Merge to Fedora kernel-2.6.18-1.2224_FC5 patched with stable patch-2.6.18.1-vs2.0...
[linux-2.6.git] / mm / highmem.c
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/blktrace_api.h>
30 #include <asm/tlbflush.h>
31
32 static mempool_t *page_pool, *isa_page_pool;
33
34 static void *mempool_alloc_pages_isa(gfp_t gfp_mask, void *data)
35 {
36         return mempool_alloc_pages(gfp_mask | GFP_DMA, data);
37 }
38
39 /*
40  * Virtual_count is not a pure "count".
41  *  0 means that it is not mapped, and has not been mapped
42  *    since a TLB flush - it is usable.
43  *  1 means that there are no users, but it has been mapped
44  *    since the last TLB flush - so we can't use it.
45  *  n means that there are (n-1) current users of it.
46  */
47 #ifdef CONFIG_HIGHMEM
48
49 static int pkmap_count[LAST_PKMAP];
50 static unsigned int last_pkmap_nr;
51 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
52
53 pte_t * pkmap_page_table;
54
55 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
56
57 static void flush_all_zero_pkmaps(void)
58 {
59         int i;
60
61         flush_cache_kmaps();
62
63         for (i = 0; i < LAST_PKMAP; i++) {
64                 struct page *page;
65
66                 /*
67                  * zero means we don't have anything to do,
68                  * >1 means that it is still in use. Only
69                  * a count of 1 means that it is free but
70                  * needs to be unmapped
71                  */
72                 if (pkmap_count[i] != 1)
73                         continue;
74                 pkmap_count[i] = 0;
75
76                 /* sanity check */
77                 BUG_ON(pte_none(pkmap_page_table[i]));
78
79                 /*
80                  * Don't need an atomic fetch-and-clear op here;
81                  * no-one has the page mapped, and cannot get at
82                  * its virtual address (and hence PTE) without first
83                  * getting the kmap_lock (which is held here).
84                  * So no dangers, even with speculative execution.
85                  */
86                 page = pte_page(pkmap_page_table[i]);
87                 pte_clear(&init_mm, (unsigned long)page_address(page),
88                           &pkmap_page_table[i]);
89
90                 set_page_address(page, NULL);
91         }
92         flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
93 }
94
95 static inline unsigned long map_new_virtual(struct page *page)
96 {
97         unsigned long vaddr;
98         int count;
99
100 start:
101         count = LAST_PKMAP;
102         /* Find an empty entry */
103         for (;;) {
104                 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
105                 if (!last_pkmap_nr) {
106                         flush_all_zero_pkmaps();
107                         count = LAST_PKMAP;
108                 }
109                 if (!pkmap_count[last_pkmap_nr])
110                         break;  /* Found a usable entry */
111                 if (--count)
112                         continue;
113
114                 /*
115                  * Sleep for somebody else to unmap their entries
116                  */
117                 {
118                         DECLARE_WAITQUEUE(wait, current);
119
120                         __set_current_state(TASK_UNINTERRUPTIBLE);
121                         add_wait_queue(&pkmap_map_wait, &wait);
122                         spin_unlock(&kmap_lock);
123                         schedule();
124                         remove_wait_queue(&pkmap_map_wait, &wait);
125                         spin_lock(&kmap_lock);
126
127                         /* Somebody else might have mapped it while we slept */
128                         if (page_address(page))
129                                 return (unsigned long)page_address(page);
130
131                         /* Re-start */
132                         goto start;
133                 }
134         }
135         vaddr = PKMAP_ADDR(last_pkmap_nr);
136         set_pte_at(&init_mm, vaddr,
137                    &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
138
139         pkmap_count[last_pkmap_nr] = 1;
140         set_page_address(page, (void *)vaddr);
141
142         return vaddr;
143 }
144
145 #ifdef CONFIG_XEN
146 void kmap_flush_unused(void)
147 {
148         spin_lock(&kmap_lock);
149         flush_all_zero_pkmaps();
150         spin_unlock(&kmap_lock);
151 }
152
153 EXPORT_SYMBOL(kmap_flush_unused);
154 #endif
155
156 void fastcall *kmap_high(struct page *page)
157 {
158         unsigned long vaddr;
159
160         /*
161          * For highmem pages, we can't trust "virtual" until
162          * after we have the lock.
163          *
164          * We cannot call this from interrupts, as it may block
165          */
166         spin_lock(&kmap_lock);
167         vaddr = (unsigned long)page_address(page);
168         if (!vaddr)
169                 vaddr = map_new_virtual(page);
170         pkmap_count[PKMAP_NR(vaddr)]++;
171         BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
172         spin_unlock(&kmap_lock);
173         return (void*) vaddr;
174 }
175
176 EXPORT_SYMBOL(kmap_high);
177
178 void fastcall kunmap_high(struct page *page)
179 {
180         unsigned long vaddr;
181         unsigned long nr;
182         int need_wakeup;
183
184         spin_lock(&kmap_lock);
185         vaddr = (unsigned long)page_address(page);
186         BUG_ON(!vaddr);
187         nr = PKMAP_NR(vaddr);
188
189         /*
190          * A count must never go down to zero
191          * without a TLB flush!
192          */
193         need_wakeup = 0;
194         switch (--pkmap_count[nr]) {
195         case 0:
196                 BUG();
197         case 1:
198                 /*
199                  * Avoid an unnecessary wake_up() function call.
200                  * The common case is pkmap_count[] == 1, but
201                  * no waiters.
202                  * The tasks queued in the wait-queue are guarded
203                  * by both the lock in the wait-queue-head and by
204                  * the kmap_lock.  As the kmap_lock is held here,
205                  * no need for the wait-queue-head's lock.  Simply
206                  * test if the queue is empty.
207                  */
208                 need_wakeup = waitqueue_active(&pkmap_map_wait);
209         }
210         spin_unlock(&kmap_lock);
211
212         /* do wake-up, if needed, race-free outside of the spin lock */
213         if (need_wakeup)
214                 wake_up(&pkmap_map_wait);
215 }
216
217 EXPORT_SYMBOL(kunmap_high);
218
219 #define POOL_SIZE       64
220
221 static __init int init_emergency_pool(void)
222 {
223         struct sysinfo i;
224         si_meminfo(&i);
225         si_swapinfo(&i);
226         
227         if (!i.totalhigh)
228                 return 0;
229
230         page_pool = mempool_create_page_pool(POOL_SIZE, 0);
231         BUG_ON(!page_pool);
232         printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
233
234         return 0;
235 }
236
237 __initcall(init_emergency_pool);
238
239 /*
240  * highmem version, map in to vec
241  */
242 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
243 {
244         unsigned long flags;
245         unsigned char *vto;
246
247         local_irq_save(flags);
248         vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
249         memcpy(vto + to->bv_offset, vfrom, to->bv_len);
250         kunmap_atomic(vto, KM_BOUNCE_READ);
251         local_irq_restore(flags);
252 }
253
254 #else /* CONFIG_HIGHMEM */
255
256 #define bounce_copy_vec(to, vfrom)      \
257         memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
258
259 #endif
260
261 #define ISA_POOL_SIZE   16
262
263 /*
264  * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
265  * as the max address, so check if the pool has already been created.
266  */
267 int init_emergency_isa_pool(void)
268 {
269         if (isa_page_pool)
270                 return 0;
271
272         isa_page_pool = mempool_create(ISA_POOL_SIZE, mempool_alloc_pages_isa,
273                                        mempool_free_pages, (void *) 0);
274         BUG_ON(!isa_page_pool);
275
276         printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
277         return 0;
278 }
279
280 /*
281  * Simple bounce buffer support for highmem pages. Depending on the
282  * queue gfp mask set, *to may or may not be a highmem page. kmap it
283  * always, it will do the Right Thing
284  */
285 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
286 {
287         unsigned char *vfrom;
288         struct bio_vec *tovec, *fromvec;
289         int i;
290
291         __bio_for_each_segment(tovec, to, i, 0) {
292                 fromvec = from->bi_io_vec + i;
293
294                 /*
295                  * not bounced
296                  */
297                 if (tovec->bv_page == fromvec->bv_page)
298                         continue;
299
300                 /*
301                  * fromvec->bv_offset and fromvec->bv_len might have been
302                  * modified by the block layer, so use the original copy,
303                  * bounce_copy_vec already uses tovec->bv_len
304                  */
305                 vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
306
307                 flush_dcache_page(tovec->bv_page);
308                 bounce_copy_vec(tovec, vfrom);
309         }
310 }
311
312 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
313 {
314         struct bio *bio_orig = bio->bi_private;
315         struct bio_vec *bvec, *org_vec;
316         int i;
317
318         if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
319                 set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
320
321         /*
322          * free up bounce indirect pages used
323          */
324         __bio_for_each_segment(bvec, bio, i, 0) {
325                 org_vec = bio_orig->bi_io_vec + i;
326                 if (bvec->bv_page == org_vec->bv_page)
327                         continue;
328
329                 dec_zone_page_state(bvec->bv_page, NR_BOUNCE);
