fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/generic_acl.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <linux/migrate.h>
50 #include <linux/highmem.h>
51 #include <linux/backing-dev.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56
57 /* This magic number is used in glibc for posix shared memory */
58
59 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
60 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
61 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
62
63 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
64 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
65
66 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
67
68 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
69 #define SHMEM_PAGEIN     VM_READ
70 #define SHMEM_TRUNCATE   VM_WRITE
71
72 /* Definition to limit shmem_truncate's steps between cond_rescheds */
73 #define LATENCY_LIMIT    64
74
75 /* Pretend that each entry is of this size in directory's i_size */
76 #define BOGO_DIRENT_SIZE 20
77
78 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79 enum sgp_type {
80         SGP_QUICK,      /* don't try more than file page cache lookup */
81         SGP_READ,       /* don't exceed i_size, don't allocate page */
82         SGP_CACHE,      /* don't exceed i_size, may allocate page */
83         SGP_WRITE,      /* may exceed i_size, may allocate page */
84 };
85
86 static int shmem_getpage(struct inode *inode, unsigned long idx,
87                          struct page **pagep, enum sgp_type sgp, int *type);
88
89 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
90 {
91         /*
92          * The above definition of ENTRIES_PER_PAGE, and the use of
93          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94          * might be reconsidered if it ever diverges from PAGE_SIZE.
95          */
96         return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
97 }
98
99 static inline void shmem_dir_free(struct page *page)
100 {
101         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
102 }
103
104 static struct page **shmem_dir_map(struct page *page)
105 {
106         return (struct page **)kmap_atomic(page, KM_USER0);
107 }
108
109 static inline void shmem_dir_unmap(struct page **dir)
110 {
111         kunmap_atomic(dir, KM_USER0);
112 }
113
114 static swp_entry_t *shmem_swp_map(struct page *page)
115 {
116         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
117 }
118
119 static inline void shmem_swp_balance_unmap(void)
120 {
121         /*
122          * When passing a pointer to an i_direct entry, to code which
123          * also handles indirect entries and so will shmem_swp_unmap,
124          * we must arrange for the preempt count to remain in balance.
125          * What kmap_atomic of a lowmem page does depends on config
126          * and architecture, so pretend to kmap_atomic some lowmem page.
127          */
128         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
129 }
130
131 static inline void shmem_swp_unmap(swp_entry_t *entry)
132 {
133         kunmap_atomic(entry, KM_USER1);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138         return sb->s_fs_info;
139 }
140
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149         return (flags & VM_ACCOUNT)?
150                 security_vm_enough_memory(VM_ACCT(size)): 0;
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155         if (flags & VM_ACCOUNT)
156                 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 /*
160  * ... whereas tmpfs objects are accounted incrementally as
161  * pages are allocated, in order to allow huge sparse files.
162  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
163  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
164  */
165 static inline int shmem_acct_block(unsigned long flags)
166 {
167         return (flags & VM_ACCOUNT)?
168                 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
169 }
170
171 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
172 {
173         if (!(flags & VM_ACCOUNT))
174                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
175 }
176
177 static struct super_operations shmem_ops;
178 static const struct address_space_operations shmem_aops;
179 static const struct file_operations shmem_file_operations;
180 static struct inode_operations shmem_inode_operations;
181 static struct inode_operations shmem_dir_inode_operations;
182 static struct inode_operations shmem_special_inode_operations;
183 static struct vm_operations_struct shmem_vm_ops;
184
185 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
186         .ra_pages       = 0,    /* No readahead */
187         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
188         .unplug_io_fn   = default_unplug_io_fn,
189 };
190
191 static LIST_HEAD(shmem_swaplist);
192 static DEFINE_SPINLOCK(shmem_swaplist_lock);
193
194 static void shmem_free_blocks(struct inode *inode, long pages)
195 {
196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197         if (sbinfo->max_blocks) {
198                 spin_lock(&sbinfo->stat_lock);
199                 sbinfo->free_blocks += pages;
200                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
201                 spin_unlock(&sbinfo->stat_lock);
202         }
203 }
204
205 /*
206  * shmem_recalc_inode - recalculate the size of an inode
207  *
208  * @inode: inode to recalc
209  *
210  * We have to calculate the free blocks since the mm can drop
211  * undirtied hole pages behind our back.
212  *
213  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
214  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
215  *
216  * It has to be called with the spinlock held.
217  */
218 static void shmem_recalc_inode(struct inode *inode)
219 {
220         struct shmem_inode_info *info = SHMEM_I(inode);
221         long freed;
222
223         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
224         if (freed > 0) {
225                 info->alloced -= freed;
226                 shmem_unacct_blocks(info->flags, freed);
227                 shmem_free_blocks(inode, freed);
228         }
229 }
230
231 /*
232  * shmem_swp_entry - find the swap vector position in the info structure
233  *
234  * @info:  info structure for the inode
235  * @index: index of the page to find
236  * @page:  optional page to add to the structure. Has to be preset to
237  *         all zeros
238  *
239  * If there is no space allocated yet it will return NULL when
240  * page is NULL, else it will use the page for the needed block,
241  * setting it to NULL on return to indicate that it has been used.
