This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/kmod.h>
15 #include <linux/reboot.h>
16 #include <linux/prctl.h>
17 #include <linux/init.h>
18 #include <linux/highuid.h>
19 #include <linux/fs.h>
20 #include <linux/workqueue.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/ckrm.h>
28 #include <linux/tty.h>
29 #include <linux/vs_cvirt.h>
30 #include <linux/compat.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/unistd.h>
36
37 #ifndef SET_UNALIGN_CTL
38 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
39 #endif
40 #ifndef GET_UNALIGN_CTL
41 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
42 #endif
43 #ifndef SET_FPEMU_CTL
44 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
45 #endif
46 #ifndef GET_FPEMU_CTL
47 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
48 #endif
49 #ifndef SET_FPEXC_CTL
50 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
51 #endif
52 #ifndef GET_FPEXC_CTL
53 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
54 #endif
55
56 /*
57  * this is where the system-wide overflow UID and GID are defined, for
58  * architectures that now have 32-bit UID/GID but didn't in the past
59  */
60
61 int overflowuid = DEFAULT_OVERFLOWUID;
62 int overflowgid = DEFAULT_OVERFLOWGID;
63
64 #ifdef CONFIG_UID16
65 EXPORT_SYMBOL(overflowuid);
66 EXPORT_SYMBOL(overflowgid);
67 #endif
68
69 /*
70  * the same as above, but for filesystems which can only store a 16-bit
71  * UID and GID. as such, this is needed on all architectures
72  */
73
74 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
75 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
76
77 EXPORT_SYMBOL(fs_overflowuid);
78 EXPORT_SYMBOL(fs_overflowgid);
79
80 /*
81  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
82  */
83
84 int C_A_D = 1;
85 int cad_pid = 1;
86
87 /*
88  *      Notifier list for kernel code which wants to be called
89  *      at shutdown. This is used to stop any idling DMA operations
90  *      and the like. 
91  */
92
93 static struct notifier_block *reboot_notifier_list;
94 rwlock_t notifier_lock = RW_LOCK_UNLOCKED;
95
96 /**
97  *      notifier_chain_register - Add notifier to a notifier chain
98  *      @list: Pointer to root list pointer
99  *      @n: New entry in notifier chain
100  *
101  *      Adds a notifier to a notifier chain.
102  *
103  *      Currently always returns zero.
104  */
105  
106 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
107 {
108         write_lock(&notifier_lock);
109         while(*list)
110         {
111                 if(n->priority > (*list)->priority)
112                         break;
113                 list= &((*list)->next);
114         }
115         n->next = *list;
116         *list=n;
117         write_unlock(&notifier_lock);
118         return 0;
119 }
120
121 EXPORT_SYMBOL(notifier_chain_register);
122
123 /**
124  *      notifier_chain_unregister - Remove notifier from a notifier chain
125  *      @nl: Pointer to root list pointer
126  *      @n: New entry in notifier chain
127  *
128  *      Removes a notifier from a notifier chain.
129  *
130  *      Returns zero on success, or %-ENOENT on failure.
131  */
132  
133 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
134 {
135         write_lock(&notifier_lock);
136         while((*nl)!=NULL)
137         {
138                 if((*nl)==n)
139                 {
140                         *nl=n->next;
141                         write_unlock(&notifier_lock);
142                         return 0;
143                 }
144                 nl=&((*nl)->next);
145         }
146         write_unlock(&notifier_lock);
147         return -ENOENT;
148 }
149
150 EXPORT_SYMBOL(notifier_chain_unregister);
151
152 /**
153  *      notifier_call_chain - Call functions in a notifier chain
154  *      @n: Pointer to root pointer of notifier chain
155  *      @val: Value passed unmodified to notifier function
156  *      @v: Pointer passed unmodified to notifier function
157  *
158  *      Calls each function in a notifier chain in turn.
159  *
160  *      If the return value of the notifier can be and'd
161  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
162  *      will return immediately, with the return value of
163  *      the notifier function which halted execution.
164  *      Otherwise, the return value is the return value
165  *      of the last notifier function called.
166  */
167  
168 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
169 {
170         int ret=NOTIFY_DONE;
171         struct notifier_block *nb = *n;
172
173         while(nb)
174         {
175                 ret=nb->notifier_call(nb,val,v);
176                 if(ret&NOTIFY_STOP_MASK)
177                 {
178                         return ret;
179                 }
180                 nb=nb->next;
181         }
182         return ret;
183 }
184
185 EXPORT_SYMBOL(notifier_call_chain);
186
187 /**
188  *      register_reboot_notifier - Register function to be called at reboot time
189  *      @nb: Info about notifier function to be called
190  *
191  *      Registers a function with the list of functions
192  *      to be called at reboot time.
193  *
194  *      Currently always returns zero, as notifier_chain_register
195  *      always returns zero.
196  */
197  
198 int register_reboot_notifier(struct notifier_block * nb)
199 {
200         return notifier_chain_register(&reboot_notifier_list, nb);
201 }
202
203 EXPORT_SYMBOL(register_reboot_notifier);
204
205 /**
206  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
207  *      @nb: Hook to be unregistered
208  *
209  *      Unregisters a previously registered reboot
210  *      notifier function.
211  *
212  *      Returns zero on success, or %-ENOENT on failure.
