vserver 1.9.3
[linux-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 /*
31  * This is needed for the following functions:
32  *  - try_to_release_page
33  *  - block_invalidatepage
34  *  - generic_osync_inode
35  *
36  * FIXME: remove all knowledge of the buffer layer from the core VM
37  */
38 #include <linux/buffer_head.h> /* for generic_osync_inode */
39
40 #include <asm/uaccess.h>
41 #include <asm/mman.h>
42
43 /*
44  * Shared mappings implemented 30.11.1994. It's not fully working yet,
45  * though.
46  *
47  * Shared mappings now work. 15.8.1995  Bruno.
48  *
49  * finished 'unifying' the page and buffer cache and SMP-threaded the
50  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
51  *
52  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
53  */
54
55 /*
56  * Lock ordering:
57  *
58  *  ->i_mmap_lock               (vmtruncate)
59  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
60  *      ->swap_list_lock
61  *        ->swap_device_lock    (exclusive_swap_page, others)
62  *          ->mapping->tree_lock
63  *
64  *  ->i_sem
65  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
66  *
67  *  ->mmap_sem
68  *    ->i_mmap_lock
69  *      ->page_table_lock       (various places, mainly in mmap.c)
70  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
71  *
72  *  ->mmap_sem
73  *    ->lock_page               (access_process_vm)
74  *
75  *  ->mmap_sem
76  *    ->i_sem                   (msync)
77  *
78  *  ->i_sem
79  *    ->i_alloc_sem             (various)
80  *
81  *  ->inode_lock
82  *    ->sb_lock                 (fs/fs-writeback.c)
83  *    ->mapping->tree_lock      (__sync_single_inode)
84  *
85  *  ->i_mmap_lock
86  *    ->anon_vma.lock           (vma_adjust)
87  *
88  *  ->anon_vma.lock
89  *    ->page_table_lock         (anon_vma_prepare and various)
90  *
91  *  ->page_table_lock
92  *    ->swap_device_lock        (try_to_unmap_one)
93  *    ->private_lock            (try_to_unmap_one)
94  *    ->tree_lock               (try_to_unmap_one)
95  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
96  *    ->private_lock            (page_remove_rmap->set_page_dirty)
97  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
98  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
99  *    ->inode_lock              (zap_pte_range->set_page_dirty)
100  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
101  *
102  *  ->task->proc_lock
103  *    ->dcache_lock             (proc_pid_lookup)
104  */
105
106 /*
107  * Remove a page from the page cache and free it. Caller has to make
108  * sure the page is locked and that nobody else uses it - or that usage
109  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
110  */
111 void __remove_from_page_cache(struct page *page)
112 {
113         struct address_space *mapping = page->mapping;
114
115         radix_tree_delete(&mapping->page_tree, page->index);
116         page->mapping = NULL;
117         mapping->nrpages--;
118         pagecache_acct(-1);
119 }
120
121 void remove_from_page_cache(struct page *page)
122 {
123         struct address_space *mapping = page->mapping;
124
125         if (unlikely(!PageLocked(page)))
126                 PAGE_BUG(page);
127
128         spin_lock_irq(&mapping->tree_lock);
129         __remove_from_page_cache(page);
130         spin_unlock_irq(&mapping->tree_lock);
131 }
132
133 static inline int sync_page(struct page *page)
134 {
135         struct address_space *mapping;
136
137         /*
138          * FIXME, fercrissake.  What is this barrier here for?
139          */
140         smp_mb();
141         mapping = page_mapping(page);
142         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
143                 return mapping->a_ops->sync_page(page);
144         return 0;
145 }
146
147 /**
148  * filemap_fdatawrite_range - start writeback against all of a mapping's
149  * dirty pages that lie within the byte offsets <start, end>
150  * @mapping: address space structure to write
151  * @start: offset in bytes where the range starts
152  * @end : offset in bytes where the range ends
153  *
154  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
155  * opposed to a regular memory * cleansing writeback.  The difference between
156  * these two operations is that if a dirty page/buffer is encountered, it must
157  * be waited upon, and not just skipped over.
158  */
159 static int __filemap_fdatawrite_range(struct address_space *mapping,
160         loff_t start, loff_t end, int sync_mode)
161 {
162         int ret;
163         struct writeback_control wbc = {
164                 .sync_mode = sync_mode,
165                 .nr_to_write = mapping->nrpages * 2,
166                 .start = start,
167                 .end = end,
168         };
169
170         if (mapping->backing_dev_info->memory_backed)
171                 return 0;
172
173         ret = do_writepages(mapping, &wbc);
174         return ret;
175 }
176
177 static inline int __filemap_fdatawrite(struct address_space *mapping,
178         int sync_mode)
179 {
180         return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
181 }
182
183 int filemap_fdatawrite(struct address_space *mapping)
184 {
185         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
186 }
187 EXPORT_SYMBOL(filemap_fdatawrite);
188
189 int filemap_fdatawrite_range(struct address_space *mapping,
190         loff_t start, loff_t end)
191 {
192         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
193 }
194 EXPORT_SYMBOL(filemap_fdatawrite_range);
195
196 /*
197  * This is a mostly non-blocking flush.  Not suitable for data-integrity
198  * purposes - I/O may not be started against all dirty pages.
199  */
200 int filemap_flush(struct address_space *mapping)
201 {
202         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
203 }
204 EXPORT_SYMBOL(filemap_flush);
205
206 /*
207  * Wait for writeback to complete against pages indexed by start->end
208  * inclusive
209  */
210 static int wait_on_page_writeback_range(struct address_space *mapping,
211                                 pgoff_t start, pgoff_t end)
212 {
213         struct pagevec pvec;
214         int nr_pages;
215         int ret = 0;
216         pgoff_t index;
217
218         if (end < start)
219                 return 0;
220
221         pagevec_init(&pvec, 0);
222         index = start;
223         while ((index <= end) &&
224                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
225                         PAGECACHE_TAG_WRITEBACK,
226                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
227                 unsigned i;
228
229                 for (i = 0; i < nr_pages; i++) {
230                         struct page *page = pvec.pages[i];
231
232                         /* until radix tree lookup accepts end_index */
233                         if (page->index > end)
234                                 continue;
235
236                         wait_on_page_writeback(page);
237                         if (PageError(page))
238                                 ret = -EIO;
239                 }
240                 pagevec_release(&pvec);
241                 cond_resched();
242         }
243
244         /* Check for outstanding write errors */
245         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
246                 ret = -ENOSPC;
247         if (test_and_clear_bit(AS_EIO, &mapping->flags))
248                 ret = -EIO;
249
250         return ret;
251 }
252
253 /*
254  * Write and wait upon all the pages in the passed range.  This is a "data
255  * integrity" operation.  It waits upon in-flight writeout before starting and
256  * waiting upon new writeout.  If there was an IO error, return it.
257  *
258  * We need to re-take i_sem during the generic_osync_inode list walk because
259  * it is otherwise livelockable.
260  */
261 int sync_page_range(struct inode *inode, struct address_space *mapping,
262                         loff_t pos, size_t count)
263 {
264         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
265         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
266         int ret;
267
268         if (mapping->backing_dev_info->memory_backed || !count)
269                 return 0;
270         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
271         if (ret == 0) {
272                 down(&inode->i_sem);
273                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
274                 up(&inode->i_sem);
275         }
276         if (ret == 0)
277                 ret = wait_on_page_writeback_range(mapping, start, end);
278         return ret;
279 }
280 EXPORT_SYMBOL(sync_page_range);
281
282 /**
283  * filemap_fdatawait - walk the list of under-writeback pages of the given
284  *     address space and wait for all of them.
285  *
286  * @mapping: address space structure to wait for
287  */
288 int filemap_fdatawait(struct address_space *mapping)
289 {
290         loff_t i_size = i_size_read(mapping->host);
291
292         if (i_size == 0)
293                 return 0;
294
295         return wait_on_page_writeback_range(mapping, 0,
296                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
297 }
298 EXPORT_SYMBOL(filemap_fdatawait);
299
300 int filemap_write_and_wait(struct address_space *mapping)
301 {
302         int retval = 0;
303
304         if (mapping->nrpages) {
305                 retval = filemap_fdatawrite(mapping);
306                 if (retval == 0)
307                         retval = filemap_fdatawait(mapping);
308         }
309         return retval;
310 }
311
312 /*
313  * This function is used to add newly allocated pagecache pages:
314  * the page is new, so we can just run SetPageLocked() against it.
