Merge to Fedora kernel-2.6.18-1.2224_FC5 patched with stable patch-2.6.18.1-vs2.0...
[linux-2.6.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c.
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002    akpm@zip.com.au
10  *              Initial version
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32 #include <linux/rmap.h>
33
34 /*
35  * The maximum number of pages to writeout in a single bdflush/kupdate
36  * operation.  We do this so we don't hold I_LOCK against an inode for
37  * enormous amounts of time, which would block a userspace task which has
38  * been forced to throttle against that inode.  Also, the code reevaluates
39  * the dirty each time it has written this many pages.
40  */
41 #define MAX_WRITEBACK_PAGES     1024
42
43 /*
44  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
45  * will look to see if it needs to force writeback or throttling.
46  */
47 static long ratelimit_pages = 32;
48
49 static long total_pages;        /* The total number of pages in the machine. */
50 static int dirty_exceeded __cacheline_aligned_in_smp;   /* Dirty mem may be over limit */
51
52 /*
53  * When balance_dirty_pages decides that the caller needs to perform some
54  * non-background writeback, this is how many pages it will attempt to write.
55  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
56  * large amounts of I/O are submitted.
57  */
58 static inline long sync_writeback_pages(void)
59 {
60         return ratelimit_pages + ratelimit_pages / 2;
61 }
62
63 /* The following parameters are exported via /proc/sys/vm */
64
65 /*
66  * Start background writeback (via pdflush) at this percentage
67  */
68 int dirty_background_ratio = 10;
69
70 /*
71  * The generator of dirty data starts writeback at this percentage
72  */
73 int vm_dirty_ratio = 40;
74
75 /*
76  * The interval between `kupdate'-style writebacks, in jiffies
77  */
78 int dirty_writeback_interval = 5 * HZ;
79
80 /*
81  * The longest number of jiffies for which data is allowed to remain dirty
82  */
83 int dirty_expire_interval = 30 * HZ;
84
85 /*
86  * Flag that makes the machine dump writes/reads and block dirtyings.
87  */
88 int block_dump;
89
90 /*
91  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
92  * a full sync is triggered after this time elapses without any disk activity.
93  */
94 int laptop_mode;
95
96 EXPORT_SYMBOL(laptop_mode);
97
98 /* End of sysctl-exported parameters */
99
100
101 static void background_writeout(unsigned long _min_pages);
102
103 /*
104  * Work out the current dirty-memory clamping and background writeout
105  * thresholds.
106  *
107  * The main aim here is to lower them aggressively if there is a lot of mapped
108  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
109  * pages.  It is better to clamp down on writers than to start swapping, and
110  * performing lots of scanning.
111  *
112  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
113  *
114  * We don't permit the clamping level to fall below 5% - that is getting rather
115  * excessive.
116  *
117  * We make sure that the background writeout level is below the adjusted
118  * clamping level.
119  */
120 static void
121 get_dirty_limits(long *pbackground, long *pdirty,
122                                         struct address_space *mapping)
123 {
124         int background_ratio;           /* Percentages */
125         int dirty_ratio;
126         int unmapped_ratio;
127         long background;
128         long dirty;
129         unsigned long available_memory = total_pages;
130         struct task_struct *tsk;
131
132 #ifdef CONFIG_HIGHMEM
133         /*
134          * If this mapping can only allocate from low memory,
135          * we exclude high memory from our count.
136          */
137         if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
138                 available_memory -= totalhigh_pages;
139 #endif
140
141
142         unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
143                                 global_page_state(NR_ANON_PAGES)) * 100) /
144                                         total_pages;
145
146         dirty_ratio = vm_dirty_ratio;
147         if (dirty_ratio > unmapped_ratio / 2)
148                 dirty_ratio = unmapped_ratio / 2;
149
150         if (dirty_ratio < 5)
151                 dirty_ratio = 5;
152
153         background_ratio = dirty_background_ratio;
154         if (background_ratio >= dirty_ratio)
155                 background_ratio = dirty_ratio / 2;
156
157         background = (background_ratio * available_memory) / 100;
158         dirty = (dirty_ratio * available_memory) / 100;
159         tsk = current;
160         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
161                 background += background / 4;
162                 dirty += dirty / 4;
163         }
164         *pbackground = background;
165         *pdirty = dirty;
166 }
167
168 /*
169  * balance_dirty_pages() must be called by processes which are generating dirty
170  * data.  It looks at the number of dirty pages in the machine and will force
171  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
172  * If we're over `background_thresh' then pdflush is woken to perform some
173  * writeout.
