fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81 unsigned long vmalloc_earlyreserve;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85 EXPORT_SYMBOL(vmalloc_earlyreserve);
86
87 int randomize_va_space __read_mostly = 1;
88
89 static int __init disable_randmaps(char *s)
90 {
91         randomize_va_space = 0;
92         return 1;
93 }
94 __setup("norandmaps", disable_randmaps);
95
96
97 /*
98  * If a p?d_bad entry is found while walking page tables, report
99  * the error, before resetting entry to p?d_none.  Usually (but
100  * very seldom) called out from the p?d_none_or_clear_bad macros.
101  */
102
103 void pgd_clear_bad(pgd_t *pgd)
104 {
105         pgd_ERROR(*pgd);
106         pgd_clear(pgd);
107 }
108
109 void pud_clear_bad(pud_t *pud)
110 {
111         pud_ERROR(*pud);
112         pud_clear(pud);
113 }
114
115 void pmd_clear_bad(pmd_t *pmd)
116 {
117         pmd_ERROR(*pmd);
118         pmd_clear(pmd);
119 }
120
121 /*
122  * Note: this doesn't free the actual pages themselves. That
123  * has been handled earlier when unmapping all the memory regions.
124  */
125 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126 {
127         struct page *page = pmd_page(*pmd);
128         pmd_clear(pmd);
129         pte_lock_deinit(page);
130         pte_free_tlb(tlb, page);
131         dec_zone_page_state(page, NR_PAGETABLE);
132         tlb->mm->nr_ptes--;
133 }
134
135 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136                                 unsigned long addr, unsigned long end,
137                                 unsigned long floor, unsigned long ceiling)
138 {
139         pmd_t *pmd;
140         unsigned long next;
141         unsigned long start;
142
143         start = addr;
144         pmd = pmd_offset(pud, addr);
145         do {
146                 next = pmd_addr_end(addr, end);
147                 if (pmd_none_or_clear_bad(pmd))
148                         continue;
149                 free_pte_range(tlb, pmd);
150         } while (pmd++, addr = next, addr != end);
151
152         start &= PUD_MASK;
153         if (start < floor)
154                 return;
155         if (ceiling) {
156                 ceiling &= PUD_MASK;
157                 if (!ceiling)
158                         return;
159         }
160         if (end - 1 > ceiling - 1)
161                 return;
162
163         pmd = pmd_offset(pud, start);
164         pud_clear(pud);
165         pmd_free_tlb(tlb, pmd);
166 }
167
168 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169                                 unsigned long addr, unsigned long end,
170                                 unsigned long floor, unsigned long ceiling)
171 {
172         pud_t *pud;
173         unsigned long next;
174         unsigned long start;
175
176         start = addr;
177         pud = pud_offset(pgd, addr);
178         do {
179                 next = pud_addr_end(addr, end);
180                 if (pud_none_or_clear_bad(pud))
181                         continue;
182                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183         } while (pud++, addr = next, addr != end);
184
185         start &= PGDIR_MASK;
186         if (start < floor)
187                 return;
188         if (ceiling) {
189                 ceiling &= PGDIR_MASK;
190                 if (!ceiling)
191                         return;
192         }
193         if (end - 1 > ceiling - 1)
194                 return;
195
196         pud = pud_offset(pgd, start);
197         pgd_clear(pgd);
198         pud_free_tlb(tlb, pud);
199 }
200
201 /*
202  * This function frees user-level page tables of a process.
203  *
204  * Must be called with pagetable lock held.
205  */
206 void free_pgd_range(struct mmu_gather **tlb,
207                         unsigned long addr, unsigned long end,
208                         unsigned long floor, unsigned long ceiling)
209 {
210         pgd_t *pgd;
211         unsigned long next;
212         unsigned long start;
213
214         /*
215          * The next few lines have given us lots of grief...
216          *
217          * Why are we testing PMD* at this top level?  Because often
218          * there will be no work to do at all, and we'd prefer not to
219          * go all the way down to the bottom just to discover that.
220          *
221          * Why all these "- 1"s?  Because 0 represents both the bottom
222          * of the address space and the top of it (using -1 for the
223          * top wouldn't help much: the masks would do the wrong thing).
224          * The rule is that addr 0 and floor 0 refer to the bottom of
225          * the address space, but end 0 and ceiling 0 refer to the top
226          * Comparisons need to use "end - 1" and "ceiling - 1" (though
227          * that end 0 case should be mythical).
228          *
229          * Wherever addr is brought up or ceiling brought down, we must
230          * be careful to reject "the opposite 0" before it confuses the
231          * subsequent tests.  But what about where end is brought down
232          * by PMD_SIZE below? no, end can't go down to 0 there.
233          *
234          * Whereas we round start (addr) and ceiling down, by different
235          * masks at different levels, in order to test whether a table
236          * now has no other vmas using it, so can be freed, we don't
237          * bother to round floor or end up - the tests don't need that.
238          */
239
240         addr &= PMD_MASK;
241         if (addr < floor) {
242                 addr += PMD_SIZE;
243                 if (!addr)
244                         return;
245         }
246         if (ceiling) {
247                 ceiling &= PMD_MASK;
248                 if (!ceiling)
249                         return;
250         }
251         if (end - 1 > ceiling - 1)
252                 end -= PMD_SIZE;
253         if (addr > end - 1)
254                 return;
255
256         start = addr;
257         pgd = pgd_offset((*tlb)->mm, addr);
258         do {
259                 next = pgd_addr_end(addr, end);
260                 if (pgd_none_or_clear_bad(pgd))
261                         continue;
262                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263         } while (pgd++, addr = next, addr != end);
264
265         if (!(*tlb)->fullmm)
266                 flush_tlb_pgtables((*tlb)->mm, start, end);
267 }
268
269 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270                 unsigned long floor, unsigned long ceiling)
271 {
272         while (vma) {
273                 struct vm_area_struct *next = vma->vm_next;
274                 unsigned long addr = vma->vm_start;
275
276                 /*
277                  * Hide vma from rmap and vmtruncate before freeing pgtables
278                  */
279                 anon_vma_unlink(vma);
280                 unlink_file_vma(vma);
281
282                 if (is_vm_hugetlb_page(vma)) {
283                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284                                 floor, next? next->vm_start: ceiling);
285                 } else {
286                         /*
287                          * Optimization: gather nearby vmas into one call down
288                          */
289                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290                                && !is_vm_hugetlb_page(next)) {
291                                 vma = next;
292                                 next = vma->vm_next;
293                                 anon_vma_unlink(vma);
294                                 unlink_file_vma(vma);
295                         }
296                         free_pgd_range(tlb, addr, vma->vm_end,
297                                 floor, next? next->vm_start: ceiling);
298                 }
299                 vma = next;
300         }
301 }
302
303 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304 {
305         struct page *new = pte_alloc_one(mm, address);
306         if (!new)
307                 return -ENOMEM;
308
309         pte_lock_init(new);
310         spin_lock(&mm->page_table_lock);
311         if (pmd_present(*pmd)) {        /* Another has populated it */
312                 pte_lock_deinit(new);
313                 pte_free(new);
314         } else {
315                 mm->nr_ptes++;
316                 inc_zone_page_state(new, NR_PAGETABLE);
317                 pmd_populate(mm, pmd, new);
318         }
319         spin_unlock(&mm->page_table_lock);
320         return 0;
321 }
322
323 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324 {
325         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326         if (!new)
327                 return -ENOMEM;
328
329         spin_lock(&init_mm.page_table_lock);
330         if (pmd_present(*pmd))          /* Another has populated it */
331                 pte_free_kernel(new);
332         else
333                 pmd_populate_kernel(&init_mm, pmd, new);
334         spin_unlock(&init_mm.page_table_lock);
335         return 0;
336 }
337
338 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339 {
340         if (file_rss)
341                 add_mm_counter(mm, file_rss, file_rss);
342         if (anon_rss)
343                 add_mm_counter(mm, anon_rss, anon_rss);
344 }
345
346 /*
347  * This function is called to print an error when a bad pte
348  * is found. For example, we might have a PFN-mapped pte in
349  * a region that doesn't allow it.
350  *
351  * The calling function must still handle the error.
352  */
353 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354 {
355         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356                         "vm_flags = %lx, vaddr = %lx\n",
357                 (long long)pte_val(pte),
358                 (vma->vm_mm == current->mm ? current->comm : "???"),
359                 vma->vm_flags, vaddr);
360         dump_stack();
361 }
362
363 static inline int is_cow_mapping(unsigned int flags)
364 {
365         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366 }
367
368 /*
369  * This function gets the "struct page" associated with a pte.
370  *
371  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372  * will have each page table entry just pointing to a raw page frame
373  * number, and as far as the VM layer is concerned, those do not have
374  * pages associated with them - even if the PFN might point to memory
375  * that otherwise is perfectly fine and has a "struct page".
376  *
377  * The way we recognize those mappings is through the rules set up
378  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379  * and the vm_pgoff will point to the first PFN mapped: thus every
380  * page that is a raw mapping will always honor the rule
381  *
382  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383  *
384  * and if that isn't true, the page has been COW'ed (in which case it
385  * _does_ have a "struct page" associated with it even if it is in a
386  * VM_PFNMAP range).
387  */
388 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389 {
390         unsigned long pfn = pte_pfn(pte);
391
392         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394                 if (pfn == vma->vm_pgoff + off)
395                         return NULL;
396                 if (!is_cow_mapping(vma->vm_flags))
397                         return NULL;
398         }
399
400         /*
401          * Add some anal sanity checks for now. Eventually,
402          * we should just do "return pfn_to_page(pfn)", but
403          * in the meantime we check that we get a valid pfn,
404          * and that the resulting page looks ok.
405          */
406         if (unlikely(!pfn_valid(pfn))) {
407                 if (!(vma->vm_flags & VM_RESERVED))
408                         print_bad_pte(vma, pte, addr);
409                 return NULL;
410         }
411
412         /*
413          * NOTE! We still have PageReserved() pages in the page 
414          * tables. 
415          *
416          * The PAGE_ZERO() pages and various VDSO mappings can
417          * cause them to exist.
418          */
419         return pfn_to_page(pfn);
420 }
421
422 /*
423  * copy one vm_area from one task to the other. Assumes the page tables
424  * already present in the new task to be cleared in the whole range
425  * covered by this vma.
426  */
427
428 static inline void
429 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
430                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
431                 unsigned long addr, int *rss)
432 {
433         unsigned long vm_flags = vma->vm_flags;
434         pte_t pte = *src_pte;
435         struct page *page;
436
437         /* pte contains position in swap or file, so copy. */
438         if (unlikely(!pte_present(pte))) {
439                 if (!pte_file(pte)) {
440                         swp_entry_t entry = pte_to_swp_entry(pte);
441
442                         swap_duplicate(entry);
443                         /* make sure dst_mm is on swapoff's mmlist. */
444                         if (unlikely(list_empty(&dst_mm->mmlist))) {
445                                 spin_lock(&mmlist_lock);
446                                 if (list_empty(&dst_mm->mmlist))
447                                         list_add(&dst_mm->mmlist,
448                                                  &src_mm->mmlist);
449                                 spin_unlock(&mmlist_lock);
450                         }
451                         if (is_write_migration_entry(entry) &&
452                                         is_cow_mapping(vm_flags)) {
453                                 /*
454                                  * COW mappings require pages in both parent
455                                  * and child to be set to read.