242  *
243  * The swap vector is organized the following way:
244  *
245  * There are SHMEM_NR_DIRECT entries directly stored in the
246  * shmem_inode_info structure. So small files do not need an addional
247  * allocation.
248  *
249  * For pages with index > SHMEM_NR_DIRECT there is the pointer
250  * i_indirect which points to a page which holds in the first half
251  * doubly indirect blocks, in the second half triple indirect blocks:
252  *
253  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
254  * following layout (for SHMEM_NR_DIRECT == 16):
255  *
256  * i_indirect -> dir --> 16-19
257  *            |      +-> 20-23
258  *            |
259  *            +-->dir2 --> 24-27
260  *            |        +-> 28-31
261  *            |        +-> 32-35
262  *            |        +-> 36-39
263  *            |
264  *            +-->dir3 --> 40-43
265  *                     +-> 44-47
266  *                     +-> 48-51
267  *                     +-> 52-55
268  */
269 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
270 {
271         unsigned long offset;
272         struct page **dir;
273         struct page *subdir;
274
275         if (index < SHMEM_NR_DIRECT) {
276                 shmem_swp_balance_unmap();
277                 return info->i_direct+index;
278         }
279         if (!info->i_indirect) {
280                 if (page) {
281                         info->i_indirect = *page;
282                         *page = NULL;
283                 }
284                 return NULL;                    /* need another page */
285         }
286
287         index -= SHMEM_NR_DIRECT;
288         offset = index % ENTRIES_PER_PAGE;
289         index /= ENTRIES_PER_PAGE;
290         dir = shmem_dir_map(info->i_indirect);
291
292         if (index >= ENTRIES_PER_PAGE/2) {
293                 index -= ENTRIES_PER_PAGE/2;
294                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
295                 index %= ENTRIES_PER_PAGE;
296                 subdir = *dir;
297                 if (!subdir) {
298                         if (page) {
299                                 *dir = *page;
300                                 *page = NULL;
301                         }
302                         shmem_dir_unmap(dir);
303                         return NULL;            /* need another page */
304                 }
305                 shmem_dir_unmap(dir);
306                 dir = shmem_dir_map(subdir);
307         }
308
309         dir += index;
310         subdir = *dir;
311         if (!subdir) {
312                 if (!page || !(subdir = *page)) {
313                         shmem_dir_unmap(dir);
314                         return NULL;            /* need a page */
315                 }
316                 *dir = subdir;
317                 *page = NULL;
318         }
319         shmem_dir_unmap(dir);
320         return shmem_swp_map(subdir) + offset;
321 }
322
323 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
324 {
325         long incdec = value? 1: -1;
326
327         entry->val = value;
328         info->swapped += incdec;
329         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
330                 struct page *page = kmap_atomic_to_page(entry);
331                 set_page_private(page, page_private(page) + incdec);
332         }
333 }
334
335 /*
336  * shmem_swp_alloc - get the position of the swap entry for the page.
337  *                   If it does not exist allocate the entry.
338  *
339  * @info:       info structure for the inode
340  * @index:      index of the page to find
341  * @sgp:        check and recheck i_size? skip allocation?
342  */
343 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
344 {
345         struct inode *inode = &info->vfs_inode;
346         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
347         struct page *page = NULL;
348         swp_entry_t *entry;
349
350         if (sgp != SGP_WRITE &&
351             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
352                 return ERR_PTR(-EINVAL);
353
354         while (!(entry = shmem_swp_entry(info, index, &page))) {
355                 if (sgp == SGP_READ)
356                         return shmem_swp_map(ZERO_PAGE(0));
357                 /*
358                  * Test free_blocks against 1 not 0, since we have 1 data
359                  * page (and perhaps indirect index pages) yet to allocate:
360                  * a waste to allocate index if we cannot allocate data.
361                  */
362                 if (sbinfo->max_blocks) {
363                         spin_lock(&sbinfo->stat_lock);
364                         if (sbinfo->free_blocks <= 1) {
365                                 spin_unlock(&sbinfo->stat_lock);
366                                 return ERR_PTR(-ENOSPC);
367                         }
368                         sbinfo->free_blocks--;
369                         inode->i_blocks += BLOCKS_PER_PAGE;
370                         spin_unlock(&sbinfo->stat_lock);
371                 }
372
373                 spin_unlock(&info->lock);
374                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
375                 if (page)
376                         set_page_private(page, 0);
377                 spin_lock(&info->lock);
378
379                 if (!page) {
380                         shmem_free_blocks(inode, 1);
381                         return ERR_PTR(-ENOMEM);
382                 }
383                 if (sgp != SGP_WRITE &&
384                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
385                         entry = ERR_PTR(-EINVAL);
386                         break;
387                 }
388                 if (info->next_index <= index)
389                         info->next_index = index + 1;
390         }
391         if (page) {
392                 /* another task gave its page, or truncated the file */
393                 shmem_free_blocks(inode, 1);
394                 shmem_dir_free(page);
395         }
396         if (info->next_index <= index && !IS_ERR(entry))
397                 info->next_index = index + 1;
398         return entry;
399 }
400
401 /*
402  * shmem_free_swp - free some swap entries in a directory
403  *
404  * @dir:        pointer to the directory
405  * @edir:       pointer after last entry of the directory
406  * @punch_lock: pointer to spinlock when needed for the holepunch case
407  */
408 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
409                                                 spinlock_t *punch_lock)
410 {
411         spinlock_t *punch_unlock = NULL;
412         swp_entry_t *ptr;
413         int freed = 0;
414
415         for (ptr = dir; ptr < edir; ptr++) {
416                 if (ptr->val) {
417                         if (unlikely(punch_lock)) {
418                                 punch_unlock = punch_lock;
419                                 punch_lock = NULL;
420                                 spin_lock(punch_unlock);
421                                 if (!ptr->val)
422                                         continue;
423                         }
424                         free_swap_and_cache(*ptr);
425                         *ptr = (swp_entry_t){0};
426                         freed++;
427                 }
428         }
429         if (punch_unlock)
430                 spin_unlock(punch_unlock);
431         return freed;
432 }
433
434 static int shmem_map_and_free_swp(struct page *subdir, int offset,
435                 int limit, struct page ***dir, spinlock_t *punch_lock)
436 {
437         swp_entry_t *ptr;
438         int freed = 0;
439
440         ptr = shmem_swp_map(subdir);
441         for (; offset < limit; offset += LATENCY_LIMIT) {
442                 int size = limit - offset;
443                 if (size > LATENCY_LIMIT)
444                         size = LATENCY_LIMIT;
445                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
446                                                         punch_lock);
447                 if (need_resched()) {
448                         shmem_swp_unmap(ptr);
449                         if (*dir) {
450                                 shmem_dir_unmap(*dir);
451                                 *dir = NULL;
452                         }
453                         cond_resched();
454                         ptr = shmem_swp_map(subdir);
455                 }
456         }
457         shmem_swp_unmap(ptr);
458         return freed;
459 }
460
461 static void shmem_free_pages(struct list_head *next)
462 {
463         struct page *page;
464         int freed = 0;
465
466         do {
467                 page = container_of(next, struct page, lru);
468                 next = next->next;
469                 shmem_dir_free(page);
470                 freed++;
471                 if (freed >= LATENCY_LIMIT) {
472                         cond_resched();
473                         freed = 0;
474                 }
475         } while (next);
476 }
477
478 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
479 {
480         struct shmem_inode_info *info = SHMEM_I(inode);
481         unsigned long idx;
482         unsigned long size;
483         unsigned long limit;
484         unsigned long stage;
485         unsigned long diroff;
486         struct page **dir;
487         struct page *topdir;
488         struct page *middir;
489         struct page *subdir;
490         swp_entry_t *ptr;
491         LIST_HEAD(pages_to_free);
492         long nr_pages_to_free = 0;
493         long nr_swaps_freed = 0;
494         int offset;
495         int freed;
496         int punch_hole;
497         spinlock_t *needs_lock;
498         spinlock_t *punch_lock;
499         unsigned long upper_limit;
500
501         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
502         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
503         if (idx >= info->next_index)
504                 return;
505
506         spin_lock(&info->lock);
507         info->flags |= SHMEM_TRUNCATE;
508         if (likely(end == (loff_t) -1)) {
509                 limit = info->next_index;
510                 upper_limit = SHMEM_MAX_INDEX;
511                 info->next_index = idx;
512                 needs_lock = NULL;
513                 punch_hole = 0;
514         } else {
515                 if (end + 1 >= inode->i_size) { /* we may free a little more */
516                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
517                                                         PAGE_CACHE_SHIFT;
518                         upper_limit = SHMEM_MAX_INDEX;
519                 } else {
520                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
521                         upper_limit = limit;
522                 }
523                 needs_lock = &info->lock;
524                 punch_hole = 1;
525         }
526
527         topdir = info->i_indirect;
528         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
529                 info->i_indirect = NULL;
530                 nr_pages_to_free++;
531                 list_add(&topdir->lru, &pages_to_free);
532         }
533         spin_unlock(&info->lock);
534
535         if (info->swapped && idx < SHMEM_NR_DIRECT) {
536                 ptr = info->i_direct;
537                 size = limit;
538                 if (size > SHMEM_NR_DIRECT)
539                         size = SHMEM_NR_DIRECT;
540                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
541         }
542
543         /*
544          * If there are no indirect blocks or we are punching a hole
545          * below indirect blocks, nothing to be done.
546          */
547         if (!topdir || limit <= SHMEM_NR_DIRECT)
548                 goto done2;
549
550         /*
551          * The truncation case has already dropped info->lock, and we're safe
552          * because i_size and next_index have already been lowered, preventing
553          * access beyond.  But in the punch_hole case, we still need to take
554          * the lock when updating the swap directory, because there might be
555          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
556          * shmem_writepage.  However, whenever we find we can remove a whole
557          * directory page (not at the misaligned start or end of the range),
558          * we first NULLify its pointer in the level above, and then have no
559          * need to take the lock when updating its contents: needs_lock and
560          * punch_lock (either pointing to info->lock or NULL) manage this.
