vserver 1.9.5.x5
[linux-2.6.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c.
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002    akpm@zip.com.au
10  *              Initial version
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32
33 /*
34  * The maximum number of pages to writeout in a single bdflush/kupdate
35  * operation.  We do this so we don't hold I_LOCK against an inode for
36  * enormous amounts of time, which would block a userspace task which has
37  * been forced to throttle against that inode.  Also, the code reevaluates
38  * the dirty each time it has written this many pages.
39  */
40 #define MAX_WRITEBACK_PAGES     1024
41
42 /*
43  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44  * will look to see if it needs to force writeback or throttling.
45  */
46 static long ratelimit_pages = 32;
47
48 static long total_pages;        /* The total number of pages in the machine. */
49 static int dirty_exceeded;      /* Dirty mem may be over limit */
50
51 /*
52  * When balance_dirty_pages decides that the caller needs to perform some
53  * non-background writeback, this is how many pages it will attempt to write.
54  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55  * large amounts of I/O are submitted.
56  */
57 static inline long sync_writeback_pages(void)
58 {
59         return ratelimit_pages + ratelimit_pages / 2;
60 }
61
62 /* The following parameters are exported via /proc/sys/vm */
63
64 /*
65  * Start background writeback (via pdflush) at this percentage
66  */
67 int dirty_background_ratio = 10;
68
69 /*
70  * The generator of dirty data starts writeback at this percentage
71  */
72 int vm_dirty_ratio = 40;
73
74 /*
75  * The interval between `kupdate'-style writebacks, in centiseconds
76  * (hundredths of a second)
77  */
78 int dirty_writeback_centisecs = 5 * 100;
79
80 /*
81  * The longest number of centiseconds for which data is allowed to remain dirty
82  */
83 int dirty_expire_centisecs = 30 * 100;
84
85 /*
86  * Flag that makes the machine dump writes/reads and block dirtyings.
87  */
88 int block_dump;
89
90 /*
91  * Flag that puts the machine in "laptop mode".
92  */
93 int laptop_mode;
94
95 EXPORT_SYMBOL(laptop_mode);
96
97 /* End of sysctl-exported parameters */
98
99
100 static void background_writeout(unsigned long _min_pages);
101
102 struct writeback_state
103 {
104         unsigned long nr_dirty;
105         unsigned long nr_unstable;
106         unsigned long nr_mapped;
107         unsigned long nr_writeback;
108 };
109
110 static void get_writeback_state(struct writeback_state *wbs)
111 {
112         wbs->nr_dirty = read_page_state(nr_dirty);
113         wbs->nr_unstable = read_page_state(nr_unstable);
114         wbs->nr_mapped = read_page_state(nr_mapped);
115         wbs->nr_writeback = read_page_state(nr_writeback);
116 }
117
118 /*
119  * Work out the current dirty-memory clamping and background writeout
120  * thresholds.
121  *
122  * The main aim here is to lower them aggressively if there is a lot of mapped
123  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
124  * pages.  It is better to clamp down on writers than to start swapping, and
125  * performing lots of scanning.
126  *
127  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
128  *
129  * We don't permit the clamping level to fall below 5% - that is getting rather
130  * excessive.
131  *
132  * We make sure that the background writeout level is below the adjusted
133  * clamping level.
134  */
135 static void
136 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
137                 struct address_space *mapping)
138 {
139         int background_ratio;           /* Percentages */
140         int dirty_ratio;
141         int unmapped_ratio;
142         long background;
143         long dirty;
144         unsigned long available_memory = total_pages;
145         struct task_struct *tsk;
146
147         get_writeback_state(wbs);
148
149 #ifdef CONFIG_HIGHMEM
150         /*
151          * If this mapping can only allocate from low memory,
152          * we exclude high memory from our count.