213  */
214  
215 int unregister_reboot_notifier(struct notifier_block * nb)
216 {
217         return notifier_chain_unregister(&reboot_notifier_list, nb);
218 }
219
220 EXPORT_SYMBOL(unregister_reboot_notifier);
221 static int set_one_prio(struct task_struct *p, int niceval, int error)
222 {
223         int no_nice;
224
225         if (p->uid != current->euid &&
226                 p->uid != current->uid && !capable(CAP_SYS_NICE)) {
227                 error = -EPERM;
228                 goto out;
229         }
230         if (niceval < task_nice(p) && !capable(CAP_SYS_NICE)) {
231                 if (vx_flags(VXF_IGNEG_NICE, 0))
232                         error = 0;
233                 else
234                         error = -EACCES;
235                 goto out;
236         }
237         no_nice = security_task_setnice(p, niceval);
238         if (no_nice) {
239                 error = no_nice;
240                 goto out;
241         }
242         if (error == -ESRCH)
243                 error = 0;
244         set_user_nice(p, niceval);
245 out:
246         return error;
247 }
248
249 asmlinkage long sys_setpriority(int which, int who, int niceval)
250 {
251         struct task_struct *g, *p;
252         struct user_struct *user;
253         int error = -EINVAL;
254
255         if (which > 2 || which < 0)
256                 goto out;
257
258         /* normalize: avoid signed division (rounding problems) */
259         error = -ESRCH;
260         if (niceval < -20)
261                 niceval = -20;
262         if (niceval > 19)
263                 niceval = 19;
264
265         read_lock(&tasklist_lock);
266         switch (which) {
267                 case PRIO_PROCESS:
268                         if (!who)
269                                 who = current->pid;
270                         p = find_task_by_pid(who);
271                         if (p)
272                                 error = set_one_prio(p, niceval, error);
273                         break;
274                 case PRIO_PGRP:
275                         if (!who)
276                                 who = process_group(current);
277                         do_each_task_pid(who, PIDTYPE_PGID, p) {
278                                 error = set_one_prio(p, niceval, error);
279                         } while_each_task_pid(who, PIDTYPE_PGID, p);
280                         break;
281                 case PRIO_USER:
282                         user = current->user;
283                         if (!who)
284                                 who = current->uid;
285                         else
286                                 if ((who != current->uid) &&
287                                         !(user = find_user(vx_current_xid(), who)))
288                                         goto out_unlock;        /* No processes for this user */
289
290                         do_each_thread(g, p)
291                                 if (p->uid == who)
292                                         error = set_one_prio(p, niceval, error);
293                         while_each_thread(g, p);
294                         if (who != current->uid)
295                                 free_uid(user);         /* For find_user() */
296                         break;
297         }
298 out_unlock:
299         read_unlock(&tasklist_lock);
300 out:
301         return error;
302 }
303
304 /*
305  * Ugh. To avoid negative return values, "getpriority()" will
306  * not return the normal nice-value, but a negated value that
307  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
308  * to stay compatible.
309  */
310 asmlinkage long sys_getpriority(int which, int who)
311 {
312         struct task_struct *g, *p;
313         struct user_struct *user;
314         long niceval, retval = -ESRCH;
315
316         if (which > 2 || which < 0)
317                 return -EINVAL;
318
319         read_lock(&tasklist_lock);
320         switch (which) {
321                 case PRIO_PROCESS:
322                         if (!who)
323                                 who = current->pid;
324                         p = find_task_by_pid(who);
325                         if (p) {
326                                 niceval = 20 - task_nice(p);
327                                 if (niceval > retval)
328                                         retval = niceval;
329                         }
330                         break;
331                 case PRIO_PGRP:
332                         if (!who)
333                                 who = process_group(current);
334                         do_each_task_pid(who, PIDTYPE_PGID, p) {
335                                 niceval = 20 - task_nice(p);
336                                 if (niceval > retval)
337                                         retval = niceval;
338                         } while_each_task_pid(who, PIDTYPE_PGID, p);
339                         break;
340                 case PRIO_USER:
341                         user = current->user;
342                         if (!who)
343                                 who = current->uid;
344                         else
345                                 if ((who != current->uid) &&
346                                         !(user = find_user(vx_current_xid(), who)))
347                                         goto out_unlock;        /* No processes for this user */
348
349                         do_each_thread(g, p)
350                                 if (p->uid == who) {
351                                         niceval = 20 - task_nice(p);
352                                         if (niceval > retval)
353                                                 retval = niceval;
354                                 }
355                         while_each_thread(g, p);
356                         if (who != current->uid)
357                                 free_uid(user);         /* for find_user() */
358                         break;
359         }
360 out_unlock:
361         read_unlock(&tasklist_lock);
362
363         return retval;
364 }
365
366 long vs_reboot(unsigned int, void *);
367
368 /*
369  * Reboot system call: for obvious reasons only root may call it,
370  * and even root needs to set up some magic numbers in the registers
371  * so that some mistake won't make this reboot the whole machine.
372  * You can also set the meaning of the ctrl-alt-del-key here.
373  *
374  * reboot doesn't sync: do that yourself before calling this.
375  */
376 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
377 {
378         char buffer[256];
379
380         /* We only trust the superuser with rebooting the system. */
381         if (!capable(CAP_SYS_BOOT))
382                 return -EPERM;
383
384         /* For safety, we require "magic" arguments. */
385         if (magic1 != LINUX_REBOOT_MAGIC1 ||
386             (magic2 != LINUX_REBOOT_MAGIC2 &&
387                         magic2 != LINUX_REBOOT_MAGIC2A &&
388                         magic2 != LINUX_REBOOT_MAGIC2B &&
389                         magic2 != LINUX_REBOOT_MAGIC2C))
390                 return -EINVAL;
391
392         if (!vx_check(0, VX_ADMIN|VX_WATCH))
393                 return vs_reboot(cmd, arg);
394
395         lock_kernel();
396         switch (cmd) {
397         case LINUX_REBOOT_CMD_RESTART:
398                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
399                 system_state = SYSTEM_RESTART;
400                 device_shutdown();
401                 printk(KERN_EMERG "Restarting system.\n");
402                 machine_restart(NULL);
403                 break;
404
405         case LINUX_REBOOT_CMD_CAD_ON:
406                 C_A_D = 1;
407                 break;
408
409         case LINUX_REBOOT_CMD_CAD_OFF:
410                 C_A_D = 0;
411                 break;
412
413         case LINUX_REBOOT_CMD_HALT:
414                 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
415                 system_state = SYSTEM_HALT;
416                 device_shutdown();
417                 printk(KERN_EMERG "System halted.\n");
418                 machine_halt();
419                 unlock_kernel();
420                 do_exit(0);
421                 break;
422
423         case LINUX_REBOOT_CMD_POWER_OFF:
424                 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
425                 system_state = SYSTEM_POWER_OFF;
426                 device_shutdown();
427                 printk(KERN_EMERG "Power down.\n");
428                 machine_power_off();
429                 unlock_kernel();
430                 do_exit(0);
431                 break;
432
433         case LINUX_REBOOT_CMD_RESTART2:
434                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
435                         unlock_kernel();
436                         return -EFAULT;
437                 }
438                 buffer[sizeof(buffer) - 1] = '\0';
439
440                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
441                 system_state = SYSTEM_RESTART;
442                 device_shutdown();
443                 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
444                 machine_restart(buffer);
445                 break;
446
447 #ifdef CONFIG_KEXEC
448         case LINUX_REBOOT_CMD_KEXEC:
449         {
450                 struct kimage *image;
451                 image = xchg(&kexec_image, 0);
452                 if (!image) {
453                         unlock_kernel();
454                         return -EINVAL;
455                 }
456                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
457                 system_state = SYSTEM_RESTART;
458                 device_shutdown();
459                 system_state = SYSTEM_BOOTING;
460                 printk(KERN_EMERG "Starting new kernel\n");
461                 machine_shutdown();
462                 machine_kexec(image);
463                 break;
464         }
465 #endif
466
467 #ifdef CONFIG_SOFTWARE_SUSPEND
468         case LINUX_REBOOT_CMD_SW_SUSPEND:
469                 {
470                         int ret = software_suspend();
471                         unlock_kernel();
472                         return ret;
473                 }
474 #endif
475
476         default:
477                 unlock_kernel();
478                 return -EINVAL;
479         }
480         unlock_kernel();
481         return 0;
482 }
483
484 static void deferred_cad(void *dummy)
485 {
486         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
487         machine_restart(NULL);
488 }
489
490 /*
491  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
492  * As it's called within an interrupt, it may NOT sync: the only choice
493  * is whether to reboot at once, or just ignore the ctrl-alt-del.