330                 mempool_free(bvec->bv_page, pool);
331         }
332
333         bio_endio(bio_orig, bio_orig->bi_size, err);
334         bio_put(bio);
335 }
336
337 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
338 {
339         if (bio->bi_size)
340                 return 1;
341
342         bounce_end_io(bio, page_pool, err);
343         return 0;
344 }
345
346 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
347 {
348         if (bio->bi_size)
349                 return 1;
350
351         bounce_end_io(bio, isa_page_pool, err);
352         return 0;
353 }
354
355 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
356 {
357         struct bio *bio_orig = bio->bi_private;
358
359         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
360                 copy_to_high_bio_irq(bio_orig, bio);
361
362         bounce_end_io(bio, pool, err);
363 }
364
365 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
366 {
367         if (bio->bi_size)
368                 return 1;
369
370         __bounce_end_io_read(bio, page_pool, err);
371         return 0;
372 }
373
374 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
375 {
376         if (bio->bi_size)
377                 return 1;
378
379         __bounce_end_io_read(bio, isa_page_pool, err);
380         return 0;
381 }
382
383 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
384                                mempool_t *pool)
385 {
386         struct page *page;
387         struct bio *bio = NULL;
388         int i, rw = bio_data_dir(*bio_orig);
389         struct bio_vec *to, *from;
390
391         bio_for_each_segment(from, *bio_orig, i) {
392                 page = from->bv_page;
393
394                 /*
395                  * is destination page below bounce pfn?
396                  */
397                 if (page_to_pfn(page) < q->bounce_pfn)
398                         continue;
399
400                 /*
401                  * irk, bounce it
402                  */
403                 if (!bio)
404                         bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
405
406                 to = bio->bi_io_vec + i;
407
408                 to->bv_page = mempool_alloc(pool, q->bounce_gfp);
409                 to->bv_len = from->bv_len;
410                 to->bv_offset = from->bv_offset;
411                 inc_zone_page_state(to->bv_page, NR_BOUNCE);
412
413                 if (rw == WRITE) {
414                         char *vto, *vfrom;
415
416                         flush_dcache_page(from->bv_page);
417                         vto = page_address(to->bv_page) + to->bv_offset;
418                         vfrom = kmap(from->bv_page) + from->bv_offset;
419                         memcpy(vto, vfrom, to->bv_len);
420                         kunmap(from->bv_page);
421                 }
422         }
423
424         /*
425          * no pages bounced
426          */
427         if (!bio)
428                 return;
429
430         /*
431          * at least one page was bounced, fill in possible non-highmem
432          * pages
433          */
434         __bio_for_each_segment(from, *bio_orig, i, 0) {
435                 to = bio_iovec_idx(bio, i);
436                 if (!to->bv_page) {
437                         to->bv_page = from->bv_page;
438                         to->bv_len = from->bv_len;
439                         to->bv_offset = from->bv_offset;
440                 }
441         }
442
443         bio->bi_bdev = (*bio_orig)->bi_bdev;
444         bio->bi_flags |= (1 << BIO_BOUNCED);
445         bio->bi_sector = (*bio_orig)->bi_sector;
446         bio->bi_rw = (*bio_orig)->bi_rw;
447
448         bio->bi_vcnt = (*bio_orig)->bi_vcnt;
449         bio->bi_idx = (*bio_orig)->bi_idx;
450         bio->bi_size = (*bio_orig)->bi_size;
451
452         if (pool == page_pool) {
453                 bio->bi_end_io = bounce_end_io_write;
454                 if (rw == READ)
455                         bio->bi_end_io = bounce_end_io_read;
456         } else {
457                 bio->bi_end_io = bounce_end_io_write_isa;
458                 if (rw == READ)
459                         bio->bi_end_io = bounce_end_io_read_isa;
460         }
461
462         bio->bi_private = *bio_orig;
463         *bio_orig = bio;
464 }
465
466 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
467 {
468         mempool_t *pool;
469
470         /*
471          * for non-isa bounce case, just check if the bounce pfn is equal
472          * to or bigger than the highest pfn in the system -- in that case,
473          * don't waste time iterating over bio segments
474          */
475         if (!(q->bounce_gfp & GFP_DMA)) {
476                 if (q->bounce_pfn >= blk_max_pfn)
477                         return;
478                 pool = page_pool;
479         } else {
480                 BUG_ON(!isa_page_pool);
481                 pool = isa_page_pool;
482         }
483
484         blk_add_trace_bio(q, *bio_orig, BLK_TA_BOUNCE);
485
486         /*
487          * slow path
488          */
489         __blk_queue_bounce(q, bio_orig, pool);
490 }
491
492 EXPORT_SYMBOL(blk_queue_bounce);
493
494 #if defined(HASHED_PAGE_VIRTUAL)
495
496 #define PA_HASH_ORDER   7
497
498 /*
499  * Describes one page->virtual association
500  */
501 struct page_address_map {
502         struct page *page;
503         void *virtual;
504         struct list_head list;
505 };
506
507 /*
508  * page_address_map freelist, allocated from page_address_maps.