153          */
154         if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
155                 available_memory -= totalhigh_pages;
156 #endif
157
158
159         unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
160
161         dirty_ratio = vm_dirty_ratio;
162         if (dirty_ratio > unmapped_ratio / 2)
163                 dirty_ratio = unmapped_ratio / 2;
164
165         if (dirty_ratio < 5)
166                 dirty_ratio = 5;
167
168         background_ratio = dirty_background_ratio;
169         if (background_ratio >= dirty_ratio)
170                 background_ratio = dirty_ratio / 2;
171
172         background = (background_ratio * available_memory) / 100;
173         dirty = (dirty_ratio * available_memory) / 100;
174         tsk = current;
175         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
176                 background += background / 4;
177                 dirty += dirty / 4;
178         }
179         *pbackground = background;
180         *pdirty = dirty;
181 }
182
183 /*
184  * balance_dirty_pages() must be called by processes which are generating dirty
185  * data.  It looks at the number of dirty pages in the machine and will force
186  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
187  * If we're over `background_thresh' then pdflush is woken to perform some
188  * writeout.
189  */
190 static void balance_dirty_pages(struct address_space *mapping)
191 {
192         struct writeback_state wbs;
193         long nr_reclaimable;
194         long background_thresh;
195         long dirty_thresh;
196         unsigned long pages_written = 0;
197         unsigned long write_chunk = sync_writeback_pages();
198
199         struct backing_dev_info *bdi = mapping->backing_dev_info;
200
201         for (;;) {
202                 struct writeback_control wbc = {
203                         .bdi            = bdi,
204                         .sync_mode      = WB_SYNC_NONE,
205                         .older_than_this = NULL,
206                         .nr_to_write    = write_chunk,
207                 };
208
209                 get_dirty_limits(&wbs, &background_thresh,
210                                         &dirty_thresh, mapping);
211                 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
212                 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
213                         break;
214
215                 dirty_exceeded = 1;
216
217                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
218                  * Unstable writes are a feature of certain networked
219                  * filesystems (i.e. NFS) in which data may have been
220                  * written to the server's write cache, but has not yet
221                  * been flushed to permanent storage.
222                  */
223                 if (nr_reclaimable) {
224                         writeback_inodes(&wbc);
225                         get_dirty_limits(&wbs, &background_thresh,
226                                         &dirty_thresh, mapping);
227                         nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
228                         if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
229                                 break;
230                         pages_written += write_chunk - wbc.nr_to_write;
231                         if (pages_written >= write_chunk)
232                                 break;          /* We've done our duty */
233                 }
234                 blk_congestion_wait(WRITE, HZ/10);
235         }
236
237         if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
238                 dirty_exceeded = 0;
239
240         if (writeback_in_progress(bdi))
241                 return;         /* pdflush is already working this queue */
242
243         /*
244          * In laptop mode, we wait until hitting the higher threshold before
245          * starting background writeout, and then write out all the way down
246          * to the lower threshold.  So slow writers cause minimal disk activity.
247          *
248          * In normal mode, we start background writeout at the lower
249          * background_thresh, to keep the amount of dirty memory low.
250          */
251         if ((laptop_mode && pages_written) ||
252              (!laptop_mode && (nr_reclaimable > background_thresh)))
253                 pdflush_operation(background_writeout, 0);
254 }
255
256 /**
257  * balance_dirty_pages_ratelimited - balance dirty memory state
258  * @mapping - address_space which was dirtied
259  *
260  * Processes which are dirtying memory should call in here once for each page
261  * which was newly dirtied.  The function will periodically check the system's
262  * dirty state and will initiate writeback if needed.
263  *
264  * On really big machines, get_writeback_state is expensive, so try to avoid
265  * calling it too often (ratelimiting).  But once we're over the dirty memory
266  * limit we decrease the ratelimiting by a lot, to prevent individual processes
267  * from overshooting the limit by (ratelimit_pages) each.
268  */
269 void balance_dirty_pages_ratelimited(struct address_space *mapping)
270 {
271         static DEFINE_PER_CPU(int, ratelimits) = 0;
272         long ratelimit;
273
274         ratelimit = ratelimit_pages;
275         if (dirty_exceeded)
276                 ratelimit = 8;
277
278         /*
279          * Check the rate limiting. Also, we do not want to throttle real-time
280          * tasks in balance_dirty_pages(). Period.
281          */
282         if (get_cpu_var(ratelimits)++ >= ratelimit) {
283                 __get_cpu_var(ratelimits) = 0;
284                 put_cpu_var(ratelimits);
285                 balance_dirty_pages(mapping);
286                 return;
287         }
288         put_cpu_var(ratelimits);
289 }
290 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
291
292 /*
293  * writeback at least _min_pages, and keep writing until the amount of dirty
294  * memory is less than the background threshold, or until we're all clean.