494  */
495 void ctrl_alt_del(void)
496 {
497         static DECLARE_WORK(cad_work, deferred_cad, NULL);
498
499         if (C_A_D)
500                 schedule_work(&cad_work);
501         else
502                 kill_proc(cad_pid, SIGINT, 1);
503 }
504         
505
506 /*
507  * Unprivileged users may change the real gid to the effective gid
508  * or vice versa.  (BSD-style)
509  *
510  * If you set the real gid at all, or set the effective gid to a value not
511  * equal to the real gid, then the saved gid is set to the new effective gid.
512  *
513  * This makes it possible for a setgid program to completely drop its
514  * privileges, which is often a useful assertion to make when you are doing
515  * a security audit over a program.
516  *
517  * The general idea is that a program which uses just setregid() will be
518  * 100% compatible with BSD.  A program which uses just setgid() will be
519  * 100% compatible with POSIX with saved IDs. 
520  *
521  * SMP: There are not races, the GIDs are checked only by filesystem
522  *      operations (as far as semantic preservation is concerned).
523  */
524 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
525 {
526         int old_rgid = current->gid;
527         int old_egid = current->egid;
528         int new_rgid = old_rgid;
529         int new_egid = old_egid;
530         int retval;
531
532         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
533         if (retval)
534                 return retval;
535
536         if (rgid != (gid_t) -1) {
537                 if ((old_rgid == rgid) ||
538                     (current->egid==rgid) ||
539                     capable(CAP_SETGID))
540                         new_rgid = rgid;
541                 else
542                         return -EPERM;
543         }
544         if (egid != (gid_t) -1) {
545                 if ((old_rgid == egid) ||
546                     (current->egid == egid) ||
547                     (current->sgid == egid) ||
548                     capable(CAP_SETGID))
549                         new_egid = egid;
550                 else {
551                         return -EPERM;
552                 }
553         }
554         if (new_egid != old_egid)
555         {
556                 current->mm->dumpable = suid_dumpable;
557                 wmb();
558         }
559         if (rgid != (gid_t) -1 ||
560             (egid != (gid_t) -1 && egid != old_rgid))
561                 current->sgid = new_egid;
562         current->fsgid = new_egid;
563         current->egid = new_egid;
564         current->gid = new_rgid;
565
566         ckrm_cb_gid();
567
568         key_fsgid_changed(current);
569         return 0;
570 }
571
572 /*
573  * setgid() is implemented like SysV w/ SAVED_IDS 
574  *
575  * SMP: Same implicit races as above.
576  */
577 asmlinkage long sys_setgid(gid_t gid)
578 {
579         int old_egid = current->egid;
580         int retval;
581
582         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
583         if (retval)
584                 return retval;
585
586         if (capable(CAP_SETGID))
587         {
588                 if(old_egid != gid)
589                 {
590                         current->mm->dumpable = suid_dumpable;
591                         wmb();
592                 }
593                 current->gid = current->egid = current->sgid = current->fsgid = gid;
594         }
595         else if ((gid == current->gid) || (gid == current->sgid))
596         {
597                 if(old_egid != gid)
598                 {
599                         current->mm->dumpable = suid_dumpable;
600                         wmb();
601                 }
602                 current->egid = current->fsgid = gid;
603         }
604         else
605                 return -EPERM;
606
607         ckrm_cb_gid();
608
609         key_fsgid_changed(current);
610         return 0;
611 }
612   
613 static int set_user(uid_t new_ruid, int dumpclear)
614 {
615         struct user_struct *new_user;
616
617         new_user = alloc_uid(vx_current_xid(), new_ruid);
618         if (!new_user)
619                 return -EAGAIN;
620
621         if (atomic_read(&new_user->processes) >=
622                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
623                         new_user != &root_user) {
624                 free_uid(new_user);
625                 return -EAGAIN;
626         }
627
628         switch_uid(new_user);
629
630         if(dumpclear)
631         {
632                 current->mm->dumpable = suid_dumpable;
633                 wmb();
634         }
635         current->uid = new_ruid;
636         return 0;
637 }
638
639 /*
640  * Unprivileged users may change the real uid to the effective uid
641  * or vice versa.  (BSD-style)
642  *
643  * If you set the real uid at all, or set the effective uid to a value not
644  * equal to the real uid, then the saved uid is set to the new effective uid.
645  *
646  * This makes it possible for a setuid program to completely drop its
647  * privileges, which is often a useful assertion to make when you are doing
648  * a security audit over a program.
649  *
650  * The general idea is that a program which uses just setreuid() will be
651  * 100% compatible with BSD.  A program which uses just setuid() will be
652  * 100% compatible with POSIX with saved IDs. 
653  */
654 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
655 {
656         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
657         int retval;
658
659         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
660         if (retval)
661                 return retval;
662
663         new_ruid = old_ruid = current->uid;
664         new_euid = old_euid = current->euid;
665         old_suid = current->suid;
666
667         if (ruid != (uid_t) -1) {
668                 new_ruid = ruid;
669                 if ((old_ruid != ruid) &&
670                     (current->euid != ruid) &&
671                     !capable(CAP_SETUID))
672                         return -EPERM;
673         }
674
675         if (euid != (uid_t) -1) {
676                 new_euid = euid;
677                 if ((old_ruid != euid) &&
678                     (current->euid != euid) &&
679                     (current->suid != euid) &&
680                     !capable(CAP_SETUID))
681                         return -EPERM;
682         }
683
684         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
685                 return -EAGAIN;
686
687         if (new_euid != old_euid)
688         {
689                 current->mm->dumpable = suid_dumpable;
690                 wmb();
691         }
692         current->fsuid = current->euid = new_euid;
693         if (ruid != (uid_t) -1 ||
694             (euid != (uid_t) -1 && euid != old_ruid))
695                 current->suid = current->euid;
696         current->fsuid = current->euid;
697
698         ckrm_cb_uid();
699
700         key_fsuid_changed(current);
701
702         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
703 }
704
705
706                 
707 /*
708  * setuid() is implemented like SysV with SAVED_IDS 
709  * 
710  * Note that SAVED_ID's is deficient in that a setuid root program
711  * like sendmail, for example, cannot set its uid to be a normal 
712  * user and then switch back, because if you're root, setuid() sets
713  * the saved uid too.  If you don't like this, blame the bright people
714  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
715  * will allow a root program to temporarily drop privileges and be able to
716  * regain them by swapping the real and effective uid.  
717  */
718 asmlinkage long sys_setuid(uid_t uid)
719 {
720         int old_euid = current->euid;
721         int old_ruid, old_suid, new_ruid, new_suid;
722         int retval;
723
724         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
725         if (retval)
726                 return retval;
727
728         old_ruid = new_ruid = current->uid;
729         old_suid = current->suid;
730         new_suid = old_suid;
731         
732         if (capable(CAP_SETUID)) {
733                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
734                         return -EAGAIN;
735                 new_suid = uid;
736         } else if ((uid != current->uid) && (uid != new_suid))
737                 return -EPERM;
738
739         if (old_euid != uid)
740         {
741                 current->mm->dumpable = suid_dumpable;
742                 wmb();
743         }
744         current->fsuid = current->euid = uid;
745         current->suid = new_suid;
746
747         ckrm_cb_uid();
748
749         key_fsuid_changed(current);
750
751         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
752 }
753
754
755 /*
756  * This function implements a generic ability to update ruid, euid,
757  * and suid.  This allows you to implement the 4.4 compatible seteuid().
758  */
759 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
760 {
761         int old_ruid = current->uid;
762         int old_euid = current->euid;
763         int old_suid = current->suid;
764         int retval;
765
766         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
767         if (retval)
768                 return retval;
769
770         if (!capable(CAP_SETUID)) {
771                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
772                     (ruid != current->euid) && (ruid != current->suid))
773                         return -EPERM;
774                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
775                     (euid != current->euid) && (euid != current->suid))
776                         return -EPERM;
777                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
778                     (suid != current->euid) && (suid != current->suid))
779                         return -EPERM;
780         }
781         if (ruid != (uid_t) -1) {
782                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
783                         return -EAGAIN;
784         }
785         if (euid != (uid_t) -1) {
786                 if (euid != current->euid)
787                 {
788                         current->mm->dumpable = suid_dumpable;
789                         wmb();
790                 }
791                 current->euid = euid;
792         }
793         current->fsuid = current->euid;
794         if (suid != (uid_t) -1)
795                 current->suid = suid;
796
797         ckrm_cb_uid();
798
799         key_fsuid_changed(current);
800
801         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
802 }
803
804 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
805 {
806         int retval;
807
808         if (!(retval = put_user(current->uid, ruid)) &&
809             !(retval = put_user(current->euid, euid)))
810                 retval = put_user(current->suid, suid);
811
812         return retval;
813 }
814
815 /*
816  * Same as above, but for rgid, egid, sgid.
817  */
818 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
819 {
820         int retval;
821
822         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
823         if (retval)
824                 return retval;
825
826         if (!capable(CAP_SETGID)) {
827                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
828                     (rgid != current->egid) && (rgid != current->sgid))
829                         return -EPERM;
830                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
831                     (egid != current->egid) && (egid != current->sgid))
832                         return -EPERM;
833                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
834                     (sgid != current->egid) && (sgid != current->sgid))
835                         return -EPERM;
836         }
837         if (egid != (gid_t) -1) {
838                 if (egid != current->egid)
839                 {
840                         current->mm->dumpable = suid_dumpable;
841                         wmb();
842                 }
843                 current->egid = egid;
844         }
845         current->fsgid = current->egid;
846         if (rgid != (gid_t) -1)
847                 current->gid = rgid;
848         if (sgid != (gid_t) -1)
849                 current->sgid = sgid;
850
851         ckrm_cb_gid();
852
853
854         key_fsgid_changed(current);
855         return 0;
856 }
857
858 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
859 {
860         int retval;
861
862         if (!(retval = put_user(current->gid, rgid)) &&
863             !(retval = put_user(current->egid, egid)))
864                 retval = put_user(current->sgid, sgid);
865
866         return retval;
867 }
868
869
870 /*
871  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
872  * is used for "access()" and for the NFS daemon (letting nfsd stay at
873  * whatever uid it wants to). It normally shadows "euid", except when
874  * explicitly set by setfsuid() or for access..
875  */
876 asmlinkage long sys_setfsuid(uid_t uid)
877 {
878         int old_fsuid;
879
880         old_fsuid = current->fsuid;
881         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
882                 return old_fsuid;
883
884         if (uid == current->uid || uid == current->euid ||
885             uid == current->suid || uid == current->fsuid || 
886             capable(CAP_SETUID))
887         {
888                 if (uid != old_fsuid)
889                 {
890                         current->mm->dumpable = suid_dumpable;
891                         wmb();
892                 }
893                 current->fsuid = uid;
894         }
895
896         key_fsuid_changed(current);
897
898         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
899
900         return old_fsuid;
901 }
902
903 /*
904  * Samma pÃ¥ svenska..
905  */
906 asmlinkage long sys_setfsgid(gid_t gid)
907 {
908         int old_fsgid;
909
910         old_fsgid = current->fsgid;
911         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
912                 return old_fsgid;
913
914         if (gid == current->gid || gid == current->egid ||
915             gid == current->sgid || gid == current->fsgid || 
916             capable(CAP_SETGID))
917         {
918                 if (gid != old_fsgid)
919                 {
920                         current->mm->dumpable = suid_dumpable;
921                         wmb();
922                 }
923                 current->fsgid = gid;
924                 key_fsgid_changed(current);
925         }
926         return old_fsgid;
927 }
928
929 asmlinkage long sys_times(struct tms __user * tbuf)
930 {
931         /*
932          *      In the SMP world we might just be unlucky and have one of
933          *      the times increment as we use it. Since the value is an
934          *      atomically safe type this is just fine. Conceptually its
935          *      as if the syscall took an instant longer to occur.
