vserver 1.9.5.x5
[linux-2.6.git] / mm / highmem.c
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <asm/tlbflush.h>
30
31 static mempool_t *page_pool, *isa_page_pool;
32
33 static void *page_pool_alloc(int gfp_mask, void *data)
34 {
35         int gfp = gfp_mask | (int) (long) data;
36
37         return alloc_page(gfp);
38 }
39
40 static void page_pool_free(void *page, void *data)
41 {
42         __free_page(page);
43 }
44
45 /*
46  * Virtual_count is not a pure "count".
47  *  0 means that it is not mapped, and has not been mapped
48  *    since a TLB flush - it is usable.
49  *  1 means that there are no users, but it has been mapped
50  *    since the last TLB flush - so we can't use it.
51  *  n means that there are (n-1) current users of it.
52  */
53 #ifdef CONFIG_HIGHMEM
54 static int pkmap_count[LAST_PKMAP];
55 static unsigned int last_pkmap_nr;
56 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
57
58 pte_t * pkmap_page_table;
59
60 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
61
62 static void flush_all_zero_pkmaps(void)
63 {
64         int i;
65
66         flush_cache_kmaps();
67
68         for (i = 0; i < LAST_PKMAP; i++) {
69                 struct page *page;
70
71                 /*
72                  * zero means we don't have anything to do,
73                  * >1 means that it is still in use. Only
74                  * a count of 1 means that it is free but
75                  * needs to be unmapped
76                  */
77                 if (pkmap_count[i] != 1)
78                         continue;
79                 pkmap_count[i] = 0;
80
81                 /* sanity check */
82                 if (pte_none(pkmap_page_table[i]))
83                         BUG();
84
85                 /*
86                  * Don't need an atomic fetch-and-clear op here;
87                  * no-one has the page mapped, and cannot get at
88                  * its virtual address (and hence PTE) without first
89                  * getting the kmap_lock (which is held here).
90                  * So no dangers, even with speculative execution.
91                  */
92                 page = pte_page(pkmap_page_table[i]);
93                 pte_clear(&pkmap_page_table[i]);
94
95                 set_page_address(page, NULL);
96         }
97         flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
98 }
99
100 static inline unsigned long map_new_virtual(struct page *page)
101 {
102         unsigned long vaddr;
103         int count;
104
105 start:
106         count = LAST_PKMAP;
107         /* Find an empty entry */
108         for (;;) {
109                 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
110                 if (!last_pkmap_nr) {
111                         flush_all_zero_pkmaps();
112                         count = LAST_PKMAP;
113                 }
114                 if (!pkmap_count[last_pkmap_nr])
115                         break;  /* Found a usable entry */
116                 if (--count)
117                         continue;
118
119                 /*
120                  * Sleep for somebody else to unmap their entries
121                  */
122                 {
123                         DECLARE_WAITQUEUE(wait, current);
124
125                         __set_current_state(TASK_UNINTERRUPTIBLE);
126                         add_wait_queue(&pkmap_map_wait, &wait);
127                         spin_unlock(&kmap_lock);
128                         schedule();
129                         remove_wait_queue(&pkmap_map_wait, &wait);
130                         spin_lock(&kmap_lock);
131
132                         /* Somebody else might have mapped it while we slept */
133                         if (page_address(page))
134                                 return (unsigned long)page_address(page);
135
136                         /* Re-start */
137                         goto start;
138                 }
139         }
140         vaddr = PKMAP_ADDR(last_pkmap_nr);
141         set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
142
143         pkmap_count[last_pkmap_nr] = 1;
144         set_page_address(page, (void *)vaddr);
145
146         return vaddr;
147 }
148
149 void fastcall *kmap_high(struct page *page)
150 {
151         unsigned long vaddr;
152
153         /*
154          * For highmem pages, we can't trust "virtual" until
155          * after we have the lock.
156          *
157          * We cannot call this from interrupts, as it may block
158          */
159         spin_lock(&kmap_lock);
160         vaddr = (unsigned long)page_address(page);
161         if (!vaddr)
162                 vaddr = map_new_virtual(page);
163         pkmap_count[PKMAP_NR(vaddr)]++;
164         if (pkmap_count[PKMAP_NR(vaddr)] < 2)
165                 BUG();
166         spin_unlock(&kmap_lock);
167         return (void*) vaddr;
168 }
169
170 EXPORT_SYMBOL(kmap_high);
171
172 void fastcall kunmap_high(struct page *page)
173 {
174         unsigned long vaddr;
175         unsigned long nr;
176         int need_wakeup;
177
178         spin_lock(&kmap_lock);
179         vaddr = (unsigned long)page_address(page);
180         if (!vaddr)
181                 BUG();
182         nr = PKMAP_NR(vaddr);
183
184         /*
185          * A count must never go down to zero
186          * without a TLB flush!
187          */
188         need_wakeup = 0;
189         switch (--pkmap_count[nr]) {
190         case 0:
191                 BUG();
192         case 1:
193                 /*
194                  * Avoid an unnecessary wake_up() function call.
195                  * The common case is pkmap_count[] == 1, but
196                  * no waiters.
197                  * The tasks queued in the wait-queue are guarded
198                  * by both the lock in the wait-queue-head and by
199                  * the kmap_lock.  As the kmap_lock is held here,
200                  * no need for the wait-queue-head's lock.  Simply
201                  * test if the queue is empty.
202                  */
203                 need_wakeup = waitqueue_active(&pkmap_map_wait);
204         }
205         spin_unlock(&kmap_lock);
206
207         /* do wake-up, if needed, race-free outside of the spin lock */
208         if (need_wakeup)
209                 wake_up(&pkmap_map_wait);
210 }
211
212 EXPORT_SYMBOL(kunmap_high);
213
214 #define POOL_SIZE       64
215
216 static __init int init_emergency_pool(void)
217 {
218         struct sysinfo i;
219         si_meminfo(&i);
220         si_swapinfo(&i);
221         
222         if (!i.totalhigh)
223                 return 0;
224
225         page_pool = mempool_create(POOL_SIZE, page_pool_alloc, page_pool_free, NULL);
226         if (!page_pool)
227                 BUG();
228         printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
229
230         return 0;
231 }
232
233 __initcall(init_emergency_pool);
234
235 /*
236  * highmem version, map in to vec
237  */
238 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
239 {
240         unsigned long flags;
241         unsigned char *vto;
242
243         local_irq_save(flags);
244         vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
245         memcpy(vto + to->bv_offset, vfrom, to->bv_len);
246         kunmap_atomic(vto, KM_BOUNCE_READ);
247         local_irq_restore(flags);
248 }
249
250 #else /* CONFIG_HIGHMEM */
251
252 #define bounce_copy_vec(to, vfrom)      \
253         memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
254
255 #endif
256
257 #define ISA_POOL_SIZE   16
258
259 /*
260  * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
261  * as the max address, so check if the pool has already been created.
262  */
263 int init_emergency_isa_pool(void)
264 {
265         if (isa_page_pool)
266                 return 0;
267
268         isa_page_pool = mempool_create(ISA_POOL_SIZE, page_pool_alloc, page_pool_free, (void *) __GFP_DMA);
269         if (!isa_page_pool)
270                 BUG();
271
272         printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
273         return 0;
274 }
275
276 /*
277  * Simple bounce buffer support for highmem pages. Depending on the
278  * queue gfp mask set, *to may or may not be a highmem page. kmap it
279  * always, it will do the Right Thing
280  */
281 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
282 {
283         unsigned char *vfrom;
284         struct bio_vec *tovec, *fromvec;
285         int i;
286
287         __bio_for_each_segment(tovec, to, i, 0) {
288                 fromvec = from->bi_io_vec + i;
289
290                 /*
291                  * not bounced
292                  */
293                 if (tovec->bv_page == fromvec->bv_page)
294                         continue;
295
296                 /*
297                  * fromvec->bv_offset and fromvec->bv_len might have been
298                  * modified by the block layer, so use the original copy,
299                  * bounce_copy_vec already uses tovec->bv_len
300                  */
301                 vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
302
303                 flush_dcache_page(tovec->bv_page);
304                 bounce_copy_vec(tovec, vfrom);
305         }
306 }
307
308 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
309 {
310         struct bio *bio_orig = bio->bi_private;
311         struct bio_vec *bvec, *org_vec;
312         int i;
313
314         if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
315                 set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
316
317         /*
318          * free up bounce indirect pages used
319          */
320         __bio_for_each_segment(bvec, bio, i, 0) {
321                 org_vec = bio_orig->bi_io_vec + i;
322                 if (bvec->bv_page == org_vec->bv_page)
323                         continue;
324
325                 mempool_free(bvec->bv_page, pool);      
326         }
327
328         bio_endio(bio_orig, bio_orig->bi_size, err);
329         bio_put(bio);
330 }
331
332 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done,int err)
333 {
334         if (bio->bi_size)
335                 return 1;
336
337         bounce_end_io(bio, page_pool, err);
338         return 0;
339 }
340
341 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
342 {
343         if (bio->bi_size)
344                 return 1;
345
346         bounce_end_io(bio, isa_page_pool, err);
347         return 0;
348 }
349
350 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
351 {
352         struct bio *bio_orig = bio->bi_private;
353
354         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
355                 copy_to_high_bio_irq(bio_orig, bio);
356
357         bounce_end_io(bio, pool, err);
358 }
359
360 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
361 {
362         if (bio->bi_size)
363                 return 1;
364
365         __bounce_end_io_read(bio, page_pool, err);
366         return 0;
367 }
368
369 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
370 {
371         if (bio->bi_size)
372                 return 1;
373
374         __bounce_end_io_read(bio, isa_page_pool, err);
375         return 0;
376 }
377
378 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
379                         mempool_t *pool)
380 {
381         struct page *page;
382         struct bio *bio = NULL;
383         int i, rw = bio_data_dir(*bio_orig);
384         struct bio_vec *to, *from;
385
386         bio_for_each_segment(from, *bio_orig, i) {
387                 page = from->bv_page;
388
389                 /*
390                  * is destination page below bounce pfn?
391                  */
392                 if (page_to_pfn(page) < q->bounce_pfn)
393                         continue;
394
395                 /*
396                  * irk, bounce it
397                  */
398                 if (!bio)
399                         bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
400
401                 to = bio->bi_io_vec + i;
402
403                 to->bv_page = mempool_alloc(pool, q->bounce_gfp);
404                 to->bv_len = from->bv_len;
405                 to->bv_offset = from->bv_offset;
406
407                 if (rw == WRITE) {
408                         char *vto, *vfrom;
409
410                         flush_dcache_page(from->bv_page);
411                         vto = page_address(to->bv_page) + to->bv_offset;
412                         vfrom = kmap(from->bv_page) + from->bv_offset;
413                         memcpy(vto, vfrom, to->bv_len);
414                         kunmap(from->bv_page);
415                 }
416         }
417
418         /*
419          * no pages bounced
420          */
421         if (!bio)
422                 return;
423
424         /*
425          * at least one page was bounced, fill in possible non-highmem
426          * pages
427          */
428         __bio_for_each_segment(from, *bio_orig, i, 0) {
429                 to = bio_iovec_idx(bio, i);
430                 if (!to->bv_page) {
431                         to->bv_page = from->bv_page;
432                         to->bv_len = from->bv_len;
433                         to->bv_offset = from->bv_offset;
434                 }
435         }
436
437         bio->bi_bdev = (*bio_orig)->bi_bdev;
438         bio->bi_flags |= (1 << BIO_BOUNCED);
439         bio->bi_sector = (*bio_orig)->bi_sector;
440         bio->bi_rw = (*bio_orig)->bi_rw;
441
442         bio->bi_vcnt = (*bio_orig)->bi_vcnt;
443         bio->bi_idx = (*bio_orig)->bi_idx;
444         bio->bi_size = (*bio_orig)->bi_size;
445
446         if (pool == page_pool) {
447                 bio->bi_end_io = bounce_end_io_write;
448                 if (rw == READ)
449                         bio->bi_end_io = bounce_end_io_read;
450         } else {
451                 bio->bi_end_io = bounce_end_io_write_isa;
452                 if (rw == READ)
453                         bio->bi_end_io = bounce_end_io_read_isa;
454         }
455
456         bio->bi_private = *bio_orig;
457         *bio_orig = bio;
458 }
459
460 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
461 {
462         mempool_t *pool;
463
464         /*
465          * for non-isa bounce case, just check if the bounce pfn is equal
466          * to or bigger than the highest pfn in the system -- in that case,
467          * don't waste time iterating over bio segments
468          */
469         if (!(q->bounce_gfp & GFP_DMA)) {
470                 if (q->bounce_pfn >= blk_max_pfn)
471                         return;
472                 pool = page_pool;
473         } else {
474                 BUG_ON(!isa_page_pool);
475                 pool = isa_page_pool;
476         }
477
478         /*
479          * slow path
480          */
481         __blk_queue_bounce(q, bio_orig, pool);
482 }
483
484 EXPORT_SYMBOL(blk_queue_bounce);
485
486 #if defined(HASHED_PAGE_VIRTUAL)
487
488 #define PA_HASH_ORDER   7
489
490 /*
491  * Describes one page->virtual association
492  */
493 struct page_address_map {
494         struct page *page;
495         void *virtual;
496         struct list_head list;
497 };
498
499 /*
500  * page_address_map freelist, allocated from page_address_maps.
501  */
502 static struct list_head page_address_pool;      /* freelist */
503 static spinlock_t pool_lock;                    /* protects page_address_pool */
504
505 /*
506  * Hash table bucket
507  */
508 static struct page_address_slot {
509         struct list_head lh;                    /* List of page_address_maps */
510         spinlock_t lock;                        /* Protect this bucket's list */
511 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
512
513 static struct page_address_slot *page_slot(struct page *page)
514 {
515         return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
516 }
517
518 void *page_address(struct page *page)
519 {
520         unsigned long flags;
521         void *ret;
522         struct page_address_slot *pas;
523
524         if (!PageHighMem(page))
525                 return lowmem_page_address(page);
526
527         pas = page_slot(page);
528         ret = NULL;
529         spin_lock_irqsave(&pas->lock, flags);
530         if (!list_empty(&pas->lh)) {
531                 struct page_address_map *pam;
532
533                 list_for_each_entry(pam, &pas->lh, list) {
534                         if (pam->page == page) {
535                                 ret = pam->virtual;
536                                 goto done;
537                         }
538                 }
539         }
540 done:
541         spin_unlock_irqrestore(&pas->lock, flags);
542         return ret;
543 }
544
545 EXPORT_SYMBOL(page_address);
546
547 void set_page_address(struct page *page, void *virtual)
548 {
549         unsigned long flags;
550         struct page_address_slot *pas;
551         struct page_address_map *pam;
552
553         BUG_ON(!PageHighMem(page));
554
555         pas = page_slot(page);
556         if (virtual) {          /* Add */
557                 BUG_ON(list_empty(&page_address_pool));
558
559                 spin_lock_irqsave(&pool_lock, flags);
560                 pam = list_entry(page_address_pool.next,
561                                 struct page_address_map, list);
562                 list_del(&pam->list);
563                 spin_unlock_irqrestore(&pool_lock, flags);
564
565                 pam->page = page;
566                 pam->virtual = virtual;
567
568                 spin_lock_irqsave(&pas->lock, flags);
569                 list_add_tail(&pam->list, &pas->lh);
570                 spin_unlock_irqrestore(&pas->lock, flags);
571         } else {                /* Remove */
572                 spin_lock_irqsave(&pas->lock, flags);
573                 list_for_each_entry(pam, &pas->lh, list) {
574                         if (pam->page == page) {
575                                 list_del(&pam->list);
576                                 spin_unlock_irqrestore(&pas->lock, flags);
577                                 spin_lock_irqsave(&pool_lock, flags);
578                                 list_add_tail(&pam->list, &page_address_pool);
579                                 spin_unlock_irqrestore(&pool_lock, flags);
580                                 goto done;
581                         }
582                 }
583                 spin_unlock_irqrestore(&pas->lock, flags);
584         }
585 done:
586         return;
587 }
588
589 static struct page_address_map page_address_maps[LAST_PKMAP];
590
591 void __init page_address_init(void)
592 {
593         int i;
594
595         INIT_LIST_HEAD(&page_address_pool);
596         for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
597                 list_add(&page_address_maps[i].list, &page_address_pool);
598         for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
599                 INIT_LIST_HEAD(&page_address_htable[i].lh);
600                 spin_lock_init(&page_address_htable[i].lock);
601         }
602         spin_lock_init(&pool_lock);
603 }
604
605 #endif  /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */