fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45         loff_t offset, unsigned long nr_segs);
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock               (vmtruncate)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->i_mutex                   (generic_file_buffered_write)
79  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock                 (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
103  *    ->inode_lock              (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock             (proc_pid_lookup)
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124
125 void remove_from_page_cache(struct page *page)
126 {
127         struct address_space *mapping = page->mapping;
128
129         BUG_ON(!PageLocked(page));
130
131         write_lock_irq(&mapping->tree_lock);
132         __remove_from_page_cache(page);
133         write_unlock_irq(&mapping->tree_lock);
134 }
135
136 static int sync_page(void *word)
137 {
138         struct address_space *mapping;
139         struct page *page;
140
141         page = container_of((unsigned long *)word, struct page, flags);
142
143         /*
144          * page_mapping() is being called without PG_locked held.
145          * Some knowledge of the state and use of the page is used to
146          * reduce the requirements down to a memory barrier.
147          * The danger here is of a stale page_mapping() return value
148          * indicating a struct address_space different from the one it's
149          * associated with when it is associated with one.
150          * After smp_mb(), it's either the correct page_mapping() for
151          * the page, or an old page_mapping() and the page's own
152          * page_mapping() has gone NULL.
153          * The ->sync_page() address_space operation must tolerate
154          * page_mapping() going NULL. By an amazing coincidence,
155          * this comes about because none of the users of the page
156          * in the ->sync_page() methods make essential use of the
157          * page_mapping(), merely passing the page down to the backing
158          * device's unplug functions when it's non-NULL, which in turn
159          * ignore it for all cases but swap, where only page_private(page) is
160          * of interest. When page_mapping() does go NULL, the entire
161          * call stack gracefully ignores the page and returns.
162          * -- wli
163          */
164         smp_mb();
165         mapping = page_mapping(page);
166         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167                 mapping->a_ops->sync_page(page);
168         io_schedule();
169         return 0;
170 }
171
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:    address space structure to write
175  * @start:      offset in bytes where the range starts
176  * @end:        offset in bytes where the range ends (inclusive)
177  * @sync_mode:  enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188                                 loff_t end, int sync_mode)
189 {
190         int ret;
191         struct writeback_control wbc = {
192                 .sync_mode = sync_mode,
193                 .nr_to_write = mapping->nrpages * 2,
194                 .range_start = start,
195                 .range_end = end,
196         };
197
198         if (!mapping_cap_writeback_dirty(mapping))
199                 return 0;
200
201         ret = do_writepages(mapping, &wbc);
202         return ret;
203 }
204
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206         int sync_mode)
207 {
208         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218                                 loff_t end)
219 {
220         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:    target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:    target address_space
239  * @start:      beginning page index
240  * @end:        ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246                                 pgoff_t start, pgoff_t end)
247 {
248         struct pagevec pvec;
249         int nr_pages;
250         int ret = 0;
251         pgoff_t index;
252
253         if (end < start)
254                 return 0;
255
256         pagevec_init(&pvec, 0);
257         index = start;
258         while ((index <= end) &&
259                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260                         PAGECACHE_TAG_WRITEBACK,
261                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262                 unsigned i;
263
264                 for (i = 0; i < nr_pages; i++) {
265                         struct page *page = pvec.pages[i];
266
267                         /* until radix tree lookup accepts end_index */
268                         if (page->index > end)
269                                 continue;
270
271                         wait_on_page_writeback(page);
272                         if (PageError(page))
273                                 ret = -EIO;
274                 }
275                 pagevec_release(&pvec);
276                 cond_resched();
277         }
278
279         /* Check for outstanding write errors */
280         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281                 ret = -ENOSPC;
282         if (test_and_clear_bit(AS_EIO, &mapping->flags))
283                 ret = -EIO;
284
285         return ret;
286 }
287
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:      target inode
291  * @mapping:    target address_space
292  * @pos:        beginning offset in pages to write
293  * @count:      number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303                         loff_t pos, loff_t count)
304 {
305         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307         int ret;
308
309         if (!mapping_cap_writeback_dirty(mapping) || !count)
310                 return 0;
311         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312         if (ret == 0) {
313                 mutex_lock(&inode->i_mutex);
314                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315                 mutex_unlock(&inode->i_mutex);
316         }
317         if (ret == 0)
318                 ret = wait_on_page_writeback_range(mapping, start, end);
319         return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322
323 /**
324  * sync_page_range_nolock
325  * @inode:      target inode
326  * @mapping:    target address_space
327  * @pos:        beginning offset in pages to write
328  * @count:      number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335                            loff_t pos, loff_t count)
336 {
337         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339         int ret;
340
341         if (!mapping_cap_writeback_dirty(mapping) || !count)
342                 return 0;
343         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344         if (ret == 0)
345                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346         if (ret == 0)
347                 ret = wait_on_page_writeback_range(mapping, start, end);
348         return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361         loff_t i_size = i_size_read(mapping->host);
362
363         if (i_size == 0)
364                 return 0;
365
366         return wait_on_page_writeback_range(mapping, 0,
367                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373         int err = 0;
374
375         if (mapping->nrpages) {
376                 err = filemap_fdatawrite(mapping);
377                 /*
378                  * Even if the above returned error, the pages may be
379                  * written partially (e.g. -ENOSPC), so we wait for it.
380                  * But the -EIO is special case, it may indicate the worst
381                  * thing (e.g. bug) happened, so we avoid waiting for it.
382                  */
383                 if (err != -EIO) {
384                         int err2 = filemap_fdatawait(mapping);
385                         if (!err)
386                                 err = err2;
387                 }
388         }
389         return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:    the address_space for the pages
396  * @lstart:     offset in bytes where the range starts
397  * @lend:       offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405                                  loff_t lstart, loff_t lend)
406 {
407         int err = 0;
408
409         if (mapping->nrpages) {
410                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411                                                  WB_SYNC_ALL);
412                 /* See comment of filemap_write_and_wait() */
413                 if (err != -EIO) {
414                         int err2 = wait_on_page_writeback_range(mapping,
415                                                 lstart >> PAGE_CACHE_SHIFT,
416                                                 lend >> PAGE_CACHE_SHIFT);
417                         if (!err)
418                                 err = err2;
419                 }
420         }
421         return err;
422 }
423
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:       page to add
427  * @mapping:    the page's address_space
428  * @offset:     page index
429  * @gfp_mask:   page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438                 pgoff_t offset, gfp_t gfp_mask)
439 {
440         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442         if (error == 0) {
443                 write_lock_irq(&mapping->tree_lock);
444                 error = radix_tree_insert(&mapping->page_tree, offset, page);
445                 if (!error) {
446                         page_cache_get(page);
447                         SetPageLocked(page);
448                         page->mapping = mapping;
449                         page->index = offset;
450                         mapping->nrpages++;
451                         __inc_zone_page_state(page, NR_FILE_PAGES);
452                 }
453                 write_unlock_irq(&mapping->tree_lock);
454                 radix_tree_preload_end();
455         }
456         return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461                                 pgoff_t offset, gfp_t gfp_mask)
462 {
463         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464         if (ret == 0)
465                 lru_cache_add(page);
466         return ret;
467 }
468
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
471 {
472         if (cpuset_do_page_mem_spread()) {
473                 int n = cpuset_mem_spread_node();
474                 return alloc_pages_node(n, gfp, 0);
475         }
476         return alloc_pages(gfp, 0);
477 }
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
480
481 static int __sleep_on_page_lock(void *word)
482 {
483         io_schedule();
484         return 0;
485 }
486
487 /*
488  * In order to wait for pages to become available there must be
489  * waitqueues associated with pages. By using a hash table of
490  * waitqueues where the bucket discipline is to maintain all
491  * waiters on the same queue and wake all when any of the pages
492  * become available, and for the woken contexts to check to be
493  * sure the appropriate page became available, this saves space
494  * at a cost of "thundering herd" phenomena during rare hash
495  * collisions.
496  */
497 static wait_queue_head_t *page_waitqueue(struct page *page)
498 {
499         const struct zone *zone = page_zone(page);
500
501         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502 }
503
504 static inline void wake_up_page(struct page *page, int bit)
505 {
506         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
507 }
508
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510 {
511         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512
513         if (test_bit(bit_nr, &page->flags))
514                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
515                                                         TASK_UNINTERRUPTIBLE);
516 }
517 EXPORT_SYMBOL(wait_on_page_bit);
518
519 void install_page_waitqueue_monitor(struct page *page, wait_queue_t *monitor)
520 {
521         wait_queue_head_t *q = page_waitqueue(page);
522         unsigned long flags;
523
524         spin_lock_irqsave(&q->lock, flags);
525         __add_wait_queue(q, monitor);
526         spin_unlock_irqrestore(&q->lock, flags);
527 }
528
529 EXPORT_SYMBOL_GPL(install_page_waitqueue_monitor);
530
531 /**
532  * unlock_page - unlock a locked page
533  * @page: the page
534  *
535  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
536  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
537  * mechananism between PageLocked pages and PageWriteback pages is shared.
538  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
539  *
540  * The first mb is necessary to safely close the critical section opened by the
541  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
542  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
543  * parallel wait_on_page_locked()).
544  */
545 void fastcall unlock_page(struct page *page)
546 {
547         smp_mb__before_clear_bit();
548         if (!TestClearPageLocked(page))
549                 BUG();
550         smp_mb__after_clear_bit(); 
551         wake_up_page(page, PG_locked);
552 }
553 EXPORT_SYMBOL(unlock_page);
554
555 /**
556  * end_page_writeback - end writeback against a page
557  * @page: the page
558  */
559 void end_page_writeback(struct page *page)
560 {
561         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
562                 if (!test_clear_page_writeback(page))
563                         BUG();
564         }
565         smp_mb__after_clear_bit();
566         wake_up_page(page, PG_writeback);
567 }
568 EXPORT_SYMBOL(end_page_writeback);
569
570 /**
571  * __lock_page - get a lock on the page, assuming we need to sleep to get it
572  * @page: the page to lock
573  *
574  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
575  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
576  * chances are that on the second loop, the block layer's plug list is empty,
577  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
578  */
579 void fastcall __lock_page(struct page *page)
580 {
581         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
582
583         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
584                                                         TASK_UNINTERRUPTIBLE);
585 }
586 EXPORT_SYMBOL(__lock_page);
587
588 /*
589  * Variant of lock_page that does not require the caller to hold a reference
590  * on the page's mapping.