295  */
296 static void background_writeout(unsigned long _min_pages)
297 {
298         long min_pages = _min_pages;
299         struct writeback_control wbc = {
300                 .bdi            = NULL,
301                 .sync_mode      = WB_SYNC_NONE,
302                 .older_than_this = NULL,
303                 .nr_to_write    = 0,
304                 .nonblocking    = 1,
305         };
306
307         for ( ; ; ) {
308                 struct writeback_state wbs;
309                 long background_thresh;
310                 long dirty_thresh;
311
312                 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
313                 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
314                                 && min_pages <= 0)
315                         break;
316                 wbc.encountered_congestion = 0;
317                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
318                 wbc.pages_skipped = 0;
319                 writeback_inodes(&wbc);
320                 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
321                 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
322                         /* Wrote less than expected */
323                         blk_congestion_wait(WRITE, HZ/10);
324                         if (!wbc.encountered_congestion)
325                                 break;
326                 }
327         }
328 }
329
330 /*
331  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
332  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
333  * -1 if all pdflush threads were busy.
334  */
335 int wakeup_bdflush(long nr_pages)
336 {
337         if (nr_pages == 0) {
338                 struct writeback_state wbs;
339
340                 get_writeback_state(&wbs);
341                 nr_pages = wbs.nr_dirty + wbs.nr_unstable;
342         }
343         return pdflush_operation(background_writeout, nr_pages);
344 }
345
346 static void wb_timer_fn(unsigned long unused);
347 static void laptop_timer_fn(unsigned long unused);
348
349 static struct timer_list wb_timer =
350                         TIMER_INITIALIZER(wb_timer_fn, 0, 0);
351 static struct timer_list laptop_mode_wb_timer =
352                         TIMER_INITIALIZER(laptop_timer_fn, 0, 0);
353
354 /*
355  * Periodic writeback of "old" data.
356  *
357  * Define "old": the first time one of an inode's pages is dirtied, we mark the
358  * dirtying-time in the inode's address_space.  So this periodic writeback code
359  * just walks the superblock inode list, writing back any inodes which are
360  * older than a specific point in time.
361  *
362  * Try to run once per dirty_writeback_centisecs.  But if a writeback event
363  * takes longer than a dirty_writeback_centisecs interval, then leave a
364  * one-second gap.
365  *
366  * older_than_this takes precedence over nr_to_write.  So we'll only write back
367  * all dirty pages if they are all attached to "old" mappings.
368  */
369 static void wb_kupdate(unsigned long arg)
370 {
371         unsigned long oldest_jif;
372         unsigned long start_jif;
373         unsigned long next_jif;
374         long nr_to_write;
375         struct writeback_state wbs;
376         struct writeback_control wbc = {
377                 .bdi            = NULL,
378                 .sync_mode      = WB_SYNC_NONE,
379                 .older_than_this = &oldest_jif,
380                 .nr_to_write    = 0,
381                 .nonblocking    = 1,
382                 .for_kupdate    = 1,
383         };
384
385         sync_supers();
386
387         get_writeback_state(&wbs);
388         oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
389         start_jif = jiffies;
390         next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
391         nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
392                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
393         while (nr_to_write > 0) {
394                 wbc.encountered_congestion = 0;
395                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
396                 writeback_inodes(&wbc);
397                 if (wbc.nr_to_write > 0) {
398                         if (wbc.encountered_congestion)
399                                 blk_congestion_wait(WRITE, HZ/10);
400                         else
401                                 break;  /* All the old data is written */
402                 }
403                 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
404         }
405         if (time_before(next_jif, jiffies + HZ))
406                 next_jif = jiffies + HZ;
407         if (dirty_writeback_centisecs)
408                 mod_timer(&wb_timer, next_jif);
409 }
410
411 /*
412  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
413  */
414 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
415                 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
416 {
417         proc_dointvec(table, write, file, buffer, length, ppos);
418         if (dirty_writeback_centisecs) {
419                 mod_timer(&wb_timer,
420                         jiffies + (dirty_writeback_centisecs * HZ) / 100);
421         } else {
422                 del_timer(&wb_timer);
423         }
424         return 0;
425 }
426
427 static void wb_timer_fn(unsigned long unused)
428 {
429         if (pdflush_operation(wb_kupdate, 0) < 0)
430                 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
431 }
432
433 static void laptop_flush(unsigned long unused)
434 {
435         sys_sync();
436 }
437
438 static void laptop_timer_fn(unsigned long unused)
439 {
440         pdflush_operation(laptop_flush, 0);
441 }
442
443 /*
444  * We've spun up the disk and we're in laptop mode: schedule writeback
445  * of all dirty data a few seconds from now.  If the flush is already scheduled
446  * then push it back - the user is still using the disk.