315  * The other page state flags were set by rmqueue().
316  *
317  * This function does not add the page to the LRU.  The caller must do that.
318  */
319 int add_to_page_cache(struct page *page, struct address_space *mapping,
320                 pgoff_t offset, int gfp_mask)
321 {
322         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
323
324         if (error == 0) {
325                 spin_lock_irq(&mapping->tree_lock);
326                 error = radix_tree_insert(&mapping->page_tree, offset, page);
327                 if (!error) {
328                         page_cache_get(page);
329                         SetPageLocked(page);
330                         page->mapping = mapping;
331                         page->index = offset;
332                         mapping->nrpages++;
333                         pagecache_acct(1);
334                 }
335                 spin_unlock_irq(&mapping->tree_lock);
336                 radix_tree_preload_end();
337         }
338         return error;
339 }
340
341 EXPORT_SYMBOL(add_to_page_cache);
342
343 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
344                                 pgoff_t offset, int gfp_mask)
345 {
346         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
347         if (ret == 0)
348                 lru_cache_add(page);
349         return ret;
350 }
351
352 /*
353  * In order to wait for pages to become available there must be
354  * waitqueues associated with pages. By using a hash table of
355  * waitqueues where the bucket discipline is to maintain all
356  * waiters on the same queue and wake all when any of the pages
357  * become available, and for the woken contexts to check to be
358  * sure the appropriate page became available, this saves space
359  * at a cost of "thundering herd" phenomena during rare hash
360  * collisions.
361  */
362 struct page_wait_queue {
363         struct page *page;
364         int bit;
365         wait_queue_t wait;
366 };
367
368 static int page_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
369 {
370         struct page *page = key;
371         struct page_wait_queue *wq;
372
373         wq = container_of(wait, struct page_wait_queue, wait);
374         if (wq->page != page || test_bit(wq->bit, &page->flags))
375                 return 0;
376         else
377                 return autoremove_wake_function(wait, mode, sync, NULL);
378 }
379
380 #define __DEFINE_PAGE_WAIT(name, p, b, f)                               \
381         struct page_wait_queue name = {                                 \
382                 .page   = p,                                            \
383                 .bit    = b,                                            \
384                 .wait   = {                                             \
385                         .task   = current,                              \
386                         .func   = page_wake_function,                   \
387                         .flags  = f,                                    \
388                         .task_list = LIST_HEAD_INIT(name.wait.task_list),\
389                 },                                                      \
390         }
391
392 #define DEFINE_PAGE_WAIT(name, p, b)    __DEFINE_PAGE_WAIT(name, p, b, 0)
393 #define DEFINE_PAGE_WAIT_EXCLUSIVE(name, p, b)                          \
394                 __DEFINE_PAGE_WAIT(name, p, b, WQ_FLAG_EXCLUSIVE)
395
396 static wait_queue_head_t *page_waitqueue(struct page *page)
397 {
398         const struct zone *zone = page_zone(page);
399
400         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
401 }
402
403 static void wake_up_page(struct page *page)
404 {
405         const unsigned int mode = TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE;
406         wait_queue_head_t *waitqueue = page_waitqueue(page);
407
408         if (waitqueue_active(waitqueue))
409                 __wake_up(waitqueue, mode, 1, page);
410 }
411
412 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
413 {
414         wait_queue_head_t *waitqueue = page_waitqueue(page);
415         DEFINE_PAGE_WAIT(wait, page, bit_nr);
416
417         do {
418                 prepare_to_wait(waitqueue, &wait.wait, TASK_UNINTERRUPTIBLE);
419                 if (test_bit(bit_nr, &page->flags)) {
420                         sync_page(page);
421                         io_schedule();
422                 }
423         } while (test_bit(bit_nr, &page->flags));
424         finish_wait(waitqueue, &wait.wait);
425 }
426
427 EXPORT_SYMBOL(wait_on_page_bit);
428
429 /**
430  * unlock_page() - unlock a locked page
431  *
432  * @page: the page
433  *
434  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
435  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
436  * mechananism between PageLocked pages and PageWriteback pages is shared.
437  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
438  *
439  * The first mb is necessary to safely close the critical section opened by the
440  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
441  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
442  * parallel wait_on_page_locked()).
443  */
444 void fastcall unlock_page(struct page *page)
445 {
446         smp_mb__before_clear_bit();
447         if (!TestClearPageLocked(page))
448                 BUG();
449         smp_mb__after_clear_bit(); 
450         wake_up_page(page);
451 }
452
453 EXPORT_SYMBOL(unlock_page);
454 EXPORT_SYMBOL(lock_page);
455
456 /*
457  * End writeback against a page.
458  */
459 void end_page_writeback(struct page *page)
460 {
461         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
462                 if (!test_clear_page_writeback(page))
463                         BUG();
464                 smp_mb__after_clear_bit();
465         }
466         wake_up_page(page);
467 }
468
469 EXPORT_SYMBOL(end_page_writeback);
470
471 /*
472  * Get a lock on the page, assuming we need to sleep to get it.
473  *
474  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
475  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
476  * chances are that on the second loop, the block layer's plug list is empty,
477  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
478  */
479 void fastcall __lock_page(struct page *page)
480 {
481         wait_queue_head_t *wqh = page_waitqueue(page);
482         DEFINE_PAGE_WAIT_EXCLUSIVE(wait, page, PG_locked);
483
484         while (TestSetPageLocked(page)) {
485                 prepare_to_wait_exclusive(wqh, &wait.wait, TASK_UNINTERRUPTIBLE);
486                 if (PageLocked(page)) {
487                         sync_page(page);
488                         io_schedule();
489                 }
490         }
491         finish_wait(wqh, &wait.wait);
492 }
493
494 EXPORT_SYMBOL(__lock_page);
495
496 /*
497  * a rather lightweight function, finding and getting a reference to a
498  * hashed page atomically.
499  */
500 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
501 {
502         struct page *page;
503
504         spin_lock_irq(&mapping->tree_lock);
505         page = radix_tree_lookup(&mapping->page_tree, offset);
506         if (page)
507                 page_cache_get(page);
508         spin_unlock_irq(&mapping->tree_lock);
509         return page;
510 }
511
512 EXPORT_SYMBOL(find_get_page);
513
514 /*
515  * Same as above, but trylock it instead of incrementing the count.
516  */
517 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
518 {
519         struct page *page;
520
521         spin_lock_irq(&mapping->tree_lock);
522         page = radix_tree_lookup(&mapping->page_tree, offset);
523         if (page && TestSetPageLocked(page))
524                 page = NULL;
525         spin_unlock_irq(&mapping->tree_lock);
526         return page;
527 }
528
529 EXPORT_SYMBOL(find_trylock_page);
530
531 /**
532  * find_lock_page - locate, pin and lock a pagecache page
533  *
534  * @mapping - the address_space to search
535  * @offset - the page index
536  *
537  * Locates the desired pagecache page, locks it, increments its reference
538  * count and returns its address.
539  *
540  * Returns zero if the page was not present. find_lock_page() may sleep.
541  */
542 struct page *find_lock_page(struct address_space *mapping,
543                                 unsigned long offset)
544 {
545         struct page *page;
546
547         spin_lock_irq(&mapping->tree_lock);
548 repeat:
549         page = radix_tree_lookup(&mapping->page_tree, offset);
550         if (page) {
551                 page_cache_get(page);
552                 if (TestSetPageLocked(page)) {
553                         spin_unlock_irq(&mapping->tree_lock);
554                         lock_page(page);
555                         spin_lock_irq(&mapping->tree_lock);
556
557                         /* Has the page been truncated while we slept? */
558                         if (page->mapping != mapping || page->index != offset) {
559                                 unlock_page(page);
560                                 page_cache_release(page);
561                                 goto repeat;
562                         }
563                 }
564         }
565         spin_unlock_irq(&mapping->tree_lock);
566         return page;
567 }
568
569 EXPORT_SYMBOL(find_lock_page);
570
571 /**
572  * find_or_create_page - locate or add a pagecache page
573  *
574  * @mapping - the page's address_space
575  * @index - the page's index into the mapping
576  * @gfp_mask - page allocation mode
577  *
578  * Locates a page in the pagecache.  If the page is not present, a new page
579  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
580  * LRU list.  The returned page is locked and has its reference count
581  * incremented.