561          */
562
563         upper_limit -= SHMEM_NR_DIRECT;
564         limit -= SHMEM_NR_DIRECT;
565         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
566         offset = idx % ENTRIES_PER_PAGE;
567         idx -= offset;
568
569         dir = shmem_dir_map(topdir);
570         stage = ENTRIES_PER_PAGEPAGE/2;
571         if (idx < ENTRIES_PER_PAGEPAGE/2) {
572                 middir = topdir;
573                 diroff = idx/ENTRIES_PER_PAGE;
574         } else {
575                 dir += ENTRIES_PER_PAGE/2;
576                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
577                 while (stage <= idx)
578                         stage += ENTRIES_PER_PAGEPAGE;
579                 middir = *dir;
580                 if (*dir) {
581                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
582                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
583                         if (!diroff && !offset && upper_limit >= stage) {
584                                 if (needs_lock) {
585                                         spin_lock(needs_lock);
586                                         *dir = NULL;
587                                         spin_unlock(needs_lock);
588                                         needs_lock = NULL;
589                                 } else
590                                         *dir = NULL;
591                                 nr_pages_to_free++;
592                                 list_add(&middir->lru, &pages_to_free);
593                         }
594                         shmem_dir_unmap(dir);
595                         dir = shmem_dir_map(middir);
596                 } else {
597                         diroff = 0;
598                         offset = 0;
599                         idx = stage;
600                 }
601         }
602
603         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
604                 if (unlikely(idx == stage)) {
605                         shmem_dir_unmap(dir);
606                         dir = shmem_dir_map(topdir) +
607                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
608                         while (!*dir) {
609                                 dir++;
610                                 idx += ENTRIES_PER_PAGEPAGE;
611                                 if (idx >= limit)
612                                         goto done1;
613                         }
614                         stage = idx + ENTRIES_PER_PAGEPAGE;
615                         middir = *dir;
616                         if (punch_hole)
617                                 needs_lock = &info->lock;
618                         if (upper_limit >= stage) {
619                                 if (needs_lock) {
620                                         spin_lock(needs_lock);
621                                         *dir = NULL;
622                                         spin_unlock(needs_lock);
623                                         needs_lock = NULL;
624                                 } else
625                                         *dir = NULL;
626                                 nr_pages_to_free++;
627                                 list_add(&middir->lru, &pages_to_free);
628                         }
629                         shmem_dir_unmap(dir);
630                         cond_resched();
631                         dir = shmem_dir_map(middir);
632                         diroff = 0;
633                 }
634                 punch_lock = needs_lock;
635                 subdir = dir[diroff];
636                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
637                         if (needs_lock) {
638                                 spin_lock(needs_lock);
639                                 dir[diroff] = NULL;
640                                 spin_unlock(needs_lock);
641                                 punch_lock = NULL;
642                         } else
643                                 dir[diroff] = NULL;
644                         nr_pages_to_free++;
645                         list_add(&subdir->lru, &pages_to_free);
646                 }
647                 if (subdir && page_private(subdir) /* has swap entries */) {
648                         size = limit - idx;
649                         if (size > ENTRIES_PER_PAGE)
650                                 size = ENTRIES_PER_PAGE;
651                         freed = shmem_map_and_free_swp(subdir,
652                                         offset, size, &dir, punch_lock);
653                         if (!dir)
654                                 dir = shmem_dir_map(middir);
655                         nr_swaps_freed += freed;
656                         if (offset || punch_lock) {
657                                 spin_lock(&info->lock);
658                                 set_page_private(subdir,
659                                         page_private(subdir) - freed);
660                                 spin_unlock(&info->lock);
661                         } else
662                                 BUG_ON(page_private(subdir) != freed);
663                 }
664                 offset = 0;
665         }
666 done1:
667         shmem_dir_unmap(dir);
668 done2:
669         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
670                 /*
671                  * Call truncate_inode_pages again: racing shmem_unuse_inode
672                  * may have swizzled a page in from swap since vmtruncate or
673                  * generic_delete_inode did it, before we lowered next_index.
674                  * Also, though shmem_getpage checks i_size before adding to
675                  * cache, no recheck after: so fix the narrow window there too.
676                  *
677                  * Recalling truncate_inode_pages_range and unmap_mapping_range
678                  * every time for punch_hole (which never got a chance to clear
679                  * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
680                  * yet hardly ever necessary: try to optimize them out later.
681                  */
682                 truncate_inode_pages_range(inode->i_mapping, start, end);
683                 if (punch_hole)
684                         unmap_mapping_range(inode->i_mapping, start,
685                                                         end - start, 1);
686         }
687
688         spin_lock(&info->lock);
689         info->flags &= ~SHMEM_TRUNCATE;
690         info->swapped -= nr_swaps_freed;
691         if (nr_pages_to_free)
692                 shmem_free_blocks(inode, nr_pages_to_free);
693         shmem_recalc_inode(inode);
694         spin_unlock(&info->lock);
695
696         /*
697          * Empty swap vector directory pages to be freed?