456                                  */
457                                 make_migration_entry_read(&entry);
458                                 pte = swp_entry_to_pte(entry);
459                                 set_pte_at(src_mm, addr, src_pte, pte);
460                         }
461                 }
462                 goto out_set_pte;
463         }
464
465         /*
466          * If it's a COW mapping, write protect it both
467          * in the parent and the child
468          */
469         if (is_cow_mapping(vm_flags)) {
470                 ptep_set_wrprotect(src_mm, addr, src_pte);
471                 pte = pte_wrprotect(pte);
472         }
473
474         /*
475          * If it's a shared mapping, mark it clean in
476          * the child
477          */
478         if (vm_flags & VM_SHARED)
479                 pte = pte_mkclean(pte);
480         pte = pte_mkold(pte);
481
482         page = vm_normal_page(vma, addr, pte);
483         if (page) {
484                 get_page(page);
485                 page_dup_rmap(page);
486                 rss[!!PageAnon(page)]++;
487         }
488
489 out_set_pte:
490         set_pte_at(dst_mm, addr, dst_pte, pte);
491 }
492
493 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
494                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
495                 unsigned long addr, unsigned long end)
496 {
497         pte_t *src_pte, *dst_pte;
498         spinlock_t *src_ptl, *dst_ptl;
499         int progress = 0;
500         int rss[2];
501
502         if (!vx_rss_avail(dst_mm, ((end - addr)/PAGE_SIZE + 1)))
503                 return -ENOMEM;
504
505 again:
506         rss[1] = rss[0] = 0;
507         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
508         if (!dst_pte)
509                 return -ENOMEM;
510         src_pte = pte_offset_map_nested(src_pmd, addr);
511         src_ptl = pte_lockptr(src_mm, src_pmd);
512         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
513         arch_enter_lazy_mmu_mode();
514
515         do {
516                 /*
517                  * We are holding two locks at this point - either of them
518                  * could generate latencies in another task on another CPU.
519                  */
520                 if (progress >= 32) {
521                         progress = 0;
522                         if (need_resched() ||
523                             need_lockbreak(src_ptl) ||
524                             need_lockbreak(dst_ptl))
525                                 break;
526                 }
527                 if (pte_none(*src_pte)) {
528                         progress++;
529                         continue;
530                 }
531                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
532                 progress += 8;
533         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
534
535         arch_leave_lazy_mmu_mode();
536         spin_unlock(src_ptl);
537         pte_unmap_nested(src_pte - 1);
538         add_mm_rss(dst_mm, rss[0], rss[1]);
539         pte_unmap_unlock(dst_pte - 1, dst_ptl);
540         cond_resched();
541         if (addr != end)
542                 goto again;
543         return 0;
544 }
545
546 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
547                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
548                 unsigned long addr, unsigned long end)
549 {
550         pmd_t *src_pmd, *dst_pmd;
551         unsigned long next;
552
553         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
554         if (!dst_pmd)
555                 return -ENOMEM;
556         src_pmd = pmd_offset(src_pud, addr);
557         do {
558                 next = pmd_addr_end(addr, end);
559                 if (pmd_none_or_clear_bad(src_pmd))
560                         continue;
561                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
562                                                 vma, addr, next))
563                         return -ENOMEM;
564         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
565         return 0;
566 }
567
568 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
569                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
570                 unsigned long addr, unsigned long end)
571 {
572         pud_t *src_pud, *dst_pud;
573         unsigned long next;
574
575         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
576         if (!dst_pud)
577                 return -ENOMEM;
578         src_pud = pud_offset(src_pgd, addr);
579         do {
580                 next = pud_addr_end(addr, end);
581                 if (pud_none_or_clear_bad(src_pud))
582                         continue;
583                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
584                                                 vma, addr, next))
585                         return -ENOMEM;
586         } while (dst_pud++, src_pud++, addr = next, addr != end);
587         return 0;
588 }
589
590 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
591                 struct vm_area_struct *vma)
592 {
593         pgd_t *src_pgd, *dst_pgd;
594         unsigned long next;
595         unsigned long addr = vma->vm_start;
596         unsigned long end = vma->vm_end;
597
598         /*
599          * Don't copy ptes where a page fault will fill them correctly.
600          * Fork becomes much lighter when there are big shared or private
601          * readonly mappings. The tradeoff is that copy_page_range is more
602          * efficient than faulting.
603          */
604         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
605                 if (!vma->anon_vma)
606                         return 0;
607         }
608
609         if (is_vm_hugetlb_page(vma))
610                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
611
612         dst_pgd = pgd_offset(dst_mm, addr);
613         src_pgd = pgd_offset(src_mm, addr);
614         do {
615                 next = pgd_addr_end(addr, end);
616                 if (pgd_none_or_clear_bad(src_pgd))
617                         continue;
618                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
619                                                 vma, addr, next))
620                         return -ENOMEM;
621         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
622         return 0;
623 }
624
625 static unsigned long zap_pte_range(struct mmu_gather *tlb,
626                                 struct vm_area_struct *vma, pmd_t *pmd,
627                                 unsigned long addr, unsigned long end,
628                                 long *zap_work, struct zap_details *details)
629 {
630         struct mm_struct *mm = tlb->mm;
631         pte_t *pte;
632         spinlock_t *ptl;
633         int file_rss = 0;
634         int anon_rss = 0;
635
636         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
637         arch_enter_lazy_mmu_mode();
638         do {
639                 pte_t ptent = *pte;
640                 if (pte_none(ptent)) {
641                         (*zap_work)--;
642                         continue;
643                 }
644
645                 (*zap_work) -= PAGE_SIZE;
646
647                 if (pte_present(ptent)) {
648                         struct page *page;
649
650                         page = vm_normal_page(vma, addr, ptent);
651                         if (unlikely(details) && page) {
652                                 /*
653                                  * unmap_shared_mapping_pages() wants to
654                                  * invalidate cache without truncating:
655                                  * unmap shared but keep private pages.
656                                  */
657                                 if (details->check_mapping &&
658                                     details->check_mapping != page->mapping)
659                                         continue;
660                                 /*
661                                  * Each page->index must be checked when
662                                  * invalidating or truncating nonlinear.
663                                  */
664                                 if (details->nonlinear_vma &&
665                                     (page->index < details->first_index ||
666                                      page->index > details->last_index))
667                                         continue;
668                         }
669                         ptent = ptep_get_and_clear_full(mm, addr, pte,
670                                                         tlb->fullmm);
671                         tlb_remove_tlb_entry(tlb, pte, addr);
672                         if (unlikely(!page))
673                                 continue;
674                         if (unlikely(details) && details->nonlinear_vma
675                             && linear_page_index(details->nonlinear_vma,
676                                                 addr) != page->index)
677                                 set_pte_at(mm, addr, pte,
678                                            pgoff_to_pte(page->index));
679                         if (PageAnon(page))
680                                 anon_rss--;
681                         else {
682                                 if (pte_dirty(ptent))
683                                         set_page_dirty(page);
684                                 if (pte_young(ptent))
685                                         mark_page_accessed(page);
686                                 file_rss--;
687                         }
688                         page_remove_rmap(page, vma);
689                         tlb_remove_page(tlb, page);
690                         continue;
691                 }
692                 /*
693                  * If details->check_mapping, we leave swap entries;
694                  * if details->nonlinear_vma, we leave file entries.
695                  */
696                 if (unlikely(details))
697                         continue;
698                 if (!pte_file(ptent))
699                         free_swap_and_cache(pte_to_swp_entry(ptent));
700                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
701         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
702
703         add_mm_rss(mm, file_rss, anon_rss);
704         arch_leave_lazy_mmu_mode();
705         pte_unmap_unlock(pte - 1, ptl);
706
707         return addr;
708 }
709
710 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
711                                 struct vm_area_struct *vma, pud_t *pud,
712                                 unsigned long addr, unsigned long end,
713                                 long *zap_work, struct zap_details *details)
714 {
715         pmd_t *pmd;
716         unsigned long next;
717
718         pmd = pmd_offset(pud, addr);
719         do {
720                 next = pmd_addr_end(addr, end);
721                 if (pmd_none_or_clear_bad(pmd)) {
722                         (*zap_work)--;
723                         continue;
724                 }
725                 next = zap_pte_range(tlb, vma, pmd, addr, next,
726                                                 zap_work, details);
727         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
728
729         return addr;
730 }
731
732 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
733                                 struct vm_area_struct *vma, pgd_t *pgd,
734                                 unsigned long addr, unsigned long end,
735                                 long *zap_work, struct zap_details *details)
736 {
737         pud_t *pud;
738         unsigned long next;
739
740         pud = pud_offset(pgd, addr);
741         do {
742                 next = pud_addr_end(addr, end);
743                 if (pud_none_or_clear_bad(pud)) {
744                         (*zap_work)--;
745                         continue;
746                 }
747                 next = zap_pmd_range(tlb, vma, pud, addr, next,
748                                                 zap_work, details);
749         } while (pud++, addr = next, (addr != end && *zap_work > 0));
750
751         return addr;
752 }
753
754 static unsigned long unmap_page_range(struct mmu_gather *tlb,
755                                 struct vm_area_struct *vma,
756                                 unsigned long addr, unsigned long end,
757                                 long *zap_work, struct zap_details *details)
758 {
759         pgd_t *pgd;
760         unsigned long next;
761
762         if (details && !details->check_mapping && !details->nonlinear_vma)
763                 details = NULL;
764
765         BUG_ON(addr >= end);
766         tlb_start_vma(tlb, vma);
767         pgd = pgd_offset(vma->vm_mm, addr);
768         do {
769                 next = pgd_addr_end(addr, end);
770                 if (pgd_none_or_clear_bad(pgd)) {
771                         (*zap_work)--;
772                         continue;
773                 }
774                 next = zap_pud_range(tlb, vma, pgd, addr, next,
775                                                 zap_work, details);
776         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
777         tlb_end_vma(tlb, vma);
778
779         return addr;
780 }
781
782 #ifdef CONFIG_PREEMPT
783 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
784 #else
785 /* No preempt: go for improved straight-line efficiency */
786 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
787 #endif
788
789 /**
790  * unmap_vmas - unmap a range of memory covered by a list of vma's
791  * @tlbp: address of the caller's struct mmu_gather
792  * @vma: the starting vma
793  * @start_addr: virtual address at which to start unmapping
794  * @end_addr: virtual address at which to end unmapping
795  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
796  * @details: details of nonlinear truncation or shared cache invalidation
797  *
798  * Returns the end address of the unmapping (restart addr if interrupted).
799  *
800  * Unmap all pages in the vma list.
801  *
802  * We aim to not hold locks for too long (for scheduling latency reasons).
803  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
804  * return the ending mmu_gather to the caller.
805  *
806  * Only addresses between `start' and `end' will be unmapped.
807  *
808  * The VMA list must be sorted in ascending virtual address order.
