1063
1064 #endif
1065
1066 asmlinkage long sys_getsid(pid_t pid)
1067 {
1068         if (!pid) {
1069                 return current->signal->session;
1070         } else {
1071                 int retval;
1072                 struct task_struct *p;
1073
1074                 read_lock(&tasklist_lock);
1075                 p = find_task_by_pid(pid);
1076
1077                 retval = -ESRCH;
1078                 if(p) {
1079                         retval = security_task_getsid(p);
1080                         if (!retval)
1081                                 retval = p->signal->session;
1082                 }
1083                 read_unlock(&tasklist_lock);
1084                 return retval;
1085         }
1086 }
1087
1088 asmlinkage long sys_setsid(void)
1089 {
1090         struct pid *pid;
1091         int err = -EPERM;
1092
1093         if (!thread_group_leader(current))
1094                 return -EINVAL;
1095
1096         down(&tty_sem);
1097         write_lock_irq(&tasklist_lock);
1098
1099         pid = find_pid(PIDTYPE_PGID, current->pid);
1100         if (pid)
1101                 goto out;
1102
1103         current->signal->leader = 1;
1104         __set_special_pids(current->pid, current->pid);
1105         current->signal->tty = NULL;
1106         current->signal->tty_old_pgrp = 0;
1107         err = process_group(current);
1108 out:
1109         write_unlock_irq(&tasklist_lock);
1110         up(&tty_sem);
1111         return err;
1112 }
1113
1114 /*
1115  * Supplementary group IDs
1116  */
1117
1118 /* init to 2 - one for init_task, one to ensure it is never freed */
1119 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1120
1121 struct group_info *groups_alloc(int gidsetsize)
1122 {
1123         struct group_info *group_info;
1124         int nblocks;
1125         int i;
1126
1127         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1128         /* Make sure we always allocate at least one indirect block pointer */
1129         nblocks = nblocks ? : 1;
1130         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1131         if (!group_info)
1132                 return NULL;
1133         group_info->ngroups = gidsetsize;
1134         group_info->nblocks = nblocks;
1135         atomic_set(&group_info->usage, 1);
1136
1137         if (gidsetsize <= NGROUPS_SMALL) {
1138                 group_info->blocks[0] = group_info->small_block;
1139         } else {
1140                 for (i = 0; i < nblocks; i++) {
1141                         gid_t *b;
1142                         b = (void *)__get_free_page(GFP_USER);
1143                         if (!b)
1144                                 goto out_undo_partial_alloc;
1145                         group_info->blocks[i] = b;
1146                 }
1147         }
1148         return group_info;
1149
1150 out_undo_partial_alloc:
1151         while (--i >= 0) {
1152                 free_page((unsigned long)group_info->blocks[i]);
1153         }
1154         kfree(group_info);
1155         return NULL;
1156 }
1157
1158 EXPORT_SYMBOL(groups_alloc);
1159
1160 void groups_free(struct group_info *group_info)
1161 {
1162         if (group_info->blocks[0] != group_info->small_block) {
1163                 int i;
1164                 for (i = 0; i < group_info->nblocks; i++)
1165                         free_page((unsigned long)group_info->blocks[i]);
1166         }
1167         kfree(group_info);
1168 }
1169
1170 EXPORT_SYMBOL(groups_free);
1171
1172 /* export the group_info to a user-space array */
1173 static int groups_to_user(gid_t __user *grouplist,
1174     struct group_info *group_info)
1175 {
1176         int i;
1177         int count = group_info->ngroups;
1178
1179         for (i = 0; i < group_info->nblocks; i++) {
1180                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1181                 int off = i * NGROUPS_PER_BLOCK;
1182                 int len = cp_count * sizeof(*grouplist);
1183
1184                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1185                         return -EFAULT;
1186
1187                 count -= cp_count;
1188         }
1189         return 0;
1190 }
1191
1192 /* fill a group_info from a user-space array - it must be allocated already */
1193 static int groups_from_user(struct group_info *group_info,
1194     gid_t __user *grouplist)
1195  {
1196         int i;
1197         int count = group_info->ngroups;
1198
1199         for (i = 0; i < group_info->nblocks; i++) {
1200                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1201                 int off = i * NGROUPS_PER_BLOCK;
1202                 int len = cp_count * sizeof(*grouplist);
1203
1204                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1205                         return -EFAULT;
1206
1207                 count -= cp_count;
1208         }
1209         return 0;
1210 }
1211
1212 /* a simple Shell sort */
1213 static void groups_sort(struct group_info *group_info)
1214 {
1215         int base, max, stride;
1216         int gidsetsize = group_info->ngroups;
1217
1218         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1219                 ; /* nothing */
1220         stride /= 3;
1221
1222         while (stride) {
1223                 max = gidsetsize - stride;
1224                 for (base = 0; base < max; base++) {
1225                         int left = base;
1226                         int right = left + stride;
1227                         gid_t tmp = GROUP_AT(group_info, right);
1228
1229                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1230                                 GROUP_AT(group_info, right) =
1231                                     GROUP_AT(group_info, left);
1232                                 right = left;
1233                                 left -= stride;
1234                         }
1235                         GROUP_AT(group_info, right) = tmp;
1236                 }
1237                 stride /= 3;
1238         }
1239 }
1240
1241 /* a simple bsearch */
1242 static int groups_search(struct group_info *group_info, gid_t grp)
1243 {
1244         int left, right;
1245
1246         if (!group_info)
1247                 return 0;
1248
1249         left = 0;
1250         right = group_info->ngroups;
1251         while (left < right) {
1252                 int mid = (left+right)/2;
1253                 int cmp = grp - GROUP_AT(group_info, mid);
1254                 if (cmp > 0)
1255                         left = mid + 1;
1256                 else if (cmp < 0)
1257                         right = mid;
1258                 else
1259                         return 1;
1260         }
1261         return 0;
1262 }
1263
1264 /* validate and set current->group_info */
1265 int set_current_groups(struct group_info *group_info)
1266 {
1267         int retval;
1268         struct group_info *old_info;
1269
1270         retval = security_task_setgroups(group_info);
1271         if (retval)
1272                 return retval;
1273
1274         groups_sort(group_info);
1275         get_group_info(group_info);
1276
1277         task_lock(current);
1278         old_info = current->group_info;
1279         current->group_info = group_info;
1280         task_unlock(current);
1281
1282         put_group_info(old_info);
1283
1284         return 0;
1285 }
1286
1287 EXPORT_SYMBOL(set_current_groups);
1288
1289 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1290 {
1291         int i = 0;
1292
1293         /*
1294          *      SMP: Nobody else can change our grouplist. Thus we are
1295          *      safe.
1296          */
1297
1298         if (gidsetsize < 0)
1299                 return -EINVAL;
1300
1301         /* no need to grab task_lock here; it cannot change */
1302         get_group_info(current->group_info);
1303         i = current->group_info->ngroups;
1304         if (gidsetsize) {
1305                 if (i > gidsetsize) {
1306                         i = -EINVAL;
1307                         goto out;
1308                 }
1309                 if (groups_to_user(grouplist, current->group_info)) {
1310                         i = -EFAULT;
1311                         goto out;
1312                 }
1313         }
1314 out:
1315         put_group_info(current->group_info);
1316         return i;
1317 }
1318
1319 /*
1320  *      SMP: Our groups are copy-on-write. We can set them safely
1321  *      without another task interfering.
1322  */
1323  
1324 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1325 {
1326         struct group_info *group_info;
1327         int retval;
1328
1329         if (!capable(CAP_SETGID))
1330                 return -EPERM;
1331         if ((unsigned)gidsetsize > NGROUPS_MAX)
1332                 return -EINVAL;
1333
1334         group_info = groups_alloc(gidsetsize);
1335         if (!group_info)
1336                 return -ENOMEM;
1337         retval = groups_from_user(group_info, grouplist);
1338         if (retval) {
1339                 put_group_info(group_info);
1340                 return retval;
1341         }
1342
1343         retval = set_current_groups(group_info);
1344         put_group_info(group_info);
1345
1346         return retval;
1347 }
1348
1349 /*
1350  * Check whether we're fsgid/egid or in the supplemental group..
1351  */
1352 int in_group_p(gid_t grp)
1353 {
1354         int retval = 1;
1355         if (grp != current->fsgid) {
1356                 get_group_info(current->group_info);
1357                 retval = groups_search(current->group_info, grp);
1358                 put_group_info(current->group_info);
1359         }
1360         return retval;
1361 }
1362
1363 EXPORT_SYMBOL(in_group_p);
1364
1365 int in_egroup_p(gid_t grp)
1366 {
1367         int retval = 1;
1368         if (grp != current->egid) {
1369                 get_group_info(current->group_info);
1370                 retval = groups_search(current->group_info, grp);
1371                 put_group_info(current->group_info);
1372         }
1373         return retval;
1374 }
1375
1376 EXPORT_SYMBOL(in_egroup_p);
1377
1378 DECLARE_RWSEM(uts_sem);
1379
1380 EXPORT_SYMBOL(uts_sem);
1381
1382 asmlinkage long sys_newuname(struct new_utsname __user * name)
1383 {
1384         int errno = 0;
1385
1386         down_read(&uts_sem);
1387         if (copy_to_user(name, vx_new_utsname(), sizeof *name))
1388                 errno = -EFAULT;
1389         up_read(&uts_sem);
1390         return errno;
1391 }
1392
1393 asmlinkage long sys_sethostname(char __user *name, int len)
1394 {
1395         int errno;
1396         char tmp[__NEW_UTS_LEN];
1397
1398         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1399                 return -EPERM;
1400         if (len < 0 || len > __NEW_UTS_LEN)
1401                 return -EINVAL;
1402         down_write(&uts_sem);
1403         errno = -EFAULT;
1404         if (!copy_from_user(tmp, name, len)) {
1405                 char *ptr = vx_new_uts(nodename);
1406
1407                 memcpy(ptr, tmp, len);
1408                 ptr[len] = 0;
1409                 errno = 0;
1410         }
1411         up_write(&uts_sem);
1412         return errno;
1413 }
1414
1415 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1416
1417 asmlinkage long sys_gethostname(char __user *name, int len)
1418 {
1419         int i, errno;
1420         char *ptr;
1421
1422         if (len < 0)
1423                 return -EINVAL;
1424         down_read(&uts_sem);
1425         ptr = vx_new_uts(nodename);
1426         i = 1 + strlen(ptr);
1427         if (i > len)
1428                 i = len;
1429         errno = 0;
1430         if (copy_to_user(name, ptr, i))
1431                 errno = -EFAULT;
1432         up_read(&uts_sem);
1433         return errno;
1434 }
1435
1436 #endif
1437
1438 /*
1439  * Only setdomainname; getdomainname can be implemented by calling
1440  * uname()
1441  */
1442 asmlinkage long sys_setdomainname(char __user *name, int len)
1443 {
1444         int errno;
1445         char tmp[__NEW_UTS_LEN];
1446
1447         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1448                 return -EPERM;
1449         if (len < 0 || len > __NEW_UTS_LEN)
1450                 return -EINVAL;
1451
1452         down_write(&uts_sem);
1453         errno = -EFAULT;
1454         if (!copy_from_user(tmp, name, len)) {
1455                 char *ptr = vx_new_uts(domainname);
1456
1457                 memcpy(ptr, tmp, len);
1458                 ptr[len] = 0;
1459                 errno = 0;
1460         }
1461         up_write(&uts_sem);
1462         return errno;
1463 }
1464
1465 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1466 {
1467         if (resource >= RLIM_NLIMITS)
1468                 return -EINVAL;
1469         else {
1470                 struct rlimit value;
1471                 task_lock(current->group_leader);
1472                 value = current->signal->rlim[resource];
1473                 task_unlock(current->group_leader);
1474                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1475         }
1476 }
1477
1478 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1479
1480 /*
1481  *      Back compatibility for getrlimit. Needed for some apps.
1482  */
1483  
1484 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1485 {
1486         struct rlimit x;
1487         if (resource >= RLIM_NLIMITS)
1488                 return -EINVAL;
1489
1490         task_lock(current->group_leader);
1491         x = current->signal->rlim[resource];
1492         task_unlock(current->group_leader);
1493         if(x.rlim_cur > 0x7FFFFFFF)
1494                 x.rlim_cur = 0x7FFFFFFF;
1495         if(x.rlim_max > 0x7FFFFFFF)
1496                 x.rlim_max = 0x7FFFFFFF;
1497         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1498 }
1499
1500 #endif
1501
1502 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1503 {
1504         struct rlimit new_rlim, *old_rlim;
1505         int retval;
1506
1507         if (resource >= RLIM_NLIMITS)
1508                 return -EINVAL;
1509         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1510                 return -EFAULT;
1511        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1512                return -EINVAL;
1513         old_rlim = current->signal->rlim + resource;
1514         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1515             !capable(CAP_SYS_RESOURCE) && !vx_ccaps(VXC_SET_RLIMIT))
1516                 return -EPERM;
1517         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1518                         return -EPERM;
1519
1520         retval = security_task_setrlimit(resource, &new_rlim);
1521         if (retval)
1522                 return retval;
1523
1524         task_lock(current->group_leader);
1525         *old_rlim = new_rlim;
1526         task_unlock(current->group_leader);
1527
1528         if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1529             (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1530              new_rlim.rlim_cur <= cputime_to_secs(
1531                      current->signal->it_prof_expires))) {
1532                 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1533                 read_lock(&tasklist_lock);
1534                 spin_lock_irq(&current->sighand->siglock);
1535                 set_process_cpu_timer(current, CPUCLOCK_PROF,
1536                                       &cputime, NULL);
1537                 spin_unlock_irq(&current->sighand->siglock);
1538                 read_unlock(&tasklist_lock);
1539         }
1540
1541         return 0;
1542 }
1543
1544 /*
1545  * It would make sense to put struct rusage in the task_struct,
1546  * except that would make the task_struct be *really big*.  After
1547  * task_struct gets moved into malloc'ed memory, it would
1548  * make sense to do this.  It will make moving the rest of the information
1549  * a lot simpler!  (Which we're not doing right now because we're not
1550  * measuring them yet).
1551  *
1552  * This expects to be called with tasklist_lock read-locked or better,
1553  * and the siglock not locked.  It may momentarily take the siglock.
1554  *
1555  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1556  * races with threads incrementing their own counters.  But since word
1557  * reads are atomic, we either get new values or old values and we don't
1558  * care which for the sums.  We always take the siglock to protect reading
1559  * the c* fields from p->signal from races with exit.c updating those
1560  * fields when reaping, so a sample either gets all the additions of a
1561  * given child after it's reaped, or none so this sample is before reaping.
1562  */
1563
1564 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1565 {
1566         struct task_struct *t;
1567         unsigned long flags;
1568         cputime_t utime, stime;
1569
1570         memset((char *) r, 0, sizeof *r);
1571
1572         if (unlikely(!p->signal))
1573                 return;
1574
1575         switch (who) {
1576                 case RUSAGE_CHILDREN:
1577                         spin_lock_irqsave(&p->sighand->siglock, flags);
1578                         utime = p->signal->cutime;
1579                         stime = p->signal->cstime;
1580                         r->ru_nvcsw = p->signal->cnvcsw;
1581                         r->ru_nivcsw = p->signal->cnivcsw;
1582                         r->ru_minflt = p->signal->cmin_flt;
1583                         r->ru_majflt = p->signal->cmaj_flt;
1584                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1585                         cputime_to_timeval(utime, &r->ru_utime);
1586                         cputime_to_timeval(stime, &r->ru_stime);
1587                         break;
1588                 case RUSAGE_SELF:
1589                         spin_lock_irqsave(&p->sighand->siglock, flags);
1590                         utime = stime = cputime_zero;
1591                         goto sum_group;
1592                 case RUSAGE_BOTH:
1593                         spin_lock_irqsave(&p->sighand->siglock, flags);
1594                         utime = p->signal->cutime;
1595                         stime = p->signal->cstime;
1596                         r->ru_nvcsw = p->signal->cnvcsw;
1597                         r->ru_nivcsw = p->signal->cnivcsw;
1598                         r->ru_minflt = p->signal->cmin_flt;
1599                         r->ru_majflt = p->signal->cmaj_flt;
1600                 sum_group:
1601                         utime = cputime_add(utime, p->signal->utime);
1602                         stime = cputime_add(stime, p->signal->stime);
1603                         r->ru_nvcsw += p->signal->nvcsw;
1604                         r->ru_nivcsw += p->signal->nivcsw;
1605                         r->ru_minflt += p->signal->min_flt;
1606                         r->ru_majflt += p->signal->maj_flt;
1607                         t = p;
1608                         do {
1609                                 utime = cputime_add(utime, t->utime);
1610                                 stime = cputime_add(stime, t->stime);
1611                                 r->ru_nvcsw += t->nvcsw;
1612                                 r->ru_nivcsw += t->nivcsw;
1613                                 r->ru_minflt += t->min_flt;
1614                                 r->ru_majflt += t->maj_flt;
1615                                 t = next_thread(t);
1616                         } while (t != p);
1617                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1618                         cputime_to_timeval(utime, &r->ru_utime);
1619                         cputime_to_timeval(stime, &r->ru_stime);
1620                         break;
1621                 default:
1622                         BUG();
1623         }
1624 }
1625
1626 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1627 {
1628         struct rusage r;
1629         read_lock(&tasklist_lock);
1630         k_getrusage(p, who, &r);
1631         read_unlock(&tasklist_lock);
1632         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1633 }
1634
1635 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1636 {
1637         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1638                 return -EINVAL;
1639         return getrusage(current, who, ru);
1640 }
1641
1642 asmlinkage long sys_umask(int mask)
1643 {
1644         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1645         return mask;
1646 }
1647     
1648 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1649                           unsigned long arg4, unsigned long arg5)
1650 {
1651         long error;
1652         int sig;
1653
1654         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1655         if (error)
1656                 return error;
1657
1658         switch (option) {
1659                 case PR_SET_PDEATHSIG:
1660                         sig = arg2;
1661                         if (!valid_signal(sig)) {
1662                                 error = -EINVAL;
1663                                 break;
1664                         }
1665                         current->pdeath_signal = sig;
1666                         break;
1667                 case PR_GET_PDEATHSIG:
1668                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1669                         break;
1670                 case PR_GET_DUMPABLE:
1671                         if (current->mm->dumpable)
1672                                 error = 1;
1673                         break;
1674                 case PR_SET_DUMPABLE:
1675                         if (arg2 != 0 && arg2 != 1) {
1676                                 error = -EINVAL;
1677                                 break;
1678                         }
1679                         current->mm->dumpable = arg2;
1680                         break;
1681
1682                 case PR_SET_UNALIGN:
1683                         error = SET_UNALIGN_CTL(current, arg2);
1684                         break;
1685                 case PR_GET_UNALIGN:
1686                         error = GET_UNALIGN_CTL(current, arg2);
1687                         break;
1688                 case PR_SET_FPEMU:
1689                         error = SET_FPEMU_CTL(current, arg2);
1690                         break;
1691                 case PR_GET_FPEMU:
1692                         error = GET_FPEMU_CTL(current, arg2);
1693                         break;
1694                 case PR_SET_FPEXC:
1695                         error = SET_FPEXC_CTL(current, arg2);
1696                         break;
1697                 case PR_GET_FPEXC:
1698                         error = GET_FPEXC_CTL(current, arg2);
1699                         break;
1700                 case PR_GET_TIMING:
1701                         error = PR_TIMING_STATISTICAL;
1702                         break;
1703                 case PR_SET_TIMING:
1704                         if (arg2 == PR_TIMING_STATISTICAL)
1705                                 error = 0;
1706                         else
1707                                 error = -EINVAL;
1708                         break;
1709
1710                 case PR_GET_KEEPCAPS:
1711                         if (current->keep_capabilities)
1712                                 error = 1;
1713                         break;
1714                 case PR_SET_KEEPCAPS:
1715                         if (arg2 != 0 && arg2 != 1) {
1716                                 error = -EINVAL;
1717                                 break;
1718                         }
1719                         current->keep_capabilities = arg2;
1720                         break;
1721                 case PR_SET_NAME: {
1722                         struct task_struct *me = current;
1723                         unsigned char ncomm[sizeof(me->comm)];
1724
1725                         ncomm[sizeof(me->comm)-1] = 0;
1726                         if (strncpy_from_user(ncomm, (char __user *)arg2,
1727                                                 sizeof(me->comm)-1) < 0)
1728                                 return -EFAULT;
1729                         set_task_comm(me, ncomm);
1730                         return 0;
1731                 }
1732                 case PR_GET_NAME: {
1733                         struct task_struct *me = current;
1734                         unsigned char tcomm[sizeof(me->comm)];
1735
1736                         get_task_comm(tcomm, me);
1737                         if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1738                                 return -EFAULT;
1739                         return 0;
1740                 }
1741                 default:
1742                         error = -EINVAL;
1743                         break;
1744         }
1745         return error;
1746 }