936          */
937         if (tbuf) {
938                 struct tms tmp;
939                 struct task_struct *tsk = current;
940                 struct task_struct *t;
941                 unsigned long utime, stime, cutime, cstime;
942
943                 read_lock(&tasklist_lock);
944                 utime = tsk->signal->utime;
945                 stime = tsk->signal->stime;
946                 t = tsk;
947                 do {
948                         utime += t->utime;
949                         stime += t->stime;
950                         t = next_thread(t);
951                 } while (t != tsk);
952
953                 /*
954                  * While we have tasklist_lock read-locked, no dying thread
955                  * can be updating current->signal->[us]time.  Instead,
956                  * we got their counts included in the live thread loop.
957                  * However, another thread can come in right now and
958                  * do a wait call that updates current->signal->c[us]time.
959                  * To make sure we always see that pair updated atomically,
960                  * we take the siglock around fetching them.
961                  */
962                 spin_lock_irq(&tsk->sighand->siglock);
963                 cutime = tsk->signal->cutime;
964                 cstime = tsk->signal->cstime;
965                 spin_unlock_irq(&tsk->sighand->siglock);
966                 read_unlock(&tasklist_lock);
967
968                 tmp.tms_utime = jiffies_to_clock_t(utime);
969                 tmp.tms_stime = jiffies_to_clock_t(stime);
970                 tmp.tms_cutime = jiffies_to_clock_t(cutime);
971                 tmp.tms_cstime = jiffies_to_clock_t(cstime);
972                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
973                         return -EFAULT;
974         }
975         return (long) jiffies_64_to_clock_t(get_jiffies_64());
976 }
977
978 /*
979  * This needs some heavy checking ...
980  * I just haven't the stomach for it. I also don't fully
981  * understand sessions/pgrp etc. Let somebody who does explain it.
982  *
983  * OK, I think I have the protection semantics right.... this is really
984  * only important on a multi-user system anyway, to make sure one user
985  * can't send a signal to a process owned by another.  -TYT, 12/12/91
986  *
987  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
988  * LBT 04.03.94
989  */
990
991 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
992 {
993         struct task_struct *p;
994         int err = -EINVAL;
995         pid_t rpgid;
996
997         if (!pid)
998                 pid = vx_map_pid(current->pid);
999         if (!pgid)
1000                 pgid = pid;
1001         if (pgid < 0)
1002                 return -EINVAL;
1003
1004         rpgid = vx_rmap_pid(pgid);
1005
1006         /* From this point forward we keep holding onto the tasklist lock
1007          * so that our parent does not change from under us. -DaveM
1008          */
1009         write_lock_irq(&tasklist_lock);
1010
1011         err = -ESRCH;
1012         p = find_task_by_pid(pid);
1013         if (!p)
1014                 goto out;
1015
1016         err = -EINVAL;
1017         if (!thread_group_leader(p))
1018                 goto out;
1019
1020         if (p->parent == current || p->real_parent == current) {
1021                 err = -EPERM;
1022                 if (p->signal->session != current->signal->session)
1023                         goto out;
1024                 err = -EACCES;
1025                 if (p->did_exec)
1026                         goto out;
1027         } else {
1028                 err = -ESRCH;
1029                 if (p != current)
1030                         goto out;
1031         }
1032
1033         err = -EPERM;
1034         if (p->signal->leader)
1035                 goto out;
1036
1037         if (pgid != pid) {
1038                 struct task_struct *p;
1039
1040                 do_each_task_pid(rpgid, PIDTYPE_PGID, p) {
1041                         if (p->signal->session == current->signal->session)
1042                                 goto ok_pgid;
1043                 } while_each_task_pid(rpgid, PIDTYPE_PGID, p);
1044                 goto out;
1045         }
1046
1047 ok_pgid:
1048         err = security_task_setpgid(p, rpgid);
1049         if (err)
1050                 goto out;
1051
1052         if (process_group(p) != rpgid) {
1053                 detach_pid(p, PIDTYPE_PGID);
1054                 p->signal->pgrp = rpgid;
1055                 attach_pid(p, PIDTYPE_PGID, rpgid);
1056         }
1057
1058         err = 0;
1059 out:
1060         /* All paths lead to here, thus we are safe. -DaveM */
1061         write_unlock_irq(&tasklist_lock);
1062         return err;
1063 }
1064
1065 asmlinkage long sys_getpgid(pid_t pid)
1066 {
1067         if (!pid) {
1068                 return vx_rmap_pid(process_group(current));
1069         } else {
1070                 int retval;
1071                 struct task_struct *p;
1072
1073                 read_lock(&tasklist_lock);
1074                 p = find_task_by_pid(pid);
1075
1076                 retval = -ESRCH;
1077                 if (p) {
1078                         retval = security_task_getpgid(p);
1079                         if (!retval)
1080                                 retval = vx_rmap_pid(process_group(p));
1081                 }
1082                 read_unlock(&tasklist_lock);
1083                 return retval;
1084         }
1085 }
1086
1087 #ifdef __ARCH_WANT_SYS_GETPGRP
1088
1089 asmlinkage long sys_getpgrp(void)
1090 {
1091         /* SMP - assuming writes are word atomic this is fine */
1092         return process_group(current);
1093 }
1094
1095 #endif
1096
1097 asmlinkage long sys_getsid(pid_t pid)
1098 {
1099         if (!pid) {
1100                 return current->signal->session;
1101         } else {
1102                 int retval;
1103                 struct task_struct *p;
1104
1105                 read_lock(&tasklist_lock);
1106                 p = find_task_by_pid(pid);
1107
1108                 retval = -ESRCH;
1109                 if(p) {
1110                         retval = security_task_getsid(p);
1111                         if (!retval)
1112                                 retval = p->signal->session;
1113                 }
1114                 read_unlock(&tasklist_lock);
1115                 return retval;
1116         }
1117 }
1118
1119 asmlinkage long sys_setsid(void)
1120 {
1121         struct pid *pid;
1122         int err = -EPERM;
1123
1124         if (!thread_group_leader(current))
1125                 return -EINVAL;
1126
1127         down(&tty_sem);
1128         write_lock_irq(&tasklist_lock);
1129
1130         pid = find_pid(PIDTYPE_PGID, current->pid);
1131         if (pid)
1132                 goto out;
1133
1134         current->signal->leader = 1;
1135         __set_special_pids(current->pid, current->pid);
1136         current->signal->tty = NULL;
1137         current->signal->tty_old_pgrp = 0;
1138         err = process_group(current);
1139 out:
1140         write_unlock_irq(&tasklist_lock);
1141         up(&tty_sem);
1142         return err;
1143 }
1144
1145 /*
1146  * Supplementary group IDs
1147  */
1148
1149 /* init to 2 - one for init_task, one to ensure it is never freed */
1150 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1151
1152 struct group_info *groups_alloc(int gidsetsize)
1153 {
1154         struct group_info *group_info;
1155         int nblocks;
1156         int i;
1157
1158         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1159         /* Make sure we always allocate at least one indirect block pointer */
1160         nblocks = nblocks ? : 1;
1161         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1162         if (!group_info)
1163                 return NULL;
1164         group_info->ngroups = gidsetsize;
1165         group_info->nblocks = nblocks;
1166         atomic_set(&group_info->usage, 1);
1167
1168         if (gidsetsize <= NGROUPS_SMALL) {
1169                 group_info->blocks[0] = group_info->small_block;
1170         } else {
1171                 for (i = 0; i < nblocks; i++) {
1172                         gid_t *b;
1173                         b = (void *)__get_free_page(GFP_USER);
1174                         if (!b)
1175                                 goto out_undo_partial_alloc;
1176                         group_info->blocks[i] = b;
1177                 }
1178         }
1179         return group_info;
1180
1181 out_undo_partial_alloc:
1182         while (--i >= 0) {
1183                 free_page((unsigned long)group_info->blocks[i]);
1184         }
1185         kfree(group_info);
1186         return NULL;
1187 }
1188
1189 EXPORT_SYMBOL(groups_alloc);
1190
1191 void groups_free(struct group_info *group_info)
1192 {
1193         if (group_info->blocks[0] != group_info->small_block) {
1194                 int i;
1195                 for (i = 0; i < group_info->nblocks; i++)
1196                         free_page((unsigned long)group_info->blocks[i]);
1197         }
1198         kfree(group_info);
1199 }
1200
1201 EXPORT_SYMBOL(groups_free);
1202
1203 /* export the group_info to a user-space array */
1204 static int groups_to_user(gid_t __user *grouplist,
1205     struct group_info *group_info)
1206 {
1207         int i;
1208         int count = group_info->ngroups;
1209
1210         for (i = 0; i < group_info->nblocks; i++) {
1211                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1212                 int off = i * NGROUPS_PER_BLOCK;
1213                 int len = cp_count * sizeof(*grouplist);
1214
1215                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1216                         return -EFAULT;
1217
1218                 count -= cp_count;
1219         }
1220         return 0;
1221 }
1222
1223 /* fill a group_info from a user-space array - it must be allocated already */
1224 static int groups_from_user(struct group_info *group_info,
1225     gid_t __user *grouplist)
1226  {
1227         int i;
1228         int count = group_info->ngroups;
1229
1230         for (i = 0; i < group_info->nblocks; i++) {
1231                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1232                 int off = i * NGROUPS_PER_BLOCK;
1233                 int len = cp_count * sizeof(*grouplist);
1234
1235                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1236                         return -EFAULT;
1237
1238                 count -= cp_count;
1239         }
1240         return 0;
1241 }
1242
1243 /* a simple shell-metzner sort */
1244 static void groups_sort(struct group_info *group_info)
1245 {
1246         int base, max, stride;
1247         int gidsetsize = group_info->ngroups;
1248
1249         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1250                 ; /* nothing */
1251         stride /= 3;
1252
1253         while (stride) {
1254                 max = gidsetsize - stride;
1255                 for (base = 0; base < max; base++) {
1256                         int left = base;
1257                         int right = left + stride;
1258                         gid_t tmp = GROUP_AT(group_info, right);
1259
1260                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1261                                 GROUP_AT(group_info, right) =
1262                                     GROUP_AT(group_info, left);
1263                                 right = left;
1264                                 left -= stride;
1265                         }
1266                         GROUP_AT(group_info, right) = tmp;
1267                 }
1268                 stride /= 3;
1269         }
1270 }
1271
1272 /* a simple bsearch */
1273 static int groups_search(struct group_info *group_info, gid_t grp)
1274 {
1275         int left, right;
1276
1277         if (!group_info)
1278                 return 0;
1279
1280         left = 0;
1281         right = group_info->ngroups;
1282         while (left < right) {
1283                 int mid = (left+right)/2;
1284                 int cmp = grp - GROUP_AT(group_info, mid);
1285                 if (cmp > 0)
1286                         left = mid + 1;
1287                 else if (cmp < 0)
1288                         right = mid;
1289                 else
1290                         return 1;
1291         }
1292         return 0;
1293 }
1294
1295 /* validate and set current->group_info */
1296 int set_current_groups(struct group_info *group_info)
1297 {
1298         int retval;
1299         struct group_info *old_info;
1300
1301         retval = security_task_setgroups(group_info);
1302         if (retval)
1303                 return retval;
1304
1305         groups_sort(group_info);
1306         get_group_info(group_info);
1307
1308         task_lock(current);
1309         old_info = current->group_info;
1310         current->group_info = group_info;
1311         task_unlock(current);
1312
1313         put_group_info(old_info);
1314
1315         return 0;
1316 }
1317
1318 EXPORT_SYMBOL(set_current_groups);
1319
1320 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1321 {
1322         int i = 0;
1323
1324         /*
1325          *      SMP: Nobody else can change our grouplist. Thus we are
1326          *      safe.
1327          */
1328
1329         if (gidsetsize < 0)
1330                 return -EINVAL;
1331
1332         /* no need to grab task_lock here; it cannot change */
1333         get_group_info(current->group_info);
1334         i = current->group_info->ngroups;
1335         if (gidsetsize) {
1336                 if (i > gidsetsize) {
1337                         i = -EINVAL;
1338                         goto out;
1339                 }
1340                 if (groups_to_user(grouplist, current->group_info)) {
1341                         i = -EFAULT;
1342                         goto out;
1343                 }
1344         }
1345 out:
1346         put_group_info(current->group_info);
1347         return i;
1348 }
1349
1350 /*
1351  *      SMP: Our groups are copy-on-write. We can set them safely
1352  *      without another task interfering.
1353  */
1354  
1355 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1356 {
1357         struct group_info *group_info;
1358         int retval;
1359
1360         if (!capable(CAP_SETGID))
1361                 return -EPERM;
1362         if ((unsigned)gidsetsize > NGROUPS_MAX)
1363                 return -EINVAL;
1364
1365         group_info = groups_alloc(gidsetsize);
1366         if (!group_info)
1367                 return -ENOMEM;
1368         retval = groups_from_user(group_info, grouplist);
1369         if (retval) {
1370                 put_group_info(group_info);
1371                 return retval;
1372         }
1373
1374         retval = set_current_groups(group_info);
1375         put_group_info(group_info);
1376
1377         return retval;
1378 }
1379
1380 /*
1381  * Check whether we're fsgid/egid or in the supplemental group..
1382  */
1383 int in_group_p(gid_t grp)
1384 {
1385         int retval = 1;
1386         if (grp != current->fsgid) {
1387                 get_group_info(current->group_info);
1388                 retval = groups_search(current->group_info, grp);
1389                 put_group_info(current->group_info);
1390         }
1391         return retval;
1392 }
1393
1394 EXPORT_SYMBOL(in_group_p);
1395
1396 int in_egroup_p(gid_t grp)
1397 {
1398         int retval = 1;
1399         if (grp != current->egid) {
1400                 get_group_info(current->group_info);
1401                 retval = groups_search(current->group_info, grp);
1402                 put_group_info(current->group_info);
1403         }
1404         return retval;
1405 }
1406
1407 EXPORT_SYMBOL(in_egroup_p);
1408
1409 DECLARE_RWSEM(uts_sem);
1410
1411 EXPORT_SYMBOL(uts_sem);
1412
1413 asmlinkage long sys_newuname(struct new_utsname __user * name)
1414 {
1415         int errno = 0;
1416
1417         down_read(&uts_sem);
1418         if (copy_to_user(name, vx_new_utsname(), sizeof *name))
1419                 errno = -EFAULT;
1420         up_read(&uts_sem);
1421         return errno;
1422 }
1423
1424 asmlinkage long sys_sethostname(char __user *name, int len)
1425 {
1426         int errno;
1427         char tmp[__NEW_UTS_LEN];
1428
1429         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1430                 return -EPERM;
1431         if (len < 0 || len > __NEW_UTS_LEN)
1432                 return -EINVAL;
1433         down_write(&uts_sem);
1434         errno = -EFAULT;
1435         if (!copy_from_user(tmp, name, len)) {
1436                 char *ptr = vx_new_uts(nodename);
1437
1438                 memcpy(ptr, tmp, len);
1439                 ptr[len] = 0;
1440                 errno = 0;
1441         }
1442         up_write(&uts_sem);
1443         return errno;
1444 }
1445
1446 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1447
1448 asmlinkage long sys_gethostname(char __user *name, int len)
1449 {
1450         int i, errno;
1451         char *ptr;
1452
1453         if (len < 0)
1454                 return -EINVAL;
1455         down_read(&uts_sem);
1456         ptr = vx_new_uts(nodename);
1457         i = 1 + strlen(ptr);
1458         if (i > len)
1459                 i = len;
1460         errno = 0;
1461         if (copy_to_user(name, ptr, i))
1462                 errno = -EFAULT;
1463         up_read(&uts_sem);
1464         return errno;
1465 }
1466
1467 #endif
1468
1469 /*
1470  * Only setdomainname; getdomainname can be implemented by calling
1471  * uname()
1472  */
1473 asmlinkage long sys_setdomainname(char __user *name, int len)
1474 {
1475         int errno;
1476         char tmp[__NEW_UTS_LEN];
1477
1478         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1479                 return -EPERM;
1480         if (len < 0 || len > __NEW_UTS_LEN)
1481                 return -EINVAL;
1482
1483         down_write(&uts_sem);
1484         errno = -EFAULT;
1485         if (!copy_from_user(tmp, name, len)) {
1486                 char *ptr = vx_new_uts(domainname);
1487
1488                 memcpy(ptr, tmp, len);
1489                 ptr[len] = 0;
1490                 errno = 0;
1491         }
1492         up_write(&uts_sem);
1493         return errno;
1494 }
1495
1496 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1497 {
1498         if (resource >= RLIM_NLIMITS)
1499                 return -EINVAL;
1500         else {
1501                 struct rlimit value;
1502                 task_lock(current->group_leader);
1503                 value = current->signal->rlim[resource];
1504                 task_unlock(current->group_leader);
1505                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1506         }
1507 }
1508
1509 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1510
1511 /*
1512  *      Back compatibility for getrlimit. Needed for some apps.
1513  */
1514  
1515 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1516 {
1517         struct rlimit x;
1518         if (resource >= RLIM_NLIMITS)
1519                 return -EINVAL;
1520
1521         task_lock(current->group_leader);
1522         x = current->signal->rlim[resource];
1523         task_unlock(current->group_leader);
1524         if(x.rlim_cur > 0x7FFFFFFF)
1525                 x.rlim_cur = 0x7FFFFFFF;
1526         if(x.rlim_max > 0x7FFFFFFF)
1527                 x.rlim_max = 0x7FFFFFFF;
1528         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1529 }
1530
1531 #endif
1532
1533 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1534 {
1535         struct rlimit new_rlim, *old_rlim;
1536         int retval;
1537
1538         if (resource >= RLIM_NLIMITS)
1539                 return -EINVAL;
1540         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1541                 return -EFAULT;
1542        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1543                return -EINVAL;
1544         old_rlim = current->signal->rlim + resource;
1545         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1546             !capable(CAP_SYS_RESOURCE) && !vx_ccaps(VXC_SET_RLIMIT))
1547                 return -EPERM;
1548         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1549                         return -EPERM;
1550
1551         retval = security_task_setrlimit(resource, &new_rlim);
1552         if (retval)
1553                 return retval;
1554
1555         task_lock(current->group_leader);
1556         *old_rlim = new_rlim;
1557         task_unlock(current->group_leader);
1558         return 0;
1559 }
1560
1561 /*
1562  * It would make sense to put struct rusage in the task_struct,
1563  * except that would make the task_struct be *really big*.  After
1564  * task_struct gets moved into malloc'ed memory, it would
1565  * make sense to do this.  It will make moving the rest of the information
1566  * a lot simpler!  (Which we're not doing right now because we're not
1567  * measuring them yet).
1568  *
1569  * This expects to be called with tasklist_lock read-locked or better,
1570  * and the siglock not locked.  It may momentarily take the siglock.
1571  *
1572  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1573  * races with threads incrementing their own counters.  But since word
1574  * reads are atomic, we either get new values or old values and we don't
1575  * care which for the sums.  We always take the siglock to protect reading
1576  * the c* fields from p->signal from races with exit.c updating those
1577  * fields when reaping, so a sample either gets all the additions of a
1578  * given child after it's reaped, or none so this sample is before reaping.
1579  */
1580
1581 void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1582 {
1583         struct task_struct *t;
1584         unsigned long flags;
1585         unsigned long utime, stime;
1586
1587         memset((char *) r, 0, sizeof *r);
1588
1589         if (unlikely(!p->signal))
1590                 return;
1591
1592         switch (who) {
1593                 case RUSAGE_CHILDREN:
1594                         spin_lock_irqsave(&p->sighand->siglock, flags);
1595                         utime = p->signal->cutime;
1596                         stime = p->signal->cstime;
1597                         r->ru_nvcsw = p->signal->cnvcsw;
1598                         r->ru_nivcsw = p->signal->cnivcsw;
1599                         r->ru_minflt = p->signal->cmin_flt;
1600                         r->ru_majflt = p->signal->cmaj_flt;
1601                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1602                         jiffies_to_timeval(utime, &r->ru_utime);
1603                         jiffies_to_timeval(stime, &r->ru_stime);
1604                         break;
1605                 case RUSAGE_SELF:
1606                         spin_lock_irqsave(&p->sighand->siglock, flags);
1607                         utime = stime = 0;
1608                         goto sum_group;
1609                 case RUSAGE_BOTH:
1610                         spin_lock_irqsave(&p->sighand->siglock, flags);
1611                         utime = p->signal->cutime;
1612                         stime = p->signal->cstime;
1613                         r->ru_nvcsw = p->signal->cnvcsw;
1614                         r->ru_nivcsw = p->signal->cnivcsw;
1615                         r->ru_minflt = p->signal->cmin_flt;
1616                         r->ru_majflt = p->signal->cmaj_flt;
1617                 sum_group:
1618                         utime += p->signal->utime;
1619                         stime += p->signal->stime;
1620                         r->ru_nvcsw += p->signal->nvcsw;
1621                         r->ru_nivcsw += p->signal->nivcsw;
1622                         r->ru_minflt += p->signal->min_flt;
1623                         r->ru_majflt += p->signal->maj_flt;
1624                         t = p;
1625                         do {
1626                                 utime += t->utime;
1627                                 stime += t->stime;
1628                                 r->ru_nvcsw += t->nvcsw;
1629                                 r->ru_nivcsw += t->nivcsw;
1630                                 r->ru_minflt += t->min_flt;
1631                                 r->ru_majflt += t->maj_flt;
1632                                 t = next_thread(t);
1633                         } while (t != p);
1634                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1635                         jiffies_to_timeval(utime, &r->ru_utime);
1636                         jiffies_to_timeval(stime, &r->ru_stime);
1637                         break;
1638                 default:
1639                         BUG();
1640         }
1641 }
1642
1643 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1644 {
1645         struct rusage r;
1646         read_lock(&tasklist_lock);
1647         k_getrusage(p, who, &r);
1648         read_unlock(&tasklist_lock);
1649         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1650 }
1651
1652 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1653 {
1654         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1655                 return -EINVAL;
1656         return getrusage(current, who, ru);
1657 }
1658
1659 asmlinkage long sys_umask(int mask)
1660 {
1661         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1662         return mask;
1663 }
1664     
1665 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1666                           unsigned long arg4, unsigned long arg5)
1667 {
1668         long error;
1669         int sig;
1670
1671         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1672         if (error)
1673                 return error;
1674
1675         switch (option) {
1676                 case PR_SET_PDEATHSIG:
1677                         sig = arg2;
1678                         if (sig < 0 || sig > _NSIG) {
1679                                 error = -EINVAL;
1680                                 break;
1681                         }
1682                         current->pdeath_signal = sig;
1683                         break;
1684                 case PR_GET_PDEATHSIG:
1685                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1686                         break;
1687                 case PR_GET_DUMPABLE:
1688                         if (current->mm->dumpable)
1689                                 error = 1;
1690                         break;
1691                 case PR_SET_DUMPABLE:
1692                         if (arg2 < 0 && arg2 > 2) {
1693                                 error = -EINVAL;
1694                                 break;
1695                         }
1696                         current->mm->dumpable = arg2;
1697                         break;
1698
1699                 case PR_SET_UNALIGN:
1700                         error = SET_UNALIGN_CTL(current, arg2);
1701                         break;
1702                 case PR_GET_UNALIGN:
1703                         error = GET_UNALIGN_CTL(current, arg2);
1704                         break;
1705                 case PR_SET_FPEMU:
1706                         error = SET_FPEMU_CTL(current, arg2);
1707                         break;
1708                 case PR_GET_FPEMU:
1709                         error = GET_FPEMU_CTL(current, arg2);
1710                         break;
1711                 case PR_SET_FPEXC:
1712                         error = SET_FPEXC_CTL(current, arg2);
1713                         break;
1714                 case PR_GET_FPEXC:
1715                         error = GET_FPEXC_CTL(current, arg2);
1716                         break;
1717                 case PR_GET_TIMING:
1718                         error = PR_TIMING_STATISTICAL;
1719                         break;
1720                 case PR_SET_TIMING:
1721                         if (arg2 == PR_TIMING_STATISTICAL)
1722                                 error = 0;
1723                         else
1724                                 error = -EINVAL;
1725                         break;
1726
1727                 case PR_GET_KEEPCAPS:
1728                         if (current->keep_capabilities)
1729                                 error = 1;
1730                         break;
1731                 case PR_SET_KEEPCAPS:
1732                         if (arg2 != 0 && arg2 != 1) {
1733                                 error = -EINVAL;
1734                                 break;
1735                         }
1736                         current->keep_capabilities = arg2;
1737                         break;
1738                 case PR_SET_NAME: {
1739                         struct task_struct *me = current;
1740                         unsigned char ncomm[sizeof(me->comm)];
1741
1742                         ncomm[sizeof(me->comm)-1] = 0;
1743                         if (strncpy_from_user(ncomm, (char __user *)arg2,
1744                                                 sizeof(me->comm)-1) < 0)
1745                                 return -EFAULT;
1746                         set_task_comm(me, ncomm);
1747                         return 0;
1748                 }
1749                 default:
1750                         error = -EINVAL;
1751                         break;
1752         }
1753         return error;
1754 }