809  *
810  * unmap_vmas() assumes that the caller will flush the whole unmapped address
811  * range after unmap_vmas() returns.  So the only responsibility here is to
812  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
813  * drops the lock and schedules.
814  */
815 unsigned long unmap_vmas(struct mmu_gather **tlbp,
816                 struct vm_area_struct *vma, unsigned long start_addr,
817                 unsigned long end_addr, unsigned long *nr_accounted,
818                 struct zap_details *details)
819 {
820         long zap_work = ZAP_BLOCK_SIZE;
821         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
822         int tlb_start_valid = 0;
823         unsigned long start = start_addr;
824         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
825         int fullmm = (*tlbp)->fullmm;
826
827         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
828                 unsigned long end;
829
830                 start = max(vma->vm_start, start_addr);
831                 if (start >= vma->vm_end)
832                         continue;
833                 end = min(vma->vm_end, end_addr);
834                 if (end <= vma->vm_start)
835                         continue;
836
837                 if (vma->vm_flags & VM_ACCOUNT)
838                         *nr_accounted += (end - start) >> PAGE_SHIFT;
839
840                 while (start != end) {
841                         if (!tlb_start_valid) {
842                                 tlb_start = start;
843                                 tlb_start_valid = 1;
844                         }
845
846                         if (unlikely(is_vm_hugetlb_page(vma))) {
847                                 unmap_hugepage_range(vma, start, end);
848                                 zap_work -= (end - start) /
849                                                 (HPAGE_SIZE / PAGE_SIZE);
850                                 start = end;
851                         } else
852                                 start = unmap_page_range(*tlbp, vma,
853                                                 start, end, &zap_work, details);
854
855                         if (zap_work > 0) {
856                                 BUG_ON(start != end);
857                                 break;
858                         }
859
860                         tlb_finish_mmu(*tlbp, tlb_start, start);
861
862                         if (need_resched() ||
863                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
864                                 if (i_mmap_lock) {
865                                         *tlbp = NULL;
866                                         goto out;
867                                 }
868                                 cond_resched();
869                         }
870
871                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
872                         tlb_start_valid = 0;
873                         zap_work = ZAP_BLOCK_SIZE;
874                 }
875         }
876 out:
877         return start;   /* which is now the end (or restart) address */
878 }
879
880 /**
881  * zap_page_range - remove user pages in a given range
882  * @vma: vm_area_struct holding the applicable pages
883  * @address: starting address of pages to zap
884  * @size: number of bytes to zap
885  * @details: details of nonlinear truncation or shared cache invalidation
886  */
887 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
888                 unsigned long size, struct zap_details *details)
889 {
890         struct mm_struct *mm = vma->vm_mm;
891         struct mmu_gather *tlb;
892         unsigned long end = address + size;
893         unsigned long nr_accounted = 0;
894
895         lru_add_drain();
896         tlb = tlb_gather_mmu(mm, 0);
897         update_hiwater_rss(mm);
898         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
899         if (tlb)
900                 tlb_finish_mmu(tlb, address, end);
901         return end;
902 }
903 EXPORT_SYMBOL(zap_page_range);
904
905 /*
906  * Do a quick page-table lookup for a single page.
907  */
908 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
909                         unsigned int flags)
910 {
911         pgd_t *pgd;
912         pud_t *pud;
913         pmd_t *pmd;
914         pte_t *ptep, pte;
915         spinlock_t *ptl;
916         struct page *page;
917         struct mm_struct *mm = vma->vm_mm;
918
919         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
920         if (!IS_ERR(page)) {
921                 BUG_ON(flags & FOLL_GET);
922                 goto out;
923         }
924
925         page = NULL;
926         pgd = pgd_offset(mm, address);
927         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
928                 goto no_page_table;
929
930         pud = pud_offset(pgd, address);
931         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
932                 goto no_page_table;
933         
934         pmd = pmd_offset(pud, address);
935         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
936                 goto no_page_table;
937
938         if (pmd_huge(*pmd)) {
939                 BUG_ON(flags & FOLL_GET);
940                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
941                 goto out;
942         }
943
944         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
945         if (!ptep)
946                 goto out;
947
948         pte = *ptep;
949         if (!pte_present(pte))
950                 goto unlock;
951         if ((flags & FOLL_WRITE) && !pte_write(pte))
952                 goto unlock;
953         page = vm_normal_page(vma, address, pte);
954         if (unlikely(!page))
955                 goto unlock;
956
957         if (flags & FOLL_GET)
958                 get_page(page);
959         if (flags & FOLL_TOUCH) {
960                 if ((flags & FOLL_WRITE) &&
961                     !pte_dirty(pte) && !PageDirty(page))
962                         set_page_dirty(page);
963                 mark_page_accessed(page);
964         }
965 unlock:
966         pte_unmap_unlock(ptep, ptl);
967 out:
968         return page;
969
970 no_page_table:
971         /*
972          * When core dumping an enormous anonymous area that nobody
973          * has touched so far, we don't want to allocate page tables.
974          */
975         if (flags & FOLL_ANON) {
976                 page = ZERO_PAGE(address);
977                 if (flags & FOLL_GET)
978                         get_page(page);
979                 BUG_ON(flags & FOLL_WRITE);
980         }
981         return page;
982 }
983
984 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
985                 unsigned long start, int len, int write, int force,
986                 struct page **pages, struct vm_area_struct **vmas)
987 {
988         int i;
989         unsigned int vm_flags;
990
991         /* 
992          * Require read or write permissions.
993          * If 'force' is set, we only require the "MAY" flags.
994          */
995         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
996         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
997         i = 0;
998
999         do {
1000                 struct vm_area_struct *vma;
1001                 unsigned int foll_flags;
1002
1003                 vma = find_extend_vma(mm, start);
1004                 if (!vma && in_gate_area(tsk, start)) {
1005                         unsigned long pg = start & PAGE_MASK;
1006                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1007                         pgd_t *pgd;
1008                         pud_t *pud;
1009                         pmd_t *pmd;
1010                         pte_t *pte;
1011                         if (write) /* user gate pages are read-only */
1012                                 return i ? : -EFAULT;
1013                         if (pg > TASK_SIZE)
1014                                 pgd = pgd_offset_k(pg);
1015                         else
1016                                 pgd = pgd_offset_gate(mm, pg);
1017                         BUG_ON(pgd_none(*pgd));
1018                         pud = pud_offset(pgd, pg);
1019                         BUG_ON(pud_none(*pud));
1020                         pmd = pmd_offset(pud, pg);
1021                         if (pmd_none(*pmd))
1022                                 return i ? : -EFAULT;
1023                         pte = pte_offset_map(pmd, pg);
1024                         if (pte_none(*pte)) {
1025                                 pte_unmap(pte);
1026                                 return i ? : -EFAULT;
1027                         }
1028                         if (pages) {
1029                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1030                                 pages[i] = page;
1031                                 if (page)
1032                                         get_page(page);
1033                         }
1034                         pte_unmap(pte);
1035                         if (vmas)
1036                                 vmas[i] = gate_vma;
1037                         i++;
1038                         start += PAGE_SIZE;
1039                         len--;
1040                         continue;
1041                 }
1042
1043 #ifdef CONFIG_XEN
1044                 if (vma && (vma->vm_flags & VM_FOREIGN)) {
1045                         struct page **map = vma->vm_private_data;
1046                         int offset = (start - vma->vm_start) >> PAGE_SHIFT;
1047                         if (map[offset] != NULL) {
1048                                 if (pages) {
1049                                         struct page *page = map[offset];
1050                                         
1051                                         pages[i] = page;
1052                                         get_page(page);
1053                                 }
1054                                 if (vmas)
1055                                         vmas[i] = vma;
1056                                 i++;
1057                                 start += PAGE_SIZE;
1058                                 len--;
1059                                 continue;
1060                         }
1061                 }
1062 #endif
1063                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1064                                 || !(vm_flags & vma->vm_flags))
1065                         return i ? : -EFAULT;
1066
1067                 if (is_vm_hugetlb_page(vma)) {
1068                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1069                                                 &start, &len, i);
1070                         continue;
1071                 }
1072
1073                 foll_flags = FOLL_TOUCH;
1074                 if (pages)
1075                         foll_flags |= FOLL_GET;
1076                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1077                     (!vma->vm_ops || !vma->vm_ops->nopage))
1078                         foll_flags |= FOLL_ANON;
1079
1080                 do {
1081                         struct page *page;
1082
1083                         if (write)
1084                                 foll_flags |= FOLL_WRITE;
1085
1086                         cond_resched();
1087                         while (!(page = follow_page(vma, start, foll_flags))) {
1088                                 int ret;
1089                                 ret = __handle_mm_fault(mm, vma, start,
1090                                                 foll_flags & FOLL_WRITE);
1091                                 /*
1092                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1093                                  * broken COW when necessary, even if maybe_mkwrite
1094                                  * decided not to set pte_write. We can thus safely do
1095                                  * subsequent page lookups as if they were reads.
1096                                  */
1097                                 if (ret & VM_FAULT_WRITE)
1098                                         foll_flags &= ~FOLL_WRITE;
1099                                 
1100                                 switch (ret & ~VM_FAULT_WRITE) {
1101                                 case VM_FAULT_MINOR:
1102                                         tsk->min_flt++;
1103                                         break;
1104                                 case VM_FAULT_MAJOR:
1105                                         tsk->maj_flt++;
1106                                         break;
1107                                 case VM_FAULT_SIGBUS:
1108                                         return i ? i : -EFAULT;
1109                                 case VM_FAULT_OOM:
1110                                         return i ? i : -ENOMEM;
1111                                 default:
1112                                         BUG();
1113                                 }
1114                                 cond_resched();
1115                         }
1116                         if (pages) {
1117                                 pages[i] = page;
1118
1119                                 flush_anon_page(vma, page, start);
1120                                 flush_dcache_page(page);
1121                         }
1122                         if (vmas)
1123                                 vmas[i] = vma;
1124                         i++;
1125                         start += PAGE_SIZE;
1126                         len--;
1127                 } while (len && start < vma->vm_end);
1128         } while (len);
1129         return i;
1130 }
1131 EXPORT_SYMBOL(get_user_pages);
1132
1133 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1134                         unsigned long addr, unsigned long end, pgprot_t prot)
1135 {
1136         pte_t *pte;
1137         spinlock_t *ptl;
1138         int err = 0;
1139
1140         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1141         if (!pte)
1142                 return -EAGAIN;
1143         arch_enter_lazy_mmu_mode();
1144         do {
1145                 struct page *page = ZERO_PAGE(addr);
1146                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1147
1148                 if (unlikely(!pte_none(*pte))) {
1149                         err = -EEXIST;
1150                         pte++;
1151                         break;
1152                 }
1153                 page_cache_get(page);
1154                 page_add_file_rmap(page);
1155                 inc_mm_counter(mm, file_rss);
1156                 set_pte_at(mm, addr, pte, zero_pte);
1157         } while (pte++, addr += PAGE_SIZE, addr != end);
1158         arch_leave_lazy_mmu_mode();
1159         pte_unmap_unlock(pte - 1, ptl);
1160         return err;
1161 }
1162
1163 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1164                         unsigned long addr, unsigned long end, pgprot_t prot)
1165 {
1166         pmd_t *pmd;
1167         unsigned long next;
1168         int err;
1169
1170         pmd = pmd_alloc(mm, pud, addr);
1171         if (!pmd)
1172                 return -EAGAIN;
1173         do {
1174                 next = pmd_addr_end(addr, end);
1175                 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1176                 if (err)
1177                         break;
1178         } while (pmd++, addr = next, addr != end);
1179         return err;
1180 }
1181
1182 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1183                         unsigned long addr, unsigned long end, pgprot_t prot)
1184 {
1185         pud_t *pud;
1186         unsigned long next;
1187         int err;
1188
1189         pud = pud_alloc(mm, pgd, addr);
1190         if (!pud)
1191                 return -EAGAIN;
1192         do {
1193                 next = pud_addr_end(addr, end);
1194                 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1195                 if (err)
1196                         break;
1197         } while (pud++, addr = next, addr != end);
1198         return err;
1199 }
1200
1201 int zeromap_page_range(struct vm_area_struct *vma,
1202                         unsigned long addr, unsigned long size, pgprot_t prot)
1203 {
1204         pgd_t *pgd;
1205         unsigned long next;
1206         unsigned long end = addr + size;
1207         struct mm_struct *mm = vma->vm_mm;
1208         int err;
1209
1210         BUG_ON(addr >= end);
1211         pgd = pgd_offset(mm, addr);
1212         flush_cache_range(vma, addr, end);
1213         do {
1214                 next = pgd_addr_end(addr, end);
1215                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1216                 if (err)
1217                         break;
1218         } while (pgd++, addr = next, addr != end);
1219         return err;
1220 }
1221
1222 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1223 {
1224         pgd_t * pgd = pgd_offset(mm, addr);
1225         pud_t * pud = pud_alloc(mm, pgd, addr);
1226         if (pud) {
1227                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1228                 if (pmd)
1229                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1230         }
1231         return NULL;
1232 }
1233
1234 /*
1235  * This is the old fallback for page remapping.
1236  *
1237  * For historical reasons, it only allows reserved pages. Only
1238  * old drivers should use this, and they needed to mark their
1239  * pages reserved for the old functions anyway.
1240  */
1241 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1242 {
1243         int retval;
1244         pte_t *pte;
1245         spinlock_t *ptl;  
1246
1247         retval = -EINVAL;
1248         if (PageAnon(page))
1249                 goto out;
1250         retval = -ENOMEM;
1251         flush_dcache_page(page);
1252         pte = get_locked_pte(mm, addr, &ptl);
1253         if (!pte)
1254                 goto out;
1255         retval = -EBUSY;
1256         if (!pte_none(*pte))
1257                 goto out_unlock;
1258
1259         /* Ok, finally just insert the thing.. */
1260         get_page(page);
1261         inc_mm_counter(mm, file_rss);
1262         page_add_file_rmap(page);
1263         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1264
1265         retval = 0;
1266 out_unlock:
1267         pte_unmap_unlock(pte, ptl);
1268 out:
1269         return retval;
1270 }
1271
1272 /**
1273  * vm_insert_page - insert single page into user vma
1274  * @vma: user vma to map to
1275  * @addr: target user address of this page
1276  * @page: source kernel page
1277  *
1278  * This allows drivers to insert individual pages they've allocated
1279  * into a user vma.
1280  *
1281  * The page has to be a nice clean _individual_ kernel allocation.
1282  * If you allocate a compound page, you need to have marked it as
1283  * such (__GFP_COMP), or manually just split the page up yourself
1284  * (see split_page()).
1285  *
1286  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1287  * took an arbitrary page protection parameter. This doesn't allow
1288  * that. Your vma protection will have to be set up correctly, which
1289  * means that if you want a shared writable mapping, you'd better
1290  * ask for a shared writable mapping!
1291  *
1292  * The page does not need to be reserved.
1293  */
1294 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1295 {
1296         if (addr < vma->vm_start || addr >= vma->vm_end)
1297                 return -EFAULT;
1298         if (!page_count(page))
1299                 return -EINVAL;
1300         vma->vm_flags |= VM_INSERTPAGE;
1301         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1302 }
1303 EXPORT_SYMBOL(vm_insert_page);
1304
1305 /*
1306  * maps a range of physical memory into the requested pages. the old
1307  * mappings are removed. any references to nonexistent pages results
1308  * in null mappings (currently treated as "copy-on-access")
1309  */
1310 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1311                         unsigned long addr, unsigned long end,
1312                         unsigned long pfn, pgprot_t prot)
1313 {
1314         pte_t *pte;
1315         spinlock_t *ptl;
1316
1317         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1318         if (!pte)
1319                 return -ENOMEM;
1320         arch_enter_lazy_mmu_mode();
1321         do {
1322                 BUG_ON(!pte_none(*pte));
1323                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1324                 pfn++;
1325         } while (pte++, addr += PAGE_SIZE, addr != end);
1326         arch_leave_lazy_mmu_mode();
1327         pte_unmap_unlock(pte - 1, ptl);
1328         return 0;
1329 }
1330
1331 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1332                         unsigned long addr, unsigned long end,
1333                         unsigned long pfn, pgprot_t prot)
1334 {
1335         pmd_t *pmd;
1336         unsigned long next;
1337
1338         pfn -= addr >> PAGE_SHIFT;
1339         pmd = pmd_alloc(mm, pud, addr);
1340         if (!pmd)
1341                 return -ENOMEM;
1342         do {
1343                 next = pmd_addr_end(addr, end);
1344                 if (remap_pte_range(mm, pmd, addr, next,
1345                                 pfn + (addr >> PAGE_SHIFT), prot))
1346                         return -ENOMEM;
1347         } while (pmd++, addr = next, addr != end);
1348         return 0;
1349 }
1350
1351 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1352                         unsigned long addr, unsigned long end,
1353                         unsigned long pfn, pgprot_t prot)
1354 {
1355         pud_t *pud;
1356         unsigned long next;
1357
1358         pfn -= addr >> PAGE_SHIFT;
1359         pud = pud_alloc(mm, pgd, addr);
1360         if (!pud)
1361                 return -ENOMEM;
1362         do {
1363                 next = pud_addr_end(addr, end);
1364                 if (remap_pmd_range(mm, pud, addr, next,
1365                                 pfn + (addr >> PAGE_SHIFT), prot))
1366                         return -ENOMEM;
1367         } while (pud++, addr = next, addr != end);
1368         return 0;
1369 }
1370
1371 /**
1372  * remap_pfn_range - remap kernel memory to userspace
1373  * @vma: user vma to map to
1374  * @addr: target user address to start at
1375  * @pfn: physical address of kernel memory
1376  * @size: size of map area
1377  * @prot: page protection flags for this mapping
1378  *
1379  *  Note: this is only safe if the mm semaphore is held when called.
1380  */
1381 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1382                     unsigned long pfn, unsigned long size, pgprot_t prot)
1383 {
1384         pgd_t *pgd;
1385         unsigned long next;
1386         unsigned long end = addr + PAGE_ALIGN(size);
1387         struct mm_struct *mm = vma->vm_mm;
1388         int err;
1389
1390         /*
1391          * Physically remapped pages are special. Tell the
1392          * rest of the world about it:
1393          *   VM_IO tells people not to look at these pages
1394          *      (accesses can have side effects).
1395          *   VM_RESERVED is specified all over the place, because
1396          *      in 2.4 it kept swapout's vma scan off this vma; but
1397          *      in 2.6 the LRU scan won't even find its pages, so this
1398          *      flag means no more than count its pages in reserved_vm,
1399          *      and omit it from core dump, even when VM_IO turned off.
1400          *   VM_PFNMAP tells the core MM that the base pages are just
1401          *      raw PFN mappings, and do not have a "struct page" associated
1402          *      with them.
1403          *
1404          * There's a horrible special case to handle copy-on-write
1405          * behaviour that some programs depend on. We mark the "original"
1406          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1407          */
1408         if (is_cow_mapping(vma->vm_flags)) {
1409                 if (addr != vma->vm_start || end != vma->vm_end)
1410                         return -EINVAL;
1411                 vma->vm_pgoff = pfn;
1412         }
1413
1414         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1415
1416         BUG_ON(addr >= end);
1417         pfn -= addr >> PAGE_SHIFT;
1418         pgd = pgd_offset(mm, addr);
1419         flush_cache_range(vma, addr, end);
1420         do {
1421                 next = pgd_addr_end(addr, end);
1422                 err = remap_pud_range(mm, pgd, addr, next,
1423                                 pfn + (addr >> PAGE_SHIFT), prot);
1424                 if (err)
1425                         break;
1426         } while (pgd++, addr = next, addr != end);
1427         return err;
1428 }
1429 EXPORT_SYMBOL(remap_pfn_range);
1430
1431 #ifdef CONFIG_XEN
1432 static inline int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1433                                      unsigned long addr, unsigned long end,
1434                                      pte_fn_t fn, void *data)
1435 {
1436         pte_t *pte;
1437         int err;
1438         struct page *pmd_page;
1439         spinlock_t *ptl;
1440
1441         pte = (mm == &init_mm) ?
1442                 pte_alloc_kernel(pmd, addr) :
1443                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1444         if (!pte)
1445                 return -ENOMEM;
1446
1447         BUG_ON(pmd_huge(*pmd));
1448
1449         pmd_page = pmd_page(*pmd);
1450
1451         do {
1452                 err = fn(pte, pmd_page, addr, data);
1453                 if (err)
1454                         break;
1455         } while (pte++, addr += PAGE_SIZE, addr != end);
1456
1457         if (mm != &init_mm)
1458                 pte_unmap_unlock(pte-1, ptl);
1459         return err;
1460 }
1461
1462 static inline int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1463                                      unsigned long addr, unsigned long end,
1464                                      pte_fn_t fn, void *data)
1465 {
1466         pmd_t *pmd;
1467         unsigned long next;
1468         int err;
1469
1470         pmd = pmd_alloc(mm, pud, addr);
1471         if (!pmd)
1472                 return -ENOMEM;
1473         do {
1474                 next = pmd_addr_end(addr, end);
1475                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1476                 if (err)
1477                         break;
1478         } while (pmd++, addr = next, addr != end);
1479         return err;
1480 }
1481
1482 static inline int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1483                                      unsigned long addr, unsigned long end,
1484                                      pte_fn_t fn, void *data)
1485 {
1486         pud_t *pud;
1487         unsigned long next;
1488         int err;
1489
1490         pud = pud_alloc(mm, pgd, addr);
1491         if (!pud)
1492                 return -ENOMEM;
1493         do {
1494                 next = pud_addr_end(addr, end);
1495                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1496                 if (err)
1497                         break;
1498         } while (pud++, addr = next, addr != end);
1499         return err;
1500 }
1501
1502 /*
1503  * Scan a region of virtual memory, filling in page tables as necessary
1504  * and calling a provided function on each leaf page table.
1505  */
1506 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1507                         unsigned long size, pte_fn_t fn, void *data)
1508 {
1509         pgd_t *pgd;
1510         unsigned long next;
1511         unsigned long end = addr + size;
1512         int err;
1513
1514         BUG_ON(addr >= end);
1515         pgd = pgd_offset(mm, addr);
1516         do {
1517                 next = pgd_addr_end(addr, end);
1518                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1519                 if (err)
1520                         break;
1521         } while (pgd++, addr = next, addr != end);
1522         return err;
1523 }
1524 EXPORT_SYMBOL_GPL(apply_to_page_range);
1525 #endif
1526
1527 /*
1528  * handle_pte_fault chooses page fault handler according to an entry
1529  * which was read non-atomically.  Before making any commitment, on
1530  * those architectures or configurations (e.g. i386 with PAE) which
1531  * might give a mix of unmatched parts, do_swap_page and do_file_page
1532  * must check under lock before unmapping the pte and proceeding
1533  * (but do_wp_page is only called after already making such a check;
1534  * and do_anonymous_page and do_no_page can safely check later on).
1535  */
1536 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1537                                 pte_t *page_table, pte_t orig_pte)
1538 {
1539         int same = 1;
1540 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1541         if (sizeof(pte_t) > sizeof(unsigned long)) {
1542                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1543                 spin_lock(ptl);
1544                 same = pte_same(*page_table, orig_pte);
1545                 spin_unlock(ptl);
1546         }
1547 #endif
1548         pte_unmap(page_table);
1549         return same;
1550 }
1551
1552 /*
1553  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1554  * servicing faults for write access.  In the normal case, do always want
1555  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1556  * that do not have writing enabled, when used by access_process_vm.
1557  */
1558 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1559 {
1560         if (likely(vma->vm_flags & VM_WRITE))
1561                 pte = pte_mkwrite(pte);
1562         return pte;
1563 }
1564
1565 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1566 {
1567         /*
1568          * If the source page was a PFN mapping, we don't have
1569          * a "struct page" for it. We do a best-effort copy by
1570          * just copying from the original user address. If that
1571          * fails, we just zero-fill it. Live with it.
1572          */
1573         if (unlikely(!src)) {
1574                 void *kaddr = kmap_atomic(dst, KM_USER0);
1575                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1576
1577                 /*
1578                  * This really shouldn't fail, because the page is there
1579                  * in the page tables. But it might just be unreadable,
1580                  * in which case we just give up and fill the result with
1581                  * zeroes.
1582                  */
1583                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1584                         memset(kaddr, 0, PAGE_SIZE);
1585                 kunmap_atomic(kaddr, KM_USER0);
1586                 flush_dcache_page(dst);
1587                 return;
1588
1589         }
1590         copy_user_highpage(dst, src, va, vma);
1591 }
1592
1593 /*
1594  * This routine handles present pages, when users try to write
1595  * to a shared page. It is done by copying the page to a new address
1596  * and decrementing the shared-page counter for the old page.
1597  *
1598  * Note that this routine assumes that the protection checks have been
1599  * done by the caller (the low-level page fault routine in most cases).
1600  * Thus we can safely just mark it writable once we've done any necessary
1601  * COW.
1602  *
1603  * We also mark the page dirty at this point even though the page will
1604  * change only once the write actually happens. This avoids a few races,
1605  * and potentially makes it more efficient.
1606  *
1607  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1608  * but allow concurrent faults), with pte both mapped and locked.
1609  * We return with mmap_sem still held, but pte unmapped and unlocked.
1610  */
1611 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1612                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1613                 spinlock_t *ptl, pte_t orig_pte)
1614 {
1615         struct page *old_page, *new_page;
1616         pte_t entry;
1617         int reuse = 0, ret = VM_FAULT_MINOR;
1618         struct page *dirty_page = NULL;
1619
1620         old_page = vm_normal_page(vma, address, orig_pte);
1621         if (!old_page)
1622                 goto gotten;
1623
1624         /*
1625          * Take out anonymous pages first, anonymous shared vmas are
1626          * not dirty accountable.
1627          */
1628         if (PageAnon(old_page)) {
1629                 if (!TestSetPageLocked(old_page)) {
1630                         reuse = can_share_swap_page(old_page);
1631                         unlock_page(old_page);
1632                 }
1633         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1634                                         (VM_WRITE|VM_SHARED))) {
1635                 /*
1636                  * Only catch write-faults on shared writable pages,
1637                  * read-only shared pages can get COWed by
1638                  * get_user_pages(.write=1, .force=1).
1639                  */
1640                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1641                         /*
1642                          * Notify the address space that the page is about to
1643                          * become writable so that it can prohibit this or wait
1644                          * for the page to get into an appropriate state.
1645                          *
1646                          * We do this without the lock held, so that it can
1647                          * sleep if it needs to.
1648                          */
1649                         page_cache_get(old_page);
1650                         pte_unmap_unlock(page_table, ptl);
1651
1652                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1653                                 goto unwritable_page;
1654
1655                         page_cache_release(old_page);
1656
1657                         /*
1658                          * Since we dropped the lock we need to revalidate
1659                          * the PTE as someone else may have changed it.  If
1660                          * they did, we just return, as we can count on the
1661                          * MMU to tell us if they didn't also make it writable.
1662                          */
1663                         page_table = pte_offset_map_lock(mm, pmd, address,
1664                                                          &ptl);
1665                         if (!pte_same(*page_table, orig_pte))
1666                                 goto unlock;
1667                 }
1668                 dirty_page = old_page;
1669                 get_page(dirty_page);
1670                 reuse = 1;
1671         }
1672
1673         if (reuse) {
1674                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1675                 entry = pte_mkyoung(orig_pte);
1676                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1677                 ptep_set_access_flags(vma, address, page_table, entry, 1);
1678                 update_mmu_cache(vma, address, entry);
1679                 lazy_mmu_prot_update(entry);
1680                 ret |= VM_FAULT_WRITE;
1681                 goto unlock;
1682         }
1683
1684         /*
1685          * Ok, we need to copy. Oh, well..
1686          */
1687         page_cache_get(old_page);
1688 gotten:
1689         pte_unmap_unlock(page_table, ptl);
1690
1691         if (unlikely(anon_vma_prepare(vma)))
1692                 goto oom;
1693         if (old_page == ZERO_PAGE(address)) {
1694                 new_page = alloc_zeroed_user_highpage(vma, address);
1695                 if (!new_page)
1696                         goto oom;
1697         } else {
1698                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1699                 if (!new_page)
1700                         goto oom;
1701                 cow_user_page(new_page, old_page, address, vma);
1702         }
1703
1704         /*
1705          * Re-check the pte - we dropped the lock
1706          */
1707         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1708         if (likely(pte_same(*page_table, orig_pte))) {
1709                 if (old_page) {
1710                         page_remove_rmap(old_page, vma);
1711                         if (!PageAnon(old_page)) {
1712                                 dec_mm_counter(mm, file_rss);
1713                                 inc_mm_counter(mm, anon_rss);
1714                         }
1715                 } else
1716                         inc_mm_counter(mm, anon_rss);
1717                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1718                 entry = mk_pte(new_page, vma->vm_page_prot);
1719                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1720                 lazy_mmu_prot_update(entry);
1721                 /*
1722                  * Clear the pte entry and flush it first, before updating the
1723                  * pte with the new entry. This will avoid a race condition
1724                  * seen in the presence of one thread doing SMC and another
1725                  * thread doing COW.
1726                  */
1727                 ptep_clear_flush(vma, address, page_table);
1728                 set_pte_at(mm, address, page_table, entry);
1729                 update_mmu_cache(vma, address, entry);
1730                 lru_cache_add_active(new_page);
1731                 page_add_new_anon_rmap(new_page, vma, address);
1732
1733                 /* Free the old page.. */
1734                 new_page = old_page;
1735                 ret |= VM_FAULT_WRITE;
1736         }
1737         if (new_page)
1738                 page_cache_release(new_page);
1739         if (old_page)
1740                 page_cache_release(old_page);
1741 unlock:
1742         pte_unmap_unlock(page_table, ptl);
1743         if (dirty_page) {
1744                 set_page_dirty_balance(dirty_page);
1745                 put_page(dirty_page);
1746         }
1747         return ret;
1748 oom:
1749         if (old_page)
1750                 page_cache_release(old_page);
1751         return VM_FAULT_OOM;
1752
1753 unwritable_page:
1754         page_cache_release(old_page);
1755         return VM_FAULT_SIGBUS;
1756 }
1757
1758 /*
1759  * Helper functions for unmap_mapping_range().
1760  *
1761  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1762  *
1763  * We have to restart searching the prio_tree whenever we drop the lock,
1764  * since the iterator is only valid while the lock is held, and anyway
1765  * a later vma might be split and reinserted earlier while lock dropped.
1766  *
1767  * The list of nonlinear vmas could be handled more efficiently, using
1768  * a placeholder, but handle it in the same way until a need is shown.
1769  * It is important to search the prio_tree before nonlinear list: a vma
1770  * may become nonlinear and be shifted from prio_tree to nonlinear list
1771  * while the lock is dropped; but never shifted from list to prio_tree.
1772  *
1773  * In order to make forward progress despite restarting the search,
1774  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1775  * quickly skip it next time around.  Since the prio_tree search only
1776  * shows us those vmas affected by unmapping the range in question, we
1777  * can't efficiently keep all vmas in step with mapping->truncate_count:
1778  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1779  * mapping->truncate_count and vma->vm_truncate_count are protected by
1780  * i_mmap_lock.
1781  *
1782  * In order to make forward progress despite repeatedly restarting some
1783  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1784  * and restart from that address when we reach that vma again.  It might
1785  * have been split or merged, shrunk or extended, but never shifted: so
1786  * restart_addr remains valid so long as it remains in the vma's range.
1787  * unmap_mapping_range forces truncate_count to leap over page-aligned
1788  * values so we can save vma's restart_addr in its truncate_count field.
1789  */
1790 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1791
1792 static void reset_vma_truncate_counts(struct address_space *mapping)
1793 {
1794         struct vm_area_struct *vma;
1795         struct prio_tree_iter iter;
1796
1797         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1798                 vma->vm_truncate_count = 0;
1799         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1800                 vma->vm_truncate_count = 0;
1801 }
1802
1803 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1804                 unsigned long start_addr, unsigned long end_addr,
1805                 struct zap_details *details)
1806 {
1807         unsigned long restart_addr;
1808         int need_break;
1809
1810 again:
1811         restart_addr = vma->vm_truncate_count;
1812         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1813                 start_addr = restart_addr;
1814                 if (start_addr >= end_addr) {
1815                         /* Top of vma has been split off since last time */
1816                         vma->vm_truncate_count = details->truncate_count;
1817                         return 0;
1818                 }
1819         }
1820
1821         restart_addr = zap_page_range(vma, start_addr,
1822                                         end_addr - start_addr, details);
1823         need_break = need_resched() ||
1824                         need_lockbreak(details->i_mmap_lock);
1825
1826         if (restart_addr >= end_addr) {
1827                 /* We have now completed this vma: mark it so */
1828                 vma->vm_truncate_count = details->truncate_count;
1829                 if (!need_break)
1830                         return 0;
1831         } else {
1832                 /* Note restart_addr in vma's truncate_count field */
1833                 vma->vm_truncate_count = restart_addr;
1834                 if (!need_break)
1835                         goto again;
1836         }
1837
1838         spin_unlock(details->i_mmap_lock);
1839         cond_resched();
1840         spin_lock(details->i_mmap_lock);
1841         return -EINTR;
1842 }
1843
1844 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1845                                             struct zap_details *details)
1846 {
1847         struct vm_area_struct *vma;
1848         struct prio_tree_iter iter;
1849         pgoff_t vba, vea, zba, zea;
1850
1851 restart:
1852         vma_prio_tree_foreach(vma, &iter, root,
1853                         details->first_index, details->last_index) {
1854                 /* Skip quickly over those we have already dealt with */
1855                 if (vma->vm_truncate_count == details->truncate_count)
1856                         continue;
1857
1858                 vba = vma->vm_pgoff;
1859                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1860                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1861                 zba = details->first_index;
1862                 if (zba < vba)
1863                         zba = vba;
1864                 zea = details->last_index;
1865                 if (zea > vea)
1866                         zea = vea;
1867
1868                 if (unmap_mapping_range_vma(vma,
1869                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1870                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1871                                 details) < 0)
1872                         goto restart;
1873         }
1874 }
1875
1876 static inline void unmap_mapping_range_list(struct list_head *head,
1877                                             struct zap_details *details)
1878 {
1879         struct vm_area_struct *vma;
1880
1881         /*
1882          * In nonlinear VMAs there is no correspondence between virtual address
1883          * offset and file offset.  So we must perform an exhaustive search
1884          * across *all* the pages in each nonlinear VMA, not just the pages
1885          * whose virtual address lies outside the file truncation point.
1886          */
1887 restart:
1888         list_for_each_entry(vma, head, shared.vm_set.list) {
1889                 /* Skip quickly over those we have already dealt with */
1890                 if (vma->vm_truncate_count == details->truncate_count)
1891                         continue;
1892                 details->nonlinear_vma = vma;
1893                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1894                                         vma->vm_end, details) < 0)
1895                         goto restart;
1896         }
1897 }
1898
1899 /**
1900  * unmap_mapping_range - unmap the portion of all mmaps
1901  * in the specified address_space corresponding to the specified
1902  * page range in the underlying file.
1903  * @mapping: the address space containing mmaps to be unmapped.
1904  * @holebegin: byte in first page to unmap, relative to the start of
1905  * the underlying file.  This will be rounded down to a PAGE_SIZE
1906  * boundary.  Note that this is different from vmtruncate(), which
1907  * must keep the partial page.  In contrast, we must get rid of
1908  * partial pages.
1909  * @holelen: size of prospective hole in bytes.  This will be rounded
1910  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1911  * end of the file.
1912  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1913  * but 0 when invalidating pagecache, don't throw away private data.
1914  */
1915 void unmap_mapping_range(struct address_space *mapping,
1916                 loff_t const holebegin, loff_t const holelen, int even_cows)
1917 {
1918         struct zap_details details;
1919         pgoff_t hba = holebegin >> PAGE_SHIFT;
1920         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1921
1922         /* Check for overflow. */
1923         if (sizeof(holelen) > sizeof(hlen)) {
1924                 long long holeend =
1925                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1926                 if (holeend & ~(long long)ULONG_MAX)
1927                         hlen = ULONG_MAX - hba + 1;
1928         }
1929
1930         details.check_mapping = even_cows? NULL: mapping;
1931         details.nonlinear_vma = NULL;
1932         details.first_index = hba;
1933         details.last_index = hba + hlen - 1;
1934         if (details.last_index < details.first_index)
1935                 details.last_index = ULONG_MAX;
1936         details.i_mmap_lock = &mapping->i_mmap_lock;
1937
1938         spin_lock(&mapping->i_mmap_lock);
1939
1940         /* serialize i_size write against truncate_count write */
1941         smp_wmb();
1942         /* Protect against page faults, and endless unmapping loops */
1943         mapping->truncate_count++;
1944         /*
1945          * For archs where spin_lock has inclusive semantics like ia64
1946          * this smp_mb() will prevent to read pagetable contents
1947          * before the truncate_count increment is visible to
1948          * other cpus.
1949          */
1950         smp_mb();
1951         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1952                 if (mapping->truncate_count == 0)
1953                         reset_vma_truncate_counts(mapping);
1954                 mapping->truncate_count++;
1955         }
1956         details.truncate_count = mapping->truncate_count;
1957
1958         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1959                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1960         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1961                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1962         spin_unlock(&mapping->i_mmap_lock);
1963 }
1964 EXPORT_SYMBOL(unmap_mapping_range);
1965
1966 /**
1967  * vmtruncate - unmap mappings "freed" by truncate() syscall
1968  * @inode: inode of the file used
1969  * @offset: file offset to start truncating
1970  *
1971  * NOTE! We have to be ready to update the memory sharing
1972  * between the file and the memory map for a potential last
1973  * incomplete page.  Ugly, but necessary.
1974  */
1975 int vmtruncate(struct inode * inode, loff_t offset)
1976 {
1977         struct address_space *mapping = inode->i_mapping;
1978         unsigned long limit;
1979
1980         if (inode->i_size < offset)
1981                 goto do_expand;
1982         /*
1983          * truncation of in-use swapfiles is disallowed - it would cause
1984          * subsequent swapout to scribble on the now-freed blocks.
1985          */
1986         if (IS_SWAPFILE(inode))
1987                 goto out_busy;
1988         i_size_write(inode, offset);
1989         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1990         truncate_inode_pages(mapping, offset);
1991         goto out_truncate;
1992
1993 do_expand:
1994         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1995         if (limit != RLIM_INFINITY && offset > limit)
1996                 goto out_sig;
1997         if (offset > inode->i_sb->s_maxbytes)
1998                 goto out_big;
1999         i_size_write(inode, offset);
2000
2001 out_truncate:
2002         if (inode->i_op && inode->i_op->truncate)
2003                 inode->i_op->truncate(inode);
2004         return 0;
2005 out_sig:
2006         send_sig(SIGXFSZ, current, 0);
2007 out_big:
2008         return -EFBIG;
2009 out_busy:
2010         return -ETXTBSY;
2011 }
2012 EXPORT_SYMBOL(vmtruncate);
2013
2014 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2015 {
2016         struct address_space *mapping = inode->i_mapping;
2017
2018         /*
2019          * If the underlying filesystem is not going to provide
2020          * a way to truncate a range of blocks (punch a hole) -
2021          * we should return failure right now.
2022          */
2023         if (!inode->i_op || !inode->i_op->truncate_range)
2024                 return -ENOSYS;
2025
2026         mutex_lock(&inode->i_mutex);
2027         down_write(&inode->i_alloc_sem);
2028         unmap_mapping_range(mapping, offset, (end - offset), 1);
2029         truncate_inode_pages_range(mapping, offset, end);
2030         inode->i_op->truncate_range(inode, offset, end);
2031         up_write(&inode->i_alloc_sem);
2032         mutex_unlock(&inode->i_mutex);
2033
2034         return 0;
2035 }
2036
2037 /**
2038  * swapin_readahead - swap in pages in hope we need them soon
2039  * @entry: swap entry of this memory
2040  * @addr: address to start
2041  * @vma: user vma this addresses belong to
2042  *
2043  * Primitive swap readahead code. We simply read an aligned block of
2044  * (1 << page_cluster) entries in the swap area. This method is chosen
2045  * because it doesn't cost us any seek time.  We also make sure to queue
2046  * the 'original' request together with the readahead ones...
2047  *
2048  * This has been extended to use the NUMA policies from the mm triggering
2049  * the readahead.
2050  *
2051  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2052  */
2053 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2054 {
2055 #ifdef CONFIG_NUMA
2056         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2057 #endif
2058         int i, num;
2059         struct page *new_page;
2060         unsigned long offset;
2061
2062         /*
2063          * Get the number of handles we should do readahead io to.
2064          */
2065         num = valid_swaphandles(entry, &offset);
2066         for (i = 0; i < num; offset++, i++) {
2067                 /* Ok, do the async read-ahead now */
2068                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2069                                                            offset), vma, addr);
2070                 if (!new_page)
2071                         break;
2072                 page_cache_release(new_page);
2073 #ifdef CONFIG_NUMA
2074                 /*
2075                  * Find the next applicable VMA for the NUMA policy.
2076                  */
2077                 addr += PAGE_SIZE;
2078                 if (addr == 0)
2079                         vma = NULL;
2080                 if (vma) {
2081                         if (addr >= vma->vm_end) {
2082                                 vma = next_vma;
2083                                 next_vma = vma ? vma->vm_next : NULL;
2084                         }
2085                         if (vma && addr < vma->vm_start)
2086                                 vma = NULL;
2087                 } else {
2088                         if (next_vma && addr >= next_vma->vm_start) {
2089                                 vma = next_vma;
2090                                 next_vma = vma->vm_next;
2091                         }
2092                 }
2093 #endif
2094         }
2095         lru_add_drain();        /* Push any new pages onto the LRU now */
2096 }
2097
2098 /*
2099  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2100  * but allow concurrent faults), and pte mapped but not yet locked.
2101  * We return with mmap_sem still held, but pte unmapped and unlocked.
2102  */
2103 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2104                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2105                 int write_access, pte_t orig_pte)
2106 {
2107         spinlock_t *ptl;
2108         struct page *page;
2109         swp_entry_t entry;
2110         pte_t pte;
2111         int ret = VM_FAULT_MINOR;
2112
2113         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2114                 goto out;
2115
2116         entry = pte_to_swp_entry(orig_pte);
2117         if (is_migration_entry(entry)) {
2118                 migration_entry_wait(mm, pmd, address);
2119                 goto out;
2120         }
2121         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2122         page = lookup_swap_cache(entry);
2123         if (!page) {
2124                 grab_swap_token(); /* Contend for token _before_ read-in */
2125                 swapin_readahead(entry, address, vma);
2126                 page = read_swap_cache_async(entry, vma, address);
2127                 if (!page) {
2128                         /*
2129                          * Back out if somebody else faulted in this pte
2130                          * while we released the pte lock.
2131                          */
2132                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2133                         if (likely(pte_same(*page_table, orig_pte)))
2134                                 ret = VM_FAULT_OOM;
2135                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2136                         goto unlock;
2137                 }
2138
2139                 /* Had to read the page from swap area: Major fault */
2140                 ret = VM_FAULT_MAJOR;
2141                 count_vm_event(PGMAJFAULT);
2142         }
2143
2144         if (!vx_rss_avail(mm, 1)) {
2145                 ret = VM_FAULT_OOM;
2146                 goto out;
2147         }
2148
2149         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2150         mark_page_accessed(page);
2151         lock_page(page);
2152
2153         /*
2154          * Back out if somebody else already faulted in this pte.
2155          */
2156         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2157         if (unlikely(!pte_same(*page_table, orig_pte)))
2158                 goto out_nomap;
2159
2160         if (unlikely(!PageUptodate(page))) {
2161                 ret = VM_FAULT_SIGBUS;
2162                 goto out_nomap;
2163         }
2164
2165         /* The page isn't present yet, go ahead with the fault. */
2166
2167         inc_mm_counter(mm, anon_rss);
2168         pte = mk_pte(page, vma->vm_page_prot);
2169         if (write_access && can_share_swap_page(page)) {
2170                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2171                 write_access = 0;
2172         }
2173
2174         flush_icache_page(vma, page);
2175         set_pte_at(mm, address, page_table, pte);
2176         page_add_anon_rmap(page, vma, address);
2177
2178         swap_free(entry);
2179         if (vm_swap_full())
2180                 remove_exclusive_swap_page(page);
2181         unlock_page(page);
2182
2183         if (write_access) {
2184                 if (do_wp_page(mm, vma, address,
2185                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2186                         ret = VM_FAULT_OOM;
2187                 goto out;
2188         }
2189
2190         /* No need to invalidate - it was non-present before */
2191         update_mmu_cache(vma, address, pte);
2192         lazy_mmu_prot_update(pte);
2193 unlock:
2194         pte_unmap_unlock(page_table, ptl);
2195 out:
2196         return ret;
2197 out_nomap:
2198         pte_unmap_unlock(page_table, ptl);
2199         unlock_page(page);
2200         page_cache_release(page);
2201         return ret;
2202 }
2203
2204 /*
2205  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2206  * but allow concurrent faults), and pte mapped but not yet locked.
2207  * We return with mmap_sem still held, but pte unmapped and unlocked.
2208  */
2209 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2210                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2211                 int write_access)
2212 {
2213         struct page *page;
2214         spinlock_t *ptl;
2215         pte_t entry;
2216
2217         if (write_access) {
2218                 /* Allocate our own private page. */
2219                 pte_unmap(page_table);
2220
2221                 if (!vx_rss_avail(mm, 1))
2222                         goto oom;
2223                 if (unlikely(anon_vma_prepare(vma)))
2224                         goto oom;
2225                 page = alloc_zeroed_user_highpage(vma, address);
2226                 if (!page)
2227                         goto oom;
2228
2229                 entry = mk_pte(page, vma->vm_page_prot);
2230                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2231
2232                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2233                 if (!pte_none(*page_table))
2234                         goto release;
2235                 inc_mm_counter(mm, anon_rss);
2236                 lru_cache_add_active(page);
2237                 page_add_new_anon_rmap(page, vma, address);
2238         } else {
2239                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2240                 page = ZERO_PAGE(address);
2241                 page_cache_get(page);
2242                 entry = mk_pte(page, vma->vm_page_prot);
2243
2244                 ptl = pte_lockptr(mm, pmd);
2245                 spin_lock(ptl);
2246                 if (!pte_none(*page_table))
2247                         goto release;
2248                 inc_mm_counter(mm, file_rss);
2249                 page_add_file_rmap(page);
2250         }
2251
2252         set_pte_at(mm, address, page_table, entry);
2253
2254         /* No need to invalidate - it was non-present before */
2255         update_mmu_cache(vma, address, entry);
2256         lazy_mmu_prot_update(entry);
2257 unlock:
2258         pte_unmap_unlock(page_table, ptl);
2259         return VM_FAULT_MINOR;
2260 release:
2261         page_cache_release(page);
2262         goto unlock;
2263 oom:
2264         return VM_FAULT_OOM;
2265 }
2266
2267 /*
2268  * do_no_page() tries to create a new page mapping. It aggressively
2269  * tries to share with existing pages, but makes a separate copy if
2270  * the "write_access" parameter is true in order to avoid the next
2271  * page fault.
2272  *
2273  * As this is called only for pages that do not currently exist, we
2274  * do not need to flush old virtual caches or the TLB.
2275  *
2276  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2277  * but allow concurrent faults), and pte mapped but not yet locked.
2278  * We return with mmap_sem still held, but pte unmapped and unlocked.
2279  */
2280 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2281                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2282                 int write_access)
2283 {
2284         spinlock_t *ptl;
2285         struct page *new_page;
2286         struct address_space *mapping = NULL;
2287         pte_t entry;
2288         unsigned int sequence = 0;
2289         int ret = VM_FAULT_MINOR;
2290         int anon = 0;
2291         struct page *dirty_page = NULL;
2292
2293         pte_unmap(page_table);
2294         BUG_ON(vma->vm_flags & VM_PFNMAP);
2295
2296         if (!vx_rss_avail(mm, 1))
2297                 return VM_FAULT_OOM;
2298
2299         if (vma->vm_file) {
2300                 mapping = vma->vm_file->f_mapping;
2301                 sequence = mapping->truncate_count;
2302                 smp_rmb(); /* serializes i_size against truncate_count */
2303         }
2304 retry:
2305         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2306         /*
2307          * No smp_rmb is needed here as long as there's a full
2308          * spin_lock/unlock sequence inside the ->nopage callback
2309          * (for the pagecache lookup) that acts as an implicit
2310          * smp_mb() and prevents the i_size read to happen
2311          * after the next truncate_count read.
2312          */
2313
2314         /* no page was available -- either SIGBUS, OOM or REFAULT */
2315         if (unlikely(new_page == NOPAGE_SIGBUS))
2316                 return VM_FAULT_SIGBUS;
2317         else if (unlikely(new_page == NOPAGE_OOM))
2318                 return VM_FAULT_OOM;
2319         else if (unlikely(new_page == NOPAGE_REFAULT))
2320                 return VM_FAULT_MINOR;
2321
2322         /*
2323          * Should we do an early C-O-W break?
2324          */
2325         if (write_access) {
2326                 if (!(vma->vm_flags & VM_SHARED)) {
2327                         struct page *page;
2328
2329                         if (unlikely(anon_vma_prepare(vma)))
2330                                 goto oom;
2331                         page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2332                         if (!page)
2333                                 goto oom;
2334                         copy_user_highpage(page, new_page, address, vma);
2335                         page_cache_release(new_page);
2336                         new_page = page;
2337                         anon = 1;
2338
2339                 } else {
2340                         /* if the page will be shareable, see if the backing
2341                          * address space wants to know that the page is about
2342                          * to become writable */
2343                         if (vma->vm_ops->page_mkwrite &&
2344                             vma->vm_ops->page_mkwrite(vma, new_page) < 0
2345                             ) {
2346                                 page_cache_release(new_page);
2347                                 return VM_FAULT_SIGBUS;
2348                         }
2349                 }
2350         }
2351
2352         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2353         /*
2354          * For a file-backed vma, someone could have truncated or otherwise
2355          * invalidated this page.  If unmap_mapping_range got called,
2356          * retry getting the page.
2357          */
2358         if (mapping && unlikely(sequence != mapping->truncate_count)) {
2359                 pte_unmap_unlock(page_table, ptl);
2360                 page_cache_release(new_page);
2361                 cond_resched();
2362                 sequence = mapping->truncate_count;
2363                 smp_rmb();
2364                 goto retry;
2365         }
2366
2367         /*
2368          * This silly early PAGE_DIRTY setting removes a race
2369          * due to the bad i386 page protection. But it's valid
2370          * for other architectures too.
2371          *
2372          * Note that if write_access is true, we either now have
2373          * an exclusive copy of the page, or this is a shared mapping,
2374          * so we can make it writable and dirty to avoid having to
2375          * handle that later.
2376          */
2377         /* Only go through if we didn't race with anybody else... */
2378         if (pte_none(*page_table)) {
2379                 flush_icache_page(vma, new_page);
2380                 entry = mk_pte(new_page, vma->vm_page_prot);
2381                 if (write_access)
2382                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2383                 set_pte_at(mm, address, page_table, entry);
2384                 if (anon) {
2385                         inc_mm_counter(mm, anon_rss);
2386                         lru_cache_add_active(new_page);
2387                         page_add_new_anon_rmap(new_page, vma, address);
2388                 } else {
2389                         inc_mm_counter(mm, file_rss);
2390                         page_add_file_rmap(new_page);
2391                         if (write_access) {
2392                                 dirty_page = new_page;
2393                                 get_page(dirty_page);
2394                         }
2395                 }
2396         } else {
2397                 /* One of our sibling threads was faster, back out. */
2398                 page_cache_release(new_page);
2399                 goto unlock;
2400         }
2401
2402         /* no need to invalidate: a not-present page shouldn't be cached */
2403         update_mmu_cache(vma, address, entry);
2404         lazy_mmu_prot_update(entry);
2405 unlock:
2406         pte_unmap_unlock(page_table, ptl);
2407         if (dirty_page) {
2408                 set_page_dirty_balance(dirty_page);
2409                 put_page(dirty_page);
2410         }
2411         return ret;
2412 oom:
2413         page_cache_release(new_page);
2414         return VM_FAULT_OOM;
2415 }
2416
2417 /*
2418  * do_no_pfn() tries to create a new page mapping for a page without
2419  * a struct_page backing it
2420  *
2421  * As this is called only for pages that do not currently exist, we
2422  * do not need to flush old virtual caches or the TLB.
2423  *
2424  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2425  * but allow concurrent faults), and pte mapped but not yet locked.
2426  * We return with mmap_sem still held, but pte unmapped and unlocked.
2427  *
2428  * It is expected that the ->nopfn handler always returns the same pfn
2429  * for a given virtual mapping.
2430  *
2431  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2432  */
2433 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2434                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2435                      int write_access)
2436 {
2437         spinlock_t *ptl;
2438         pte_t entry;
2439         unsigned long pfn;
2440         int ret = VM_FAULT_MINOR;
2441
2442         pte_unmap(page_table);
2443         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2444         BUG_ON(is_cow_mapping(vma->vm_flags));
2445
2446         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2447         if (pfn == NOPFN_OOM)
2448                 return VM_FAULT_OOM;
2449         if (pfn == NOPFN_SIGBUS)
2450                 return VM_FAULT_SIGBUS;
2451
2452         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2453
2454         /* Only go through if we didn't race with anybody else... */
2455         if (pte_none(*page_table)) {
2456                 entry = pfn_pte(pfn, vma->vm_page_prot);
2457                 if (write_access)
2458                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2459                 set_pte_at(mm, address, page_table, entry);
2460         }
2461         pte_unmap_unlock(page_table, ptl);
2462         return ret;
2463 }
2464
2465 /*
2466  * Fault of a previously existing named mapping. Repopulate the pte
2467  * from the encoded file_pte if possible. This enables swappable
2468  * nonlinear vmas.
2469  *
2470  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2471  * but allow concurrent faults), and pte mapped but not yet locked.
2472  * We return with mmap_sem still held, but pte unmapped and unlocked.
2473  */
2474 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2475                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2476                 int write_access, pte_t orig_pte)
2477 {
2478         pgoff_t pgoff;
2479         int err;
2480
2481         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2482                 return VM_FAULT_MINOR;
2483
2484         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2485                 /*
2486                  * Page table corrupted: show pte and kill process.
2487                  */
2488                 print_bad_pte(vma, orig_pte, address);
2489                 return VM_FAULT_OOM;
2490         }
2491         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2492
2493         pgoff = pte_to_pgoff(orig_pte);
2494         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2495                                         vma->vm_page_prot, pgoff, 0);
2496         if (err == -ENOMEM)
2497                 return VM_FAULT_OOM;
2498         if (err)
2499                 return VM_FAULT_SIGBUS;
2500         return VM_FAULT_MAJOR;
2501 }
2502
2503 /*
2504  * These routines also need to handle stuff like marking pages dirty
2505  * and/or accessed for architectures that don't do it in hardware (most
2506  * RISC architectures).  The early dirtying is also good on the i386.
2507  *
2508  * There is also a hook called "update_mmu_cache()" that architectures
2509  * with external mmu caches can use to update those (ie the Sparc or
2510  * PowerPC hashed page tables that act as extended TLBs).
2511  *
2512  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2513  * but allow concurrent faults), and pte mapped but not yet locked.
2514  * We return with mmap_sem still held, but pte unmapped and unlocked.
2515  */
2516 static inline int handle_pte_fault(struct mm_struct *mm,
2517                 struct vm_area_struct *vma, unsigned long address,
2518                 pte_t *pte, pmd_t *pmd, int write_access)
2519 {
2520         pte_t entry;
2521         pte_t old_entry;
2522         spinlock_t *ptl;
2523         int ret, type = VXPT_UNKNOWN;
2524
2525         old_entry = entry = *pte;
2526         if (!pte_present(entry)) {
2527                 if (pte_none(entry)) {
2528                         if (vma->vm_ops) {
2529                                 if (vma->vm_ops->nopage)
2530                                         return do_no_page(mm, vma, address,
2531                                                           pte, pmd,
2532                                                           write_access);
2533                                 if (unlikely(vma->vm_ops->nopfn))
2534                                         return do_no_pfn(mm, vma, address, pte,
2535                                                          pmd, write_access);
2536                         }
2537                         return do_anonymous_page(mm, vma, address,
2538                                                  pte, pmd, write_access);
2539                 }
2540                 if (pte_file(entry))
2541                         return do_file_page(mm, vma, address,
2542                                         pte, pmd, write_access, entry);
2543                 return do_swap_page(mm, vma, address,
2544                                         pte, pmd, write_access, entry);
2545         }
2546
2547         ptl = pte_lockptr(mm, pmd);
2548         spin_lock(ptl);
2549         if (unlikely(!pte_same(*pte, entry)))
2550                 goto unlock;
2551         if (write_access) {
2552                 if (!pte_write(entry)) {
2553                         ret = do_wp_page(mm, vma, address,
2554                                         pte, pmd, ptl, entry);
2555                         type = VXPT_WRITE;
2556                         goto out;
2557                 }
2558                 entry = pte_mkdirty(entry);
2559         }
2560         entry = pte_mkyoung(entry);
2561         if (!pte_same(old_entry, entry)) {
2562                 ptep_set_access_flags(vma, address, pte, entry, write_access);
2563                 update_mmu_cache(vma, address, entry);
2564                 lazy_mmu_prot_update(entry);
2565         } else {
2566                 /*
2567                  * This is needed only for protection faults but the arch code
2568                  * is not yet telling us if this is a protection fault or not.
2569                  * This still avoids useless tlb flushes for .text page faults
2570                  * with threads.
2571                  */
2572                 if (write_access)
2573                         flush_tlb_page(vma, address);
2574         }
2575 unlock:
2576         pte_unmap_unlock(pte, ptl);
2577         ret = VM_FAULT_MINOR;
2578 out:
2579         vx_page_fault(mm, vma, type, ret);
2580         return ret;
2581 }
2582
2583 /*
2584  * By the time we get here, we already hold the mm semaphore
2585  */
2586 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2587                 unsigned long address, int write_access)
2588 {
2589         pgd_t *pgd;
2590         pud_t *pud;
2591         pmd_t *pmd;
2592         pte_t *pte;
2593
2594         __set_current_state(TASK_RUNNING);
2595
2596         count_vm_event(PGFAULT);
2597
2598         if (unlikely(is_vm_hugetlb_page(vma)))
2599                 return hugetlb_fault(mm, vma, address, write_access);
2600
2601         pgd = pgd_offset(mm, address);
2602         pud = pud_alloc(mm, pgd, address);
2603         if (!pud)
2604                 return VM_FAULT_OOM;
2605         pmd = pmd_alloc(mm, pud, address);
2606         if (!pmd)
2607                 return VM_FAULT_OOM;
2608         pte = pte_alloc_map(mm, pmd, address);
2609         if (!pte)
2610                 return VM_FAULT_OOM;
2611
2612         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2613 }
2614
2615 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2616
2617 #ifndef __PAGETABLE_PUD_FOLDED
2618 /*
2619  * Allocate page upper directory.
2620  * We've already handled the fast-path in-line.
2621  */
2622 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2623 {
2624         pud_t *new = pud_alloc_one(mm, address);
2625         if (!new)
2626                 return -ENOMEM;
2627
2628         spin_lock(&mm->page_table_lock);
2629         if (pgd_present(*pgd))          /* Another has populated it */
2630                 pud_free(new);
2631         else
2632                 pgd_populate(mm, pgd, new);
2633         spin_unlock(&mm->page_table_lock);
2634         return 0;
2635 }
2636 #else
2637 /* Workaround for gcc 2.96 */
2638 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2639 {
2640         return 0;
2641 }
2642 #endif /* __PAGETABLE_PUD_FOLDED */
2643
2644 #ifndef __PAGETABLE_PMD_FOLDED
2645 /*
2646  * Allocate page middle directory.
2647  * We've already handled the fast-path in-line.
2648  */
2649 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2650 {
2651         pmd_t *new = pmd_alloc_one(mm, address);
2652         if (!new)
2653                 return -ENOMEM;
2654
2655         spin_lock(&mm->page_table_lock);
2656 #ifndef __ARCH_HAS_4LEVEL_HACK
2657         if (pud_present(*pud))          /* Another has populated it */
2658                 pmd_free(new);
2659         else
2660                 pud_populate(mm, pud, new);
2661 #else
2662         if (pgd_present(*pud))          /* Another has populated it */
2663                 pmd_free(new);
2664         else
2665                 pgd_populate(mm, pud, new);
2666 #endif /* __ARCH_HAS_4LEVEL_HACK */
2667         spin_unlock(&mm->page_table_lock);
2668         return 0;
2669 }
2670 #else
2671 /* Workaround for gcc 2.96 */
2672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2673 {
2674         return 0;
2675 }
2676 #endif /* __PAGETABLE_PMD_FOLDED */
2677
2678 int make_pages_present(unsigned long addr, unsigned long end)
2679 {
2680         int ret, len, write;
2681         struct vm_area_struct * vma;
2682
2683         vma = find_vma(current->mm, addr);
2684         if (!vma)
2685                 return -1;
2686         write = (vma->vm_flags & VM_WRITE) != 0;
2687         BUG_ON(addr >= end);
2688         BUG_ON(end > vma->vm_end);
2689         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2690         ret = get_user_pages(current, current->mm, addr,
2691                         len, write, 0, NULL, NULL);
2692         if (ret < 0)
2693                 return ret;
2694         return ret == len ? 0 : -1;
2695 }
2696
2697 /* 
2698  * Map a vmalloc()-space virtual address to the physical page.
2699  */
2700 struct page * vmalloc_to_page(void * vmalloc_addr)
2701 {
2702         unsigned long addr = (unsigned long) vmalloc_addr;
2703         struct page *page = NULL;
2704         pgd_t *pgd = pgd_offset_k(addr);
2705         pud_t *pud;
2706         pmd_t *pmd;
2707         pte_t *ptep, pte;
2708   
2709         if (!pgd_none(*pgd)) {
2710                 pud = pud_offset(pgd, addr);
2711                 if (!pud_none(*pud)) {
2712                         pmd = pmd_offset(pud, addr);
2713                         if (!pmd_none(*pmd)) {
2714                                 ptep = pte_offset_map(pmd, addr);
2715                                 pte = *ptep;
2716                                 if (pte_present(pte))
2717                                         page = pte_page(pte);
2718                                 pte_unmap(ptep);
2719                         }
2720                 }
2721         }
2722         return page;
2723 }
2724
2725 EXPORT_SYMBOL(vmalloc_to_page);
2726
2727 /*
2728  * Map a vmalloc()-space virtual address to the physical page frame number.
2729  */
2730 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2731 {
2732         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2733 }
2734
2735 EXPORT_SYMBOL(vmalloc_to_pfn);
2736
2737 #if !defined(__HAVE_ARCH_GATE_AREA)
2738
2739 #if defined(AT_SYSINFO_EHDR)
2740 static struct vm_area_struct gate_vma;
2741
2742 static int __init gate_vma_init(void)
2743 {
2744         gate_vma.vm_mm = NULL;
2745         gate_vma.vm_start = FIXADDR_USER_START;
2746         gate_vma.vm_end = FIXADDR_USER_END;
2747         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2748         gate_vma.vm_page_prot = __P101;
2749         /*
2750          * Make sure the vDSO gets into every core dump.
2751          * Dumping its contents makes post-mortem fully interpretable later
2752          * without matching up the same kernel and hardware config to see
2753          * what PC values meant.
2754          */
2755         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2756         return 0;
2757 }
2758 __initcall(gate_vma_init);
2759 #endif
2760
2761 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2762 {
2763 #ifdef AT_SYSINFO_EHDR
2764         return &gate_vma;
2765 #else
2766         return NULL;
2767 #endif
2768 }
2769
2770 int in_gate_area_no_task(unsigned long addr)
2771 {
2772 #ifdef AT_SYSINFO_EHDR
2773         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2774                 return 1;
2775 #endif
2776         return 0;
2777 }
2778
2779 #endif  /* __HAVE_ARCH_GATE_AREA */
2780
2781 /*
2782  * Access another process' address space.
2783  * Source/target buffer must be kernel space,
2784  * Do not walk the page table directly, use get_user_pages
2785  */
2786 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2787 {
2788         struct mm_struct *mm;
2789         struct vm_area_struct *vma;
2790         struct page *page;
2791         void *old_buf = buf;
2792
2793         mm = get_task_mm(tsk);
2794         if (!mm)
2795                 return 0;
2796
2797         down_read(&mm->mmap_sem);
2798         /* ignore errors, just check how much was sucessfully transfered */
2799         while (len) {
2800                 int bytes, ret, offset;
2801                 void *maddr;
2802
2803                 ret = get_user_pages(tsk, mm, addr, 1,
2804                                 write, 1, &page, &vma);
2805                 if (ret <= 0)
2806                         break;
2807
2808                 bytes = len;
2809                 offset = addr & (PAGE_SIZE-1);
2810                 if (bytes > PAGE_SIZE-offset)
2811                         bytes = PAGE_SIZE-offset;
2812
2813                 maddr = kmap(page);
2814                 if (write) {
2815                         copy_to_user_page(vma, page, addr,
2816                                           maddr + offset, buf, bytes);
2817                         set_page_dirty_lock(page);
2818                 } else {
2819                         copy_from_user_page(vma, page, addr,
2820                                             buf, maddr + offset, bytes);
2821                 }
2822                 kunmap(page);
2823                 page_cache_release(page);
2824                 len -= bytes;
2825                 buf += bytes;
2826                 addr += bytes;
2827         }
2828         up_read(&mm->mmap_sem);
2829         mmput(mm);
2830
2831         return buf - old_buf;
2832 }