447  */
448 void laptop_io_completion(void)
449 {
450         mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ);
451 }
452
453 /*
454  * We're in laptop mode and we've just synced. The sync's writes will have
455  * caused another writeback to be scheduled by laptop_io_completion.
456  * Nothing needs to be written back anymore, so we unschedule the writeback.
457  */
458 void laptop_sync_completion(void)
459 {
460         del_timer(&laptop_mode_wb_timer);
461 }
462
463 /*
464  * If ratelimit_pages is too high then we can get into dirty-data overload
465  * if a large number of processes all perform writes at the same time.
466  * If it is too low then SMP machines will call the (expensive)
467  * get_writeback_state too often.
468  *
469  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
470  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
471  * thresholds before writeback cuts in.
472  *
473  * But the limit should not be set too high.  Because it also controls the
474  * amount of memory which the balance_dirty_pages() caller has to write back.
475  * If this is too large then the caller will block on the IO queue all the
476  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
477  * will write six megabyte chunks, max.
478  */
479
480 static void set_ratelimit(void)
481 {
482         ratelimit_pages = total_pages / (num_online_cpus() * 32);
483         if (ratelimit_pages < 16)
484                 ratelimit_pages = 16;
485         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
486                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
487 }
488
489 static int
490 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
491 {
492         set_ratelimit();
493         return 0;
494 }
495
496 static struct notifier_block ratelimit_nb = {
497         .notifier_call  = ratelimit_handler,
498         .next           = NULL,
499 };
500
501 /*
502  * If the machine has a large highmem:lowmem ratio then scale back the default
503  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
504  * number of buffer_heads.
505  */
506 void __init page_writeback_init(void)
507 {
508         long buffer_pages = nr_free_buffer_pages();
509         long correction;
510
511         total_pages = nr_free_pagecache_pages();
512
513         correction = (100 * 4 * buffer_pages) / total_pages;
514
515         if (correction < 100) {
516                 dirty_background_ratio *= correction;
517                 dirty_background_ratio /= 100;
518                 vm_dirty_ratio *= correction;
519                 vm_dirty_ratio /= 100;
520
521                 if (dirty_background_ratio <= 0)
522                         dirty_background_ratio = 1;
523                 if (vm_dirty_ratio <= 0)
524                         vm_dirty_ratio = 1;
525         }
526         mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
527         set_ratelimit();
528         register_cpu_notifier(&ratelimit_nb);
529 }
530
531 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
532 {
533         if (wbc->nr_to_write <= 0)
534                 return 0;
535         if (mapping->a_ops->writepages)
536                 return mapping->a_ops->writepages(mapping, wbc);
537         return generic_writepages(mapping, wbc);
538 }
539
540 /**
541  * write_one_page - write out a single page and optionally wait on I/O
542  *
543  * @page - the page to write
544  * @wait - if true, wait on writeout
545  *
546  * The page must be locked by the caller and will be unlocked upon return.
547  *
548  * write_one_page() returns a negative error code if I/O failed.
549  */
550 int write_one_page(struct page *page, int wait)
551 {
552         struct address_space *mapping = page->mapping;
553         int ret = 0;
554         struct writeback_control wbc = {
555                 .sync_mode = WB_SYNC_ALL,
556                 .nr_to_write = 1,
557         };
558
559         BUG_ON(!PageLocked(page));
560
561         if (wait)
562                 wait_on_page_writeback(page);
563
564         if (clear_page_dirty_for_io(page)) {
565                 page_cache_get(page);
566                 ret = mapping->a_ops->writepage(page, &wbc);
567                 if (ret == 0 && wait) {
568                         wait_on_page_writeback(page);
569                         if (PageError(page))
570                                 ret = -EIO;
571                 }
572                 page_cache_release(page);
573         } else {
574                 unlock_page(page);
575         }
576         return ret;
577 }
578 EXPORT_SYMBOL(write_one_page);
579
580 /*
581  * For address_spaces which do not use buffers.  Just tag the page as dirty in
582  * its radix tree.