582  *
583  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
584  * allocation!
585  *
586  * find_or_create_page() returns the desired page's address, or zero on
587  * memory exhaustion.
588  */
589 struct page *find_or_create_page(struct address_space *mapping,
590                 unsigned long index, unsigned int gfp_mask)
591 {
592         struct page *page, *cached_page = NULL;
593         int err;
594 repeat:
595         page = find_lock_page(mapping, index);
596         if (!page) {
597                 if (!cached_page) {
598                         cached_page = alloc_page(gfp_mask);
599                         if (!cached_page)
600                                 return NULL;
601                 }
602                 err = add_to_page_cache_lru(cached_page, mapping,
603                                         index, gfp_mask);
604                 if (!err) {
605                         page = cached_page;
606                         cached_page = NULL;
607                 } else if (err == -EEXIST)
608                         goto repeat;
609         }
610         if (cached_page)
611                 page_cache_release(cached_page);
612         return page;
613 }
614
615 EXPORT_SYMBOL(find_or_create_page);
616
617 /**
618  * find_get_pages - gang pagecache lookup
619  * @mapping:    The address_space to search
620  * @start:      The starting page index
621  * @nr_pages:   The maximum number of pages
622  * @pages:      Where the resulting pages are placed
623  *
624  * find_get_pages() will search for and return a group of up to
625  * @nr_pages pages in the mapping.  The pages are placed at @pages.
626  * find_get_pages() takes a reference against the returned pages.
627  *
628  * The search returns a group of mapping-contiguous pages with ascending
629  * indexes.  There may be holes in the indices due to not-present pages.
630  *
631  * find_get_pages() returns the number of pages which were found.
632  */
633 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
634                             unsigned int nr_pages, struct page **pages)
635 {
636         unsigned int i;
637         unsigned int ret;
638
639         spin_lock_irq(&mapping->tree_lock);
640         ret = radix_tree_gang_lookup(&mapping->page_tree,
641                                 (void **)pages, start, nr_pages);
642         for (i = 0; i < ret; i++)
643                 page_cache_get(pages[i]);
644         spin_unlock_irq(&mapping->tree_lock);
645         return ret;
646 }
647
648 /*
649  * Like find_get_pages, except we only return pages which are tagged with
650  * `tag'.   We update *index to index the next page for the traversal.
651  */
652 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
653                         int tag, unsigned int nr_pages, struct page **pages)
654 {
655         unsigned int i;
656         unsigned int ret;
657
658         spin_lock_irq(&mapping->tree_lock);
659         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
660                                 (void **)pages, *index, nr_pages, tag);
661         for (i = 0; i < ret; i++)
662                 page_cache_get(pages[i]);
663         if (ret)
664                 *index = pages[ret - 1]->index + 1;
665         spin_unlock_irq(&mapping->tree_lock);
666         return ret;
667 }
668
669 /*
670  * Same as grab_cache_page, but do not wait if the page is unavailable.
671  * This is intended for speculative data generators, where the data can
672  * be regenerated if the page couldn't be grabbed.  This routine should
673  * be safe to call while holding the lock for another page.
674  *
675  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
676  * and deadlock against the caller's locked page.
677  */
678 struct page *
679 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
680 {
681         struct page *page = find_get_page(mapping, index);
682         int gfp_mask;
683
684         if (page) {
685                 if (!TestSetPageLocked(page))
686                         return page;
687                 page_cache_release(page);
688                 return NULL;
689         }
690         gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
691         page = alloc_pages(gfp_mask, 0);
692         if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
693                 page_cache_release(page);
694                 page = NULL;
695         }
696         return page;
697 }
698
699 EXPORT_SYMBOL(grab_cache_page_nowait);
700
701 /*
702  * This is a generic file read routine, and uses the
703  * mapping->a_ops->readpage() function for the actual low-level
704  * stuff.
705  *
706  * This is really ugly. But the goto's actually try to clarify some
707  * of the logic when it comes to error handling etc.
708  *
709  * Note the struct file* is only passed for the use of readpage.  It may be
710  * NULL.
711  */
712 void do_generic_mapping_read(struct address_space *mapping,
713                              struct file_ra_state *_ra,
714                              struct file *filp,
715                              loff_t *ppos,
716                              read_descriptor_t *desc,
717                              read_actor_t actor)
718 {
719         struct inode *inode = mapping->host;
720         unsigned long index, end_index, offset;
721         loff_t isize;
722         struct page *cached_page;
723         int error;
724         struct file_ra_state ra = *_ra;
725
726         cached_page = NULL;
727         index = *ppos >> PAGE_CACHE_SHIFT;
728         offset = *ppos & ~PAGE_CACHE_MASK;
729
730         isize = i_size_read(inode);
731         if (!isize)
732                 goto out;
733
734         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
735         for (;;) {
736                 struct page *page;
737                 unsigned long nr, ret;
738
739                 /* nr is the maximum number of bytes to copy from this page */
740                 nr = PAGE_CACHE_SIZE;
741                 if (index >= end_index) {
742                         if (index > end_index)
743                                 goto out;
744                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
745                         if (nr <= offset) {
746                                 goto out;
747                         }
748                 }
749                 nr = nr - offset;
750
751                 cond_resched();
752                 page_cache_readahead(mapping, &ra, filp, index);
753
754 find_page:
755                 page = find_get_page(mapping, index);
756                 if (unlikely(page == NULL)) {
757                         handle_ra_miss(mapping, &ra, index);
758                         goto no_cached_page;
759                 }
760                 if (!PageUptodate(page))
761                         goto page_not_up_to_date;
762 page_ok:
763
764                 /* If users can be writing to this page using arbitrary
765                  * virtual addresses, take care about potential aliasing
766                  * before reading the page on the kernel side.
767                  */
768                 if (mapping_writably_mapped(mapping))
769                         flush_dcache_page(page);
770
771                 /*
772                  * Mark the page accessed if we read the beginning.
773                  */
774                 if (!offset)
775                         mark_page_accessed(page);
776
777                 /*
778                  * Ok, we have the page, and it's up-to-date, so
779                  * now we can copy it to user space...
780                  *
781                  * The actor routine returns how many bytes were actually used..
782                  * NOTE! This may not be the same as how much of a user buffer
783                  * we filled up (we may be padding etc), so we can only update
784                  * "pos" here (the actor routine has to update the user buffer
785                  * pointers and the remaining count).
786                  */
787                 ret = actor(desc, page, offset, nr);
788                 offset += ret;
789                 index += offset >> PAGE_CACHE_SHIFT;
790                 offset &= ~PAGE_CACHE_MASK;
791
792                 page_cache_release(page);
793                 if (ret == nr && desc->count)
794                         continue;
795                 goto out;
796
797 page_not_up_to_date:
798                 /* Get exclusive access to the page ... */
799                 lock_page(page);
800
801                 /* Did it get unhashed before we got the lock? */
802                 if (!page->mapping) {
803                         unlock_page(page);
804                         page_cache_release(page);
805                         continue;
806                 }
807
808                 /* Did somebody else fill it already? */
809                 if (PageUptodate(page)) {
810                         unlock_page(page);
811                         goto page_ok;
812                 }
813
814 readpage:
815                 /* Start the actual read. The read will unlock the page. */
816                 error = mapping->a_ops->readpage(filp, page);
817
818                 if (unlikely(error))
819                         goto readpage_error;
820
821                 if (!PageUptodate(page)) {
822                         wait_on_page_locked(page);
823                         if (!PageUptodate(page)) {
824                                 error = -EIO;
825                                 goto readpage_error;
826                         }
827                 }
828
829                 /*
830                  * i_size must be checked after we have done ->readpage.
831                  *
832                  * Checking i_size after the readpage allows us to calculate
833                  * the correct value for "nr", which means the zero-filled
834                  * part of the page is not copied back to userspace (unless
835                  * another truncate extends the file - this is desired though).
836                  */
837                 isize = i_size_read(inode);
838                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
839                 if (unlikely(!isize || index > end_index)) {
840                         page_cache_release(page);
841                         goto out;
842                 }
843
844                 /* nr is the maximum number of bytes to copy from this page */
845                 nr = PAGE_CACHE_SIZE;
846                 if (index == end_index) {
847                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
848                         if (nr <= offset) {
849                                 page_cache_release(page);
850                                 goto out;
851                         }
852                 }
853                 nr = nr - offset;
854                 goto page_ok;
855
856 readpage_error:
857                 /* UHHUH! A synchronous read error occurred. Report it */
858                 desc->error = error;
859                 page_cache_release(page);
860                 goto out;
861
862 no_cached_page:
863                 /*
864                  * Ok, it wasn't cached, so we need to create a new
865                  * page..
866                  */
867                 if (!cached_page) {
868                         cached_page = page_cache_alloc_cold(mapping);
869                         if (!cached_page) {
870                                 desc->error = -ENOMEM;
871                                 goto out;
872                         }
873                 }
874                 error = add_to_page_cache_lru(cached_page, mapping,
875                                                 index, GFP_KERNEL);
876                 if (error) {
877                         if (error == -EEXIST)
878                                 goto find_page;
879                         desc->error = error;
880                         goto out;
881                 }
882                 page = cached_page;
883                 cached_page = NULL;
884                 goto readpage;
885         }
886
887 out:
888         *_ra = ra;
889
890         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
891         if (cached_page)
892                 page_cache_release(cached_page);
893         if (filp)
894                 file_accessed(filp);
895 }
896
897 EXPORT_SYMBOL(do_generic_mapping_read);
898
899 int file_read_actor(read_descriptor_t *desc, struct page *page,
900                         unsigned long offset, unsigned long size)
901 {
902         char *kaddr;
903         unsigned long left, count = desc->count;
904
905         if (size > count)
906                 size = count;
907
908         /*
909          * Faults on the destination of a read are common, so do it before
910          * taking the kmap.
911          */
912         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
913                 kaddr = kmap_atomic(page, KM_USER0);
914                 left = __copy_to_user_inatomic(desc->arg.buf,
915                                                 kaddr + offset, size);
916                 kunmap_atomic(kaddr, KM_USER0);
917                 if (left == 0)
918                         goto success;
919         }
920
921         /* Do it the slow way */
922         kaddr = kmap(page);
923         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
924         kunmap(page);
925
926         if (left) {
927                 size -= left;
928                 desc->error = -EFAULT;
929         }
930 success:
931         desc->count = count - size;
932         desc->written += size;
933         desc->arg.buf += size;
934         return size;
935 }
936
937 /*
938  * This is the "read()" routine for all filesystems
939  * that can use the page cache directly.
940  */
941 ssize_t
942 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
943                 unsigned long nr_segs, loff_t *ppos)
944 {
945         struct file *filp = iocb->ki_filp;
946         ssize_t retval;
947         unsigned long seg;
948         size_t count;
949
950         count = 0;
951         for (seg = 0; seg < nr_segs; seg++) {
952                 const struct iovec *iv = &iov[seg];
953
954                 /*
955                  * If any segment has a negative length, or the cumulative
956                  * length ever wraps negative then return -EINVAL.
957                  */
958                 count += iv->iov_len;
959                 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
960                         return -EINVAL;
961                 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
962                         continue;
963                 if (seg == 0)
964                         return -EFAULT;
965                 nr_segs = seg;
966                 count -= iv->iov_len;   /* This segment is no good */
967                 break;
968         }
969
970         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
971         if (filp->f_flags & O_DIRECT) {
972                 loff_t pos = *ppos, size;
973                 struct address_space *mapping;
974                 struct inode *inode;
975
976                 mapping = filp->f_mapping;
977                 inode = mapping->host;
978                 retval = 0;
979                 if (!count)
980                         goto out; /* skip atime */
981                 size = i_size_read(inode);
982                 if (pos < size) {
983                         retval = generic_file_direct_IO(READ, iocb,
984                                                 iov, pos, nr_segs);
985                         if (retval >= 0 && !is_sync_kiocb(iocb))
986                                 retval = -EIOCBQUEUED;
987                         if (retval > 0)
988                                 *ppos = pos + retval;
989                 }
990                 file_accessed(filp);
991                 goto out;
992         }
993
994         retval = 0;
995         if (count) {
996                 for (seg = 0; seg < nr_segs; seg++) {
997                         read_descriptor_t desc;
998
999                         desc.written = 0;
1000                         desc.arg.buf = iov[seg].iov_base;
1001                         desc.count = iov[seg].iov_len;
1002                         if (desc.count == 0)
1003                                 continue;
1004                         desc.error = 0;
1005                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1006                         retval += desc.written;
1007                         if (!retval) {
1008                                 retval = desc.error;
1009                                 break;
1010                         }
1011                 }
1012         }
1013 out:
1014         return retval;
1015 }
1016
1017 EXPORT_SYMBOL(__generic_file_aio_read);
1018
1019 ssize_t
1020 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1021 {
1022         struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1023
1024         BUG_ON(iocb->ki_pos != pos);
1025         return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1026 }
1027
1028 EXPORT_SYMBOL(generic_file_aio_read);
1029
1030 ssize_t
1031 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1032 {
1033         struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1034         struct kiocb kiocb;
1035         ssize_t ret;
1036
1037         init_sync_kiocb(&kiocb, filp);
1038         ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1039         if (-EIOCBQUEUED == ret)
1040                 ret = wait_on_sync_kiocb(&kiocb);
1041         return ret;
1042 }
1043
1044 EXPORT_SYMBOL(generic_file_read);
1045
1046 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1047 {
1048         ssize_t written;
1049         unsigned long count = desc->count;
1050         struct file *file = desc->arg.data;
1051
1052         if (size > count)
1053                 size = count;
1054
1055         written = file->f_op->sendpage(file, page, offset,
1056                                        size, &file->f_pos, size<count);
1057         if (written < 0) {
1058                 desc->error = written;
1059                 written = 0;
1060         }
1061         desc->count = count - written;
1062         desc->written += written;
1063         return written;
1064 }
1065
1066 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1067                          size_t count, read_actor_t actor, void *target)
1068 {
1069         read_descriptor_t desc;
1070
1071         if (!count)
1072                 return 0;
1073
1074         desc.written = 0;
1075         desc.count = count;
1076         desc.arg.data = target;
1077         desc.error = 0;
1078
1079         do_generic_file_read(in_file, ppos, &desc, actor);
1080         if (desc.written)
1081                 return desc.written;
1082         return desc.error;
1083 }
1084
1085 EXPORT_SYMBOL(generic_file_sendfile);
1086
1087 static ssize_t
1088 do_readahead(struct address_space *mapping, struct file *filp,
1089              unsigned long index, unsigned long nr)
1090 {
1091         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1092                 return -EINVAL;
1093
1094         force_page_cache_readahead(mapping, filp, index,
1095                                         max_sane_readahead(nr));
1096         return 0;
1097 }
1098
1099 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1100 {
1101         ssize_t ret;
1102         struct file *file;
1103
1104         ret = -EBADF;
1105         file = fget(fd);
1106         if (file) {
1107                 if (file->f_mode & FMODE_READ) {
1108                         struct address_space *mapping = file->f_mapping;
1109                         unsigned long start = offset >> PAGE_CACHE_SHIFT;
1110                         unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1111                         unsigned long len = end - start + 1;
1112                         ret = do_readahead(mapping, file, start, len);
1113                 }
1114                 fput(file);
1115         }
1116         return ret;
1117 }
1118
1119 #ifdef CONFIG_MMU
1120 /*
1121  * This adds the requested page to the page cache if it isn't already there,
1122  * and schedules an I/O to read in its contents from disk.
1123  */
1124 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1125 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1126 {
1127         struct address_space *mapping = file->f_mapping;
1128         struct page *page; 
1129         int error;
1130
1131         page = page_cache_alloc_cold(mapping);
1132         if (!page)
1133                 return -ENOMEM;
1134
1135         error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1136         if (!error) {
1137                 error = mapping->a_ops->readpage(file, page);
1138                 page_cache_release(page);
1139                 return error;
1140         }
1141
1142         /*
1143          * We arrive here in the unlikely event that someone 
1144          * raced with us and added our page to the cache first
1145          * or we are out of memory for radix-tree nodes.
1146          */
1147         page_cache_release(page);
1148         return error == -EEXIST ? 0 : error;
1149 }
1150
1151 #define MMAP_LOTSAMISS  (100)
1152
1153 /*
1154  * filemap_nopage() is invoked via the vma operations vector for a
1155  * mapped memory region to read in file data during a page fault.
1156  *
1157  * The goto's are kind of ugly, but this streamlines the normal case of having
1158  * it in the page cache, and handles the special cases reasonably without
1159  * having a lot of duplicated code.