174  */
175 static void balance_dirty_pages(struct address_space *mapping)
176 {
177         long nr_reclaimable;
178         long background_thresh;
179         long dirty_thresh;
180         unsigned long pages_written = 0;
181         unsigned long write_chunk = sync_writeback_pages();
182
183         struct backing_dev_info *bdi = mapping->backing_dev_info;
184
185         for (;;) {
186                 struct writeback_control wbc = {
187                         .bdi            = bdi,
188                         .sync_mode      = WB_SYNC_NONE,
189                         .older_than_this = NULL,
190                         .nr_to_write    = write_chunk,
191                         .range_cyclic   = 1,
192                 };
193
194                 get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
195                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
196                                         global_page_state(NR_UNSTABLE_NFS);
197                 if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
198                         dirty_thresh)
199                                 break;
200
201                 if (!dirty_exceeded)
202                         dirty_exceeded = 1;
203
204                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
205                  * Unstable writes are a feature of certain networked
206                  * filesystems (i.e. NFS) in which data may have been
207                  * written to the server's write cache, but has not yet
208                  * been flushed to permanent storage.
209                  */
210                 if (nr_reclaimable) {
211                         writeback_inodes(&wbc);
212                         get_dirty_limits(&background_thresh,
213                                                 &dirty_thresh, mapping);
214                         nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
215                                         global_page_state(NR_UNSTABLE_NFS);
216                         if (nr_reclaimable +
217                                 global_page_state(NR_WRITEBACK)
218                                         <= dirty_thresh)
219                                                 break;
220                         pages_written += write_chunk - wbc.nr_to_write;
221                         if (pages_written >= write_chunk)
222                                 break;          /* We've done our duty */
223                 }
224                 blk_congestion_wait(WRITE, HZ/10);
225         }
226
227         if (nr_reclaimable + global_page_state(NR_WRITEBACK)
228                 <= dirty_thresh && dirty_exceeded)
229                         dirty_exceeded = 0;
230
231         if (writeback_in_progress(bdi))
232                 return;         /* pdflush is already working this queue */
233
234         /*
235          * In laptop mode, we wait until hitting the higher threshold before
236          * starting background writeout, and then write out all the way down
237          * to the lower threshold.  So slow writers cause minimal disk activity.
238          *
239          * In normal mode, we start background writeout at the lower
240          * background_thresh, to keep the amount of dirty memory low.
241          */
242         if ((laptop_mode && pages_written) ||
243              (!laptop_mode && (nr_reclaimable > background_thresh)))
244                 pdflush_operation(background_writeout, 0);
245 }
246
247 void set_page_dirty_balance(struct page *page)
248 {
249         if (set_page_dirty(page)) {
250                 struct address_space *mapping = page_mapping(page);
251
252                 if (mapping)
253                         balance_dirty_pages_ratelimited(mapping);
254         }
255 }
256
257 /**
258  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259  * @mapping: address_space which was dirtied
260  * @nr_pages_dirtied: number of pages which the caller has just dirtied
261  *
262  * Processes which are dirtying memory should call in here once for each page
263  * which was newly dirtied.  The function will periodically check the system's
264  * dirty state and will initiate writeback if needed.
265  *
266  * On really big machines, get_writeback_state is expensive, so try to avoid
267  * calling it too often (ratelimiting).  But once we're over the dirty memory
268  * limit we decrease the ratelimiting by a lot, to prevent individual processes
269  * from overshooting the limit by (ratelimit_pages) each.
270  */
271 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
272                                         unsigned long nr_pages_dirtied)
273 {
274         static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
275         unsigned long ratelimit;
276         unsigned long *p;
277
278         ratelimit = ratelimit_pages;
279         if (dirty_exceeded)
280                 ratelimit = 8;
281
282         /*
283          * Check the rate limiting. Also, we do not want to throttle real-time
284          * tasks in balance_dirty_pages(). Period.
285          */
286         preempt_disable();
287         p =  &__get_cpu_var(ratelimits);
288         *p += nr_pages_dirtied;
289         if (unlikely(*p >= ratelimit)) {
290                 *p = 0;
291                 preempt_enable();
292                 balance_dirty_pages(mapping);
293                 return;
294         }
295         preempt_enable();
296 }
297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
298
299 void throttle_vm_writeout(void)
300 {
301         long background_thresh;
302         long dirty_thresh;
303
304         for ( ; ; ) {
305                 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
306
307                 /*
308                  * Boost the allowable dirty threshold a bit for page
309                  * allocators so they don't get DoS'ed by heavy writers
310                  */
311                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
312
313                 if (global_page_state(NR_UNSTABLE_NFS) +
314                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
315                                 break;
316                 blk_congestion_wait(WRITE, HZ/10);
317         }
318 }
319
320
321 /*
322  * writeback at least _min_pages, and keep writing until the amount of dirty
323  * memory is less than the background threshold, or until we're all clean.
324  */
325 static void background_writeout(unsigned long _min_pages)
326 {
327         long min_pages = _min_pages;
328         struct writeback_control wbc = {
329                 .bdi            = NULL,
330                 .sync_mode      = WB_SYNC_NONE,
331                 .older_than_this = NULL,
332                 .nr_to_write    = 0,
333                 .nonblocking    = 1,
334                 .range_cyclic   = 1,
335         };
336
337         for ( ; ; ) {
338                 long background_thresh;
339                 long dirty_thresh;
340
341                 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
342                 if (global_page_state(NR_FILE_DIRTY) +
343                         global_page_state(NR_UNSTABLE_NFS) < background_thresh
344                                 && min_pages <= 0)
345                         break;
346                 wbc.encountered_congestion = 0;
347                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
348                 wbc.pages_skipped = 0;
349                 writeback_inodes(&wbc);
350                 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
351                 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
352                         /* Wrote less than expected */
353                         blk_congestion_wait(WRITE, HZ/10);
354                         if (!wbc.encountered_congestion)
355                                 break;
356                 }
357         }
358 }
359
360 /*
361  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
362  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
363  * -1 if all pdflush threads were busy.
364  */
365 int wakeup_pdflush(long nr_pages)
366 {
367         if (nr_pages == 0)
368                 nr_pages = global_page_state(NR_FILE_DIRTY) +
369                                 global_page_state(NR_UNSTABLE_NFS);
370         return pdflush_operation(background_writeout, nr_pages);
371 }
372
373 static void wb_timer_fn(unsigned long unused);
374 static void laptop_timer_fn(unsigned long unused);
375
376 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
377 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
378
379 /*
380  * Periodic writeback of "old" data.
381  *
382  * Define "old": the first time one of an inode's pages is dirtied, we mark the
383  * dirtying-time in the inode's address_space.  So this periodic writeback code
384  * just walks the superblock inode list, writing back any inodes which are
385  * older than a specific point in time.
386  *
387  * Try to run once per dirty_writeback_interval.  But if a writeback event
388  * takes longer than a dirty_writeback_interval interval, then leave a
389  * one-second gap.
390  *
391  * older_than_this takes precedence over nr_to_write.  So we'll only write back
392  * all dirty pages if they are all attached to "old" mappings.
393  */
394 static void wb_kupdate(unsigned long arg)
395 {
396         unsigned long oldest_jif;
397         unsigned long start_jif;
398         unsigned long next_jif;
399         long nr_to_write;
400         struct writeback_control wbc = {
401                 .bdi            = NULL,
402                 .sync_mode      = WB_SYNC_NONE,
403                 .older_than_this = &oldest_jif,
404                 .nr_to_write    = 0,
405                 .nonblocking    = 1,
406                 .for_kupdate    = 1,
407                 .range_cyclic   = 1,
408         };
409
410         sync_supers();
411
412         oldest_jif = jiffies - dirty_expire_interval;
413         start_jif = jiffies;
414         next_jif = start_jif + dirty_writeback_interval;
415         nr_to_write = global_page_state(NR_FILE_DIRTY) +
416                         global_page_state(NR_UNSTABLE_NFS) +
417                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
418         while (nr_to_write > 0) {
419                 wbc.encountered_congestion = 0;
420                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
421                 writeback_inodes(&wbc);
422                 if (wbc.nr_to_write > 0) {
423                         if (wbc.encountered_congestion)
424                                 blk_congestion_wait(WRITE, HZ/10);
425                         else
426                                 break;  /* All the old data is written */
427                 }
428                 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
429         }
430         if (time_before(next_jif, jiffies + HZ))
431                 next_jif = jiffies + HZ;
432         if (dirty_writeback_interval)
433                 mod_timer(&wb_timer, next_jif);
434 }
435
436 /*
437  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
438  */
439 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
440                 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
441 {
442         proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
443         if (dirty_writeback_interval) {
444                 mod_timer(&wb_timer,
445                         jiffies + dirty_writeback_interval);
446                 } else {
447                 del_timer(&wb_timer);
448         }
449         return 0;
450 }
451
452 static void wb_timer_fn(unsigned long unused)
453 {
454         if (pdflush_operation(wb_kupdate, 0) < 0)
455                 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
456 }
457
458 static void laptop_flush(unsigned long unused)
459 {
460         sys_sync();
461 }
462
463 static void laptop_timer_fn(unsigned long unused)
464 {
465         pdflush_operation(laptop_flush, 0);
466 }
467
468 /*
469  * We've spun up the disk and we're in laptop mode: schedule writeback
470  * of all dirty data a few seconds from now.  If the flush is already scheduled
471  * then push it back - the user is still using the disk.
472  */
473 void laptop_io_completion(void)
474 {
475         mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
476 }
477
478 /*
479  * We're in laptop mode and we've just synced. The sync's writes will have
480  * caused another writeback to be scheduled by laptop_io_completion.
481  * Nothing needs to be written back anymore, so we unschedule the writeback.
482  */
483 void laptop_sync_completion(void)
484 {
485         del_timer(&laptop_mode_wb_timer);
486 }
487
488 /*
489  * If ratelimit_pages is too high then we can get into dirty-data overload
490  * if a large number of processes all perform writes at the same time.
491  * If it is too low then SMP machines will call the (expensive)
492  * get_writeback_state too often.
493  *
494  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
495  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
496  * thresholds before writeback cuts in.
497  *
498  * But the limit should not be set too high.  Because it also controls the
499  * amount of memory which the balance_dirty_pages() caller has to write back.
500  * If this is too large then the caller will block on the IO queue all the
501  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
502  * will write six megabyte chunks, max.
503  */
504
505 static void set_ratelimit(void)
506 {
507         ratelimit_pages = total_pages / (num_online_cpus() * 32);
508         if (ratelimit_pages < 16)
509                 ratelimit_pages = 16;
510         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
511                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
512 }
513
514 static int __cpuinit
515 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
516 {
517         set_ratelimit();
518         return 0;
519 }
520
521 static struct notifier_block __cpuinitdata ratelimit_nb = {
522         .notifier_call  = ratelimit_handler,
523         .next           = NULL,
524 };
525
526 /*
527  * If the machine has a large highmem:lowmem ratio then scale back the default
528  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
529  * number of buffer_heads.
530  */
531 void __init page_writeback_init(void)
532 {
533         long buffer_pages = nr_free_buffer_pages();
534         long correction;
535
536         total_pages = nr_free_pagecache_pages();
537
538         correction = (100 * 4 * buffer_pages) / total_pages;
539
540         if (correction < 100) {
541                 dirty_background_ratio *= correction;
542                 dirty_background_ratio /= 100;
543                 vm_dirty_ratio *= correction;
544                 vm_dirty_ratio /= 100;
545
546                 if (dirty_background_ratio <= 0)
547                         dirty_background_ratio = 1;
548                 if (vm_dirty_ratio <= 0)
549                         vm_dirty_ratio = 1;
550         }
551         mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
552         set_ratelimit();
553         register_cpu_notifier(&ratelimit_nb);
554 }
555
556 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
557 {
558         int ret;
559
560         if (wbc->nr_to_write <= 0)
561                 return 0;
562         wbc->for_writepages = 1;
563         if (mapping->a_ops->writepages)
564                 ret = mapping->a_ops->writepages(mapping, wbc);
565         else
566                 ret = generic_writepages(mapping, wbc);
567         wbc->for_writepages = 0;
568         return ret;
569 }
570
571 /**
572  * write_one_page - write out a single page and optionally wait on I/O
573  *
574  * @page: the page to write
575  * @wait: if true, wait on writeout
576  *
577  * The page must be locked by the caller and will be unlocked upon return.
578  *
579  * write_one_page() returns a negative error code if I/O failed.
580  */
581 int write_one_page(struct page *page, int wait)
582 {
583         struct address_space *mapping = page->mapping;
584         int ret = 0;
585         struct writeback_control wbc = {
586                 .sync_mode = WB_SYNC_ALL,
587                 .nr_to_write = 1,
588         };
589
590         BUG_ON(!PageLocked(page));
591
592         if (wait)
593                 wait_on_page_writeback(page);
594
595         if (clear_page_dirty_for_io(page)) {
596                 page_cache_get(page);
597                 ret = mapping->a_ops->writepage(page, &wbc);
598                 if (ret == 0 && wait) {
599                         wait_on_page_writeback(page);
600                         if (PageError(page))
601                                 ret = -EIO;
602                 }
603                 page_cache_release(page);
604         } else {
605                 unlock_page(page);
606         }
607         return ret;
608 }
609 EXPORT_SYMBOL(write_one_page);
610
611 /*
612  * For address_spaces which do not use buffers.  Just tag the page as dirty in
613  * its radix tree.
614  *
615  * This is also used when a single buffer is being dirtied: we want to set the
616  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
617  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
618  *
619  * Most callers have locked the page, which pins the address_space in memory.
620  * But zap_pte_range() does not lock the page, however in that case the
621  * mapping is pinned by the vma's ->vm_file reference.
622  *
623  * We take care to handle the case where the page was truncated from the
624  * mapping by re-checking page_mapping() insode tree_lock.
625  */
626 int __set_page_dirty_nobuffers(struct page *page)
627 {
628         if (!TestSetPageDirty(page)) {
629                 struct address_space *mapping = page_mapping(page);
630                 struct address_space *mapping2;
631
632                 if (mapping) {
633                         write_lock_irq(&mapping->tree_lock);
634                         mapping2 = page_mapping(page);
635                         if (mapping2) { /* Race with truncate? */
636                                 BUG_ON(mapping2 != mapping);
637                                 if (mapping_cap_account_dirty(mapping))
638                                         __inc_zone_page_state(page,
639                                                                 NR_FILE_DIRTY);
640                                 radix_tree_tag_set(&mapping->page_tree,
641                                         page_index(page), PAGECACHE_TAG_DIRTY);
642                         }
643                         write_unlock_irq(&mapping->tree_lock);
644                         if (mapping->host) {
645                                 /* !PageAnon && !swapper_space */
646                                 __mark_inode_dirty(mapping->host,
647                                                         I_DIRTY_PAGES);
648                         }
649                 }
650                 return 1;
651         }
652         return 0;
653 }
654 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
655
656 /*
657  * When a writepage implementation decides that it doesn't want to write this
658  * page for some reason, it should redirty the locked page via
659  * redirty_page_for_writepage() and it should then unlock the page and return 0
660  */
661 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
662 {
663         wbc->pages_skipped++;
664         return __set_page_dirty_nobuffers(page);
665 }
666 EXPORT_SYMBOL(redirty_page_for_writepage);
667
668 /*
669  * If the mapping doesn't provide a set_page_dirty a_op, then
670  * just fall through and assume that it wants buffer_heads.
671  */
672 int fastcall set_page_dirty(struct page *page)
673 {
674         struct address_space *mapping = page_mapping(page);
675
676         if (likely(mapping)) {
677                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
678                 if (spd)
679                         return (*spd)(page);
680                 return __set_page_dirty_buffers(page);
681         }
682         if (!PageDirty(page)) {
683                 if (!TestSetPageDirty(page))
684                         return 1;
685         }
686         return 0;
687 }
688 EXPORT_SYMBOL(set_page_dirty);
689
690 /*
691  * set_page_dirty() is racy if the caller has no reference against
692  * page->mapping->host, and if the page is unlocked.  This is because another
693  * CPU could truncate the page off the mapping and then free the mapping.
694  *
695  * Usually, the page _is_ locked, or the caller is a user-space process which
696  * holds a reference on the inode by having an open file.
697  *
698  * In other cases, the page should be locked before running set_page_dirty().
699  */
700 int set_page_dirty_lock(struct page *page)
701 {
702         int ret;
703
704         lock_page(page);
705         ret = set_page_dirty(page);
706         unlock_page(page);
707         return ret;
708 }
709 EXPORT_SYMBOL(set_page_dirty_lock);
710
711 /*
712  * Clear a page's dirty flag, while caring for dirty memory accounting. 
713  * Returns true if the page was previously dirty.
714  */
715 int test_clear_page_dirty(struct page *page)
716 {
717         struct address_space *mapping = page_mapping(page);
718         unsigned long flags;
719
720         WARN_ON_ONCE(!PageLocked(page));
721         if (mapping) {
722                 write_lock_irqsave(&mapping->tree_lock, flags);
723                 if (TestClearPageDirty(page)) {
724                         radix_tree_tag_clear(&mapping->page_tree,
725                                                 page_index(page),
726                                                 PAGECACHE_TAG_DIRTY);
727                         write_unlock_irqrestore(&mapping->tree_lock, flags);
728                         /*
729                          * We can continue to use `mapping' here because the
730                          * page is locked, which pins the address_space
731                          */
732                         if (mapping_cap_account_dirty(mapping)) {
733                                 page_mkclean(page);
734                                 dec_zone_page_state(page, NR_FILE_DIRTY);
735                         }
736                         return 1;
737                 }
738                 write_unlock_irqrestore(&mapping->tree_lock, flags);
739                 return 0;
740         }
741         return TestClearPageDirty(page);
742 }
743 EXPORT_SYMBOL(test_clear_page_dirty);
744
745 /*
746  * Clear a page's dirty flag, while caring for dirty memory accounting.
747  * Returns true if the page was previously dirty.
748  *
749  * This is for preparing to put the page under writeout.  We leave the page
750  * tagged as dirty in the radix tree so that a concurrent write-for-sync
751  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
752  * implementation will run either set_page_writeback() or set_page_dirty(),
753  * at which stage we bring the page's dirty flag and radix-tree dirty tag
754  * back into sync.
755  *
756  * This incoherency between the page's dirty flag and radix-tree tag is
757  * unfortunate, but it only exists while the page is locked.
758  */
759 int clear_page_dirty_for_io(struct page *page)
760 {
761         struct address_space *mapping = page_mapping(page);
762
763         WARN_ON_ONCE(!PageLocked(page));
764         if (mapping) {
765                 if (TestClearPageDirty(page)) {
766                         if (mapping_cap_account_dirty(mapping)) {
767                                 page_mkclean(page);
768                                 dec_zone_page_state(page, NR_FILE_DIRTY);
769                         }
770                         return 1;
771                 }
772                 return 0;
773         }
774         return TestClearPageDirty(page);
775 }
776 EXPORT_SYMBOL(clear_page_dirty_for_io);
777
778 int test_clear_page_writeback(struct page *page)
779 {
780         struct address_space *mapping = page_mapping(page);
781         int ret;
782
783         if (mapping) {
784                 unsigned long flags;
785
786                 write_lock_irqsave(&mapping->tree_lock, flags);
787                 ret = TestClearPageWriteback(page);
788                 if (ret)
789                         radix_tree_tag_clear(&mapping->page_tree,
790                                                 page_index(page),
791                                                 PAGECACHE_TAG_WRITEBACK);
792                 write_unlock_irqrestore(&mapping->tree_lock, flags);
793         } else {
794                 ret = TestClearPageWriteback(page);
795         }
796         return ret;
797 }
798
799 int test_set_page_writeback(struct page *page)
800 {
801         struct address_space *mapping = page_mapping(page);
802         int ret;
803
804         if (mapping) {
805                 unsigned long flags;
806
807                 write_lock_irqsave(&mapping->tree_lock, flags);
808                 ret = TestSetPageWriteback(page);
809                 if (!ret)
810                         radix_tree_tag_set(&mapping->page_tree,
811                                                 page_index(page),
812                                                 PAGECACHE_TAG_WRITEBACK);
813                 if (!PageDirty(page))
814                         radix_tree_tag_clear(&mapping->page_tree,
815                                                 page_index(page),
816                                                 PAGECACHE_TAG_DIRTY);
817                 write_unlock_irqrestore(&mapping->tree_lock, flags);
818         } else {
819                 ret = TestSetPageWriteback(page);
820         }
821         return ret;
822
823 }
824 EXPORT_SYMBOL(test_set_page_writeback);
825
826 /*
827  * Return true if any of the pages in the mapping are marged with the
828  * passed tag.
829  */
830 int mapping_tagged(struct address_space *mapping, int tag)
831 {
832         unsigned long flags;
833         int ret;
834
835         read_lock_irqsave(&mapping->tree_lock, flags);
836         ret = radix_tree_tagged(&mapping->page_tree, tag);
837         read_unlock_irqrestore(&mapping->tree_lock, flags);
838         return ret;
839 }
840 EXPORT_SYMBOL(mapping_tagged);