583  *
584  * This is also used when a single buffer is being dirtied: we want to set the
585  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
586  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
587  *
588  * Most callers have locked the page, which pins the address_space in memory.
589  * But zap_pte_range() does not lock the page, however in that case the
590  * mapping is pinned by the vma's ->vm_file reference.
591  *
592  * We take care to handle the case where the page was truncated from the
593  * mapping by re-checking page_mapping() insode tree_lock.
594  */
595 int __set_page_dirty_nobuffers(struct page *page)
596 {
597         int ret = 0;
598
599         if (!TestSetPageDirty(page)) {
600                 struct address_space *mapping = page_mapping(page);
601                 struct address_space *mapping2;
602
603                 if (mapping) {
604                         spin_lock_irq(&mapping->tree_lock);
605                         mapping2 = page_mapping(page);
606                         if (mapping2) { /* Race with truncate? */
607                                 BUG_ON(mapping2 != mapping);
608                                 if (!mapping->backing_dev_info->memory_backed)
609                                         inc_page_state(nr_dirty);
610                                 radix_tree_tag_set(&mapping->page_tree,
611                                         page_index(page), PAGECACHE_TAG_DIRTY);
612                         }
613                         spin_unlock_irq(&mapping->tree_lock);
614                         if (mapping->host) {
615                                 /* !PageAnon && !swapper_space */
616                                 __mark_inode_dirty(mapping->host,
617                                                         I_DIRTY_PAGES);
618                         }
619                 }
620         }
621         return ret;
622 }
623 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
624
625 /*
626  * When a writepage implementation decides that it doesn't want to write this
627  * page for some reason, it should redirty the locked page via
628  * redirty_page_for_writepage() and it should then unlock the page and return 0
629  */
630 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
631 {
632         wbc->pages_skipped++;
633         return __set_page_dirty_nobuffers(page);
634 }
635 EXPORT_SYMBOL(redirty_page_for_writepage);
636
637 /*
638  * If the mapping doesn't provide a set_page_dirty a_op, then
639  * just fall through and assume that it wants buffer_heads.
640  */
641 int fastcall set_page_dirty(struct page *page)
642 {
643         struct address_space *mapping = page_mapping(page);
644
645         if (likely(mapping)) {
646                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
647                 if (spd)
648                         return (*spd)(page);
649                 return __set_page_dirty_buffers(page);
650         }
651         if (!PageDirty(page))
652                 SetPageDirty(page);
653         return 0;
654 }
655 EXPORT_SYMBOL(set_page_dirty);
656
657 /*
658  * set_page_dirty() is racy if the caller has no reference against
659  * page->mapping->host, and if the page is unlocked.  This is because another
660  * CPU could truncate the page off the mapping and then free the mapping.
661  *
662  * Usually, the page _is_ locked, or the caller is a user-space process which
663  * holds a reference on the inode by having an open file.
664  *
665  * In other cases, the page should be locked before running set_page_dirty().
666  */
667 int set_page_dirty_lock(struct page *page)
668 {
669         int ret;
670
671         lock_page(page);
672         ret = set_page_dirty(page);
673         unlock_page(page);
674         return ret;
675 }
676 EXPORT_SYMBOL(set_page_dirty_lock);
677
678 /*
679  * Clear a page's dirty flag, while caring for dirty memory accounting. 
680  * Returns true if the page was previously dirty.
681  */
682 int test_clear_page_dirty(struct page *page)
683 {
684         struct address_space *mapping = page_mapping(page);
685         unsigned long flags;
686
687         if (mapping) {
688                 spin_lock_irqsave(&mapping->tree_lock, flags);
689                 if (TestClearPageDirty(page)) {
690                         radix_tree_tag_clear(&mapping->page_tree,
691                                                 page_index(page),
692                                                 PAGECACHE_TAG_DIRTY);
693                         spin_unlock_irqrestore(&mapping->tree_lock, flags);
694                         if (!mapping->backing_dev_info->memory_backed)
695                                 dec_page_state(nr_dirty);
696                         return 1;
697                 }
698                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
699                 return 0;
700         }
701         return TestClearPageDirty(page);
702 }
703 EXPORT_SYMBOL(test_clear_page_dirty);
704
705 /*
706  * Clear a page's dirty flag, while caring for dirty memory accounting.
707  * Returns true if the page was previously dirty.
708  *
709  * This is for preparing to put the page under writeout.  We leave the page
710  * tagged as dirty in the radix tree so that a concurrent write-for-sync
711  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
712  * implementation will run either set_page_writeback() or set_page_dirty(),
713  * at which stage we bring the page's dirty flag and radix-tree dirty tag
714  * back into sync.
715  *
716  * This incoherency between the page's dirty flag and radix-tree tag is
717  * unfortunate, but it only exists while the page is locked.
718  */
719 int clear_page_dirty_for_io(struct page *page)
720 {
721         struct address_space *mapping = page_mapping(page);
722
723         if (mapping) {
724                 if (TestClearPageDirty(page)) {
725                         if (!mapping->backing_dev_info->memory_backed)
726                                 dec_page_state(nr_dirty);
727                         return 1;
728                 }
729                 return 0;
730         }
731         return TestClearPageDirty(page);
732 }
733 EXPORT_SYMBOL(clear_page_dirty_for_io);
734
735 /*
736  * Clear a page's dirty flag while ignoring dirty memory accounting
737  */
738 int __clear_page_dirty(struct page *page)
739 {
740         struct address_space *mapping = page_mapping(page);
741
742         if (mapping) {
743                 unsigned long flags;
744
745                 spin_lock_irqsave(&mapping->tree_lock, flags);
746                 if (TestClearPageDirty(page)) {
747                         radix_tree_tag_clear(&mapping->page_tree,
748                                                 page_index(page),
749                                                 PAGECACHE_TAG_DIRTY);
750                         spin_unlock_irqrestore(&mapping->tree_lock, flags);
751                         return 1;
752                 }
753                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
754                 return 0;
755         }
756         return TestClearPageDirty(page);
757 }
758
759 int test_clear_page_writeback(struct page *page)
760 {
761         struct address_space *mapping = page_mapping(page);
762         int ret;
763
764         if (mapping) {
765                 unsigned long flags;
766
767                 spin_lock_irqsave(&mapping->tree_lock, flags);
768                 ret = TestClearPageWriteback(page);
769                 if (ret)
770                         radix_tree_tag_clear(&mapping->page_tree,
771                                                 page_index(page),
772                                                 PAGECACHE_TAG_WRITEBACK);
773                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
774         } else {
775                 ret = TestClearPageWriteback(page);
776         }
777         return ret;
778 }
779
780 int test_set_page_writeback(struct page *page)
781 {
782         struct address_space *mapping = page_mapping(page);
783         int ret;
784
785         if (mapping) {
786                 unsigned long flags;
787
788                 spin_lock_irqsave(&mapping->tree_lock, flags);
789                 ret = TestSetPageWriteback(page);
790                 if (!ret)
791                         radix_tree_tag_set(&mapping->page_tree,
792                                                 page_index(page),
793                                                 PAGECACHE_TAG_WRITEBACK);
794                 if (!PageDirty(page))
795                         radix_tree_tag_clear(&mapping->page_tree,
796                                                 page_index(page),
797                                                 PAGECACHE_TAG_DIRTY);
798                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
799         } else {
800                 ret = TestSetPageWriteback(page);
801         }
802         return ret;
803
804 }
805 EXPORT_SYMBOL(test_set_page_writeback);
806
807 /*
808  * Return true if any of the pages in the mapping are marged with the
809  * passed tag.
810  */
811 int mapping_tagged(struct address_space *mapping, int tag)
812 {
813         unsigned long flags;
814         int ret;
815
816         spin_lock_irqsave(&mapping->tree_lock, flags);
817         ret = radix_tree_tagged(&mapping->page_tree, tag);
818         spin_unlock_irqrestore(&mapping->tree_lock, flags);
819         return ret;
820 }
821 EXPORT_SYMBOL(mapping_tagged);