1160  */
1161 struct page * filemap_nopage(struct vm_area_struct * area, unsigned long address, int *type)
1162 {
1163         int error;
1164         struct file *file = area->vm_file;
1165         struct address_space *mapping = file->f_mapping;
1166         struct file_ra_state *ra = &file->f_ra;
1167         struct inode *inode = mapping->host;
1168         struct page *page;
1169         unsigned long size, pgoff, endoff;
1170         int did_readaround = 0, majmin = VM_FAULT_MINOR;
1171
1172         pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1173         endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1174
1175 retry_all:
1176         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1177         if (pgoff >= size)
1178                 goto outside_data_content;
1179
1180         /* If we don't want any read-ahead, don't bother */
1181         if (VM_RandomReadHint(area))
1182                 goto no_cached_page;
1183
1184         /*
1185          * The "size" of the file, as far as mmap is concerned, isn't bigger
1186          * than the mapping
1187          */
1188         if (size > endoff)
1189                 size = endoff;
1190
1191         /*
1192          * The readahead code wants to be told about each and every page
1193          * so it can build and shrink its windows appropriately
1194          *
1195          * For sequential accesses, we use the generic readahead logic.
1196          */
1197         if (VM_SequentialReadHint(area))
1198                 page_cache_readahead(mapping, ra, file, pgoff);
1199
1200         /*
1201          * Do we have something in the page cache already?
1202          */
1203 retry_find:
1204         page = find_get_page(mapping, pgoff);
1205         if (!page) {
1206                 unsigned long ra_pages;
1207
1208                 if (VM_SequentialReadHint(area)) {
1209                         handle_ra_miss(mapping, ra, pgoff);
1210                         goto no_cached_page;
1211                 }
1212                 ra->mmap_miss++;
1213
1214                 /*
1215                  * Do we miss much more than hit in this file? If so,
1216                  * stop bothering with read-ahead. It will only hurt.
1217                  */
1218                 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1219                         goto no_cached_page;
1220
1221                 /*
1222                  * To keep the pgmajfault counter straight, we need to
1223                  * check did_readaround, as this is an inner loop.
1224                  */
1225                 if (!did_readaround) {
1226                         majmin = VM_FAULT_MAJOR;
1227                         inc_page_state(pgmajfault);
1228                 }
1229                 did_readaround = 1;
1230                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1231                 if (ra_pages) {
1232                         pgoff_t start = 0;
1233
1234                         if (pgoff > ra_pages / 2)
1235                                 start = pgoff - ra_pages / 2;
1236                         do_page_cache_readahead(mapping, file, start, ra_pages);
1237                 }
1238                 page = find_get_page(mapping, pgoff);
1239                 if (!page)
1240                         goto no_cached_page;
1241         }
1242
1243         if (!did_readaround)
1244                 ra->mmap_hit++;
1245
1246         /*
1247          * Ok, found a page in the page cache, now we need to check
1248          * that it's up-to-date.
1249          */
1250         if (!PageUptodate(page))
1251                 goto page_not_uptodate;
1252
1253 success:
1254         /*
1255          * Found the page and have a reference on it.
1256          */
1257         mark_page_accessed(page);
1258         if (type)
1259                 *type = majmin;
1260         return page;
1261
1262 outside_data_content:
1263         /*
1264          * An external ptracer can access pages that normally aren't
1265          * accessible..
1266          */
1267         if (area->vm_mm == current->mm)
1268                 return NULL;
1269         /* Fall through to the non-read-ahead case */
1270 no_cached_page:
1271         /*
1272          * We're only likely to ever get here if MADV_RANDOM is in
1273          * effect.
1274          */
1275         error = page_cache_read(file, pgoff);
1276         grab_swap_token();
1277
1278         /*
1279          * The page we want has now been added to the page cache.
1280          * In the unlikely event that someone removed it in the
1281          * meantime, we'll just come back here and read it again.
1282          */
1283         if (error >= 0)
1284                 goto retry_find;
1285
1286         /*
1287          * An error return from page_cache_read can result if the
1288          * system is low on memory, or a problem occurs while trying
1289          * to schedule I/O.
1290          */
1291         if (error == -ENOMEM)
1292                 return NOPAGE_OOM;
1293         return NULL;
1294
1295 page_not_uptodate:
1296         if (!did_readaround) {
1297                 majmin = VM_FAULT_MAJOR;
1298                 inc_page_state(pgmajfault);
1299         }
1300         lock_page(page);
1301
1302         /* Did it get unhashed while we waited for it? */
1303         if (!page->mapping) {
1304                 unlock_page(page);
1305                 page_cache_release(page);
1306                 goto retry_all;
1307         }
1308
1309         /* Did somebody else get it up-to-date? */
1310         if (PageUptodate(page)) {
1311                 unlock_page(page);
1312                 goto success;
1313         }
1314
1315         if (!mapping->a_ops->readpage(file, page)) {
1316                 wait_on_page_locked(page);
1317                 if (PageUptodate(page))
1318                         goto success;
1319         }
1320
1321         /*
1322          * Umm, take care of errors if the page isn't up-to-date.
1323          * Try to re-read it _once_. We do this synchronously,
1324          * because there really aren't any performance issues here
1325          * and we need to check for errors.
1326          */
1327         lock_page(page);
1328
1329         /* Somebody truncated the page on us? */
1330         if (!page->mapping) {
1331                 unlock_page(page);
1332                 page_cache_release(page);
1333                 goto retry_all;
1334         }
1335
1336         /* Somebody else successfully read it in? */
1337         if (PageUptodate(page)) {
1338                 unlock_page(page);
1339                 goto success;
1340         }
1341         ClearPageError(page);
1342         if (!mapping->a_ops->readpage(file, page)) {
1343                 wait_on_page_locked(page);
1344                 if (PageUptodate(page))
1345                         goto success;
1346         }
1347
1348         /*
1349          * Things didn't work out. Return zero to tell the
1350          * mm layer so, possibly freeing the page cache page first.
1351          */
1352         page_cache_release(page);
1353         return NULL;
1354 }
1355
1356 EXPORT_SYMBOL(filemap_nopage);
1357
1358 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1359                                         int nonblock)
1360 {
1361         struct address_space *mapping = file->f_mapping;
1362         struct page *page;
1363         int error;
1364
1365         /*
1366          * Do we have something in the page cache already?
1367          */
1368 retry_find:
1369         page = find_get_page(mapping, pgoff);
1370         if (!page) {
1371                 if (nonblock)
1372                         return NULL;
1373                 goto no_cached_page;
1374         }
1375
1376         /*
1377          * Ok, found a page in the page cache, now we need to check
1378          * that it's up-to-date.
1379          */
1380         if (!PageUptodate(page))
1381                 goto page_not_uptodate;
1382
1383 success:
1384         /*
1385          * Found the page and have a reference on it.
1386          */
1387         mark_page_accessed(page);
1388         return page;
1389
1390 no_cached_page:
1391         error = page_cache_read(file, pgoff);
1392
1393         /*
1394          * The page we want has now been added to the page cache.
1395          * In the unlikely event that someone removed it in the
1396          * meantime, we'll just come back here and read it again.
1397          */
1398         if (error >= 0)
1399                 goto retry_find;
1400
1401         /*
1402          * An error return from page_cache_read can result if the
1403          * system is low on memory, or a problem occurs while trying
1404          * to schedule I/O.
1405          */
1406         return NULL;
1407
1408 page_not_uptodate:
1409         lock_page(page);
1410
1411         /* Did it get unhashed while we waited for it? */
1412         if (!page->mapping) {
1413                 unlock_page(page);
1414                 goto err;
1415         }
1416
1417         /* Did somebody else get it up-to-date? */
1418         if (PageUptodate(page)) {
1419                 unlock_page(page);
1420                 goto success;
1421         }
1422
1423         if (!mapping->a_ops->readpage(file, page)) {
1424                 wait_on_page_locked(page);
1425                 if (PageUptodate(page))
1426                         goto success;
1427         }
1428
1429         /*
1430          * Umm, take care of errors if the page isn't up-to-date.
1431          * Try to re-read it _once_. We do this synchronously,
1432          * because there really aren't any performance issues here
1433          * and we need to check for errors.