509  */
510 static struct list_head page_address_pool;      /* freelist */
511 static spinlock_t pool_lock;                    /* protects page_address_pool */
512
513 /*
514  * Hash table bucket
515  */
516 static struct page_address_slot {
517         struct list_head lh;                    /* List of page_address_maps */
518         spinlock_t lock;                        /* Protect this bucket's list */
519 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
520
521 static struct page_address_slot *page_slot(struct page *page)
522 {
523         return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
524 }
525
526 void *page_address(struct page *page)
527 {
528         unsigned long flags;
529         void *ret;
530         struct page_address_slot *pas;
531
532         if (!PageHighMem(page))
533                 return lowmem_page_address(page);
534
535         pas = page_slot(page);
536         ret = NULL;
537         spin_lock_irqsave(&pas->lock, flags);
538         if (!list_empty(&pas->lh)) {
539                 struct page_address_map *pam;
540
541                 list_for_each_entry(pam, &pas->lh, list) {
542                         if (pam->page == page) {
543                                 ret = pam->virtual;
544                                 goto done;
545                         }
546                 }
547         }
548 done:
549         spin_unlock_irqrestore(&pas->lock, flags);
550         return ret;
551 }
552
553 EXPORT_SYMBOL(page_address);
554
555 void set_page_address(struct page *page, void *virtual)
556 {
557         unsigned long flags;
558         struct page_address_slot *pas;
559         struct page_address_map *pam;
560
561         BUG_ON(!PageHighMem(page));
562
563         pas = page_slot(page);
564         if (virtual) {          /* Add */
565                 BUG_ON(list_empty(&page_address_pool));
566
567                 spin_lock_irqsave(&pool_lock, flags);
568                 pam = list_entry(page_address_pool.next,
569                                 struct page_address_map, list);
570                 list_del(&pam->list);
571                 spin_unlock_irqrestore(&pool_lock, flags);
572
573                 pam->page = page;
574                 pam->virtual = virtual;
575
576                 spin_lock_irqsave(&pas->lock, flags);
577                 list_add_tail(&pam->list, &pas->lh);
578                 spin_unlock_irqrestore(&pas->lock, flags);
579         } else {                /* Remove */
580                 spin_lock_irqsave(&pas->lock, flags);
581                 list_for_each_entry(pam, &pas->lh, list) {
582                         if (pam->page == page) {
583                                 list_del(&pam->list);
584                                 spin_unlock_irqrestore(&pas->lock, flags);
585                                 spin_lock_irqsave(&pool_lock, flags);
586                                 list_add_tail(&pam->list, &page_address_pool);
587                                 spin_unlock_irqrestore(&pool_lock, flags);
588                                 goto done;
589                         }
590                 }
591                 spin_unlock_irqrestore(&pas->lock, flags);
592         }
593 done:
594         return;
595 }
596
597 static struct page_address_map page_address_maps[LAST_PKMAP];
598
599 void __init page_address_init(void)
600 {
601         int i;
602
603         INIT_LIST_HEAD(&page_address_pool);
604         for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
605                 list_add(&page_address_maps[i].list, &page_address_pool);
606         for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
607                 INIT_LIST_HEAD(&page_address_htable[i].lh);
608                 spin_lock_init(&page_address_htable[i].lock);
609         }
610         spin_lock_init(&pool_lock);
611 }
612
613 #endif  /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */