Merge to Fedora kernel-2.6.18-1.2224_FC5 patched with stable patch-2.6.18.1-vs2.0...
[linux-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45         loff_t offset, unsigned long nr_segs);
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock               (vmtruncate)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->mmap_sem
79  *    ->i_mutex                 (msync)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock                 (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
103  *    ->inode_lock              (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock             (proc_pid_lookup)
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124
125 void remove_from_page_cache(struct page *page)
126 {
127         struct address_space *mapping = page->mapping;
128
129         BUG_ON(!PageLocked(page));
130
131         write_lock_irq(&mapping->tree_lock);
132         __remove_from_page_cache(page);
133         write_unlock_irq(&mapping->tree_lock);
134 }
135
136 static int sync_page(void *word)
137 {
138         struct address_space *mapping;
139         struct page *page;
140
141         page = container_of((unsigned long *)word, struct page, flags);
142
143         /*
144          * page_mapping() is being called without PG_locked held.
145          * Some knowledge of the state and use of the page is used to
146          * reduce the requirements down to a memory barrier.
147          * The danger here is of a stale page_mapping() return value
148          * indicating a struct address_space different from the one it's
149          * associated with when it is associated with one.
150          * After smp_mb(), it's either the correct page_mapping() for
151          * the page, or an old page_mapping() and the page's own
152          * page_mapping() has gone NULL.
153          * The ->sync_page() address_space operation must tolerate
154          * page_mapping() going NULL. By an amazing coincidence,
155          * this comes about because none of the users of the page
156          * in the ->sync_page() methods make essential use of the
157          * page_mapping(), merely passing the page down to the backing
158          * device's unplug functions when it's non-NULL, which in turn
159          * ignore it for all cases but swap, where only page_private(page) is
160          * of interest. When page_mapping() does go NULL, the entire
161          * call stack gracefully ignores the page and returns.
162          * -- wli
163          */
164         smp_mb();
165         mapping = page_mapping(page);
166         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167                 mapping->a_ops->sync_page(page);
168         io_schedule();
169         return 0;
170 }
171
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:    address space structure to write
175  * @start:      offset in bytes where the range starts
176  * @end:        offset in bytes where the range ends (inclusive)
177  * @sync_mode:  enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188                                 loff_t end, int sync_mode)
189 {
190         int ret;
191         struct writeback_control wbc = {
192                 .sync_mode = sync_mode,
193                 .nr_to_write = mapping->nrpages * 2,
194                 .range_start = start,
195                 .range_end = end,
196         };
197
198         if (!mapping_cap_writeback_dirty(mapping))
199                 return 0;
200
201         ret = do_writepages(mapping, &wbc);
202         return ret;
203 }
204
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206         int sync_mode)
207 {
208         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218                                 loff_t end)
219 {
220         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:    target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:    target address_space
239  * @start:      beginning page index
240  * @end:        ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246                                 pgoff_t start, pgoff_t end)
247 {
248         struct pagevec pvec;
249         int nr_pages;
250         int ret = 0;
251         pgoff_t index;
252
253         if (end < start)
254                 return 0;
255
256         pagevec_init(&pvec, 0);
257         index = start;
258         while ((index <= end) &&
259                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260                         PAGECACHE_TAG_WRITEBACK,
261                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262                 unsigned i;
263
264                 for (i = 0; i < nr_pages; i++) {
265                         struct page *page = pvec.pages[i];
266
267                         /* until radix tree lookup accepts end_index */
268                         if (page->index > end)
269                                 continue;
270
271                         wait_on_page_writeback(page);
272                         if (PageError(page))
273                                 ret = -EIO;
274                 }
275                 pagevec_release(&pvec);
276                 cond_resched();
277         }
278
279         /* Check for outstanding write errors */
280         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281                 ret = -ENOSPC;
282         if (test_and_clear_bit(AS_EIO, &mapping->flags))
283                 ret = -EIO;
284
285         return ret;
286 }
287
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:      target inode
291  * @mapping:    target address_space
292  * @pos:        beginning offset in pages to write
293  * @count:      number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303                         loff_t pos, loff_t count)
304 {
305         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307         int ret;
308
309         if (!mapping_cap_writeback_dirty(mapping) || !count)
310                 return 0;
311         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312         if (ret == 0) {
313                 mutex_lock(&inode->i_mutex);
314                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315                 mutex_unlock(&inode->i_mutex);
316         }
317         if (ret == 0)
318                 ret = wait_on_page_writeback_range(mapping, start, end);
319         return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322
323 /**
324  * sync_page_range_nolock
325  * @inode:      target inode
326  * @mapping:    target address_space
327  * @pos:        beginning offset in pages to write
328  * @count:      number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335                            loff_t pos, loff_t count)
336 {
337         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339         int ret;
340
341         if (!mapping_cap_writeback_dirty(mapping) || !count)
342                 return 0;
343         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344         if (ret == 0)
345                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346         if (ret == 0)
347                 ret = wait_on_page_writeback_range(mapping, start, end);
348         return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361         loff_t i_size = i_size_read(mapping->host);
362
363         if (i_size == 0)
364                 return 0;
365
366         return wait_on_page_writeback_range(mapping, 0,
367                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373         int err = 0;
374
375         if (mapping->nrpages) {
376                 err = filemap_fdatawrite(mapping);
377                 /*
378                  * Even if the above returned error, the pages may be
379                  * written partially (e.g. -ENOSPC), so we wait for it.
380                  * But the -EIO is special case, it may indicate the worst
381                  * thing (e.g. bug) happened, so we avoid waiting for it.
382                  */
383                 if (err != -EIO) {
384                         int err2 = filemap_fdatawait(mapping);
385                         if (!err)
386                                 err = err2;
387                 }
388         }
389         return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:    the address_space for the pages
396  * @lstart:     offset in bytes where the range starts
397  * @lend:       offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405                                  loff_t lstart, loff_t lend)
406 {
407         int err = 0;
408
409         if (mapping->nrpages) {
410                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411                                                  WB_SYNC_ALL);
412                 /* See comment of filemap_write_and_wait() */
413                 if (err != -EIO) {
414                         int err2 = wait_on_page_writeback_range(mapping,
415                                                 lstart >> PAGE_CACHE_SHIFT,
416                                                 lend >> PAGE_CACHE_SHIFT);
417                         if (!err)
418                                 err = err2;
419                 }
420         }
421         return err;
422 }
423
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:       page to add
427  * @mapping:    the page's address_space
428  * @offset:     page index
429  * @gfp_mask:   page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438                 pgoff_t offset, gfp_t gfp_mask)
439 {
440         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442         if (error == 0) {
443                 write_lock_irq(&mapping->tree_lock);
444                 error = radix_tree_insert(&mapping->page_tree, offset, page);
445                 if (!error) {
446                         page_cache_get(page);
447                         SetPageLocked(page);
448                         page->mapping = mapping;
449                         page->index = offset;
450                         mapping->nrpages++;
451                         __inc_zone_page_state(page, NR_FILE_PAGES);
452                 }
453                 write_unlock_irq(&mapping->tree_lock);
454                 radix_tree_preload_end();
455         }
456         return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461                                 pgoff_t offset, gfp_t gfp_mask)
462 {
463         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464         if (ret == 0)
465                 lru_cache_add(page);
466         return ret;
467 }
468
469 #ifdef CONFIG_NUMA
470 struct page *page_cache_alloc(struct address_space *x)
471 {
472         if (cpuset_do_page_mem_spread()) {
473                 int n = cpuset_mem_spread_node();
474                 return alloc_pages_node(n, mapping_gfp_mask(x), 0);
475         }
476         return alloc_pages(mapping_gfp_mask(x), 0);
477 }
478 EXPORT_SYMBOL(page_cache_alloc);
479
480 struct page *page_cache_alloc_cold(struct address_space *x)
481 {
482         if (cpuset_do_page_mem_spread()) {
483                 int n = cpuset_mem_spread_node();
484                 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
485         }
486         return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
487 }
488 EXPORT_SYMBOL(page_cache_alloc_cold);
489 #endif
490
491 /*
492  * In order to wait for pages to become available there must be
493  * waitqueues associated with pages. By using a hash table of
494  * waitqueues where the bucket discipline is to maintain all
495  * waiters on the same queue and wake all when any of the pages
496  * become available, and for the woken contexts to check to be
497  * sure the appropriate page became available, this saves space
498  * at a cost of "thundering herd" phenomena during rare hash
499  * collisions.
500  */
501 static wait_queue_head_t *page_waitqueue(struct page *page)
502 {
503         const struct zone *zone = page_zone(page);
504
505         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
506 }
507
508 static inline void wake_up_page(struct page *page, int bit)
509 {
510         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
511 }
512
513 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
514 {
515         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
516
517         if (test_bit(bit_nr, &page->flags))
518                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
519                                                         TASK_UNINTERRUPTIBLE);
520 }
521 EXPORT_SYMBOL(wait_on_page_bit);
522
523 void install_page_waitqueue_monitor(struct page *page, wait_queue_t *monitor)
524 {
525         wait_queue_head_t *q = page_waitqueue(page);
526         unsigned long flags;
527
528         spin_lock_irqsave(&q->lock, flags);
529         __add_wait_queue(q, monitor);
530         spin_unlock_irqrestore(&q->lock, flags);
531 }
532
533 EXPORT_SYMBOL_GPL(install_page_waitqueue_monitor);
534
535 /**
536  * unlock_page - unlock a locked page
537  * @page: the page
538  *
539  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541  * mechananism between PageLocked pages and PageWriteback pages is shared.
542  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
543  *
544  * The first mb is necessary to safely close the critical section opened by the
545  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
546  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
547  * parallel wait_on_page_locked()).
548  */
549 void fastcall unlock_page(struct page *page)
550 {
551         smp_mb__before_clear_bit();
552         if (!TestClearPageLocked(page))
553                 BUG();
554         smp_mb__after_clear_bit(); 
555         wake_up_page(page, PG_locked);
556 }
557 EXPORT_SYMBOL(unlock_page);
558
559 /**
560  * end_page_writeback - end writeback against a page
561  * @page: the page
562  */
563 void end_page_writeback(struct page *page)
564 {
565         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
566                 if (!test_clear_page_writeback(page))
567                         BUG();
568         }
569         smp_mb__after_clear_bit();
570         wake_up_page(page, PG_writeback);
571 }
572 EXPORT_SYMBOL(end_page_writeback);
573
574 /**
575  * __lock_page - get a lock on the page, assuming we need to sleep to get it
576  * @page: the page to lock
577  *
578  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580  * chances are that on the second loop, the block layer's plug list is empty,
581  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582  */
583 void fastcall __lock_page(struct page *page)
584 {
585         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586
587         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588                                                         TASK_UNINTERRUPTIBLE);
589 }
590 EXPORT_SYMBOL(__lock_page);
591
592 /*
593  * Note completion of filesystem specific page synchronisation
594  *
595  * This is used to allow a page to be written to a filesystem cache in the
596  * background without holding up the completion of readpage
597  */
598 void fastcall end_page_fs_misc(struct page *page)
599 {
600         smp_mb__before_clear_bit();
601         if (!TestClearPageFsMisc(page))
602                 BUG();
603         smp_mb__after_clear_bit();
604         __wake_up_bit(page_waitqueue(page), &page->flags, PG_fs_misc);
605 }
606
607 EXPORT_SYMBOL(end_page_fs_misc);
608
609 /**
610  * find_get_page - find and get a page reference
611  * @mapping: the address_space to search
612  * @offset: the page index
613  *
614  * A rather lightweight function, finding and getting a reference to a
615  * hashed page atomically.
616  */
617 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
618 {
619         struct page *page;
620
621         read_lock_irq(&mapping->tree_lock);
622         page = radix_tree_lookup(&mapping->page_tree, offset);
623         if (page)
624                 page_cache_get(page);
625         read_unlock_irq(&mapping->tree_lock);
626         return page;
627 }
628 EXPORT_SYMBOL(find_get_page);
629
630 /**
631  * find_trylock_page - find and lock a page
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Same as find_get_page(), but trylock it instead of incrementing the count.
636  */
637 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
638 {
639         struct page *page;
640
641         read_lock_irq(&mapping->tree_lock);
642         page = radix_tree_lookup(&mapping->page_tree, offset);
643         if (page && TestSetPageLocked(page))
644                 page = NULL;
645         read_unlock_irq(&mapping->tree_lock);
646         return page;
647 }
648 EXPORT_SYMBOL(find_trylock_page);
649
650 /**
651  * find_lock_page - locate, pin and lock a pagecache page
652  * @mapping: the address_space to search
653  * @offset: the page index
654  *
655  * Locates the desired pagecache page, locks it, increments its reference
656  * count and returns its address.
657  *
658  * Returns zero if the page was not present. find_lock_page() may sleep.
659  */
660 struct page *find_lock_page(struct address_space *mapping,
661                                 unsigned long offset)
662 {
663         struct page *page;
664
665         read_lock_irq(&mapping->tree_lock);
666 repeat:
667         page = radix_tree_lookup(&mapping->page_tree, offset);
668         if (page) {
669                 page_cache_get(page);
670                 if (TestSetPageLocked(page)) {
671                         read_unlock_irq(&mapping->tree_lock);
672                         __lock_page(page);
673                         read_lock_irq(&mapping->tree_lock);
674
675                         /* Has the page been truncated while we slept? */
676                         if (unlikely(page->mapping != mapping ||
677                                      page->index != offset)) {
678                                 unlock_page(page);
679                                 page_cache_release(page);
680                                 goto repeat;
681                         }
682                 }
683         }
684         read_unlock_irq(&mapping->tree_lock);
685         return page;
686 }
687 EXPORT_SYMBOL(find_lock_page);
688
689 /**
690  * find_or_create_page - locate or add a pagecache page
691  * @mapping: the page's address_space
692  * @index: the page's index into the mapping
693  * @gfp_mask: page allocation mode
694  *
695  * Locates a page in the pagecache.  If the page is not present, a new page
696  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
697  * LRU list.  The returned page is locked and has its reference count
698  * incremented.
699  *
700  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
701  * allocation!
702  *
703  * find_or_create_page() returns the desired page's address, or zero on
704  * memory exhaustion.
705  */
706 struct page *find_or_create_page(struct address_space *mapping,
707                 unsigned long index, gfp_t gfp_mask)
708 {
709         struct page *page, *cached_page = NULL;
710         int err;
711 repeat:
712         page = find_lock_page(mapping, index);
713         if (!page) {
714                 if (!cached_page) {
715                         cached_page = alloc_page(gfp_mask);
716                         if (!cached_page)
717                                 return NULL;
718                 }
719                 err = add_to_page_cache_lru(cached_page, mapping,
720                                         index, gfp_mask);
721                 if (!err) {
722                         page = cached_page;
723                         cached_page = NULL;
724                 } else if (err == -EEXIST)
725                         goto repeat;
726         }
727         if (cached_page)
728                 page_cache_release(cached_page);
729         return page;
730 }
731 EXPORT_SYMBOL(find_or_create_page);
732
733 /**
734  * find_get_pages - gang pagecache lookup
735  * @mapping:    The address_space to search
736  * @start:      The starting page index
737  * @nr_pages:   The maximum number of pages
738  * @pages:      Where the resulting pages are placed
739  *
740  * find_get_pages() will search for and return a group of up to
741  * @nr_pages pages in the mapping.  The pages are placed at @pages.
742  * find_get_pages() takes a reference against the returned pages.
743  *
744  * The search returns a group of mapping-contiguous pages with ascending
745  * indexes.  There may be holes in the indices due to not-present pages.
746  *
747  * find_get_pages() returns the number of pages which were found.
748  */
749 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
750                             unsigned int nr_pages, struct page **pages)
751 {
752         unsigned int i;
753         unsigned int ret;
754
755         read_lock_irq(&mapping->tree_lock);
756         ret = radix_tree_gang_lookup(&mapping->page_tree,
757                                 (void **)pages, start, nr_pages);
758         for (i = 0; i < ret; i++)
759                 page_cache_get(pages[i]);
760         read_unlock_irq(&mapping->tree_lock);
761         return ret;
762 }
763
764 /**
765  * find_get_pages_contig - gang contiguous pagecache lookup
766  * @mapping:    The address_space to search
767  * @index:      The starting page index
768  * @nr_pages:   The maximum number of pages
769  * @pages:      Where the resulting pages are placed
770  *
771  * find_get_pages_contig() works exactly like find_get_pages(), except
772  * that the returned number of pages are guaranteed to be contiguous.
773  *
774  * find_get_pages_contig() returns the number of pages which were found.
775  */
776 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
777                                unsigned int nr_pages, struct page **pages)
778 {
779         unsigned int i;
780         unsigned int ret;
781
782         read_lock_irq(&mapping->tree_lock);
783         ret = radix_tree_gang_lookup(&mapping->page_tree,
784                                 (void **)pages, index, nr_pages);
785         for (i = 0; i < ret; i++) {
786                 if (pages[i]->mapping == NULL || pages[i]->index != index)
787                         break;
788
789                 page_cache_get(pages[i]);
790                 index++;
791         }
792         read_unlock_irq(&mapping->tree_lock);
793         return i;
794 }
795
796 /**
797  * find_get_pages_tag - find and return pages that match @tag
798  * @mapping:    the address_space to search
799  * @index:      the starting page index
800  * @tag:        the tag index
801  * @nr_pages:   the maximum number of pages
802  * @pages:      where the resulting pages are placed
803  *
804  * Like find_get_pages, except we only return pages which are tagged with
805  * @tag.   We update @index to index the next page for the traversal.
806  */
807 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
808                         int tag, unsigned int nr_pages, struct page **pages)
809 {
810         unsigned int i;
811         unsigned int ret;
812
813         read_lock_irq(&mapping->tree_lock);
814         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
815                                 (void **)pages, *index, nr_pages, tag);
816         for (i = 0; i < ret; i++)
817                 page_cache_get(pages[i]);
818         if (ret)
819                 *index = pages[ret - 1]->index + 1;
820         read_unlock_irq(&mapping->tree_lock);
821         return ret;
822 }
823
824 /**
825  * grab_cache_page_nowait - returns locked page at given index in given cache
826  * @mapping: target address_space
827  * @index: the page index
828  *
829  * Same as grab_cache_page, but do not wait if the page is unavailable.
830  * This is intended for speculative data generators, where the data can
831  * be regenerated if the page couldn't be grabbed.  This routine should
832  * be safe to call while holding the lock for another page.
833  *
834  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835  * and deadlock against the caller's locked page.
836  */
837 struct page *
838 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
839 {
840         struct page *page = find_get_page(mapping, index);
841         gfp_t gfp_mask;
842
843         if (page) {
844                 if (!TestSetPageLocked(page))
845                         return page;
846                 page_cache_release(page);
847                 return NULL;
848         }
849         gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
850         page = alloc_pages(gfp_mask, 0);
851         if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
852                 page_cache_release(page);
853                 page = NULL;
854         }
855         return page;
856 }
857 EXPORT_SYMBOL(grab_cache_page_nowait);
858
859 /*
860  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
861  * a _large_ part of the i/o request. Imagine the worst scenario:
862  *
863  *      ---R__________________________________________B__________
864  *         ^ reading here                             ^ bad block(assume 4k)
865  *
866  * read(R) => miss => readahead(R...B) => media error => frustrating retries
867  * => failing the whole request => read(R) => read(R+1) =>
868  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
869  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
870  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
871  *
872  * It is going insane. Fix it by quickly scaling down the readahead size.
873  */
874 static void shrink_readahead_size_eio(struct file *filp,
875                                         struct file_ra_state *ra)
876 {
877         if (!ra->ra_pages)
878                 return;
879
880         ra->ra_pages /= 4;
881 }
882
883 /**
884  * do_generic_mapping_read - generic file read routine
885  * @mapping:    address_space to be read
886  * @_ra:        file's readahead state
887  * @filp:       the file to read
888  * @ppos:       current file position
889  * @desc:       read_descriptor
890  * @actor:      read method
891  *
892  * This is a generic file read routine, and uses the
893  * mapping->a_ops->readpage() function for the actual low-level stuff.
894  *
895  * This is really ugly. But the goto's actually try to clarify some
896  * of the logic when it comes to error handling etc.
897  *
898  * Note the struct file* is only passed for the use of readpage.
899  * It may be NULL.
900  */
901 void do_generic_mapping_read(struct address_space *mapping,
902                              struct file_ra_state *_ra,
903                              struct file *filp,
904                              loff_t *ppos,
905                              read_descriptor_t *desc,
906                              read_actor_t actor,
907                              int nonblock)
908 {
909         struct inode *inode = mapping->host;
910         unsigned long index;
911         unsigned long end_index;
912         unsigned long offset;
913         unsigned long last_index;
914         unsigned long next_index;
915         unsigned long prev_index;
916         loff_t isize;
917         struct page *cached_page;
918         int error;
919         struct file_ra_state ra = *_ra;
920
921         cached_page = NULL;
922         index = *ppos >> PAGE_CACHE_SHIFT;
923         next_index = index;
924         prev_index = ra.prev_page;
925         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
926         offset = *ppos & ~PAGE_CACHE_MASK;
927
928         isize = i_size_read(inode);
929         if (!isize)
930                 goto out;
931
932         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
933         for (;;) {
934                 struct page *page;
935                 unsigned long nr, ret;
936
937                 /* nr is the maximum number of bytes to copy from this page */
938                 nr = PAGE_CACHE_SIZE;
939                 if (index >= end_index) {
940                         if (index > end_index)
941                                 goto out;
942                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
943                         if (nr <= offset) {
944                                 goto out;
945                         }
946                 }
947                 nr = nr - offset;
948
949                 cond_resched();
950                 if (index == next_index)
951                         next_index = page_cache_readahead(mapping, &ra, filp,
952                                         index, last_index - index);
953
954 find_page:
955                 page = find_get_page(mapping, index);
956                 if (unlikely(page == NULL)) {
957                         if (nonblock) {
958                                 desc->error = -EWOULDBLOCKIO;
959                                 break;
960                         }
961                         handle_ra_miss(mapping, &ra, index);
962                         goto no_cached_page;
963                 }
964                 if (!PageUptodate(page)) {
965                         if (nonblock) {
966                                 page_cache_release(page);
967                                 desc->error = -EWOULDBLOCKIO;
968                                 break;
969                         }
970                         goto page_not_up_to_date;
971                 }
972 page_ok:
973
974                 /* If users can be writing to this page using arbitrary
975                  * virtual addresses, take care about potential aliasing
976                  * before reading the page on the kernel side.
977                  */
978                 if (mapping_writably_mapped(mapping))
979                         flush_dcache_page(page);
980
981                 /*
982                  * When (part of) the same page is read multiple times
983                  * in succession, only mark it as accessed the first time.
984                  */
985                 if (prev_index != index)
986                         mark_page_accessed(page);
987                 prev_index = index;
988
989                 /*
990                  * Ok, we have the page, and it's up-to-date, so
991                  * now we can copy it to user space...
992                  *
993                  * The actor routine returns how many bytes were actually used..
994                  * NOTE! This may not be the same as how much of a user buffer
995                  * we filled up (we may be padding etc), so we can only update
996                  * "pos" here (the actor routine has to update the user buffer
997                  * pointers and the remaining count).
998                  */
999                 ret = actor(desc, page, offset, nr);
1000                 offset += ret;
1001                 index += offset >> PAGE_CACHE_SHIFT;
1002                 offset &= ~PAGE_CACHE_MASK;
1003
1004                 page_cache_release(page);
1005                 if (ret == nr && desc->count)
1006                         continue;
1007                 goto out;
1008
1009 page_not_up_to_date:
1010                 /* Get exclusive access to the page ... */
1011                 lock_page(page);
1012
1013                 /* Did it get unhashed before we got the lock? */
1014                 if (!page->mapping) {
1015                         unlock_page(page);
1016                         page_cache_release(page);
1017                         continue;
1018                 }
1019
1020                 /* Did somebody else fill it already? */
1021                 if (PageUptodate(page)) {
1022                         unlock_page(page);
1023                         goto page_ok;
1024                 }
1025
1026 readpage:
1027                 /* Start the actual read. The read will unlock the page. */
1028                 error = mapping->a_ops->readpage(filp, page);
1029
1030                 if (unlikely(error)) {
1031                         if (error == AOP_TRUNCATED_PAGE) {
1032                                 page_cache_release(page);
1033                                 goto find_page;
1034                         }
1035                         goto readpage_error;
1036                 }
1037
1038                 if (!PageUptodate(page)) {
1039                         lock_page(page);
1040                         if (!PageUptodate(page)) {
1041                                 if (page->mapping == NULL) {
1042                                         /*
1043                                          * invalidate_inode_pages got it
1044                                          */
1045                                         unlock_page(page);
1046                                         page_cache_release(page);
1047                                         goto find_page;
1048                                 }
1049                                 unlock_page(page);
1050                                 error = -EIO;
1051                                 shrink_readahead_size_eio(filp, &ra);
1052                                 goto readpage_error;
1053                         }
1054                         unlock_page(page);
1055                 }
1056
1057                 /*
1058                  * i_size must be checked after we have done ->readpage.
1059                  *
1060                  * Checking i_size after the readpage allows us to calculate
1061                  * the correct value for "nr", which means the zero-filled
1062                  * part of the page is not copied back to userspace (unless
1063                  * another truncate extends the file - this is desired though).
1064                  */
1065                 isize = i_size_read(inode);
1066                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1067                 if (unlikely(!isize || index > end_index)) {
1068                         page_cache_release(page);
1069                         goto out;
1070                 }
1071
1072                 /* nr is the maximum number of bytes to copy from this page */
1073                 nr = PAGE_CACHE_SIZE;
1074                 if (index == end_index) {
1075                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1076                         if (nr <= offset) {
1077                                 page_cache_release(page);
1078                                 goto out;
1079                         }
1080                 }
1081                 nr = nr - offset;
1082                 goto page_ok;
1083
1084 readpage_error:
1085                 /* UHHUH! A synchronous read error occurred. Report it */
1086                 desc->error = error;
1087                 page_cache_release(page);
1088                 goto out;
1089
1090 no_cached_page:
1091                 /*
1092                  * Ok, it wasn't cached, so we need to create a new
1093                  * page..
1094                  */
1095                 if (!cached_page) {
1096                         cached_page = page_cache_alloc_cold(mapping);
1097                         if (!cached_page) {
1098                                 desc->error = -ENOMEM;
1099                                 goto out;
1100                         }
1101                 }
1102                 error = add_to_page_cache_lru(cached_page, mapping,
1103                                                 index, GFP_KERNEL);
1104                 if (error) {
1105                         if (error == -EEXIST)
1106                                 goto find_page;
1107                         desc->error = error;
1108                         goto out;
1109                 }
1110                 page = cached_page;
1111                 cached_page = NULL;
1112                 goto readpage;
1113         }
1114
1115 out:
1116         *_ra = ra;
1117
1118         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1119         if (cached_page)
1120                 page_cache_release(cached_page);
1121         if (filp)
1122                 file_accessed(filp);
1123 }
1124 EXPORT_SYMBOL(do_generic_mapping_read);
1125
1126 int file_read_actor(read_descriptor_t *desc, struct page *page,
1127                         unsigned long offset, unsigned long size)
1128 {
1129         char *kaddr;
1130         unsigned long left, count = desc->count;
1131
1132         if (size > count)
1133                 size = count;
1134
1135         /*
1136          * Faults on the destination of a read are common, so do it before
1137          * taking the kmap.
1138          */
1139         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1140                 kaddr = kmap_atomic(page, KM_USER0);
1141                 left = __copy_to_user_inatomic(desc->arg.buf,
1142                                                 kaddr + offset, size);
1143                 kunmap_atomic(kaddr, KM_USER0);
1144                 if (left == 0)
1145                         goto success;
1146         }
1147
1148         /* Do it the slow way */
1149         kaddr = kmap(page);
1150         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1151         kunmap(page);
1152
1153         if (left) {
1154                 size -= left;
1155                 desc->error = -EFAULT;
1156         }
1157 success:
1158         desc->count = count - size;
1159         desc->written += size;
1160         desc->arg.buf += size;
1161         return size;
1162 }
1163
1164 /**
1165  * __generic_file_aio_read - generic filesystem read routine
1166  * @iocb:       kernel I/O control block
1167  * @iov:        io vector request
1168  * @nr_segs:    number of segments in the iovec
1169  * @ppos:       current file position
1170  *
1171  * This is the "read()" routine for all filesystems
1172  * that can use the page cache directly.
1173  */
1174 ssize_t
1175 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1176                 unsigned long nr_segs, loff_t *ppos)
1177 {
1178         struct file *filp = iocb->ki_filp;
1179         ssize_t retval;
1180         unsigned long seg;
1181         size_t count;
1182
1183         count = 0;
1184         for (seg = 0; seg < nr_segs; seg++) {
1185                 const struct iovec *iv = &iov[seg];
1186
1187                 /*
1188                  * If any segment has a negative length, or the cumulative
1189                  * length ever wraps negative then return -EINVAL.
1190                  */
1191                 count += iv->iov_len;
1192                 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1193                         return -EINVAL;
1194                 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1195                         continue;
1196                 if (seg == 0)
1197                         return -EFAULT;
1198                 nr_segs = seg;
1199                 count -= iv->iov_len;   /* This segment is no good */
1200                 break;
1201         }
1202
1203         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1204         if (filp->f_flags & O_DIRECT) {
1205                 loff_t pos = *ppos, size;
1206                 struct address_space *mapping;
1207                 struct inode *inode;
1208
1209                 mapping = filp->f_mapping;
1210                 inode = mapping->host;
1211                 retval = 0;
1212                 if (!count)
1213                         goto out; /* skip atime */
1214                 size = i_size_read(inode);
1215                 if (pos < size) {
1216                         retval = generic_file_direct_IO(READ, iocb,
1217                                                 iov, pos, nr_segs);
1218                         if (retval > 0 && !is_sync_kiocb(iocb))
1219                                 retval = -EIOCBQUEUED;
1220                         if (retval > 0)
1221                                 *ppos = pos + retval;
1222                 }
1223                 file_accessed(filp);
1224                 goto out;
1225         }
1226
1227         retval = 0;
1228         if (count) {
1229                 for (seg = 0; seg < nr_segs; seg++) {
1230                         read_descriptor_t desc;
1231
1232                         desc.written = 0;
1233                         desc.arg.buf = iov[seg].iov_base;
1234                         desc.count = iov[seg].iov_len;
1235                         if (desc.count == 0)
1236                                 continue;
1237                         desc.error = 0;
1238                         do_generic_file_read(filp,ppos,&desc,file_read_actor,0);
1239                         retval += desc.written;
1240                         if (desc.error) {
1241                                 retval = retval ?: desc.error;
1242                                 break;
1243                         }
1244                 }
1245         }
1246 out:
1247         return retval;
1248 }
1249 EXPORT_SYMBOL(__generic_file_aio_read);
1250
1251 ssize_t
1252 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1253 {
1254         struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1255
1256         BUG_ON(iocb->ki_pos != pos);
1257         return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1258 }
1259 EXPORT_SYMBOL(generic_file_aio_read);
1260
1261 ssize_t
1262 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1263 {
1264         struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1265         struct kiocb kiocb;
1266         ssize_t ret;
1267
1268         init_sync_kiocb(&kiocb, filp);
1269         ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1270         if (-EIOCBQUEUED == ret)
1271                 ret = wait_on_sync_kiocb(&kiocb);
1272         return ret;
1273 }
1274 EXPORT_SYMBOL(generic_file_read);
1275
1276 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1277 {
1278         ssize_t written;
1279         unsigned long count = desc->count;
1280         struct file *file = desc->arg.data;
1281
1282         if (size > count)
1283                 size = count;
1284
1285         written = file->f_op->sendpage(file, page, offset,
1286                                        size, &file->f_pos, size<count);
1287         if (written < 0) {
1288                 desc->error = written;
1289                 written = 0;
1290         }
1291         desc->count = count - written;
1292         desc->written += written;
1293         return written;
1294 }
1295
1296 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1297                          size_t count, read_actor_t actor, void *target)
1298 {
1299         read_descriptor_t desc;
1300
1301         if (!count)
1302                 return 0;
1303
1304         desc.written = 0;
1305         desc.count = count;
1306         desc.arg.data = target;
1307         desc.error = 0;
1308
1309         do_generic_file_read(in_file, ppos, &desc, actor, 0);
1310         if (desc.written)
1311                 return desc.written;
1312         return desc.error;
1313 }
1314 EXPORT_SYMBOL(generic_file_sendfile);
1315
1316 static ssize_t
1317 do_readahead(struct address_space *mapping, struct file *filp,
1318              unsigned long index, unsigned long nr)
1319 {
1320         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1321                 return -EINVAL;
1322
1323         force_page_cache_readahead(mapping, filp, index,
1324                                         max_sane_readahead(nr));
1325         return 0;
1326 }
1327
1328 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1329 {
1330         ssize_t ret;
1331         struct file *file;
1332
1333         ret = -EBADF;
1334         file = fget(fd);
1335         if (file) {
1336                 if (file->f_mode & FMODE_READ) {
1337                         struct address_space *mapping = file->f_mapping;
1338                         unsigned long start = offset >> PAGE_CACHE_SHIFT;
1339                         unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1340                         unsigned long len = end - start + 1;
1341                         ret = do_readahead(mapping, file, start, len);
1342                 }
1343                 fput(file);
1344         }
1345         return ret;
1346 }
1347
1348 #ifdef CONFIG_MMU
1349 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1350 /**
1351  * page_cache_read - adds requested page to the page cache if not already there
1352  * @file:       file to read
1353  * @offset:     page index
1354  *
1355  * This adds the requested page to the page cache if it isn't already there,
1356  * and schedules an I/O to read in its contents from disk.
1357  */
1358 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1359 {
1360         struct address_space *mapping = file->f_mapping;
1361         struct page *page; 
1362         int ret;
1363
1364         do {
1365                 page = page_cache_alloc_cold(mapping);
1366                 if (!page)
1367                         return -ENOMEM;
1368
1369                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1370                 if (ret == 0)
1371                         ret = mapping->a_ops->readpage(file, page);
1372                 else if (ret == -EEXIST)
1373                         ret = 0; /* losing race to add is OK */
1374
1375                 page_cache_release(page);
1376
1377         } while (ret == AOP_TRUNCATED_PAGE);
1378                 
1379         return ret;
1380 }
1381
1382 #define MMAP_LOTSAMISS  (100)
1383
1384 /**
1385  * filemap_nopage - read in file data for page fault handling
1386  * @area:       the applicable vm_area
1387  * @address:    target address to read in
1388  * @type:       returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1389  *
1390  * filemap_nopage() is invoked via the vma operations vector for a
1391  * mapped memory region to read in file data during a page fault.
1392  *
1393  * The goto's are kind of ugly, but this streamlines the normal case of having
1394  * it in the page cache, and handles the special cases reasonably without
1395  * having a lot of duplicated code.
1396  */
1397 struct page *filemap_nopage(struct vm_area_struct *area,
1398                                 unsigned long address, int *type)
1399 {
1400         int error;
1401         struct file *file = area->vm_file;
1402         struct address_space *mapping = file->f_mapping;
1403         struct file_ra_state *ra = &file->f_ra;
1404         struct inode *inode = mapping->host;
1405         struct page *page;
1406         unsigned long size, pgoff;
1407         int did_readaround = 0, majmin = VM_FAULT_MINOR;
1408
1409         pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1410
1411 retry_all:
1412         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1413         if (pgoff >= size)
1414                 goto outside_data_content;
1415
1416         /* If we don't want any read-ahead, don't bother */
1417         if (VM_RandomReadHint(area))
1418                 goto no_cached_page;
1419
1420         /*
1421          * The readahead code wants to be told about each and every page
1422          * so it can build and shrink its windows appropriately
1423          *
1424          * For sequential accesses, we use the generic readahead logic.
1425          */
1426         if (VM_SequentialReadHint(area))
1427                 page_cache_readahead(mapping, ra, file, pgoff, 1);
1428
1429         /*
1430          * Do we have something in the page cache already?
1431          */
1432 retry_find:
1433         page = find_get_page(mapping, pgoff);
1434         if (!page) {
1435                 unsigned long ra_pages;
1436
1437                 if (VM_SequentialReadHint(area)) {
1438                         handle_ra_miss(mapping, ra, pgoff);
1439                         goto no_cached_page;
1440                 }
1441                 ra->mmap_miss++;
1442
1443                 /*
1444                  * Do we miss much more than hit in this file? If so,
1445                  * stop bothering with read-ahead. It will only hurt.
1446                  */
1447                 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1448                         goto no_cached_page;
1449
1450                 /*
1451                  * To keep the pgmajfault counter straight, we need to
1452                  * check did_readaround, as this is an inner loop.
1453                  */
1454                 if (!did_readaround) {
1455                         majmin = VM_FAULT_MAJOR;
1456                         count_vm_event(PGMAJFAULT);
1457                 }
1458                 did_readaround = 1;
1459                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1460                 if (ra_pages) {
1461                         pgoff_t start = 0;
1462
1463                         if (pgoff > ra_pages / 2)
1464                                 start = pgoff - ra_pages / 2;
1465                         do_page_cache_readahead(mapping, file, start, ra_pages);
1466                 }
1467                 page = find_get_page(mapping, pgoff);
1468                 if (!page)
1469                         goto no_cached_page;
1470         }
1471
1472         if (!did_readaround)
1473                 ra->mmap_hit++;
1474
1475         /*
1476          * Ok, found a page in the page cache, now we need to check
1477          * that it's up-to-date.
1478          */
1479         if (!PageUptodate(page))
1480                 goto page_not_uptodate;
1481
1482 success:
1483         /*
1484          * Found the page and have a reference on it.
1485          */
1486         mark_page_accessed(page);
1487         if (type)
1488                 *type = majmin;
1489         return page;
1490
1491 outside_data_content:
1492         /*
1493          * An external ptracer can access pages that normally aren't
1494          * accessible..
1495          */
1496         if (area->vm_mm == current->mm)
1497                 return NULL;
1498         /* Fall through to the non-read-ahead case */
1499 no_cached_page:
1500         /*
1501          * We're only likely to ever get here if MADV_RANDOM is in
1502          * effect.
1503          */
1504         error = page_cache_read(file, pgoff);
1505         grab_swap_token();
1506
1507         /*
1508          * The page we want has now been added to the page cache.
1509          * In the unlikely event that someone removed it in the
1510          * meantime, we'll just come back here and read it again.
1511          */
1512         if (error >= 0)
1513                 goto retry_find;
1514
1515         /*
1516          * An error return from page_cache_read can result if the
1517          * system is low on memory, or a problem occurs while trying
1518          * to schedule I/O.
1519          */
1520         if (error == -ENOMEM)
1521                 return NOPAGE_OOM;
1522         return NULL;
1523
1524 page_not_uptodate:
1525         if (!did_readaround) {
1526                 majmin = VM_FAULT_MAJOR;
1527                 count_vm_event(PGMAJFAULT);
1528         }
1529         lock_page(page);
1530
1531         /* Did it get unhashed while we waited for it? */
1532         if (!page->mapping) {
1533                 unlock_page(page);
1534                 page_cache_release(page);
1535                 goto retry_all;
1536         }
1537
1538         /* Did somebody else get it up-to-date? */
1539         if (PageUptodate(page)) {
1540                 unlock_page(page);
1541                 goto success;
1542         }
1543
1544         error = mapping->a_ops->readpage(file, page);
1545         if (!error) {
1546                 wait_on_page_locked(page);
1547                 if (PageUptodate(page))
1548                         goto success;
1549         } else if (error == AOP_TRUNCATED_PAGE) {
1550                 page_cache_release(page);
1551                 goto retry_find;
1552         }
1553
1554         /*
1555          * Umm, take care of errors if the page isn't up-to-date.
1556          * Try to re-read it _once_. We do this synchronously,
1557          * because there really aren't any performance issues here
1558          * and we need to check for errors.
1559          */
1560         lock_page(page);
1561
1562         /* Somebody truncated the page on us? */
1563         if (!page->mapping) {
1564                 unlock_page(page);
1565                 page_cache_release(page);
1566                 goto retry_all;
1567         }
1568
1569         /* Somebody else successfully read it in? */
1570         if (PageUptodate(page)) {
1571                 unlock_page(page);
1572                 goto success;
1573         }
1574         ClearPageError(page);
1575         error = mapping->a_ops->readpage(file, page);
1576         if (!error) {
1577                 wait_on_page_locked(page);
1578                 if (PageUptodate(page))
1579                         goto success;
1580         } else if (error == AOP_TRUNCATED_PAGE) {
1581                 page_cache_release(page);
1582                 goto retry_find;
1583         }
1584
1585         /*
1586          * Things didn't work out. Return zero to tell the
1587          * mm layer so, possibly freeing the page cache page first.
1588          */
1589         shrink_readahead_size_eio(file, ra);
1590         page_cache_release(page);
1591         return NULL;
1592 }
1593 EXPORT_SYMBOL(filemap_nopage);
1594
1595 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1596                                         int nonblock)
1597 {
1598         struct address_space *mapping = file->f_mapping;
1599         struct page *page;
1600         int error;
1601
1602         /*
1603          * Do we have something in the page cache already?
1604          */
1605 retry_find:
1606         page = find_get_page(mapping, pgoff);
1607         if (!page) {
1608                 if (nonblock)
1609                         return NULL;
1610                 goto no_cached_page;
1611         }
1612
1613         /*
1614          * Ok, found a page in the page cache, now we need to check
1615          * that it's up-to-date.
1616          */
1617         if (!PageUptodate(page)) {
1618                 if (nonblock) {
1619                         page_cache_release(page);
1620                         return NULL;
1621                 }
1622                 goto page_not_uptodate;
1623         }
1624
1625 success:
1626         /*
1627          * Found the page and have a reference on it.
1628          */
1629         mark_page_accessed(page);
1630         return page;
1631
1632 no_cached_page:
1633         error = page_cache_read(file, pgoff);
1634
1635         /*
1636          * The page we want has now been added to the page cache.
1637          * In the unlikely event that someone removed it in the
1638          * meantime, we'll just come back here and read it again.
1639          */
1640         if (error >= 0)
1641                 goto retry_find;
1642
1643         /*
1644          * An error return from page_cache_read can result if the
1645          * system is low on memory, or a problem occurs while trying
1646          * to schedule I/O.
1647          */
1648         return NULL;
1649
1650 page_not_uptodate:
1651         lock_page(page);
1652
1653         /* Did it get unhashed while we waited for it? */
1654         if (!page->mapping) {
1655                 unlock_page(page);
1656                 goto err;
1657         }
1658
1659         /* Did somebody else get it up-to-date? */
1660         if (PageUptodate(page)) {
1661                 unlock_page(page);
1662                 goto success;
1663         }
1664
1665         error = mapping->a_ops->readpage(file, page);
1666         if (!error) {
1667                 wait_on_page_locked(page);
1668                 if (PageUptodate(page))
1669                         goto success;
1670         } else if (error == AOP_TRUNCATED_PAGE) {
1671                 page_cache_release(page);
1672                 goto retry_find;
1673         }
1674
1675         /*
1676          * Umm, take care of errors if the page isn't up-to-date.
1677          * Try to re-read it _once_. We do this synchronously,
1678          * because there really aren't any performance issues here
1679          * and we need to check for errors.
1680          */
1681         lock_page(page);
1682
1683         /* Somebody truncated the page on us? */
1684         if (!page->mapping) {
1685                 unlock_page(page);
1686                 goto err;
1687         }
1688         /* Somebody else successfully read it in? */
1689         if (PageUptodate(page)) {
1690                 unlock_page(page);
1691                 goto success;
1692         }
1693
1694         ClearPageError(page);
1695         error = mapping->a_ops->readpage(file, page);
1696         if (!error) {
1697                 wait_on_page_locked(page);
1698                 if (PageUptodate(page))
1699                         goto success;
1700         } else if (error == AOP_TRUNCATED_PAGE) {
1701                 page_cache_release(page);
1702                 goto retry_find;
1703         }
1704
1705         /*
1706          * Things didn't work out. Return zero to tell the
1707          * mm layer so, possibly freeing the page cache page first.
1708          */
1709 err:
1710         page_cache_release(page);
1711
1712         return NULL;
1713 }
1714
1715 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1716                 unsigned long len, pgprot_t prot, unsigned long pgoff,
1717                 int nonblock)
1718 {
1719         struct file *file = vma->vm_file;
1720         struct address_space *mapping = file->f_mapping;
1721         struct inode *inode = mapping->host;
1722         unsigned long size;
1723         struct mm_struct *mm = vma->vm_mm;
1724         struct page *page;
1725         int err;
1726
1727         if (!nonblock)
1728                 force_page_cache_readahead(mapping, vma->vm_file,
1729                                         pgoff, len >> PAGE_CACHE_SHIFT);
1730
1731 repeat:
1732         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1733         if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1734                 return -EINVAL;
1735
1736         page = filemap_getpage(file, pgoff, nonblock);
1737
1738         /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1739          * done in shmem_populate calling shmem_getpage */
1740         if (!page && !nonblock)
1741                 return -ENOMEM;
1742
1743         if (page) {
1744                 err = install_page(mm, vma, addr, page, prot);
1745                 if (err) {
1746                         page_cache_release(page);
1747                         return err;
1748                 }
1749         } else if (vma->vm_flags & VM_NONLINEAR) {
1750                 /* No page was found just because we can't read it in now (being
1751                  * here implies nonblock != 0), but the page may exist, so set
1752                  * the PTE to fault it in later. */
1753                 err = install_file_pte(mm, vma, addr, pgoff, prot);
1754                 if (err)
1755                         return err;
1756         }
1757
1758         len -= PAGE_SIZE;
1759         addr += PAGE_SIZE;
1760         pgoff++;
1761         if (len)
1762                 goto repeat;
1763
1764         return 0;
1765 }
1766 EXPORT_SYMBOL(filemap_populate);
1767
1768 struct vm_operations_struct generic_file_vm_ops = {
1769         .nopage         = filemap_nopage,
1770         .populate       = filemap_populate,
1771 };
1772
1773 /* This is used for a general mmap of a disk file */
1774
1775 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1776 {
1777         struct address_space *mapping = file->f_mapping;
1778
1779         if (!mapping->a_ops->readpage)
1780                 return -ENOEXEC;
1781         file_accessed(file);
1782         vma->vm_ops = &generic_file_vm_ops;
1783         return 0;
1784 }
1785
1786 /*
1787  * This is for filesystems which do not implement ->writepage.
1788  */
1789 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1790 {
1791         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1792                 return -EINVAL;
1793         return generic_file_mmap(file, vma);
1794 }
1795 #else
1796 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1797 {
1798         return -ENOSYS;
1799 }
1800 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1801 {
1802         return -ENOSYS;
1803 }
1804 #endif /* CONFIG_MMU */
1805
1806 EXPORT_SYMBOL(generic_file_mmap);
1807 EXPORT_SYMBOL(generic_file_readonly_mmap);
1808
1809 static inline struct page *__read_cache_page(struct address_space *mapping,
1810                                 unsigned long index,
1811                                 int (*filler)(void *,struct page*),
1812                                 void *data)
1813 {
1814         struct page *page, *cached_page = NULL;
1815         int err;
1816 repeat:
1817         page = find_get_page(mapping, index);
1818         if (!page) {
1819                 if (!cached_page) {
1820                         cached_page = page_cache_alloc_cold(mapping);
1821                         if (!cached_page)
1822                                 return ERR_PTR(-ENOMEM);
1823                 }
1824                 err = add_to_page_cache_lru(cached_page, mapping,
1825                                         index, GFP_KERNEL);
1826                 if (err == -EEXIST)
1827                         goto repeat;
1828                 if (err < 0) {
1829                         /* Presumably ENOMEM for radix tree node */
1830                         page_cache_release(cached_page);
1831                         return ERR_PTR(err);
1832                 }
1833                 page = cached_page;
1834                 cached_page = NULL;
1835                 err = filler(data, page);
1836                 if (err < 0) {
1837                         page_cache_release(page);
1838                         page = ERR_PTR(err);
1839                 }
1840         }
1841         if (cached_page)
1842                 page_cache_release(cached_page);
1843         return page;
1844 }
1845
1846 /**
1847  * read_cache_page - read into page cache, fill it if needed
1848  * @mapping:    the page's address_space
1849  * @index:      the page index
1850  * @filler:     function to perform the read
1851  * @data:       destination for read data
1852  *
1853  * Read into the page cache. If a page already exists,
1854  * and PageUptodate() is not set, try to fill the page.
1855  */
1856 struct page *read_cache_page(struct address_space *mapping,
1857                                 unsigned long index,
1858                                 int (*filler)(void *,struct page*),
1859                                 void *data)
1860 {
1861         struct page *page;
1862         int err;
1863
1864 retry:
1865         page = __read_cache_page(mapping, index, filler, data);
1866         if (IS_ERR(page))
1867                 goto out;
1868         mark_page_accessed(page);
1869         if (PageUptodate(page))
1870                 goto out;
1871
1872         lock_page(page);
1873         if (!page->mapping) {
1874                 unlock_page(page);
1875                 page_cache_release(page);
1876                 goto retry;
1877         }
1878         if (PageUptodate(page)) {
1879                 unlock_page(page);
1880                 goto out;
1881         }
1882         err = filler(data, page);
1883         if (err < 0) {
1884                 page_cache_release(page);
1885                 page = ERR_PTR(err);
1886         }
1887  out:
1888         return page;
1889 }
1890 EXPORT_SYMBOL(read_cache_page);
1891
1892 /*
1893  * If the page was newly created, increment its refcount and add it to the
1894  * caller's lru-buffering pagevec.  This function is specifically for
1895  * generic_file_write().
1896  */
1897 static inline struct page *
1898 __grab_cache_page(struct address_space *mapping, unsigned long index,
1899                         struct page **cached_page, struct pagevec *lru_pvec)
1900 {
1901         int err;
1902         struct page *page;
1903 repeat:
1904         page = find_lock_page(mapping, index);
1905         if (!page) {
1906                 if (!*cached_page) {
1907                         *cached_page = page_cache_alloc(mapping);
1908                         if (!*cached_page)
1909                                 return NULL;
1910                 }
1911                 err = add_to_page_cache(*cached_page, mapping,
1912                                         index, GFP_KERNEL);
1913                 if (err == -EEXIST)
1914                         goto repeat;
1915                 if (err == 0) {
1916                         page = *cached_page;
1917                         page_cache_get(page);
1918                         if (!pagevec_add(lru_pvec, page))
1919                                 __pagevec_lru_add(lru_pvec);
1920                         *cached_page = NULL;
1921                 }
1922         }
1923         return page;
1924 }
1925
1926 /*
1927  * The logic we want is
1928  *
1929  *      if suid or (sgid and xgrp)
1930  *              remove privs
1931  */
1932 int remove_suid(struct dentry *dentry)
1933 {
1934         mode_t mode = dentry->d_inode->i_mode;
1935         int kill = 0;
1936         int result = 0;
1937
1938         /* suid always must be killed */
1939         if (unlikely(mode & S_ISUID))
1940                 kill = ATTR_KILL_SUID;
1941
1942         /*
1943          * sgid without any exec bits is just a mandatory locking mark; leave
1944          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1945          */
1946         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1947                 kill |= ATTR_KILL_SGID;
1948
1949         if (unlikely(kill && !capable(CAP_FSETID))) {
1950                 struct iattr newattrs;
1951
1952                 newattrs.ia_valid = ATTR_FORCE | kill;
1953                 result = notify_change(dentry, &newattrs);
1954         }
1955         return result;
1956 }
1957 EXPORT_SYMBOL(remove_suid);
1958
1959 size_t
1960 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1961                         const struct iovec *iov, size_t base, size_t bytes)
1962 {
1963         size_t copied = 0, left = 0;
1964
1965         while (bytes) {
1966                 char __user *buf = iov->iov_base + base;
1967                 int copy = min(bytes, iov->iov_len - base);
1968
1969                 base = 0;
1970                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1971                 copied += copy;
1972                 bytes -= copy;
1973                 vaddr += copy;
1974                 iov++;
1975
1976                 if (unlikely(left))
1977                         break;
1978         }
1979         return copied - left;
1980 }
1981
1982 /*
1983  * Performs necessary checks before doing a write
1984  *
1985  * Can adjust writing position or amount of bytes to write.
1986  * Returns appropriate error code that caller should return or
1987  * zero in case that write should be allowed.
1988  */
1989 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1990 {
1991         struct inode *inode = file->f_mapping->host;
1992         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1993
1994         if (unlikely(*pos < 0))
1995                 return -EINVAL;
1996
1997         if (!isblk) {
1998                 /* FIXME: this is for backwards compatibility with 2.4 */
1999                 if (file->f_flags & O_APPEND)
2000                         *pos = i_size_read(inode);
2001
2002                 if (limit != RLIM_INFINITY) {
2003                         if (*pos >= limit) {
2004                                 send_sig(SIGXFSZ, current, 0);
2005                                 return -EFBIG;
2006                         }
2007                         if (*count > limit - (typeof(limit))*pos) {
2008                                 *count = limit - (typeof(limit))*pos;
2009                         }
2010                 }
2011         }
2012
2013         /*
2014          * LFS rule
2015          */
2016         if (unlikely(*pos + *count > MAX_NON_LFS &&
2017                                 !(file->f_flags & O_LARGEFILE))) {
2018                 if (*pos >= MAX_NON_LFS) {
2019                         send_sig(SIGXFSZ, current, 0);
2020                         return -EFBIG;
2021                 }
2022                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2023                         *count = MAX_NON_LFS - (unsigned long)*pos;
2024                 }
2025         }
2026
2027         /*
2028          * Are we about to exceed the fs block limit ?
2029          *
2030          * If we have written data it becomes a short write.  If we have
2031          * exceeded without writing data we send a signal and return EFBIG.
2032          * Linus frestrict idea will clean these up nicely..
2033          */
2034         if (likely(!isblk)) {
2035                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2036                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2037                                 send_sig(SIGXFSZ, current, 0);
2038                                 return -EFBIG;
2039                         }
2040                         /* zero-length writes at ->s_maxbytes are OK */
2041                 }
2042
2043                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2044                         *count = inode->i_sb->s_maxbytes - *pos;
2045         } else {
2046                 loff_t isize;
2047                 if (bdev_read_only(I_BDEV(inode)))
2048                         return -EPERM;
2049                 isize = i_size_read(inode);
2050                 if (*pos >= isize) {
2051                         if (*count || *pos > isize)
2052                                 return -ENOSPC;
2053                 }
2054
2055                 if (*pos + *count > isize)
2056                         *count = isize - *pos;
2057         }
2058         return 0;
2059 }
2060 EXPORT_SYMBOL(generic_write_checks);
2061
2062 ssize_t
2063 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2064                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2065                 size_t count, size_t ocount)
2066 {
2067         struct file     *file = iocb->ki_filp;
2068         struct address_space *mapping = file->f_mapping;
2069         struct inode    *inode = mapping->host;
2070         ssize_t         written;
2071
2072         if (count != ocount)
2073                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2074
2075         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2076         if (written > 0) {
2077                 loff_t end = pos + written;
2078                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2079                         i_size_write(inode,  end);
2080                         mark_inode_dirty(inode);
2081                 }
2082                 *ppos = end;
2083         }
2084
2085         /*
2086          * Sync the fs metadata but not the minor inode changes and
2087          * of course not the data as we did direct DMA for the IO.
2088          * i_mutex is held, which protects generic_osync_inode() from
2089          * livelocking.
2090          */
2091         if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2092                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2093                 if (err < 0)
2094                         written = err;
2095         }
2096         if (written == count && !is_sync_kiocb(iocb))
2097                 written = -EIOCBQUEUED;
2098         return written;
2099 }
2100 EXPORT_SYMBOL(generic_file_direct_write);
2101
2102 ssize_t
2103 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2104                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2105                 size_t count, ssize_t written)
2106 {
2107         struct file *file = iocb->ki_filp;
2108         struct address_space * mapping = file->f_mapping;
2109         const struct address_space_operations *a_ops = mapping->a_ops;
2110         struct inode    *inode = mapping->host;
2111         long            status = 0;
2112         struct page     *page;
2113         struct page     *cached_page = NULL;
2114         size_t          bytes;
2115         struct pagevec  lru_pvec;
2116         const struct iovec *cur_iov = iov; /* current iovec */
2117         size_t          iov_base = 0;      /* offset in the current iovec */
2118         char __user     *buf;
2119
2120         pagevec_init(&lru_pvec, 0);
2121
2122         /*
2123          * handle partial DIO write.  Adjust cur_iov if needed.
2124          */
2125         if (likely(nr_segs == 1))
2126                 buf = iov->iov_base + written;
2127         else {
2128                 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2129                 buf = cur_iov->iov_base + iov_base;
2130         }
2131
2132         do {
2133                 unsigned long index;
2134                 unsigned long offset;
2135                 size_t copied;
2136
2137                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2138                 index = pos >> PAGE_CACHE_SHIFT;
2139                 bytes = PAGE_CACHE_SIZE - offset;
2140
2141                 /* Limit the size of the copy to the caller's write size */
2142                 bytes = min(bytes, count);
2143
2144                 /*
2145                  * Limit the size of the copy to that of the current segment,
2146                  * because fault_in_pages_readable() doesn't know how to walk
2147                  * segments.
2148                  */
2149                 bytes = min(bytes, cur_iov->iov_len - iov_base);
2150
2151                 /*
2152                  * Bring in the user page that we will copy from _first_.
2153                  * Otherwise there's a nasty deadlock on copying from the
2154                  * same page as we're writing to, without it being marked
2155                  * up-to-date.
2156                  */
2157                 fault_in_pages_readable(buf, bytes);
2158
2159                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2160                 if (!page) {
2161                         status = -ENOMEM;
2162                         break;
2163                 }
2164
2165                 if (unlikely(bytes == 0)) {
2166                         status = 0;
2167                         copied = 0;
2168                         goto zero_length_segment;
2169                 }
2170
2171                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2172                 if (unlikely(status)) {
2173                         loff_t isize = i_size_read(inode);
2174
2175                         if (status != AOP_TRUNCATED_PAGE)
2176                                 unlock_page(page);
2177                         page_cache_release(page);
2178                         if (status == AOP_TRUNCATED_PAGE)
2179                                 continue;
2180                         /*
2181                          * prepare_write() may have instantiated a few blocks
2182                          * outside i_size.  Trim these off again.
2183                          */
2184                         if (pos + bytes > isize)
2185                                 vmtruncate(inode, isize);
2186                         break;
2187                 }
2188                 if (likely(nr_segs == 1))
2189                         copied = filemap_copy_from_user(page, offset,
2190                                                         buf, bytes);
2191                 else
2192                         copied = filemap_copy_from_user_iovec(page, offset,
2193                                                 cur_iov, iov_base, bytes);
2194                 flush_dcache_page(page);
2195                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2196                 if (status == AOP_TRUNCATED_PAGE) {
2197                         page_cache_release(page);
2198                         continue;
2199                 }
2200 zero_length_segment:
2201                 if (likely(copied >= 0)) {
2202                         if (!status)
2203                                 status = copied;
2204
2205                         if (status >= 0) {
2206                                 written += status;
2207                                 count -= status;
2208                                 pos += status;
2209                                 buf += status;
2210                                 if (unlikely(nr_segs > 1)) {
2211                                         filemap_set_next_iovec(&cur_iov,
2212                                                         &iov_base, status);
2213                                         if (count)
2214                                                 buf = cur_iov->iov_base +
2215                                                         iov_base;
2216                                 } else {
2217                                         iov_base += status;
2218                                 }
2219                         }
2220                 }
2221                 if (unlikely(copied != bytes))
2222                         if (status >= 0)
2223                                 status = -EFAULT;
2224                 unlock_page(page);
2225                 mark_page_accessed(page);
2226                 page_cache_release(page);
2227                 if (status < 0)
2228                         break;
2229                 balance_dirty_pages_ratelimited(mapping);
2230                 cond_resched();
2231         } while (count);
2232         *ppos = pos;
2233
2234         if (cached_page)
2235                 page_cache_release(cached_page);
2236
2237         /*
2238          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2239          */
2240         if (likely(status >= 0)) {
2241                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2242                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2243                                 status = generic_osync_inode(inode, mapping,
2244                                                 OSYNC_METADATA|OSYNC_DATA);
2245                 }
2246         }
2247         
2248         /*
2249          * If we get here for O_DIRECT writes then we must have fallen through
2250          * to buffered writes (block instantiation inside i_size).  So we sync
2251          * the file data here, to try to honour O_DIRECT expectations.
2252          */
2253         if (unlikely(file->f_flags & O_DIRECT) && written)
2254                 status = filemap_write_and_wait(mapping);
2255
2256         pagevec_lru_add(&lru_pvec);
2257         return written ? written : status;
2258 }
2259 EXPORT_SYMBOL(generic_file_buffered_write);
2260
2261 /*
2262  * This writes the data from the source page to the specified page offset in
2263  * the nominated file
2264  * - the source page does not need to have any association with the file or the
2265  *   page offset
2266  */
2267 int
2268 generic_file_buffered_write_one_kernel_page(struct address_space *mapping,
2269                                             pgoff_t index,
2270                                             struct page *src)
2271 {
2272         const struct address_space_operations *a_ops = mapping->a_ops;
2273         struct pagevec  lru_pvec;
2274         struct page *page, *cached_page = NULL;
2275         long status = 0;
2276
2277         pagevec_init(&lru_pvec, 0);
2278
2279 #if 0
2280         if (mapping->tree_lock.magic != RWLOCK_MAGIC)
2281                 printk("RWLOCK magic incorrect: %x != %x\n",
2282                        mapping->tree_lock.magic, RWLOCK_MAGIC);
2283 #endif
2284
2285         page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);
2286         if (!page) {
2287                 BUG_ON(cached_page);
2288                 return -ENOMEM;
2289         }
2290
2291         status = a_ops->prepare_write(NULL, page, 0, PAGE_CACHE_SIZE);
2292         if (unlikely(status)) {
2293                 loff_t isize = i_size_read(mapping->host);
2294
2295                 if (status != AOP_TRUNCATED_PAGE)
2296                         unlock_page(page);
2297                 page_cache_release(page);
2298                 if (status == AOP_TRUNCATED_PAGE)
2299                         goto sync;
2300
2301                 /* prepare_write() may have instantiated a few blocks outside
2302                  * i_size.  Trim these off again.
2303                  */
2304                 if ((1ULL << (index + 1)) > isize)
2305                         vmtruncate(mapping->host, isize);
2306                 goto sync;
2307         }
2308
2309         copy_highpage(page, src);
2310         flush_dcache_page(page);
2311
2312         status = a_ops->commit_write(NULL, page, 0, PAGE_CACHE_SIZE);
2313         if (status == AOP_TRUNCATED_PAGE) {
2314                 page_cache_release(page);
2315                 goto sync;
2316         }
2317
2318         if (status > 0)
2319                 status = 0;
2320
2321         unlock_page(page);
2322         mark_page_accessed(page);
2323         page_cache_release(page);
2324         if (status < 0)
2325                 return status;
2326
2327         balance_dirty_pages_ratelimited(mapping);
2328         cond_resched();
2329
2330 sync:
2331         if (cached_page)
2332                 page_cache_release(cached_page);
2333
2334         /* the caller must handle O_SYNC themselves, but we handle S_SYNC and
2335          * MS_SYNCHRONOUS here */
2336         if (unlikely(IS_SYNC(mapping->host)) && !a_ops->writepage)
2337                 status = generic_osync_inode(mapping->host, mapping,
2338                                              OSYNC_METADATA | OSYNC_DATA);
2339
2340         /* the caller must handle O_DIRECT for themselves */
2341
2342         pagevec_lru_add(&lru_pvec);
2343         return status;
2344 }
2345 EXPORT_SYMBOL(generic_file_buffered_write_one_kernel_page);
2346
2347 static ssize_t
2348 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2349                                 unsigned long nr_segs, loff_t *ppos)
2350 {
2351         struct file *file = iocb->ki_filp;
2352         const struct address_space * mapping = file->f_mapping;
2353         size_t ocount;          /* original count */
2354         size_t count;           /* after file limit checks */
2355         struct inode    *inode = mapping->host;
2356         unsigned long   seg;
2357         loff_t          pos;
2358         ssize_t         written;
2359         ssize_t         err;
2360
2361         ocount = 0;
2362         for (seg = 0; seg < nr_segs; seg++) {
2363                 const struct iovec *iv = &iov[seg];
2364
2365                 /*
2366                  * If any segment has a negative length, or the cumulative
2367                  * length ever wraps negative then return -EINVAL.
2368                  */
2369                 ocount += iv->iov_len;
2370                 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2371                         return -EINVAL;
2372                 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2373                         continue;
2374                 if (seg == 0)
2375                         return -EFAULT;
2376                 nr_segs = seg;
2377                 ocount -= iv->iov_len;  /* This segment is no good */
2378                 break;
2379         }
2380
2381         count = ocount;
2382         pos = *ppos;
2383
2384         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2385
2386         /* We can write back this queue in page reclaim */
2387         current->backing_dev_info = mapping->backing_dev_info;
2388         written = 0;
2389
2390         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2391         if (err)
2392                 goto out;
2393
2394         if (count == 0)
2395                 goto out;
2396
2397         err = remove_suid(file->f_dentry);
2398         if (err)
2399                 goto out;
2400
2401         file_update_time(file);
2402
2403         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2404         if (unlikely(file->f_flags & O_DIRECT)) {
2405                 written = generic_file_direct_write(iocb, iov,
2406                                 &nr_segs, pos, ppos, count, ocount);
2407                 if (written < 0 || written == count)
2408                         goto out;
2409                 /*
2410                  * direct-io write to a hole: fall through to buffered I/O
2411                  * for completing the rest of the request.
2412                  */
2413                 pos += written;
2414                 count -= written;
2415         }
2416
2417         written = generic_file_buffered_write(iocb, iov, nr_segs,
2418                         pos, ppos, count, written);
2419 out:
2420         current->backing_dev_info = NULL;
2421         return written ? written : err;
2422 }
2423 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2424
2425 ssize_t
2426 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2427                                 unsigned long nr_segs, loff_t *ppos)
2428 {
2429         struct file *file = iocb->ki_filp;
2430         struct address_space *mapping = file->f_mapping;
2431         struct inode *inode = mapping->host;
2432         ssize_t ret;
2433         loff_t pos = *ppos;
2434
2435         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2436
2437         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2438                 int err;
2439
2440                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2441                 if (err < 0)
2442                         ret = err;
2443         }
2444         return ret;
2445 }
2446
2447 static ssize_t
2448 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2449                                 unsigned long nr_segs, loff_t *ppos)
2450 {
2451         struct kiocb kiocb;
2452         ssize_t ret;
2453
2454         init_sync_kiocb(&kiocb, file);
2455         ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2456         if (ret == -EIOCBQUEUED)
2457                 ret = wait_on_sync_kiocb(&kiocb);
2458         return ret;
2459 }
2460
2461 ssize_t
2462 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2463                                 unsigned long nr_segs, loff_t *ppos)
2464 {
2465         struct kiocb kiocb;
2466         ssize_t ret;
2467
2468         init_sync_kiocb(&kiocb, file);
2469         ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2470         if (-EIOCBQUEUED == ret)
2471                 ret = wait_on_sync_kiocb(&kiocb);
2472         return ret;
2473 }
2474 EXPORT_SYMBOL(generic_file_write_nolock);
2475
2476 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2477                                size_t count, loff_t pos)
2478 {
2479         struct file *file = iocb->ki_filp;
2480         struct address_space *mapping = file->f_mapping;
2481         struct inode *inode = mapping->host;
2482         ssize_t ret;
2483         struct iovec local_iov = { .iov_base = (void __user *)buf,
2484                                         .iov_len = count };
2485
2486         BUG_ON(iocb->ki_pos != pos);
2487
2488         mutex_lock(&inode->i_mutex);
2489         ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2490                                                 &iocb->ki_pos);
2491         mutex_unlock(&inode->i_mutex);
2492
2493         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2494                 ssize_t err;
2495
2496                 err = sync_page_range(inode, mapping, pos, ret);
2497                 if (err < 0)
2498                         ret = err;
2499         }
2500         return ret;
2501 }
2502 EXPORT_SYMBOL(generic_file_aio_write);
2503
2504 ssize_t generic_file_write(struct file *file, const char __user *buf,
2505                            size_t count, loff_t *ppos)
2506 {
2507         struct address_space *mapping = file->f_mapping;
2508         struct inode *inode = mapping->host;
2509         ssize_t ret;
2510         struct iovec local_iov = { .iov_base = (void __user *)buf,
2511                                         .iov_len = count };
2512
2513         mutex_lock(&inode->i_mutex);
2514         ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2515         mutex_unlock(&inode->i_mutex);
2516
2517         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2518                 ssize_t err;
2519
2520                 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2521                 if (err < 0)
2522                         ret = err;
2523         }
2524         return ret;
2525 }
2526 EXPORT_SYMBOL(generic_file_write);
2527
2528 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2529                         unsigned long nr_segs, loff_t *ppos)
2530 {
2531         struct kiocb kiocb;
2532         ssize_t ret;
2533
2534         init_sync_kiocb(&kiocb, filp);
2535         ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2536         if (-EIOCBQUEUED == ret)
2537                 ret = wait_on_sync_kiocb(&kiocb);
2538         return ret;
2539 }
2540 EXPORT_SYMBOL(generic_file_readv);
2541
2542 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2543                         unsigned long nr_segs, loff_t *ppos)
2544 {
2545         struct address_space *mapping = file->f_mapping;
2546         struct inode *inode = mapping->host;
2547         ssize_t ret;
2548
2549         mutex_lock(&inode->i_mutex);
2550         ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2551         mutex_unlock(&inode->i_mutex);
2552
2553         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2554                 int err;
2555
2556                 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2557                 if (err < 0)
2558                         ret = err;
2559         }
2560         return ret;
2561 }
2562 EXPORT_SYMBOL(generic_file_writev);
2563
2564 /*
2565  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2566  * went wrong during pagecache shootdown.
2567  */
2568 static ssize_t
2569 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2570         loff_t offset, unsigned long nr_segs)
2571 {
2572         struct file *file = iocb->ki_filp;
2573         struct address_space *mapping = file->f_mapping;
2574         ssize_t retval;
2575         size_t write_len = 0;
2576
2577         /*
2578          * If it's a write, unmap all mmappings of the file up-front.  This
2579          * will cause any pte dirty bits to be propagated into the pageframes
2580          * for the subsequent filemap_write_and_wait().
2581          */
2582         if (rw == WRITE) {
2583                 write_len = iov_length(iov, nr_segs);
2584                 if (mapping_mapped(mapping))
2585                         unmap_mapping_range(mapping, offset, write_len, 0);
2586         }
2587
2588         retval = filemap_write_and_wait(mapping);
2589         if (retval == 0) {
2590                 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2591                                                 offset, nr_segs);
2592                 if (rw == WRITE && mapping->nrpages) {
2593                         pgoff_t end = (offset + write_len - 1)
2594                                                 >> PAGE_CACHE_SHIFT;
2595                         int err = invalidate_inode_pages2_range(mapping,
2596                                         offset >> PAGE_CACHE_SHIFT, end);
2597                         if (err)
2598                                 retval = err;
2599                 }
2600         }
2601         return retval;
2602 }