1434          */
1435         lock_page(page);
1436
1437         /* Somebody truncated the page on us? */
1438         if (!page->mapping) {
1439                 unlock_page(page);
1440                 goto err;
1441         }
1442         /* Somebody else successfully read it in? */
1443         if (PageUptodate(page)) {
1444                 unlock_page(page);
1445                 goto success;
1446         }
1447
1448         ClearPageError(page);
1449         if (!mapping->a_ops->readpage(file, page)) {
1450                 wait_on_page_locked(page);
1451                 if (PageUptodate(page))
1452                         goto success;
1453         }
1454
1455         /*
1456          * Things didn't work out. Return zero to tell the
1457          * mm layer so, possibly freeing the page cache page first.
1458          */
1459 err:
1460         page_cache_release(page);
1461
1462         return NULL;
1463 }
1464
1465 static int filemap_populate(struct vm_area_struct *vma,
1466                         unsigned long addr,
1467                         unsigned long len,
1468                         pgprot_t prot,
1469                         unsigned long pgoff,
1470                         int nonblock)
1471 {
1472         struct file *file = vma->vm_file;
1473         struct address_space *mapping = file->f_mapping;
1474         struct inode *inode = mapping->host;
1475         unsigned long size;
1476         struct mm_struct *mm = vma->vm_mm;
1477         struct page *page;
1478         int err;
1479
1480         if (!nonblock)
1481                 force_page_cache_readahead(mapping, vma->vm_file,
1482                                         pgoff, len >> PAGE_CACHE_SHIFT);
1483
1484 repeat:
1485         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1486         if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1487                 return -EINVAL;
1488
1489         page = filemap_getpage(file, pgoff, nonblock);
1490         if (!page && !nonblock)
1491                 return -ENOMEM;
1492         if (page) {
1493                 err = install_page(mm, vma, addr, page, prot);
1494                 if (err) {
1495                         page_cache_release(page);
1496                         return err;
1497                 }
1498         } else {
1499                 err = install_file_pte(mm, vma, addr, pgoff, prot);
1500                 if (err)
1501                         return err;
1502         }
1503
1504         len -= PAGE_SIZE;
1505         addr += PAGE_SIZE;
1506         pgoff++;
1507         if (len)
1508                 goto repeat;
1509
1510         return 0;
1511 }
1512
1513 struct vm_operations_struct generic_file_vm_ops = {
1514         .nopage         = filemap_nopage,
1515         .populate       = filemap_populate,
1516 };
1517
1518 /* This is used for a general mmap of a disk file */
1519
1520 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1521 {
1522         struct address_space *mapping = file->f_mapping;
1523
1524         if (!mapping->a_ops->readpage)
1525                 return -ENOEXEC;
1526         file_accessed(file);
1527         vma->vm_ops = &generic_file_vm_ops;
1528         return 0;
1529 }
1530
1531 /*
1532  * This is for filesystems which do not implement ->writepage.
1533  */
1534 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1535 {
1536         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1537                 return -EINVAL;
1538         return generic_file_mmap(file, vma);
1539 }
1540 #else
1541 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1542 {
1543         return -ENOSYS;
1544 }
1545 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1546 {
1547         return -ENOSYS;
1548 }
1549 #endif /* CONFIG_MMU */
1550
1551 EXPORT_SYMBOL(generic_file_mmap);
1552 EXPORT_SYMBOL(generic_file_readonly_mmap);
1553
1554 static inline struct page *__read_cache_page(struct address_space *mapping,
1555                                 unsigned long index,
1556                                 int (*filler)(void *,struct page*),
1557                                 void *data)
1558 {
1559         struct page *page, *cached_page = NULL;
1560         int err;
1561 repeat:
1562         page = find_get_page(mapping, index);
1563         if (!page) {
1564                 if (!cached_page) {
1565                         cached_page = page_cache_alloc_cold(mapping);
1566                         if (!cached_page)
1567                                 return ERR_PTR(-ENOMEM);
1568                 }
1569                 err = add_to_page_cache_lru(cached_page, mapping,
1570                                         index, GFP_KERNEL);
1571                 if (err == -EEXIST)
1572                         goto repeat;
1573                 if (err < 0) {
1574                         /* Presumably ENOMEM for radix tree node */
1575                         page_cache_release(cached_page);
1576                         return ERR_PTR(err);
1577                 }
1578                 page = cached_page;
1579                 cached_page = NULL;
1580                 err = filler(data, page);
1581                 if (err < 0) {
1582                         page_cache_release(page);
1583                         page = ERR_PTR(err);
1584                 }
1585         }
1586         if (cached_page)
1587                 page_cache_release(cached_page);
1588         return page;
1589 }
1590
1591 /*
1592  * Read into the page cache. If a page already exists,
1593  * and PageUptodate() is not set, try to fill the page.
1594  */
1595 struct page *read_cache_page(struct address_space *mapping,
1596                                 unsigned long index,
1597                                 int (*filler)(void *,struct page*),
1598                                 void *data)
1599 {
1600         struct page *page;
1601         int err;
1602
1603 retry:
1604         page = __read_cache_page(mapping, index, filler, data);
1605         if (IS_ERR(page))
1606                 goto out;
1607         mark_page_accessed(page);
1608         if (PageUptodate(page))
1609                 goto out;
1610
1611         lock_page(page);
1612         if (!page->mapping) {
1613                 unlock_page(page);
1614                 page_cache_release(page);
1615                 goto retry;
1616         }
1617         if (PageUptodate(page)) {
1618                 unlock_page(page);
1619                 goto out;
1620         }
1621         err = filler(data, page);
1622         if (err < 0) {
1623                 page_cache_release(page);
1624                 page = ERR_PTR(err);
1625         }
1626  out:
1627         return page;
1628 }
1629
1630 EXPORT_SYMBOL(read_cache_page);
1631
1632 /*
1633  * If the page was newly created, increment its refcount and add it to the
1634  * caller's lru-buffering pagevec.  This function is specifically for
1635  * generic_file_write().
1636  */
1637 static inline struct page *
1638 __grab_cache_page(struct address_space *mapping, unsigned long index,
1639                         struct page **cached_page, struct pagevec *lru_pvec)
1640 {
1641         int err;
1642         struct page *page;
1643 repeat:
1644         page = find_lock_page(mapping, index);
1645         if (!page) {
1646                 if (!*cached_page) {
1647                         *cached_page = page_cache_alloc(mapping);
1648                         if (!*cached_page)
1649                                 return NULL;
1650                 }
1651                 err = add_to_page_cache(*cached_page, mapping,
1652                                         index, GFP_KERNEL);
1653                 if (err == -EEXIST)
1654                         goto repeat;
1655                 if (err == 0) {
1656                         page = *cached_page;
1657                         page_cache_get(page);
1658                         if (!pagevec_add(lru_pvec, page))
1659                                 __pagevec_lru_add(lru_pvec);
1660                         *cached_page = NULL;
1661                 }
1662         }
1663         return page;
1664 }
1665
1666 /*
1667  * The logic we want is
1668  *
1669  *      if suid or (sgid and xgrp)
1670  *              remove privs
1671  */
1672 int remove_suid(struct dentry *dentry)
1673 {
1674         mode_t mode = dentry->d_inode->i_mode;
1675         int kill = 0;
1676         int result = 0;
1677
1678         /* suid always must be killed */
1679         if (unlikely(mode & S_ISUID))
1680                 kill = ATTR_KILL_SUID;
1681
1682         /*
1683          * sgid without any exec bits is just a mandatory locking mark; leave
1684          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1685          */
1686         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1687                 kill |= ATTR_KILL_SGID;
1688
1689         if (unlikely(kill && !capable(CAP_FSETID))) {
1690                 struct iattr newattrs;
1691
1692                 newattrs.ia_valid = ATTR_FORCE | kill;
1693                 result = notify_change(dentry, &newattrs);
1694         }
1695         return result;
1696 }
1697 EXPORT_SYMBOL(remove_suid);
1698
1699 /*
1700  * Copy as much as we can into the page and return the number of bytes which
1701  * were sucessfully copied.  If a fault is encountered then clear the page
1702  * out to (offset+bytes) and return the number of bytes which were copied.
1703  */
1704 static inline size_t
1705 filemap_copy_from_user(struct page *page, unsigned long offset,
1706                         const char __user *buf, unsigned bytes)
1707 {
1708         char *kaddr;
1709         int left;
1710
1711         kaddr = kmap_atomic(page, KM_USER0);
1712         left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1713         kunmap_atomic(kaddr, KM_USER0);
1714
1715         if (left != 0) {
1716                 /* Do it the slow way */
1717                 kaddr = kmap(page);
1718                 left = __copy_from_user(kaddr + offset, buf, bytes);
1719                 kunmap(page);
1720         }
1721         return bytes - left;
1722 }
1723
1724 static size_t
1725 __filemap_copy_from_user_iovec(char *vaddr, 
1726                         const struct iovec *iov, size_t base, size_t bytes)
1727 {
1728         size_t copied = 0, left = 0;
1729
1730         while (bytes) {
1731                 char __user *buf = iov->iov_base + base;
1732                 int copy = min(bytes, iov->iov_len - base);
1733
1734                 base = 0;
1735                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1736                 copied += copy;
1737                 bytes -= copy;
1738                 vaddr += copy;
1739                 iov++;
1740
1741                 if (unlikely(left)) {
1742                         /* zero the rest of the target like __copy_from_user */
1743                         if (bytes)
1744                                 memset(vaddr, 0, bytes);
1745                         break;
1746                 }
1747         }
1748         return copied - left;
1749 }
1750
1751 /*
1752  * This has the same sideeffects and return value as filemap_copy_from_user().
1753  * The difference is that on a fault we need to memset the remainder of the
1754  * page (out to offset+bytes), to emulate filemap_copy_from_user()'s
1755  * single-segment behaviour.
1756  */
1757 static inline size_t
1758 filemap_copy_from_user_iovec(struct page *page, unsigned long offset,
1759                         const struct iovec *iov, size_t base, size_t bytes)
1760 {
1761         char *kaddr;
1762         size_t copied;
1763
1764         kaddr = kmap_atomic(page, KM_USER0);
1765         copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1766                                                 base, bytes);
1767         kunmap_atomic(kaddr, KM_USER0);
1768         if (copied != bytes) {
1769                 kaddr = kmap(page);
1770                 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1771                                                         base, bytes);
1772                 kunmap(page);
1773         }
1774         return copied;
1775 }
1776
1777 static inline void
1778 filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
1779 {
1780         const struct iovec *iov = *iovp;
1781         size_t base = *basep;
1782
1783         while (bytes) {
1784                 int copy = min(bytes, iov->iov_len - base);
1785
1786                 bytes -= copy;
1787                 base += copy;
1788                 if (iov->iov_len == base) {
1789                         iov++;
1790                         base = 0;
1791                 }
1792         }
1793         *iovp = iov;
1794         *basep = base;
1795 }
1796
1797 /*
1798  * Performs necessary checks before doing a write
1799  *
1800  * Can adjust writing position aor amount of bytes to write.
1801  * Returns appropriate error code that caller should return or
1802  * zero in case that write should be allowed.
1803  */
1804 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1805 {
1806         struct inode *inode = file->f_mapping->host;
1807         unsigned long limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
1808
1809         if (unlikely(*pos < 0))
1810                 return -EINVAL;
1811
1812         if (unlikely(file->f_error)) {
1813                 int err = file->f_error;
1814                 file->f_error = 0;
1815                 return err;
1816         }
1817
1818         if (!isblk) {
1819                 /* FIXME: this is for backwards compatibility with 2.4 */
1820                 if (file->f_flags & O_APPEND)
1821                         *pos = i_size_read(inode);
1822
1823                 if (limit != RLIM_INFINITY) {
1824                         if (*pos >= limit) {
1825                                 send_sig(SIGXFSZ, current, 0);
1826                                 return -EFBIG;
1827                         }
1828                         if (*count > limit - (typeof(limit))*pos) {
1829                                 *count = limit - (typeof(limit))*pos;
1830                         }
1831                 }
1832         }
1833
1834         /*
1835          * LFS rule
1836          */
1837         if (unlikely(*pos + *count > MAX_NON_LFS &&
1838                                 !(file->f_flags & O_LARGEFILE))) {
1839                 if (*pos >= MAX_NON_LFS) {
1840                         send_sig(SIGXFSZ, current, 0);
1841                         return -EFBIG;
1842                 }
1843                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1844                         *count = MAX_NON_LFS - (unsigned long)*pos;
1845                 }
1846         }
1847
1848         /*
1849          * Are we about to exceed the fs block limit ?
1850          *
1851          * If we have written data it becomes a short write.  If we have
1852          * exceeded without writing data we send a signal and return EFBIG.
1853          * Linus frestrict idea will clean these up nicely..
1854          */
1855         if (likely(!isblk)) {
1856                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1857                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1858                                 send_sig(SIGXFSZ, current, 0);
1859                                 return -EFBIG;
1860                         }
1861                         /* zero-length writes at ->s_maxbytes are OK */
1862                 }
1863
1864                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1865                         *count = inode->i_sb->s_maxbytes - *pos;
1866         } else {
1867                 loff_t isize;
1868                 if (bdev_read_only(I_BDEV(inode)))
1869                         return -EPERM;
1870                 isize = i_size_read(inode);
1871                 if (*pos >= isize) {
1872                         if (*count || *pos > isize)
1873                                 return -ENOSPC;
1874                 }
1875
1876                 if (*pos + *count > isize)
1877                         *count = isize - *pos;
1878         }
1879         return 0;
1880 }
1881
1882 EXPORT_SYMBOL(generic_write_checks);
1883
1884 ssize_t
1885 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1886                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1887                 size_t count, size_t ocount)
1888 {
1889         struct file     *file = iocb->ki_filp;
1890         struct address_space *mapping = file->f_mapping;
1891         struct inode    *inode = mapping->host;
1892         ssize_t         written;
1893
1894         if (count != ocount)
1895                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1896
1897         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1898         if (written > 0) {
1899                 loff_t end = pos + written;
1900                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1901                         i_size_write(inode,  end);
1902                         mark_inode_dirty(inode);
1903                 }
1904                 *ppos = end;
1905         }
1906
1907         /*
1908          * Sync the fs metadata but not the minor inode changes and
1909          * of course not the data as we did direct DMA for the IO.
1910          * i_sem is held, which protects generic_osync_inode() from
1911          * livelocking.
1912          */
1913         if (written >= 0 && file->f_flags & O_SYNC)
1914                 generic_osync_inode(inode, mapping, OSYNC_METADATA);
1915         if (written == count && !is_sync_kiocb(iocb))
1916                 written = -EIOCBQUEUED;
1917         return written;
1918 }
1919
1920 EXPORT_SYMBOL(generic_file_direct_write);
1921
1922 ssize_t
1923 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1924                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1925                 size_t count, ssize_t written)
1926 {
1927         struct file *file = iocb->ki_filp;
1928         struct address_space * mapping = file->f_mapping;
1929         struct address_space_operations *a_ops = mapping->a_ops;
1930         struct inode    *inode = mapping->host;
1931         long            status = 0;
1932         struct page     *page;
1933         struct page     *cached_page = NULL;
1934         size_t          bytes;
1935         struct pagevec  lru_pvec;
1936         const struct iovec *cur_iov = iov; /* current iovec */
1937         size_t          iov_base = 0;      /* offset in the current iovec */
1938         char __user     *buf;
1939
1940         pagevec_init(&lru_pvec, 0);
1941
1942         buf = iov->iov_base + written;  /* handle partial DIO write */
1943         do {
1944                 unsigned long index;
1945                 unsigned long offset;
1946                 size_t copied;
1947
1948                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1949                 index = pos >> PAGE_CACHE_SHIFT;
1950                 bytes = PAGE_CACHE_SIZE - offset;
1951                 if (bytes > count)
1952                         bytes = count;
1953
1954                 /*
1955                  * Bring in the user page that we will copy from _first_.
1956                  * Otherwise there's a nasty deadlock on copying from the
1957                  * same page as we're writing to, without it being marked
1958                  * up-to-date.
1959                  */
1960                 fault_in_pages_readable(buf, bytes);
1961
1962                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1963                 if (!page) {
1964                         status = -ENOMEM;
1965                         break;
1966                 }
1967
1968                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1969                 if (unlikely(status)) {
1970                         loff_t isize = i_size_read(inode);
1971                         /*
1972                          * prepare_write() may have instantiated a few blocks
1973                          * outside i_size.  Trim these off again.
1974                          */
1975                         unlock_page(page);
1976                         page_cache_release(page);
1977                         if (pos + bytes > isize)
1978                                 vmtruncate(inode, isize);
1979                         break;
1980                 }
1981                 if (likely(nr_segs == 1))
1982                         copied = filemap_copy_from_user(page, offset,
1983                                                         buf, bytes);
1984                 else
1985                         copied = filemap_copy_from_user_iovec(page, offset,
1986                                                 cur_iov, iov_base, bytes);
1987                 flush_dcache_page(page);
1988                 status = a_ops->commit_write(file, page, offset, offset+bytes);
1989                 if (likely(copied > 0)) {
1990                         if (!status)
1991                                 status = copied;
1992
1993                         if (status >= 0) {
1994                                 written += status;
1995                                 count -= status;
1996                                 pos += status;
1997                                 buf += status;
1998                                 if (unlikely(nr_segs > 1))
1999                                         filemap_set_next_iovec(&cur_iov,
2000                                                         &iov_base, status);
2001                         }
2002                 }
2003                 if (unlikely(copied != bytes))
2004                         if (status >= 0)
2005                                 status = -EFAULT;
2006                 unlock_page(page);
2007                 mark_page_accessed(page);
2008                 page_cache_release(page);
2009                 if (status < 0)
2010                         break;
2011                 balance_dirty_pages_ratelimited(mapping);
2012                 cond_resched();
2013         } while (count);
2014         *ppos = pos;
2015
2016         if (cached_page)
2017                 page_cache_release(cached_page);
2018
2019         /*
2020          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2021          */
2022         if (likely(status >= 0)) {
2023                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2024                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2025                                 status = generic_osync_inode(inode, mapping,
2026                                                 OSYNC_METADATA|OSYNC_DATA);
2027                 }
2028         }
2029         
2030         /*
2031          * If we get here for O_DIRECT writes then we must have fallen through
2032          * to buffered writes (block instantiation inside i_size).  So we sync
2033          * the file data here, to try to honour O_DIRECT expectations.
2034          */
2035         if (unlikely(file->f_flags & O_DIRECT) && written)
2036                 status = filemap_write_and_wait(mapping);
2037
2038         pagevec_lru_add(&lru_pvec);
2039         return written ? written : status;
2040 }
2041
2042 EXPORT_SYMBOL(generic_file_buffered_write);
2043
2044 ssize_t
2045 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2046                                 unsigned long nr_segs, loff_t *ppos)
2047 {
2048         struct file *file = iocb->ki_filp;
2049         struct address_space * mapping = file->f_mapping;
2050         size_t ocount;          /* original count */
2051         size_t count;           /* after file limit checks */
2052         struct inode    *inode = mapping->host;
2053         unsigned long   seg;
2054         loff_t          pos;
2055         ssize_t         written;
2056         ssize_t         err;
2057
2058         ocount = 0;
2059         for (seg = 0; seg < nr_segs; seg++) {
2060                 const struct iovec *iv = &iov[seg];
2061
2062                 /*
2063                  * If any segment has a negative length, or the cumulative
2064                  * length ever wraps negative then return -EINVAL.
2065                  */
2066                 ocount += iv->iov_len;
2067                 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2068                         return -EINVAL;
2069                 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2070                         continue;
2071                 if (seg == 0)
2072                         return -EFAULT;
2073                 nr_segs = seg;
2074                 ocount -= iv->iov_len;  /* This segment is no good */
2075                 break;
2076         }
2077
2078         count = ocount;
2079         pos = *ppos;
2080
2081         /* We can write back this queue in page reclaim */
2082         current->backing_dev_info = mapping->backing_dev_info;
2083         written = 0;
2084
2085         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2086         if (err)
2087                 goto out;
2088
2089         if (count == 0)
2090                 goto out;
2091
2092         err = remove_suid(file->f_dentry);
2093         if (err)
2094                 goto out;
2095
2096         inode_update_time(inode, 1);
2097
2098         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2099         if (unlikely(file->f_flags & O_DIRECT)) {
2100                 written = generic_file_direct_write(iocb, iov,
2101                                 &nr_segs, pos, ppos, count, ocount);
2102                 if (written < 0 || written == count)
2103                         goto out;
2104                 /*
2105                  * direct-io write to a hole: fall through to buffered I/O
2106                  * for completing the rest of the request.
2107                  */
2108                 pos += written;
2109                 count -= written;
2110         }
2111
2112         written = generic_file_buffered_write(iocb, iov, nr_segs,
2113                         pos, ppos, count, written);
2114 out:
2115         current->backing_dev_info = NULL;
2116         return written ? written : err;
2117 }
2118
2119 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2120
2121 ssize_t
2122 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2123                                 unsigned long nr_segs, loff_t *ppos)
2124 {
2125         struct kiocb kiocb;
2126         ssize_t ret;
2127
2128         init_sync_kiocb(&kiocb, file);
2129         ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2130         if (-EIOCBQUEUED == ret)
2131                 ret = wait_on_sync_kiocb(&kiocb);
2132         return ret;
2133 }
2134
2135 EXPORT_SYMBOL(generic_file_write_nolock);
2136
2137 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2138                                size_t count, loff_t pos)
2139 {
2140         struct file *file = iocb->ki_filp;
2141         struct address_space *mapping = file->f_mapping;
2142         struct inode *inode = mapping->host;
2143         ssize_t ret;
2144         struct iovec local_iov = { .iov_base = (void __user *)buf,
2145                                         .iov_len = count };
2146
2147         BUG_ON(iocb->ki_pos != pos);
2148
2149         down(&inode->i_sem);
2150         ret = generic_file_aio_write_nolock(iocb, &local_iov, 1,
2151                                                 &iocb->ki_pos);
2152         up(&inode->i_sem);
2153
2154         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2155                 ssize_t err;
2156
2157                 err = sync_page_range(inode, mapping, pos, ret);
2158                 if (err < 0)
2159                         ret = err;
2160         }
2161         return ret;
2162 }
2163 EXPORT_SYMBOL(generic_file_aio_write);
2164
2165 ssize_t generic_file_write(struct file *file, const char __user *buf,
2166                            size_t count, loff_t *ppos)
2167 {
2168         struct address_space *mapping = file->f_mapping;
2169         struct inode *inode = mapping->host;
2170         ssize_t ret;
2171         struct iovec local_iov = { .iov_base = (void __user *)buf,
2172                                         .iov_len = count };
2173
2174         down(&inode->i_sem);
2175         ret = generic_file_write_nolock(file, &local_iov, 1, ppos);
2176         up(&inode->i_sem);
2177
2178         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2179                 ssize_t err;
2180
2181                 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2182                 if (err < 0)
2183                         ret = err;
2184         }
2185         return ret;
2186 }
2187 EXPORT_SYMBOL(generic_file_write);
2188
2189 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2190                         unsigned long nr_segs, loff_t *ppos)
2191 {
2192         struct kiocb kiocb;
2193         ssize_t ret;
2194
2195         init_sync_kiocb(&kiocb, filp);
2196         ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2197         if (-EIOCBQUEUED == ret)
2198                 ret = wait_on_sync_kiocb(&kiocb);
2199         return ret;
2200 }
2201
2202 EXPORT_SYMBOL(generic_file_readv);
2203
2204 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2205                         unsigned long nr_segs, loff_t *ppos)
2206 {
2207         struct address_space *mapping = file->f_mapping;
2208         struct inode *inode = mapping->host;
2209         ssize_t ret;
2210
2211         down(&inode->i_sem);
2212         ret = generic_file_write_nolock(file, iov, nr_segs, ppos);
2213         up(&inode->i_sem);
2214
2215         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2216                 int err;
2217
2218                 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2219                 if (err < 0)
2220                         ret = err;
2221         }
2222         return ret;
2223 }
2224
2225 EXPORT_SYMBOL(generic_file_writev);
2226
2227 /*
2228  * Called under i_sem for writes to S_ISREG files
2229  */
2230 ssize_t
2231 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2232         loff_t offset, unsigned long nr_segs)
2233 {
2234         struct file *file = iocb->ki_filp;
2235         struct address_space *mapping = file->f_mapping;
2236         ssize_t retval;
2237
2238         retval = filemap_write_and_wait(mapping);
2239         if (retval == 0) {
2240                 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2241                                                 offset, nr_segs);
2242                 if (rw == WRITE && mapping->nrpages)
2243                         invalidate_inode_pages2(mapping);
2244         }
2245         return retval;
2246 }
2247
2248 EXPORT_SYMBOL_GPL(generic_file_direct_IO);