591  */
592 void fastcall __lock_page_nosync(struct page *page)
593 {
594         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
596                                                         TASK_UNINTERRUPTIBLE);
597 }
598
599 /**
600  * find_get_page - find and get a page reference
601  * @mapping: the address_space to search
602  * @offset: the page index
603  *
604  * Is there a pagecache struct page at the given (mapping, offset) tuple?
605  * If yes, increment its refcount and return it; if no, return NULL.
606  */
607 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
608 {
609         struct page *page;
610
611         read_lock_irq(&mapping->tree_lock);
612         page = radix_tree_lookup(&mapping->page_tree, offset);
613         if (page)
614                 page_cache_get(page);
615         read_unlock_irq(&mapping->tree_lock);
616         return page;
617 }
618 EXPORT_SYMBOL(find_get_page);
619
620 /**
621  * find_trylock_page - find and lock a page
622  * @mapping: the address_space to search
623  * @offset: the page index
624  *
625  * Same as find_get_page(), but trylock it instead of incrementing the count.
626  */
627 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
628 {
629         struct page *page;
630
631         read_lock_irq(&mapping->tree_lock);
632         page = radix_tree_lookup(&mapping->page_tree, offset);
633         if (page && TestSetPageLocked(page))
634                 page = NULL;
635         read_unlock_irq(&mapping->tree_lock);
636         return page;
637 }
638 EXPORT_SYMBOL(find_trylock_page);
639
640 /**
641  * find_lock_page - locate, pin and lock a pagecache page
642  * @mapping: the address_space to search
643  * @offset: the page index
644  *
645  * Locates the desired pagecache page, locks it, increments its reference
646  * count and returns its address.
647  *
648  * Returns zero if the page was not present. find_lock_page() may sleep.
649  */
650 struct page *find_lock_page(struct address_space *mapping,
651                                 unsigned long offset)
652 {
653         struct page *page;
654
655         read_lock_irq(&mapping->tree_lock);
656 repeat:
657         page = radix_tree_lookup(&mapping->page_tree, offset);
658         if (page) {
659                 page_cache_get(page);
660                 if (TestSetPageLocked(page)) {
661                         read_unlock_irq(&mapping->tree_lock);
662                         __lock_page(page);
663                         read_lock_irq(&mapping->tree_lock);
664
665                         /* Has the page been truncated while we slept? */
666                         if (unlikely(page->mapping != mapping ||
667                                      page->index != offset)) {
668                                 unlock_page(page);
669                                 page_cache_release(page);
670                                 goto repeat;
671                         }
672                 }
673         }
674         read_unlock_irq(&mapping->tree_lock);
675         return page;
676 }
677 EXPORT_SYMBOL(find_lock_page);
678
679 /**
680  * find_or_create_page - locate or add a pagecache page
681  * @mapping: the page's address_space
682  * @index: the page's index into the mapping
683  * @gfp_mask: page allocation mode
684  *
685  * Locates a page in the pagecache.  If the page is not present, a new page
686  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
687  * LRU list.  The returned page is locked and has its reference count
688  * incremented.
689  *
690  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
691  * allocation!
692  *
693  * find_or_create_page() returns the desired page's address, or zero on
694  * memory exhaustion.
695  */
696 struct page *find_or_create_page(struct address_space *mapping,
697                 unsigned long index, gfp_t gfp_mask)
698 {
699         struct page *page, *cached_page = NULL;
700         int err;
701 repeat:
702         page = find_lock_page(mapping, index);
703         if (!page) {
704                 if (!cached_page) {
705                         cached_page = alloc_page(gfp_mask);
706                         if (!cached_page)
707                                 return NULL;
708                 }
709                 err = add_to_page_cache_lru(cached_page, mapping,
710                                         index, gfp_mask);
711                 if (!err) {
712                         page = cached_page;
713                         cached_page = NULL;
714                 } else if (err == -EEXIST)
715                         goto repeat;
716         }
717         if (cached_page)
718                 page_cache_release(cached_page);
719         return page;
720 }
721 EXPORT_SYMBOL(find_or_create_page);
722
723 /**
724  * find_get_pages - gang pagecache lookup
725  * @mapping:    The address_space to search
726  * @start:      The starting page index
727  * @nr_pages:   The maximum number of pages
728  * @pages:      Where the resulting pages are placed
729  *
730  * find_get_pages() will search for and return a group of up to
731  * @nr_pages pages in the mapping.  The pages are placed at @pages.
732  * find_get_pages() takes a reference against the returned pages.
733  *
734  * The search returns a group of mapping-contiguous pages with ascending
735  * indexes.  There may be holes in the indices due to not-present pages.
736  *
737  * find_get_pages() returns the number of pages which were found.
738  */
739 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
740                             unsigned int nr_pages, struct page **pages)
741 {
742         unsigned int i;
743         unsigned int ret;
744
745         read_lock_irq(&mapping->tree_lock);
746         ret = radix_tree_gang_lookup(&mapping->page_tree,
747                                 (void **)pages, start, nr_pages);
748         for (i = 0; i < ret; i++)
749                 page_cache_get(pages[i]);
750         read_unlock_irq(&mapping->tree_lock);
751         return ret;
752 }
753
754 /**
755  * find_get_pages_contig - gang contiguous pagecache lookup
756  * @mapping:    The address_space to search
757  * @index:      The starting page index
758  * @nr_pages:   The maximum number of pages
759  * @pages:      Where the resulting pages are placed
760  *
761  * find_get_pages_contig() works exactly like find_get_pages(), except
762  * that the returned number of pages are guaranteed to be contiguous.
763  *
764  * find_get_pages_contig() returns the number of pages which were found.
765  */
766 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
767                                unsigned int nr_pages, struct page **pages)
768 {
769         unsigned int i;
770         unsigned int ret;
771
772         read_lock_irq(&mapping->tree_lock);
773         ret = radix_tree_gang_lookup(&mapping->page_tree,
774                                 (void **)pages, index, nr_pages);
775         for (i = 0; i < ret; i++) {
776                 if (pages[i]->mapping == NULL || pages[i]->index != index)
777                         break;
778
779                 page_cache_get(pages[i]);
780                 index++;
781         }
782         read_unlock_irq(&mapping->tree_lock);
783         return i;
784 }
785
786 /**
787  * find_get_pages_tag - find and return pages that match @tag
788  * @mapping:    the address_space to search
789  * @index:      the starting page index
790  * @tag:        the tag index
791  * @nr_pages:   the maximum number of pages
792  * @pages:      where the resulting pages are placed
793  *
794  * Like find_get_pages, except we only return pages which are tagged with
795  * @tag.   We update @index to index the next page for the traversal.
796  */
797 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
798                         int tag, unsigned int nr_pages, struct page **pages)
799 {
800         unsigned int i;
801         unsigned int ret;
802
803         read_lock_irq(&mapping->tree_lock);
804         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
805                                 (void **)pages, *index, nr_pages, tag);
806         for (i = 0; i < ret; i++)
807                 page_cache_get(pages[i]);
808         if (ret)
809                 *index = pages[ret - 1]->index + 1;
810         read_unlock_irq(&mapping->tree_lock);
811         return ret;
812 }
813
814 /**
815  * grab_cache_page_nowait - returns locked page at given index in given cache
816  * @mapping: target address_space
817  * @index: the page index
818  *
819  * Same as grab_cache_page, but do not wait if the page is unavailable.
820  * This is intended for speculative data generators, where the data can
821  * be regenerated if the page couldn't be grabbed.  This routine should
822  * be safe to call while holding the lock for another page.
823  *
824  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
825  * and deadlock against the caller's locked page.
826  */
827 struct page *
828 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
829 {
830         struct page *page = find_get_page(mapping, index);
831
832         if (page) {
833                 if (!TestSetPageLocked(page))
834                         return page;
835                 page_cache_release(page);
836                 return NULL;
837         }
838         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
839         if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
840                 page_cache_release(page);
841                 page = NULL;
842         }
843         return page;
844 }
845 EXPORT_SYMBOL(grab_cache_page_nowait);
846
847 /*
848  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
849  * a _large_ part of the i/o request. Imagine the worst scenario:
850  *
851  *      ---R__________________________________________B__________
852  *         ^ reading here                             ^ bad block(assume 4k)
853  *
854  * read(R) => miss => readahead(R...B) => media error => frustrating retries
855  * => failing the whole request => read(R) => read(R+1) =>
856  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
857  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
858  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
859  *
860  * It is going insane. Fix it by quickly scaling down the readahead size.
861  */
862 static void shrink_readahead_size_eio(struct file *filp,
863                                         struct file_ra_state *ra)
864 {
865         if (!ra->ra_pages)
866                 return;
867
868         ra->ra_pages /= 4;
869 }
870
871 /**
872  * do_generic_mapping_read - generic file read routine
873  * @mapping:    address_space to be read
874  * @_ra:        file's readahead state
875  * @filp:       the file to read
876  * @ppos:       current file position
877  * @desc:       read_descriptor
878  * @actor:      read method
879  *
880  * This is a generic file read routine, and uses the
881  * mapping->a_ops->readpage() function for the actual low-level stuff.
882  *
883  * This is really ugly. But the goto's actually try to clarify some
884  * of the logic when it comes to error handling etc.
885  *
886  * Note the struct file* is only passed for the use of readpage.
887  * It may be NULL.
888  */
889 void do_generic_mapping_read(struct address_space *mapping,
890                              struct file_ra_state *_ra,
891                              struct file *filp,
892                              loff_t *ppos,
893                              read_descriptor_t *desc,
894                              read_actor_t actor)
895 {
896         struct inode *inode = mapping->host;
897         unsigned long index;
898         unsigned long end_index;
899         unsigned long offset;
900         unsigned long last_index;
901         unsigned long next_index;
902         unsigned long prev_index;
903         unsigned int prev_offset;
904         loff_t isize;
905         struct page *cached_page;
906         int error;
907         struct file_ra_state ra = *_ra;
908
909         cached_page = NULL;
910         index = *ppos >> PAGE_CACHE_SHIFT;
911         next_index = index;
912         prev_index = ra.prev_page;
913         prev_offset = ra.offset;
914         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
915         offset = *ppos & ~PAGE_CACHE_MASK;
916
917         isize = i_size_read(inode);
918         if (!isize)
919                 goto out;
920
921         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
922         for (;;) {
923                 struct page *page;
924                 unsigned long nr, ret;
925
926                 /* nr is the maximum number of bytes to copy from this page */
927                 nr = PAGE_CACHE_SIZE;
928                 if (index >= end_index) {
929                         if (index > end_index)
930                                 goto out;
931                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
932                         if (nr <= offset) {
933                                 goto out;
934                         }
935                 }
936                 nr = nr - offset;
937
938                 cond_resched();
939                 if (index == next_index)
940                         next_index = page_cache_readahead(mapping, &ra, filp,
941                                         index, last_index - index);
942
943 find_page:
944                 page = find_get_page(mapping, index);
945                 if (unlikely(page == NULL)) {
946                         handle_ra_miss(mapping, &ra, index);
947                         goto no_cached_page;
948                 }
949                 if (!PageUptodate(page))
950                         goto page_not_up_to_date;
951 page_ok:
952
953                 /* If users can be writing to this page using arbitrary
954                  * virtual addresses, take care about potential aliasing
955                  * before reading the page on the kernel side.
956                  */
957                 if (mapping_writably_mapped(mapping))
958                         flush_dcache_page(page);
959
960                 /*
961                  * When a sequential read accesses a page several times,
962                  * only mark it as accessed the first time.
963                  */
964                 if (prev_index != index || offset != prev_offset)
965                         mark_page_accessed(page);
966                 prev_index = index;
967
968                 /*
969                  * Ok, we have the page, and it's up-to-date, so
970                  * now we can copy it to user space...
971                  *
972                  * The actor routine returns how many bytes were actually used..
973                  * NOTE! This may not be the same as how much of a user buffer
974                  * we filled up (we may be padding etc), so we can only update
975                  * "pos" here (the actor routine has to update the user buffer
976                  * pointers and the remaining count).
977                  */
978                 ret = actor(desc, page, offset, nr);
979                 offset += ret;
980                 index += offset >> PAGE_CACHE_SHIFT;
981                 offset &= ~PAGE_CACHE_MASK;
982                 prev_offset = ra.offset = offset;
983
984                 page_cache_release(page);
985                 if (ret == nr && desc->count)
986                         continue;
987                 goto out;
988
989 page_not_up_to_date:
990                 /* Get exclusive access to the page ... */
991                 lock_page(page);
992
993                 /* Did it get truncated before we got the lock? */
994                 if (!page->mapping) {
995                         unlock_page(page);
996                         page_cache_release(page);
997                         continue;
998                 }
999
1000                 /* Did somebody else fill it already? */
1001                 if (PageUptodate(page)) {
1002                         unlock_page(page);
1003                         goto page_ok;
1004                 }
1005
1006 readpage:
1007                 /* Start the actual read. The read will unlock the page. */
1008                 error = mapping->a_ops->readpage(filp, page);
1009
1010                 if (unlikely(error)) {
1011                         if (error == AOP_TRUNCATED_PAGE) {
1012                                 page_cache_release(page);
1013                                 goto find_page;
1014                         }
1015                         goto readpage_error;
1016                 }
1017
1018                 if (!PageUptodate(page)) {
1019                         lock_page(page);
1020                         if (!PageUptodate(page)) {
1021                                 if (page->mapping == NULL) {
1022                                         /*
1023                                          * invalidate_inode_pages got it
1024                                          */
1025                                         unlock_page(page);
1026                                         page_cache_release(page);
1027                                         goto find_page;
1028                                 }
1029                                 unlock_page(page);
1030                                 error = -EIO;
1031                                 shrink_readahead_size_eio(filp, &ra);
1032                                 goto readpage_error;
1033                         }
1034                         unlock_page(page);
1035                 }
1036
1037                 /*
1038                  * i_size must be checked after we have done ->readpage.
1039                  *
1040                  * Checking i_size after the readpage allows us to calculate
1041                  * the correct value for "nr", which means the zero-filled
1042                  * part of the page is not copied back to userspace (unless
1043                  * another truncate extends the file - this is desired though).
1044                  */
1045                 isize = i_size_read(inode);
1046                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1047                 if (unlikely(!isize || index > end_index)) {
1048                         page_cache_release(page);
1049                         goto out;
1050                 }
1051
1052                 /* nr is the maximum number of bytes to copy from this page */
1053                 nr = PAGE_CACHE_SIZE;
1054                 if (index == end_index) {
1055                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1056                         if (nr <= offset) {
1057                                 page_cache_release(page);
1058                                 goto out;
1059                         }
1060                 }
1061                 nr = nr - offset;
1062                 goto page_ok;
1063
1064 readpage_error:
1065                 /* UHHUH! A synchronous read error occurred. Report it */
1066                 desc->error = error;
1067                 page_cache_release(page);
1068                 goto out;
1069
1070 no_cached_page:
1071                 /*
1072                  * Ok, it wasn't cached, so we need to create a new
1073                  * page..
1074                  */
1075                 if (!cached_page) {
1076                         cached_page = page_cache_alloc_cold(mapping);
1077                         if (!cached_page) {
1078                                 desc->error = -ENOMEM;
1079                                 goto out;
1080                         }
1081                 }
1082                 error = add_to_page_cache_lru(cached_page, mapping,
1083                                                 index, GFP_KERNEL);
1084                 if (error) {
1085                         if (error == -EEXIST)
1086                                 goto find_page;
1087                         desc->error = error;
1088                         goto out;
1089                 }
1090                 page = cached_page;
1091                 cached_page = NULL;
1092                 goto readpage;
1093         }
1094
1095 out:
1096         *_ra = ra;
1097
1098         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1099         if (cached_page)
1100                 page_cache_release(cached_page);
1101         if (filp)
1102                 file_accessed(filp);
1103 }
1104 EXPORT_SYMBOL(do_generic_mapping_read);
1105
1106 int file_read_actor(read_descriptor_t *desc, struct page *page,
1107                         unsigned long offset, unsigned long size)
1108 {
1109         char *kaddr;
1110         unsigned long left, count = desc->count;
1111
1112         if (size > count)
1113                 size = count;
1114
1115         /*
1116          * Faults on the destination of a read are common, so do it before
1117          * taking the kmap.
1118          */
1119         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1120                 kaddr = kmap_atomic(page, KM_USER0);
1121                 left = __copy_to_user_inatomic(desc->arg.buf,
1122                                                 kaddr + offset, size);
1123                 kunmap_atomic(kaddr, KM_USER0);
1124                 if (left == 0)
1125                         goto success;
1126         }
1127
1128         /* Do it the slow way */
1129         kaddr = kmap(page);
1130         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1131         kunmap(page);
1132
1133         if (left) {
1134                 size -= left;
1135                 desc->error = -EFAULT;
1136         }
1137 success:
1138         desc->count = count - size;
1139         desc->written += size;
1140         desc->arg.buf += size;
1141         return size;
1142 }
1143
1144 /**
1145  * generic_file_aio_read - generic filesystem read routine
1146  * @iocb:       kernel I/O control block
1147  * @iov:        io vector request
1148  * @nr_segs:    number of segments in the iovec
1149  * @pos:        current file position
1150  *
1151  * This is the "read()" routine for all filesystems
1152  * that can use the page cache directly.
1153  */
1154 ssize_t
1155 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1156                 unsigned long nr_segs, loff_t pos)
1157 {
1158         struct file *filp = iocb->ki_filp;
1159         ssize_t retval;
1160         unsigned long seg;
1161         size_t count;
1162         loff_t *ppos = &iocb->ki_pos;
1163
1164         count = 0;
1165         for (seg = 0; seg < nr_segs; seg++) {
1166                 const struct iovec *iv = &iov[seg];
1167
1168                 /*
1169                  * If any segment has a negative length, or the cumulative
1170                  * length ever wraps negative then return -EINVAL.
1171                  */
1172                 count += iv->iov_len;
1173                 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1174                         return -EINVAL;
1175                 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1176                         continue;
1177                 if (seg == 0)
1178                         return -EFAULT;
1179                 nr_segs = seg;
1180                 count -= iv->iov_len;   /* This segment is no good */
1181                 break;
1182         }
1183
1184         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1185         if (filp->f_flags & O_DIRECT) {
1186                 loff_t size;
1187                 struct address_space *mapping;
1188                 struct inode *inode;
1189
1190                 mapping = filp->f_mapping;
1191                 inode = mapping->host;
1192                 retval = 0;
1193                 if (!count)
1194                         goto out; /* skip atime */
1195                 size = i_size_read(inode);
1196                 if (pos < size) {
1197                         retval = generic_file_direct_IO(READ, iocb,
1198                                                 iov, pos, nr_segs);
1199                         if (retval > 0)
1200                                 *ppos = pos + retval;
1201                 }
1202                 if (likely(retval != 0)) {
1203                         file_accessed(filp);
1204                         goto out;
1205                 }
1206         }
1207
1208         retval = 0;
1209         if (count) {
1210                 for (seg = 0; seg < nr_segs; seg++) {
1211                         read_descriptor_t desc;
1212
1213                         desc.written = 0;
1214                         desc.arg.buf = iov[seg].iov_base;
1215                         desc.count = iov[seg].iov_len;
1216                         if (desc.count == 0)
1217                                 continue;
1218                         desc.error = 0;
1219                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1220                         retval += desc.written;
1221                         if (desc.error) {
1222                                 retval = retval ?: desc.error;
1223                                 break;
1224                         }
1225                 }
1226         }
1227 out:
1228         return retval;
1229 }
1230 EXPORT_SYMBOL(generic_file_aio_read);
1231
1232 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1233 {
1234         ssize_t written;
1235         unsigned long count = desc->count;
1236         struct file *file = desc->arg.data;
1237
1238         if (size > count)
1239                 size = count;
1240
1241         written = file->f_op->sendpage(file, page, offset,
1242                                        size, &file->f_pos, size<count);
1243         if (written < 0) {
1244                 desc->error = written;
1245                 written = 0;
1246         }
1247         desc->count = count - written;
1248         desc->written += written;
1249         return written;
1250 }
1251
1252 /* FIXME: It would be as simple as this, if we had a (void __user*) to write.
1253  * We already have a kernel buffer, so it should be even simpler, right? ;)
1254  *
1255  * Yes, sorta.  After duplicating the complete path of generic_file_write(),
1256  * at least some special cases could be removed, so the copy is simpler than
1257  * the original.  But it remains a copy, so overall complexity increases.
1258  */
1259 static ssize_t
1260 generic_kernel_file_write(struct file *, const char *, size_t, loff_t *);
1261
1262 ssize_t generic_file_sendpage(struct file *file, struct page *page,
1263                 int offset, size_t size, loff_t *ppos, int more)
1264 {
1265         ssize_t ret;
1266         char *kaddr;
1267
1268         kaddr = kmap(page);
1269         ret = generic_kernel_file_write(file, kaddr + offset, size, ppos);
1270         kunmap(page);
1271
1272         return ret;
1273 }
1274
1275 EXPORT_SYMBOL(generic_file_sendpage);
1276
1277 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1278                          size_t count, read_actor_t actor, void *target)
1279 {
1280         read_descriptor_t desc;
1281
1282         if (!count)
1283                 return 0;
1284
1285         desc.written = 0;
1286         desc.count = count;
1287         desc.arg.data = target;
1288         desc.error = 0;
1289
1290         do_generic_file_read(in_file, ppos, &desc, actor);
1291         if (desc.written)
1292                 return desc.written;
1293         return desc.error;
1294 }
1295 EXPORT_SYMBOL(generic_file_sendfile);
1296
1297 static ssize_t
1298 do_readahead(struct address_space *mapping, struct file *filp,
1299              unsigned long index, unsigned long nr)
1300 {
1301         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1302                 return -EINVAL;
1303
1304         force_page_cache_readahead(mapping, filp, index,
1305                                         max_sane_readahead(nr));
1306         return 0;
1307 }
1308
1309 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1310 {
1311         ssize_t ret;
1312         struct file *file;
1313
1314         ret = -EBADF;
1315         file = fget(fd);
1316         if (file) {
1317                 if (file->f_mode & FMODE_READ) {
1318                         struct address_space *mapping = file->f_mapping;
1319                         unsigned long start = offset >> PAGE_CACHE_SHIFT;
1320                         unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1321                         unsigned long len = end - start + 1;
1322                         ret = do_readahead(mapping, file, start, len);
1323                 }
1324                 fput(file);
1325         }
1326         return ret;
1327 }
1328
1329 #ifdef CONFIG_MMU
1330 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1331 /**
1332  * page_cache_read - adds requested page to the page cache if not already there
1333  * @file:       file to read
1334  * @offset:     page index
1335  *
1336  * This adds the requested page to the page cache if it isn't already there,
1337  * and schedules an I/O to read in its contents from disk.
1338  */
1339 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1340 {
1341         struct address_space *mapping = file->f_mapping;
1342         struct page *page; 
1343         int ret;
1344
1345         do {
1346                 page = page_cache_alloc_cold(mapping);
1347                 if (!page)
1348                         return -ENOMEM;
1349
1350                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1351                 if (ret == 0)
1352                         ret = mapping->a_ops->readpage(file, page);
1353                 else if (ret == -EEXIST)
1354                         ret = 0; /* losing race to add is OK */
1355
1356                 page_cache_release(page);
1357
1358         } while (ret == AOP_TRUNCATED_PAGE);
1359                 
1360         return ret;
1361 }
1362
1363 #define MMAP_LOTSAMISS  (100)
1364
1365 /**
1366  * filemap_nopage - read in file data for page fault handling
1367  * @area:       the applicable vm_area
1368  * @address:    target address to read in
1369  * @type:       returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1370  *
1371  * filemap_nopage() is invoked via the vma operations vector for a
1372  * mapped memory region to read in file data during a page fault.
1373  *
1374  * The goto's are kind of ugly, but this streamlines the normal case of having
1375  * it in the page cache, and handles the special cases reasonably without
1376  * having a lot of duplicated code.
1377  */
1378 struct page *filemap_nopage(struct vm_area_struct *area,
1379                                 unsigned long address, int *type)
1380 {
1381         int error;
1382         struct file *file = area->vm_file;
1383         struct address_space *mapping = file->f_mapping;
1384         struct file_ra_state *ra = &file->f_ra;
1385         struct inode *inode = mapping->host;
1386         struct page *page;
1387         unsigned long size, pgoff;
1388         int did_readaround = 0, majmin = VM_FAULT_MINOR;
1389
1390         pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1391
1392 retry_all:
1393         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1394         if (pgoff >= size)
1395                 goto outside_data_content;
1396
1397         /* If we don't want any read-ahead, don't bother */
1398         if (VM_RandomReadHint(area))
1399                 goto no_cached_page;
1400
1401         /*
1402          * The readahead code wants to be told about each and every page
1403          * so it can build and shrink its windows appropriately
1404          *
1405          * For sequential accesses, we use the generic readahead logic.
1406          */
1407         if (VM_SequentialReadHint(area))
1408                 page_cache_readahead(mapping, ra, file, pgoff, 1);
1409
1410         /*
1411          * Do we have something in the page cache already?
1412          */
1413 retry_find:
1414         page = find_get_page(mapping, pgoff);
1415         if (!page) {
1416                 unsigned long ra_pages;
1417
1418                 if (VM_SequentialReadHint(area)) {
1419                         handle_ra_miss(mapping, ra, pgoff);
1420                         goto no_cached_page;
1421                 }
1422                 ra->mmap_miss++;
1423
1424                 /*
1425                  * Do we miss much more than hit in this file? If so,
1426                  * stop bothering with read-ahead. It will only hurt.
1427                  */
1428                 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1429                         goto no_cached_page;
1430
1431                 /*
1432                  * To keep the pgmajfault counter straight, we need to
1433                  * check did_readaround, as this is an inner loop.
1434                  */
1435                 if (!did_readaround) {
1436                         majmin = VM_FAULT_MAJOR;
1437                         count_vm_event(PGMAJFAULT);
1438                 }
1439                 did_readaround = 1;
1440                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1441                 if (ra_pages) {
1442                         pgoff_t start = 0;
1443
1444                         if (pgoff > ra_pages / 2)
1445                                 start = pgoff - ra_pages / 2;
1446                         do_page_cache_readahead(mapping, file, start, ra_pages);
1447                 }
1448                 page = find_get_page(mapping, pgoff);
1449                 if (!page)
1450                         goto no_cached_page;
1451         }
1452
1453         if (!did_readaround)
1454                 ra->mmap_hit++;
1455
1456         /*
1457          * Ok, found a page in the page cache, now we need to check
1458          * that it's up-to-date.
1459          */
1460         if (!PageUptodate(page))
1461                 goto page_not_uptodate;
1462
1463 success:
1464         /*
1465          * Found the page and have a reference on it.
1466          */
1467         mark_page_accessed(page);
1468         if (type)
1469                 *type = majmin;
1470         return page;
1471
1472 outside_data_content:
1473         /*
1474          * An external ptracer can access pages that normally aren't
1475          * accessible..
1476          */
1477         if (area->vm_mm == current->mm)
1478                 return NOPAGE_SIGBUS;
1479         /* Fall through to the non-read-ahead case */
1480 no_cached_page:
1481         /*
1482          * We're only likely to ever get here if MADV_RANDOM is in
1483          * effect.
1484          */
1485         error = page_cache_read(file, pgoff);
1486
1487         /*
1488          * The page we want has now been added to the page cache.
1489          * In the unlikely event that someone removed it in the
1490          * meantime, we'll just come back here and read it again.
1491          */
1492         if (error >= 0)
1493                 goto retry_find;
1494
1495         /*
1496          * An error return from page_cache_read can result if the
1497          * system is low on memory, or a problem occurs while trying
1498          * to schedule I/O.
1499          */
1500         if (error == -ENOMEM)
1501                 return NOPAGE_OOM;
1502         return NOPAGE_SIGBUS;
1503
1504 page_not_uptodate:
1505         if (!did_readaround) {
1506                 majmin = VM_FAULT_MAJOR;
1507                 count_vm_event(PGMAJFAULT);
1508         }
1509         lock_page(page);
1510
1511         /* Did it get unhashed while we waited for it? */
1512         if (!page->mapping) {
1513                 unlock_page(page);
1514                 page_cache_release(page);
1515                 goto retry_all;
1516         }
1517
1518         /* Did somebody else get it up-to-date? */
1519         if (PageUptodate(page)) {
1520                 unlock_page(page);
1521                 goto success;
1522         }
1523
1524         error = mapping->a_ops->readpage(file, page);
1525         if (!error) {
1526                 wait_on_page_locked(page);
1527                 if (PageUptodate(page))
1528                         goto success;
1529         } else if (error == AOP_TRUNCATED_PAGE) {
1530                 page_cache_release(page);
1531                 goto retry_find;
1532         }
1533
1534         /*
1535          * Umm, take care of errors if the page isn't up-to-date.
1536          * Try to re-read it _once_. We do this synchronously,
1537          * because there really aren't any performance issues here
1538          * and we need to check for errors.
1539          */
1540         lock_page(page);
1541
1542         /* Somebody truncated the page on us? */
1543         if (!page->mapping) {
1544                 unlock_page(page);
1545                 page_cache_release(page);
1546                 goto retry_all;
1547         }
1548
1549         /* Somebody else successfully read it in? */
1550         if (PageUptodate(page)) {
1551                 unlock_page(page);
1552                 goto success;
1553         }
1554         ClearPageError(page);
1555         error = mapping->a_ops->readpage(file, page);
1556         if (!error) {
1557                 wait_on_page_locked(page);
1558                 if (PageUptodate(page))
1559                         goto success;
1560         } else if (error == AOP_TRUNCATED_PAGE) {
1561                 page_cache_release(page);
1562                 goto retry_find;
1563         }
1564
1565         /*
1566          * Things didn't work out. Return zero to tell the
1567          * mm layer so, possibly freeing the page cache page first.
1568          */
1569         shrink_readahead_size_eio(file, ra);
1570         page_cache_release(page);
1571         return NOPAGE_SIGBUS;
1572 }
1573 EXPORT_SYMBOL(filemap_nopage);
1574
1575 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1576                                         int nonblock)
1577 {
1578         struct address_space *mapping = file->f_mapping;
1579         struct page *page;
1580         int error;
1581
1582         /*
1583          * Do we have something in the page cache already?
1584          */
1585 retry_find:
1586         page = find_get_page(mapping, pgoff);
1587         if (!page) {
1588                 if (nonblock)
1589                         return NULL;
1590                 goto no_cached_page;
1591         }
1592
1593         /*
1594          * Ok, found a page in the page cache, now we need to check
1595          * that it's up-to-date.
1596          */
1597         if (!PageUptodate(page)) {
1598                 if (nonblock) {
1599                         page_cache_release(page);
1600                         return NULL;
1601                 }
1602                 goto page_not_uptodate;
1603         }
1604
1605 success:
1606         /*
1607          * Found the page and have a reference on it.
1608          */
1609         mark_page_accessed(page);
1610         return page;
1611
1612 no_cached_page:
1613         error = page_cache_read(file, pgoff);
1614
1615         /*
1616          * The page we want has now been added to the page cache.
1617          * In the unlikely event that someone removed it in the
1618          * meantime, we'll just come back here and read it again.
1619          */
1620         if (error >= 0)
1621                 goto retry_find;
1622
1623         /*
1624          * An error return from page_cache_read can result if the
1625          * system is low on memory, or a problem occurs while trying
1626          * to schedule I/O.
1627          */
1628         return NULL;
1629
1630 page_not_uptodate:
1631         lock_page(page);
1632
1633         /* Did it get truncated while we waited for it? */
1634         if (!page->mapping) {
1635                 unlock_page(page);
1636                 goto err;
1637         }
1638
1639         /* Did somebody else get it up-to-date? */
1640         if (PageUptodate(page)) {
1641                 unlock_page(page);
1642                 goto success;
1643         }
1644
1645         error = mapping->a_ops->readpage(file, page);
1646         if (!error) {
1647                 wait_on_page_locked(page);
1648                 if (PageUptodate(page))
1649                         goto success;
1650         } else if (error == AOP_TRUNCATED_PAGE) {
1651                 page_cache_release(page);
1652                 goto retry_find;
1653         }
1654
1655         /*
1656          * Umm, take care of errors if the page isn't up-to-date.
1657          * Try to re-read it _once_. We do this synchronously,
1658          * because there really aren't any performance issues here
1659          * and we need to check for errors.
1660          */
1661         lock_page(page);
1662
1663         /* Somebody truncated the page on us? */
1664         if (!page->mapping) {
1665                 unlock_page(page);
1666                 goto err;
1667         }
1668         /* Somebody else successfully read it in? */
1669         if (PageUptodate(page)) {
1670                 unlock_page(page);
1671                 goto success;
1672         }
1673
1674         ClearPageError(page);
1675         error = mapping->a_ops->readpage(file, page);
1676         if (!error) {
1677                 wait_on_page_locked(page);
1678                 if (PageUptodate(page))
1679                         goto success;
1680         } else if (error == AOP_TRUNCATED_PAGE) {
1681                 page_cache_release(page);
1682                 goto retry_find;
1683         }
1684
1685         /*
1686          * Things didn't work out. Return zero to tell the
1687          * mm layer so, possibly freeing the page cache page first.
1688          */
1689 err:
1690         page_cache_release(page);
1691
1692         return NULL;
1693 }
1694
1695 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1696                 unsigned long len, pgprot_t prot, unsigned long pgoff,
1697                 int nonblock)
1698 {
1699         struct file *file = vma->vm_file;
1700         struct address_space *mapping = file->f_mapping;
1701         struct inode *inode = mapping->host;
1702         unsigned long size;
1703         struct mm_struct *mm = vma->vm_mm;
1704         struct page *page;
1705         int err;
1706
1707         if (!nonblock)
1708                 force_page_cache_readahead(mapping, vma->vm_file,
1709                                         pgoff, len >> PAGE_CACHE_SHIFT);
1710
1711 repeat:
1712         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1713         if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1714                 return -EINVAL;
1715
1716         page = filemap_getpage(file, pgoff, nonblock);
1717
1718         /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1719          * done in shmem_populate calling shmem_getpage */
1720         if (!page && !nonblock)
1721                 return -ENOMEM;
1722
1723         if (page) {
1724                 err = install_page(mm, vma, addr, page, prot);
1725                 if (err) {
1726                         page_cache_release(page);
1727                         return err;
1728                 }
1729         } else if (vma->vm_flags & VM_NONLINEAR) {
1730                 /* No page was found just because we can't read it in now (being
1731                  * here implies nonblock != 0), but the page may exist, so set
1732                  * the PTE to fault it in later. */
1733                 err = install_file_pte(mm, vma, addr, pgoff, prot);
1734                 if (err)
1735                         return err;
1736         }
1737
1738         len -= PAGE_SIZE;
1739         addr += PAGE_SIZE;
1740         pgoff++;
1741         if (len)
1742                 goto repeat;
1743
1744         return 0;
1745 }
1746 EXPORT_SYMBOL(filemap_populate);
1747
1748 struct vm_operations_struct generic_file_vm_ops = {
1749         .nopage         = filemap_nopage,
1750         .populate       = filemap_populate,
1751 };
1752
1753 /* This is used for a general mmap of a disk file */
1754
1755 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1756 {
1757         struct address_space *mapping = file->f_mapping;
1758
1759         if (!mapping->a_ops->readpage)
1760                 return -ENOEXEC;
1761         file_accessed(file);
1762         vma->vm_ops = &generic_file_vm_ops;
1763         return 0;
1764 }
1765
1766 /*
1767  * This is for filesystems which do not implement ->writepage.
1768  */
1769 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1770 {
1771         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1772                 return -EINVAL;
1773         return generic_file_mmap(file, vma);
1774 }
1775 #else
1776 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1777 {
1778         return -ENOSYS;
1779 }
1780 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1781 {
1782         return -ENOSYS;
1783 }
1784 #endif /* CONFIG_MMU */
1785
1786 EXPORT_SYMBOL(generic_file_mmap);
1787 EXPORT_SYMBOL(generic_file_readonly_mmap);
1788
1789 static inline struct page *__read_cache_page(struct address_space *mapping,
1790                                 unsigned long index,
1791                                 int (*filler)(void *,struct page*),
1792                                 void *data)
1793 {
1794         struct page *page, *cached_page = NULL;
1795         int err;
1796 repeat:
1797         page = find_get_page(mapping, index);
1798         if (!page) {
1799                 if (!cached_page) {
1800                         cached_page = page_cache_alloc_cold(mapping);
1801                         if (!cached_page)
1802                                 return ERR_PTR(-ENOMEM);
1803                 }
1804                 err = add_to_page_cache_lru(cached_page, mapping,
1805                                         index, GFP_KERNEL);
1806                 if (err == -EEXIST)
1807                         goto repeat;
1808                 if (err < 0) {
1809                         /* Presumably ENOMEM for radix tree node */
1810                         page_cache_release(cached_page);
1811                         return ERR_PTR(err);
1812                 }
1813                 page = cached_page;
1814                 cached_page = NULL;
1815                 err = filler(data, page);
1816                 if (err < 0) {
1817                         page_cache_release(page);
1818                         page = ERR_PTR(err);
1819                 }
1820         }
1821         if (cached_page)
1822                 page_cache_release(cached_page);
1823         return page;
1824 }
1825
1826 /**
1827  * read_cache_page - read into page cache, fill it if needed
1828  * @mapping:    the page's address_space
1829  * @index:      the page index
1830  * @filler:     function to perform the read
1831  * @data:       destination for read data
1832  *
1833  * Read into the page cache. If a page already exists,
1834  * and PageUptodate() is not set, try to fill the page.
1835  */
1836 struct page *read_cache_page(struct address_space *mapping,
1837                                 unsigned long index,
1838                                 int (*filler)(void *,struct page*),
1839                                 void *data)
1840 {
1841         struct page *page;
1842         int err;
1843
1844 retry:
1845         page = __read_cache_page(mapping, index, filler, data);
1846         if (IS_ERR(page))
1847                 goto out;
1848         mark_page_accessed(page);
1849         if (PageUptodate(page))
1850                 goto out;
1851
1852         lock_page(page);
1853         if (!page->mapping) {
1854                 unlock_page(page);
1855                 page_cache_release(page);
1856                 goto retry;
1857         }
1858         if (PageUptodate(page)) {
1859                 unlock_page(page);
1860                 goto out;
1861         }
1862         err = filler(data, page);
1863         if (err < 0) {
1864                 page_cache_release(page);
1865                 page = ERR_PTR(err);
1866         }
1867  out:
1868         return page;
1869 }
1870 EXPORT_SYMBOL(read_cache_page);
1871
1872 /*
1873  * If the page was newly created, increment its refcount and add it to the
1874  * caller's lru-buffering pagevec.  This function is specifically for
1875  * generic_file_write().
1876  */
1877 static inline struct page *
1878 __grab_cache_page(struct address_space *mapping, unsigned long index,
1879                         struct page **cached_page, struct pagevec *lru_pvec)
1880 {
1881         int err;
1882         struct page *page;
1883 repeat:
1884         page = find_lock_page(mapping, index);
1885         if (!page) {
1886                 if (!*cached_page) {
1887                         *cached_page = page_cache_alloc(mapping);
1888                         if (!*cached_page)
1889                                 return NULL;
1890                 }
1891                 err = add_to_page_cache(*cached_page, mapping,
1892                                         index, GFP_KERNEL);
1893                 if (err == -EEXIST)
1894                         goto repeat;
1895                 if (err == 0) {
1896                         page = *cached_page;
1897                         page_cache_get(page);
1898                         if (!pagevec_add(lru_pvec, page))
1899                                 __pagevec_lru_add(lru_pvec);
1900                         *cached_page = NULL;
1901                 }
1902         }
1903         return page;
1904 }
1905
1906 /*
1907  * The logic we want is
1908  *
1909  *      if suid or (sgid and xgrp)
1910  *              remove privs
1911  */
1912 int should_remove_suid(struct dentry *dentry)
1913 {
1914         mode_t mode = dentry->d_inode->i_mode;
1915         int kill = 0;
1916
1917         /* suid always must be killed */
1918         if (unlikely(mode & S_ISUID))
1919                 kill = ATTR_KILL_SUID;
1920
1921         /*
1922          * sgid without any exec bits is just a mandatory locking mark; leave
1923          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1924          */
1925         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1926                 kill |= ATTR_KILL_SGID;
1927
1928         if (unlikely(kill && !capable(CAP_FSETID)))
1929                 return kill;
1930
1931         return 0;
1932 }
1933 EXPORT_SYMBOL(should_remove_suid);
1934
1935 int __remove_suid(struct dentry *dentry, int kill)
1936 {
1937         struct iattr newattrs;
1938
1939         newattrs.ia_valid = ATTR_FORCE | kill;
1940         return notify_change(dentry, &newattrs);
1941 }
1942
1943 int remove_suid(struct dentry *dentry)
1944 {
1945         int kill = should_remove_suid(dentry);
1946
1947         if (unlikely(kill))
1948                 return __remove_suid(dentry, kill);
1949
1950         return 0;
1951 }
1952 EXPORT_SYMBOL(remove_suid);
1953
1954 static inline size_t
1955 filemap_copy_from_kernel(struct page *page, unsigned long offset,
1956                          const char *buf, unsigned bytes)
1957 {
1958         char *kaddr;
1959
1960         kaddr = kmap(page);
1961         memcpy(kaddr + offset, buf, bytes);
1962         kunmap(page);
1963
1964         return bytes;
1965 }
1966
1967 size_t
1968 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1969                         const struct iovec *iov, size_t base, size_t bytes)
1970 {
1971         size_t copied = 0, left = 0;
1972
1973         while (bytes) {
1974                 char __user *buf = iov->iov_base + base;
1975                 int copy = min(bytes, iov->iov_len - base);
1976
1977                 base = 0;
1978                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1979                 copied += copy;
1980                 bytes -= copy;
1981                 vaddr += copy;
1982                 iov++;
1983
1984                 if (unlikely(left))
1985                         break;
1986         }
1987         return copied - left;
1988 }
1989
1990 /*
1991  * Performs necessary checks before doing a write
1992  *
1993  * Can adjust writing position or amount of bytes to write.
1994  * Returns appropriate error code that caller should return or
1995  * zero in case that write should be allowed.
1996  */
1997 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1998 {
1999         struct inode *inode = file->f_mapping->host;
2000         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2001
2002         if (unlikely(*pos < 0))
2003                 return -EINVAL;
2004
2005         if (!isblk) {
2006                 /* FIXME: this is for backwards compatibility with 2.4 */
2007                 if (file->f_flags & O_APPEND)
2008                         *pos = i_size_read(inode);
2009
2010                 if (limit != RLIM_INFINITY) {
2011                         if (*pos >= limit) {
2012                                 send_sig(SIGXFSZ, current, 0);
2013                                 return -EFBIG;
2014                         }
2015                         if (*count > limit - (typeof(limit))*pos) {
2016                                 *count = limit - (typeof(limit))*pos;
2017                         }
2018                 }
2019         }
2020
2021         /*
2022          * LFS rule
2023          */
2024         if (unlikely(*pos + *count > MAX_NON_LFS &&
2025                                 !(file->f_flags & O_LARGEFILE))) {
2026                 if (*pos >= MAX_NON_LFS) {
2027                         send_sig(SIGXFSZ, current, 0);
2028                         return -EFBIG;
2029                 }
2030                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2031                         *count = MAX_NON_LFS - (unsigned long)*pos;
2032                 }
2033         }
2034
2035         /*
2036          * Are we about to exceed the fs block limit ?
2037          *
2038          * If we have written data it becomes a short write.  If we have
2039          * exceeded without writing data we send a signal and return EFBIG.
2040          * Linus frestrict idea will clean these up nicely..
2041          */
2042         if (likely(!isblk)) {
2043                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2044                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2045                                 send_sig(SIGXFSZ, current, 0);
2046                                 return -EFBIG;
2047                         }
2048                         /* zero-length writes at ->s_maxbytes are OK */
2049                 }
2050
2051                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2052                         *count = inode->i_sb->s_maxbytes - *pos;
2053         } else {
2054 #ifdef CONFIG_BLOCK
2055                 loff_t isize;
2056                 if (bdev_read_only(I_BDEV(inode)))
2057                         return -EPERM;
2058                 isize = i_size_read(inode);
2059                 if (*pos >= isize) {
2060                         if (*count || *pos > isize)
2061                                 return -ENOSPC;
2062                 }
2063
2064                 if (*pos + *count > isize)
2065                         *count = isize - *pos;
2066 #else
2067                 return -EPERM;
2068 #endif
2069         }
2070         return 0;
2071 }
2072 EXPORT_SYMBOL(generic_write_checks);
2073
2074 ssize_t
2075 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2076                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2077                 size_t count, size_t ocount)
2078 {
2079         struct file     *file = iocb->ki_filp;
2080         struct address_space *mapping = file->f_mapping;
2081         struct inode    *inode = mapping->host;
2082         ssize_t         written;
2083
2084         if (count != ocount)
2085                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2086
2087         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2088         if (written > 0) {
2089                 loff_t end = pos + written;
2090                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2091                         i_size_write(inode,  end);
2092                         mark_inode_dirty(inode);
2093                 }
2094                 *ppos = end;
2095         }
2096
2097         /*
2098          * Sync the fs metadata but not the minor inode changes and
2099          * of course not the data as we did direct DMA for the IO.
2100          * i_mutex is held, which protects generic_osync_inode() from
2101          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2102          */
2103         if ((written >= 0 || written == -EIOCBQUEUED) &&
2104             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2105                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2106                 if (err < 0)
2107                         written = err;
2108         }
2109         return written;
2110 }
2111 EXPORT_SYMBOL(generic_file_direct_write);
2112
2113 ssize_t
2114 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2115                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2116                 size_t count, ssize_t written)
2117 {
2118         struct file *file = iocb->ki_filp;
2119         struct address_space * mapping = file->f_mapping;
2120         const struct address_space_operations *a_ops = mapping->a_ops;
2121         struct inode    *inode = mapping->host;
2122         long            status = 0;
2123         struct page     *page;
2124         struct page     *cached_page = NULL;
2125         size_t          bytes;
2126         struct pagevec  lru_pvec;
2127         const struct iovec *cur_iov = iov; /* current iovec */
2128         size_t          iov_base = 0;      /* offset in the current iovec */
2129         char __user     *buf;
2130
2131         pagevec_init(&lru_pvec, 0);
2132
2133         /*
2134          * handle partial DIO write.  Adjust cur_iov if needed.
2135          */
2136         if (likely(nr_segs == 1))
2137                 buf = iov->iov_base + written;
2138         else {
2139                 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2140                 buf = cur_iov->iov_base + iov_base;
2141         }
2142
2143         do {
2144                 unsigned long index;
2145                 unsigned long offset;
2146                 size_t copied;
2147
2148                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2149                 index = pos >> PAGE_CACHE_SHIFT;
2150                 bytes = PAGE_CACHE_SIZE - offset;
2151
2152                 /* Limit the size of the copy to the caller's write size */
2153                 bytes = min(bytes, count);
2154
2155                 /*
2156                  * Limit the size of the copy to that of the current segment,
2157                  * because fault_in_pages_readable() doesn't know how to walk
2158                  * segments.
2159                  */
2160                 bytes = min(bytes, cur_iov->iov_len - iov_base);
2161
2162                 /*
2163                  * Bring in the user page that we will copy from _first_.
2164                  * Otherwise there's a nasty deadlock on copying from the
2165                  * same page as we're writing to, without it being marked
2166                  * up-to-date.
2167                  */
2168                 fault_in_pages_readable(buf, bytes);
2169
2170                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2171                 if (!page) {
2172                         status = -ENOMEM;
2173                         break;
2174                 }
2175
2176                 if (unlikely(bytes == 0)) {
2177                         status = 0;
2178                         copied = 0;
2179                         goto zero_length_segment;
2180                 }
2181
2182                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2183                 if (unlikely(status)) {
2184                         loff_t isize = i_size_read(inode);
2185
2186                         if (status != AOP_TRUNCATED_PAGE)
2187                                 unlock_page(page);
2188                         page_cache_release(page);
2189                         if (status == AOP_TRUNCATED_PAGE)
2190                                 continue;
2191                         /*
2192                          * prepare_write() may have instantiated a few blocks
2193                          * outside i_size.  Trim these off again.
2194                          */
2195                         if (pos + bytes > isize)
2196                                 vmtruncate(inode, isize);
2197                         break;
2198                 }
2199                 if (likely(nr_segs == 1))
2200                         copied = filemap_copy_from_user(page, offset,
2201                                                         buf, bytes);
2202                 else
2203                         copied = filemap_copy_from_user_iovec(page, offset,
2204                                                 cur_iov, iov_base, bytes);
2205                 flush_dcache_page(page);
2206                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2207                 if (status == AOP_TRUNCATED_PAGE) {
2208                         page_cache_release(page);
2209                         continue;
2210                 }
2211 zero_length_segment:
2212                 if (likely(copied >= 0)) {
2213                         if (!status)
2214                                 status = copied;
2215
2216                         if (status >= 0) {
2217                                 written += status;
2218                                 count -= status;
2219                                 pos += status;
2220                                 buf += status;
2221                                 if (unlikely(nr_segs > 1)) {
2222                                         filemap_set_next_iovec(&cur_iov,
2223                                                         &iov_base, status);
2224                                         if (count)
2225                                                 buf = cur_iov->iov_base +
2226                                                         iov_base;
2227                                 } else {
2228                                         iov_base += status;
2229                                 }
2230                         }
2231                 }
2232                 if (unlikely(copied != bytes))
2233                         if (status >= 0)
2234                                 status = -EFAULT;
2235                 unlock_page(page);
2236                 mark_page_accessed(page);
2237                 page_cache_release(page);
2238                 if (status < 0)
2239                         break;
2240                 balance_dirty_pages_ratelimited(mapping);
2241                 cond_resched();
2242         } while (count);
2243         *ppos = pos;
2244
2245         if (cached_page)
2246                 page_cache_release(cached_page);
2247
2248         /*
2249          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2250          */
2251         if (likely(status >= 0)) {
2252                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2253                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2254                                 status = generic_osync_inode(inode, mapping,
2255                                                 OSYNC_METADATA|OSYNC_DATA);
2256                 }
2257         }
2258         
2259         /*
2260          * If we get here for O_DIRECT writes then we must have fallen through
2261          * to buffered writes (block instantiation inside i_size).  So we sync
2262          * the file data here, to try to honour O_DIRECT expectations.
2263          */
2264         if (unlikely(file->f_flags & O_DIRECT) && written)
2265                 status = filemap_write_and_wait(mapping);
2266
2267         pagevec_lru_add(&lru_pvec);
2268         return written ? written : status;
2269 }
2270 EXPORT_SYMBOL(generic_file_buffered_write);
2271
2272 /*
2273  * This writes the data from the source page to the specified page offset in
2274  * the nominated file
2275  * - the source page does not need to have any association with the file or the
2276  *   page offset
2277  */
2278 int
2279 generic_file_buffered_write_one_kernel_page(struct address_space *mapping,
2280                                             pgoff_t index,
2281                                             struct page *src)
2282 {
2283         const struct address_space_operations *a_ops = mapping->a_ops;
2284         struct pagevec  lru_pvec;
2285         struct page *page, *cached_page = NULL;
2286         long status = 0;
2287
2288         pagevec_init(&lru_pvec, 0);
2289
2290 #if 0
2291         if (mapping->tree_lock.magic != RWLOCK_MAGIC)
2292                 printk("RWLOCK magic incorrect: %x != %x\n",
2293                        mapping->tree_lock.magic, RWLOCK_MAGIC);
2294 #endif
2295
2296         page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);
2297         if (!page) {
2298                 BUG_ON(cached_page);
2299                 return -ENOMEM;
2300         }
2301
2302         status = a_ops->prepare_write(NULL, page, 0, PAGE_CACHE_SIZE);
2303         if (unlikely(status)) {
2304                 loff_t isize = i_size_read(mapping->host);
2305
2306                 if (status != AOP_TRUNCATED_PAGE)
2307                         unlock_page(page);
2308                 page_cache_release(page);
2309                 if (status == AOP_TRUNCATED_PAGE)
2310                         goto sync;
2311
2312                 /* prepare_write() may have instantiated a few blocks outside
2313                  * i_size.  Trim these off again.
2314                  */
2315                 if ((1ULL << (index + 1)) > isize)
2316                         vmtruncate(mapping->host, isize);
2317                 goto sync;
2318         }
2319
2320         copy_highpage(page, src);
2321         flush_dcache_page(page);
2322
2323         status = a_ops->commit_write(NULL, page, 0, PAGE_CACHE_SIZE);
2324         if (status == AOP_TRUNCATED_PAGE) {
2325                 page_cache_release(page);
2326                 goto sync;
2327         }
2328
2329         if (status > 0)
2330                 status = 0;
2331
2332         unlock_page(page);
2333         mark_page_accessed(page);
2334         page_cache_release(page);
2335         if (status < 0)
2336                 return status;
2337
2338         balance_dirty_pages_ratelimited(mapping);
2339         cond_resched();
2340
2341 sync:
2342         if (cached_page)
2343                 page_cache_release(cached_page);
2344
2345         /* the caller must handle O_SYNC themselves, but we handle S_SYNC and
2346          * MS_SYNCHRONOUS here */
2347         if (unlikely(IS_SYNC(mapping->host)) && !a_ops->writepage)
2348                 status = generic_osync_inode(mapping->host, mapping,
2349                                              OSYNC_METADATA | OSYNC_DATA);
2350
2351         /* the caller must handle O_DIRECT for themselves */
2352
2353         pagevec_lru_add(&lru_pvec);
2354         return status;
2355 }
2356 EXPORT_SYMBOL(generic_file_buffered_write_one_kernel_page);
2357
2358 static inline void
2359 filemap_set_next_kvec(const struct kvec **iovp, size_t *basep, size_t bytes)
2360 {
2361         const struct kvec *iov = *iovp;
2362         size_t base = *basep;
2363
2364         while (bytes) {
2365                 int copy = min(bytes, iov->iov_len - base);
2366
2367                 bytes -= copy;
2368                 base += copy;
2369                 if (iov->iov_len == base) {
2370                         iov++;
2371                         base = 0;
2372                 }
2373         }
2374         *iovp = iov;
2375         *basep = base;
2376 }
2377
2378 /*
2379  * TODO:
2380  * This largely tries to copy generic_file_aio_write_nolock(), although it
2381  * doesn't have to be nearly as generic.  A real cleanup should either
2382  * merge this into generic_file_aio_write_nolock() as well or keep it special
2383  * and remove as much code as possible.
2384  */
2385 static ssize_t
2386 generic_kernel_file_aio_write_nolock(struct kiocb *iocb, const struct kvec*iov,
2387                                      unsigned long nr_segs, loff_t *ppos)
2388 {
2389         struct file *file = iocb->ki_filp;
2390         struct address_space * mapping = file->f_mapping;
2391         const struct address_space_operations *a_ops = mapping->a_ops;
2392         size_t ocount;          /* original count */
2393         size_t count;           /* after file limit checks */
2394         struct inode    *inode = mapping->host;
2395         long            status = 0;
2396         loff_t          pos;
2397         struct page     *page;
2398         struct page     *cached_page = NULL;
2399         const int       isblk = S_ISBLK(inode->i_mode);
2400         ssize_t         written;
2401         ssize_t         err;
2402         size_t          bytes;
2403         struct pagevec  lru_pvec;
2404         const struct kvec *cur_iov = iov; /* current kvec */
2405         size_t          iov_base = 0;      /* offset in the current kvec */
2406         unsigned long   seg;
2407         char            *buf;
2408
2409         ocount = 0;
2410         for (seg = 0; seg < nr_segs; seg++) {
2411                 const struct kvec *iv = &iov[seg];
2412
2413                 /*
2414                  * If any segment has a negative length, or the cumulative
2415                  * length ever wraps negative then return -EINVAL.
2416                  */
2417                 ocount += iv->iov_len;
2418                 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2419                         return -EINVAL;
2420         }
2421
2422         count = ocount;
2423         pos = *ppos;
2424         pagevec_init(&lru_pvec, 0);
2425
2426         /* We can write back this queue in page reclaim */
2427         current->backing_dev_info = mapping->backing_dev_info;
2428         written = 0;
2429
2430         err = generic_write_checks(file, &pos, &count, isblk);
2431         if (err)
2432                 goto out;
2433
2434
2435         if (count == 0)
2436                 goto out;
2437
2438         remove_suid(file->f_dentry);
2439         file_update_time(file);
2440
2441         /* There is no sane reason to use O_DIRECT */
2442         BUG_ON(file->f_flags & O_DIRECT);
2443
2444         buf = iov->iov_base;
2445         do {
2446                 unsigned long index;
2447                 unsigned long offset;
2448                 size_t copied;
2449
2450                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2451                 index = pos >> PAGE_CACHE_SHIFT;
2452                 bytes = PAGE_CACHE_SIZE - offset;
2453                 if (bytes > count)
2454                         bytes = count;
2455
2456                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2457                 if (!page) {
2458                         status = -ENOMEM;
2459                         break;
2460                 }
2461
2462                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2463                 if (unlikely(status)) {
2464                         loff_t isize = i_size_read(inode);
2465                         /*
2466                          * prepare_write() may have instantiated a few blocks
2467                          * outside i_size.  Trim these off again.
2468                          */
2469                         unlock_page(page);
2470                         page_cache_release(page);
2471                         if (pos + bytes > isize)
2472                                 vmtruncate(inode, isize);
2473                         break;
2474                 }
2475
2476                 BUG_ON(nr_segs != 1);
2477                 copied = filemap_copy_from_kernel(page, offset, buf, bytes);
2478
2479                 flush_dcache_page(page);
2480                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2481                 if (likely(copied > 0)) {
2482                         if (!status)
2483                                 status = copied;
2484
2485                         if (status >= 0) {
2486                                 written += status;
2487                                 count -= status;
2488                                 pos += status;
2489                                 buf += status;
2490                                 if (unlikely(nr_segs > 1))
2491                                         filemap_set_next_kvec(&cur_iov,
2492                                                         &iov_base, status);
2493                         }
2494                 }
2495                 if (unlikely(copied != bytes))
2496                         if (status >= 0)
2497                                 status = -EFAULT;
2498                 unlock_page(page);
2499                 mark_page_accessed(page);
2500                 page_cache_release(page);
2501                 if (status < 0)
2502                         break;
2503                 balance_dirty_pages_ratelimited(mapping);
2504                 cond_resched();
2505         } while (count);
2506         *ppos = pos;
2507
2508         if (cached_page)
2509                 page_cache_release(cached_page);
2510
2511         /*
2512          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2513          */
2514         if (status >= 0) {
2515                 if ((file->f_flags & O_SYNC) || IS_SYNC(inode))
2516                         status = generic_osync_inode(inode, mapping,
2517                                         OSYNC_METADATA|OSYNC_DATA);
2518         }
2519
2520         err = written ? written : status;
2521 out:
2522         pagevec_lru_add(&lru_pvec);
2523         current->backing_dev_info = 0;
2524         return err;
2525 }
2526
2527 static ssize_t
2528 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2529                                 unsigned long nr_segs, loff_t *ppos)
2530 {
2531         struct file *file = iocb->ki_filp;
2532         struct address_space * mapping = file->f_mapping;
2533         size_t ocount;          /* original count */
2534         size_t count;           /* after file limit checks */
2535         struct inode    *inode = mapping->host;
2536         unsigned long   seg;
2537         loff_t          pos;
2538         ssize_t         written;
2539         ssize_t         err;
2540
2541         ocount = 0;
2542         for (seg = 0; seg < nr_segs; seg++) {
2543                 const struct iovec *iv = &iov[seg];
2544
2545                 /*
2546                  * If any segment has a negative length, or the cumulative
2547                  * length ever wraps negative then return -EINVAL.
2548                  */
2549                 ocount += iv->iov_len;
2550                 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2551                         return -EINVAL;
2552                 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2553                         continue;
2554                 if (seg == 0)
2555                         return -EFAULT;
2556                 nr_segs = seg;
2557                 ocount -= iv->iov_len;  /* This segment is no good */
2558                 break;
2559         }
2560
2561         count = ocount;
2562         pos = *ppos;
2563
2564         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2565
2566         /* We can write back this queue in page reclaim */
2567         current->backing_dev_info = mapping->backing_dev_info;
2568         written = 0;
2569
2570         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2571         if (err)
2572                 goto out;
2573
2574         if (count == 0)
2575                 goto out;
2576
2577         err = remove_suid(file->f_path.dentry);
2578         if (err)
2579                 goto out;
2580
2581         file_update_time(file);
2582
2583         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2584         if (unlikely(file->f_flags & O_DIRECT)) {
2585                 loff_t endbyte;
2586                 ssize_t written_buffered;
2587
2588                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2589                                                         ppos, count, ocount);
2590                 if (written < 0 || written == count)
2591                         goto out;
2592                 /*
2593                  * direct-io write to a hole: fall through to buffered I/O
2594                  * for completing the rest of the request.
2595                  */
2596                 pos += written;
2597                 count -= written;
2598                 written_buffered = generic_file_buffered_write(iocb, iov,
2599                                                 nr_segs, pos, ppos, count,
2600                                                 written);
2601                 /*
2602                  * If generic_file_buffered_write() retuned a synchronous error
2603                  * then we want to return the number of bytes which were
2604                  * direct-written, or the error code if that was zero.  Note
2605                  * that this differs from normal direct-io semantics, which
2606                  * will return -EFOO even if some bytes were written.
2607                  */
2608                 if (written_buffered < 0) {
2609                         err = written_buffered;
2610                         goto out;
2611                 }
2612
2613                 /*
2614                  * We need to ensure that the page cache pages are written to
2615                  * disk and invalidated to preserve the expected O_DIRECT
2616                  * semantics.
2617                  */
2618                 endbyte = pos + written_buffered - written - 1;
2619                 err = do_sync_file_range(file, pos, endbyte,
2620                                          SYNC_FILE_RANGE_WAIT_BEFORE|
2621                                          SYNC_FILE_RANGE_WRITE|
2622                                          SYNC_FILE_RANGE_WAIT_AFTER);
2623                 if (err == 0) {
2624                         written = written_buffered;
2625                         invalidate_mapping_pages(mapping,
2626                                                  pos >> PAGE_CACHE_SHIFT,
2627                                                  endbyte >> PAGE_CACHE_SHIFT);
2628                 } else {
2629                         /*
2630                          * We don't know how much we wrote, so just return
2631                          * the number of bytes which were direct-written
2632                          */
2633                 }
2634         } else {
2635                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2636                                 pos, ppos, count, written);
2637         }
2638 out:
2639         current->backing_dev_info = NULL;
2640         return written ? written : err;
2641 }
2642
2643 static ssize_t
2644 generic_kernel_file_write_nolock(struct file *file, const struct kvec *iov,
2645                                  unsigned long nr_segs, loff_t *ppos)
2646 {
2647         struct kiocb kiocb;
2648         ssize_t ret;
2649
2650         init_sync_kiocb(&kiocb, file);
2651         ret = generic_kernel_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2652         if (ret == -EIOCBQUEUED)
2653                 ret = wait_on_sync_kiocb(&kiocb);
2654         return ret;
2655 }
2656
2657 static ssize_t generic_kernel_file_write(struct file *file, const char *buf,
2658                                          size_t count, loff_t *ppos)
2659 {
2660         struct inode    *inode = file->f_mapping->host;
2661         ssize_t         err;
2662         struct kvec local_iov = { .iov_base = (char *) buf,
2663                                   .iov_len = count };
2664
2665         mutex_lock(&inode->i_mutex);
2666         err = generic_kernel_file_write_nolock(file, &local_iov, 1, ppos);
2667         mutex_unlock(&inode->i_mutex);
2668
2669         return err;
2670 }
2671
2672
2673 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2674                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2675 {
2676         struct file *file = iocb->ki_filp;
2677         struct address_space *mapping = file->f_mapping;
2678         struct inode *inode = mapping->host;
2679         ssize_t ret;
2680
2681         BUG_ON(iocb->ki_pos != pos);
2682
2683         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2684                         &iocb->ki_pos);
2685
2686         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2687                 ssize_t err;
2688
2689                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2690                 if (err < 0)
2691                         ret = err;
2692         }
2693         return ret;
2694 }
2695 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2696
2697 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2698                 unsigned long nr_segs, loff_t pos)
2699 {
2700         struct file *file = iocb->ki_filp;
2701         struct address_space *mapping = file->f_mapping;
2702         struct inode *inode = mapping->host;
2703         ssize_t ret;
2704
2705         BUG_ON(iocb->ki_pos != pos);
2706
2707         mutex_lock(&inode->i_mutex);
2708         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2709                         &iocb->ki_pos);
2710         mutex_unlock(&inode->i_mutex);
2711
2712         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2713                 ssize_t err;
2714
2715                 err = sync_page_range(inode, mapping, pos, ret);
2716                 if (err < 0)
2717                         ret = err;
2718         }
2719         return ret;
2720 }
2721 EXPORT_SYMBOL(generic_file_aio_write);
2722
2723 /*
2724  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2725  * went wrong during pagecache shootdown.
2726  */
2727 static ssize_t
2728 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2729         loff_t offset, unsigned long nr_segs)
2730 {
2731         struct file *file = iocb->ki_filp;
2732         struct address_space *mapping = file->f_mapping;
2733         ssize_t retval;
2734         size_t write_len;
2735         pgoff_t end = 0; /* silence gcc */
2736
2737         /*
2738          * If it's a write, unmap all mmappings of the file up-front.  This
2739          * will cause any pte dirty bits to be propagated into the pageframes
2740          * for the subsequent filemap_write_and_wait().
2741          */
2742         if (rw == WRITE) {
2743                 write_len = iov_length(iov, nr_segs);
2744                 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2745                 if (mapping_mapped(mapping))
2746                         unmap_mapping_range(mapping, offset, write_len, 0);
2747         }
2748
2749         retval = filemap_write_and_wait(mapping);
2750         if (retval)
2751                 goto out;
2752
2753         /*
2754          * After a write we want buffered reads to be sure to go to disk to get
2755          * the new data.  We invalidate clean cached page from the region we're
2756          * about to write.  We do this *before* the write so that we can return
2757          * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2758          */
2759         if (rw == WRITE && mapping->nrpages) {
2760                 retval = invalidate_inode_pages2_range(mapping,
2761                                         offset >> PAGE_CACHE_SHIFT, end);
2762                 if (retval)
2763                         goto out;
2764         }
2765
2766         retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2767         if (retval)
2768                 goto out;
2769
2770         /*
2771          * Finally, try again to invalidate clean pages which might have been
2772          * faulted in by get_user_pages() if the source of the write was an
2773          * mmap()ed region of the file we're writing.  That's a pretty crazy
2774          * thing to do, so we don't support it 100%.  If this invalidation
2775          * fails and we have -EIOCBQUEUED we ignore the failure.
2776          */
2777         if (rw == WRITE && mapping->nrpages) {
2778                 int err = invalidate_inode_pages2_range(mapping,
2779                                               offset >> PAGE_CACHE_SHIFT, end);
2780                 if (err && retval >= 0)
2781                         retval = err;
2782         }
2783 out:
2784         return retval;
2785 }
2786
2787 /**
2788  * try_to_release_page() - release old fs-specific metadata on a page
2789  *
2790  * @page: the page which the kernel is trying to free
2791  * @gfp_mask: memory allocation flags (and I/O mode)
2792  *
2793  * The address_space is to try to release any data against the page
2794  * (presumably at page->private).  If the release was successful, return `1'.
2795  * Otherwise return zero.
2796  *
2797  * The @gfp_mask argument specifies whether I/O may be performed to release
2798  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2799  *
2800  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2801  */
2802 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2803 {
2804         struct address_space * const mapping = page->mapping;
2805
2806         BUG_ON(!PageLocked(page));
2807         if (PageWriteback(page))
2808                 return 0;
2809
2810         if (mapping && mapping->a_ops->releasepage)
2811                 return mapping->a_ops->releasepage(page, gfp_mask);
2812         return try_to_free_buffers(page);
2813 }
2814
2815 EXPORT_SYMBOL(try_to_release_page);