698          */
699         if (!list_empty(&pages_to_free)) {
700                 pages_to_free.prev->next = NULL;
701                 shmem_free_pages(pages_to_free.next);
702         }
703 }
704
705 static void shmem_truncate(struct inode *inode)
706 {
707         shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
708 }
709
710 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
711 {
712         struct inode *inode = dentry->d_inode;
713         struct page *page = NULL;
714         int error;
715
716         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
717                 if (attr->ia_size < inode->i_size) {
718                         /*
719                          * If truncating down to a partial page, then
720                          * if that page is already allocated, hold it
721                          * in memory until the truncation is over, so
722                          * truncate_partial_page cannnot miss it were
723                          * it assigned to swap.
724                          */
725                         if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
726                                 (void) shmem_getpage(inode,
727                                         attr->ia_size>>PAGE_CACHE_SHIFT,
728                                                 &page, SGP_READ, NULL);
729                         }
730                         /*
731                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
732                          * detect if any pages might have been added to cache
733                          * after truncate_inode_pages.  But we needn't bother
734                          * if it's being fully truncated to zero-length: the
735                          * nrpages check is efficient enough in that case.
736                          */
737                         if (attr->ia_size) {
738                                 struct shmem_inode_info *info = SHMEM_I(inode);
739                                 spin_lock(&info->lock);
740                                 info->flags &= ~SHMEM_PAGEIN;
741                                 spin_unlock(&info->lock);
742                         }
743                 }
744         }
745
746         error = inode_change_ok(inode, attr);
747         if (!error)
748                 error = inode_setattr(inode, attr);
749 #ifdef CONFIG_TMPFS_POSIX_ACL
750         if (!error && (attr->ia_valid & ATTR_MODE))
751                 error = generic_acl_chmod(inode, &shmem_acl_ops);
752 #endif
753         if (page)
754                 page_cache_release(page);
755         return error;
756 }
757
758 static void shmem_delete_inode(struct inode *inode)
759 {
760         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
761         struct shmem_inode_info *info = SHMEM_I(inode);
762
763         if (inode->i_op->truncate == shmem_truncate) {
764                 truncate_inode_pages(inode->i_mapping, 0);
765                 shmem_unacct_size(info->flags, inode->i_size);
766                 inode->i_size = 0;
767                 shmem_truncate(inode);
768                 if (!list_empty(&info->swaplist)) {
769                         spin_lock(&shmem_swaplist_lock);
770                         list_del_init(&info->swaplist);
771                         spin_unlock(&shmem_swaplist_lock);
772                 }
773         }
774         BUG_ON(inode->i_blocks);
775         if (sbinfo->max_inodes) {
776                 spin_lock(&sbinfo->stat_lock);
777                 sbinfo->free_inodes++;
778                 spin_unlock(&sbinfo->stat_lock);
779         }
780         clear_inode(inode);
781 }
782
783 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
784 {
785         swp_entry_t *ptr;
786
787         for (ptr = dir; ptr < edir; ptr++) {
788                 if (ptr->val == entry.val)
789                         return ptr - dir;
790         }
791         return -1;
792 }
793
794 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
795 {
796         struct inode *inode;
797         unsigned long idx;
798         unsigned long size;
799         unsigned long limit;
800         unsigned long stage;
801         struct page **dir;
802         struct page *subdir;
803         swp_entry_t *ptr;
804         int offset;
805
806         idx = 0;
807         ptr = info->i_direct;
808         spin_lock(&info->lock);
809         limit = info->next_index;
810         size = limit;
811         if (size > SHMEM_NR_DIRECT)
812                 size = SHMEM_NR_DIRECT;
813         offset = shmem_find_swp(entry, ptr, ptr+size);
814         if (offset >= 0) {
815                 shmem_swp_balance_unmap();
816                 goto found;
817         }
818         if (!info->i_indirect)
819                 goto lost2;
820
821         dir = shmem_dir_map(info->i_indirect);
822         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
823
824         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
825                 if (unlikely(idx == stage)) {
826                         shmem_dir_unmap(dir-1);
827                         dir = shmem_dir_map(info->i_indirect) +
828                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
829                         while (!*dir) {
830                                 dir++;
831                                 idx += ENTRIES_PER_PAGEPAGE;
832                                 if (idx >= limit)
833                                         goto lost1;
834                         }
835                         stage = idx + ENTRIES_PER_PAGEPAGE;
836                         subdir = *dir;
837                         shmem_dir_unmap(dir);
838                         dir = shmem_dir_map(subdir);
839                 }
840                 subdir = *dir;
841                 if (subdir && page_private(subdir)) {
842                         ptr = shmem_swp_map(subdir);
843                         size = limit - idx;
844                         if (size > ENTRIES_PER_PAGE)
845                                 size = ENTRIES_PER_PAGE;
846                         offset = shmem_find_swp(entry, ptr, ptr+size);
847                         if (offset >= 0) {
848                                 shmem_dir_unmap(dir);
849                                 goto found;
850                         }
851                         shmem_swp_unmap(ptr);
852                 }
853         }
854 lost1:
855         shmem_dir_unmap(dir-1);
856 lost2:
857         spin_unlock(&info->lock);
858         return 0;
859 found:
860         idx += offset;
861         inode = &info->vfs_inode;
862         if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
863                 info->flags |= SHMEM_PAGEIN;
864                 shmem_swp_set(info, ptr + offset, 0);
865         }
866         shmem_swp_unmap(ptr);
867         spin_unlock(&info->lock);
868         /*
869          * Decrement swap count even when the entry is left behind:
870          * try_to_unuse will skip over mms, then reincrement count.
871          */
872         swap_free(entry);
873         return 1;
874 }
875
876 /*
877  * shmem_unuse() search for an eventually swapped out shmem page.
878  */
879 int shmem_unuse(swp_entry_t entry, struct page *page)
880 {
881         struct list_head *p, *next;
882         struct shmem_inode_info *info;
883         int found = 0;
884
885         spin_lock(&shmem_swaplist_lock);
886         list_for_each_safe(p, next, &shmem_swaplist) {
887                 info = list_entry(p, struct shmem_inode_info, swaplist);
888                 if (!info->swapped)
889                         list_del_init(&info->swaplist);
890                 else if (shmem_unuse_inode(info, entry, page)) {
891                         /* move head to start search for next from here */
892                         list_move_tail(&shmem_swaplist, &info->swaplist);
893                         found = 1;
894                         break;
895                 }
896         }
897         spin_unlock(&shmem_swaplist_lock);
898         return found;
899 }
900
901 /*
902  * Move the page from the page cache to the swap cache.
903  */
904 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
905 {
906         struct shmem_inode_info *info;
907         swp_entry_t *entry, swap;
908         struct address_space *mapping;
909         unsigned long index;
910         struct inode *inode;
911
912         BUG_ON(!PageLocked(page));
913         BUG_ON(page_mapped(page));
914
915         mapping = page->mapping;
916         index = page->index;
917         inode = mapping->host;
918         info = SHMEM_I(inode);
919         if (info->flags & VM_LOCKED)
920                 goto redirty;
921         swap = get_swap_page();
922         if (!swap.val)
923                 goto redirty;
924
925         spin_lock(&info->lock);
926         shmem_recalc_inode(inode);
927         if (index >= info->next_index) {
928                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
929                 goto unlock;
930         }
931         entry = shmem_swp_entry(info, index, NULL);
932         BUG_ON(!entry);
933         BUG_ON(entry->val);
934
935         if (move_to_swap_cache(page, swap) == 0) {
936                 shmem_swp_set(info, entry, swap.val);
937                 shmem_swp_unmap(entry);
938                 spin_unlock(&info->lock);
939                 if (list_empty(&info->swaplist)) {
940                         spin_lock(&shmem_swaplist_lock);
941                         /* move instead of add in case we're racing */
942                         list_move_tail(&info->swaplist, &shmem_swaplist);
943                         spin_unlock(&shmem_swaplist_lock);
944                 }
945                 unlock_page(page);
946                 return 0;
947         }
948
949         shmem_swp_unmap(entry);
950 unlock:
951         spin_unlock(&info->lock);
952         swap_free(swap);
953 redirty:
954         set_page_dirty(page);
955         return AOP_WRITEPAGE_ACTIVATE;  /* Return with the page locked */
956 }
957
958 #ifdef CONFIG_NUMA
959 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
960 {
961         char *nodelist = strchr(value, ':');
962         int err = 1;
963
964         if (nodelist) {
965                 /* NUL-terminate policy string */
966                 *nodelist++ = '\0';
967                 if (nodelist_parse(nodelist, *policy_nodes))
968                         goto out;
969         }
970         if (!strcmp(value, "default")) {
971                 *policy = MPOL_DEFAULT;
972                 /* Don't allow a nodelist */
973                 if (!nodelist)
974                         err = 0;
975         } else if (!strcmp(value, "prefer")) {
976                 *policy = MPOL_PREFERRED;
977                 /* Insist on a nodelist of one node only */
978                 if (nodelist) {
979                         char *rest = nodelist;
980                         while (isdigit(*rest))
981                                 rest++;
982                         if (!*rest)
983                                 err = 0;
984                 }
985         } else if (!strcmp(value, "bind")) {
986                 *policy = MPOL_BIND;
987                 /* Insist on a nodelist */
988                 if (nodelist)
989                         err = 0;
990         } else if (!strcmp(value, "interleave")) {
991                 *policy = MPOL_INTERLEAVE;
992                 /* Default to nodes online if no nodelist */
993                 if (!nodelist)
994                         *policy_nodes = node_online_map;
995                 err = 0;
996         }
997 out:
998         /* Restore string for error message */
999         if (nodelist)
1000                 *--nodelist = ':';
1001         return err;
1002 }
1003
1004 static struct page *shmem_swapin_async(struct shared_policy *p,
1005                                        swp_entry_t entry, unsigned long idx)
1006 {
1007         struct page *page;
1008         struct vm_area_struct pvma;
1009
1010         /* Create a pseudo vma that just contains the policy */
1011         memset(&pvma, 0, sizeof(struct vm_area_struct));
1012         pvma.vm_end = PAGE_SIZE;
1013         pvma.vm_pgoff = idx;
1014         pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1015         page = read_swap_cache_async(entry, &pvma, 0);
1016         mpol_free(pvma.vm_policy);
1017         return page;
1018 }
1019
1020 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1021                           unsigned long idx)
1022 {
1023         struct shared_policy *p = &info->policy;
1024         int i, num;
1025         struct page *page;
1026         unsigned long offset;
1027
1028         num = valid_swaphandles(entry, &offset);
1029         for (i = 0; i < num; offset++, i++) {
1030                 page = shmem_swapin_async(p,
1031                                 swp_entry(swp_type(entry), offset), idx);
1032                 if (!page)
1033                         break;
1034                 page_cache_release(page);
1035         }
1036         lru_add_drain();        /* Push any new pages onto the LRU now */
1037         return shmem_swapin_async(p, entry, idx);
1038 }
1039
1040 static struct page *
1041 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1042                  unsigned long idx)
1043 {
1044         struct vm_area_struct pvma;
1045         struct page *page;
1046
1047         memset(&pvma, 0, sizeof(struct vm_area_struct));
1048         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1049         pvma.vm_pgoff = idx;
1050         pvma.vm_end = PAGE_SIZE;
1051         page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1052         mpol_free(pvma.vm_policy);
1053         return page;
1054 }
1055 #else
1056 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1057 {
1058         return 1;
1059 }
1060
1061 static inline struct page *
1062 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1063 {
1064         swapin_readahead(entry, 0, NULL);
1065         return read_swap_cache_async(entry, NULL, 0);
1066 }
1067
1068 static inline struct page *
1069 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1070 {
1071         return alloc_page(gfp | __GFP_ZERO);
1072 }
1073 #endif
1074
1075 /*
1076  * shmem_getpage - either get the page from swap or allocate a new one
1077  *
1078  * If we allocate a new one we do not mark it dirty. That's up to the
1079  * vm. If we swap it in we mark it dirty since we also free the swap
1080  * entry since a page cannot live in both the swap and page cache
1081  */
1082 static int shmem_getpage(struct inode *inode, unsigned long idx,
1083                         struct page **pagep, enum sgp_type sgp, int *type)
1084 {
1085         struct address_space *mapping = inode->i_mapping;
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         struct shmem_sb_info *sbinfo;
1088         struct page *filepage = *pagep;
1089         struct page *swappage;
1090         swp_entry_t *entry;
1091         swp_entry_t swap;
1092         int error;
1093
1094         if (idx >= SHMEM_MAX_INDEX)
1095                 return -EFBIG;
1096         /*
1097          * Normally, filepage is NULL on entry, and either found
1098          * uptodate immediately, or allocated and zeroed, or read
1099          * in under swappage, which is then assigned to filepage.
1100          * But shmem_prepare_write passes in a locked filepage,
1101          * which may be found not uptodate by other callers too,
1102          * and may need to be copied from the swappage read in.
1103          */
1104 repeat:
1105         if (!filepage)
1106                 filepage = find_lock_page(mapping, idx);
1107         if (filepage && PageUptodate(filepage))
1108                 goto done;
1109         error = 0;
1110         if (sgp == SGP_QUICK)
1111                 goto failed;
1112
1113         spin_lock(&info->lock);
1114         shmem_recalc_inode(inode);
1115         entry = shmem_swp_alloc(info, idx, sgp);
1116         if (IS_ERR(entry)) {
1117                 spin_unlock(&info->lock);
1118                 error = PTR_ERR(entry);
1119                 goto failed;
1120         }
1121         swap = *entry;
1122
1123         if (swap.val) {
1124                 /* Look it up and read it in.. */
1125                 swappage = lookup_swap_cache(swap);
1126                 if (!swappage) {
1127                         shmem_swp_unmap(entry);
1128                         /* here we actually do the io */
1129                         if (type && *type == VM_FAULT_MINOR) {
1130                                 __count_vm_event(PGMAJFAULT);
1131                                 *type = VM_FAULT_MAJOR;
1132                         }
1133                         spin_unlock(&info->lock);
1134                         swappage = shmem_swapin(info, swap, idx);
1135                         if (!swappage) {
1136                                 spin_lock(&info->lock);
1137                                 entry = shmem_swp_alloc(info, idx, sgp);
1138                                 if (IS_ERR(entry))
1139                                         error = PTR_ERR(entry);
1140                                 else {
1141                                         if (entry->val == swap.val)
1142                                                 error = -ENOMEM;
1143                                         shmem_swp_unmap(entry);
1144                                 }
1145                                 spin_unlock(&info->lock);
1146                                 if (error)
1147                                         goto failed;
1148                                 goto repeat;
1149                         }
1150                         wait_on_page_locked(swappage);
1151                         page_cache_release(swappage);
1152                         goto repeat;
1153                 }
1154
1155                 /* We have to do this with page locked to prevent races */
1156                 if (TestSetPageLocked(swappage)) {
1157                         shmem_swp_unmap(entry);
1158                         spin_unlock(&info->lock);
1159                         wait_on_page_locked(swappage);
1160                         page_cache_release(swappage);
1161                         goto repeat;
1162                 }
1163                 if (PageWriteback(swappage)) {
1164                         shmem_swp_unmap(entry);
1165                         spin_unlock(&info->lock);
1166                         wait_on_page_writeback(swappage);
1167                         unlock_page(swappage);
1168                         page_cache_release(swappage);
1169                         goto repeat;
1170                 }
1171                 if (!PageUptodate(swappage)) {
1172                         shmem_swp_unmap(entry);
1173                         spin_unlock(&info->lock);
1174                         unlock_page(swappage);
1175                         page_cache_release(swappage);
1176                         error = -EIO;
1177                         goto failed;
1178                 }
1179
1180                 if (filepage) {
1181                         shmem_swp_set(info, entry, 0);
1182                         shmem_swp_unmap(entry);
1183                         delete_from_swap_cache(swappage);
1184                         spin_unlock(&info->lock);
1185                         copy_highpage(filepage, swappage);
1186                         unlock_page(swappage);
1187                         page_cache_release(swappage);
1188                         flush_dcache_page(filepage);
1189                         SetPageUptodate(filepage);
1190                         set_page_dirty(filepage);
1191                         swap_free(swap);
1192                 } else if (!(error = move_from_swap_cache(
1193                                 swappage, idx, mapping))) {
1194                         info->flags |= SHMEM_PAGEIN;
1195                         shmem_swp_set(info, entry, 0);
1196                         shmem_swp_unmap(entry);
1197                         spin_unlock(&info->lock);
1198                         filepage = swappage;
1199                         swap_free(swap);
1200                 } else {
1201                         shmem_swp_unmap(entry);
1202                         spin_unlock(&info->lock);
1203                         unlock_page(swappage);
1204                         page_cache_release(swappage);
1205                         if (error == -ENOMEM) {
1206                                 /* let kswapd refresh zone for GFP_ATOMICs */
1207                                 congestion_wait(WRITE, HZ/50);
1208                         }
1209                         goto repeat;
1210                 }
1211         } else if (sgp == SGP_READ && !filepage) {
1212                 shmem_swp_unmap(entry);
1213                 filepage = find_get_page(mapping, idx);
1214                 if (filepage &&
1215                     (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1216                         spin_unlock(&info->lock);
1217                         wait_on_page_locked(filepage);
1218                         page_cache_release(filepage);
1219                         filepage = NULL;
1220                         goto repeat;
1221                 }
1222                 spin_unlock(&info->lock);
1223         } else {
1224                 shmem_swp_unmap(entry);
1225                 sbinfo = SHMEM_SB(inode->i_sb);
1226                 if (sbinfo->max_blocks) {
1227                         spin_lock(&sbinfo->stat_lock);
1228                         if (sbinfo->free_blocks == 0 ||
1229                             shmem_acct_block(info->flags)) {
1230                                 spin_unlock(&sbinfo->stat_lock);
1231                                 spin_unlock(&info->lock);
1232                                 error = -ENOSPC;
1233                                 goto failed;
1234                         }
1235                         sbinfo->free_blocks--;
1236                         inode->i_blocks += BLOCKS_PER_PAGE;
1237                         spin_unlock(&sbinfo->stat_lock);
1238                 } else if (shmem_acct_block(info->flags)) {
1239                         spin_unlock(&info->lock);
1240                         error = -ENOSPC;
1241                         goto failed;
1242                 }
1243
1244                 if (!filepage) {
1245                         spin_unlock(&info->lock);
1246                         filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1247                                                     info,
1248                                                     idx);
1249                         if (!filepage) {
1250                                 shmem_unacct_blocks(info->flags, 1);
1251                                 shmem_free_blocks(inode, 1);
1252                                 error = -ENOMEM;
1253                                 goto failed;
1254                         }
1255
1256                         spin_lock(&info->lock);
1257                         entry = shmem_swp_alloc(info, idx, sgp);
1258                         if (IS_ERR(entry))
1259                                 error = PTR_ERR(entry);
1260                         else {
1261                                 swap = *entry;
1262                                 shmem_swp_unmap(entry);
1263                         }
1264                         if (error || swap.val || 0 != add_to_page_cache_lru(
1265                                         filepage, mapping, idx, GFP_ATOMIC)) {
1266                                 spin_unlock(&info->lock);
1267                                 page_cache_release(filepage);
1268                                 shmem_unacct_blocks(info->flags, 1);
1269                                 shmem_free_blocks(inode, 1);
1270                                 filepage = NULL;
1271                                 if (error)
1272                                         goto failed;
1273                                 goto repeat;
1274                         }
1275                         info->flags |= SHMEM_PAGEIN;
1276                 }
1277
1278                 info->alloced++;
1279                 spin_unlock(&info->lock);
1280                 flush_dcache_page(filepage);
1281                 SetPageUptodate(filepage);
1282         }
1283 done:
1284         if (*pagep != filepage) {
1285                 unlock_page(filepage);
1286                 *pagep = filepage;
1287         }
1288         return 0;
1289
1290 failed:
1291         if (*pagep != filepage) {
1292                 unlock_page(filepage);
1293                 page_cache_release(filepage);
1294         }
1295         return error;
1296 }
1297
1298 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1299 {
1300         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1301         struct page *page = NULL;
1302         unsigned long idx;
1303         int error;
1304
1305         idx = (address - vma->vm_start) >> PAGE_SHIFT;
1306         idx += vma->vm_pgoff;
1307         idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1308         if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1309                 return NOPAGE_SIGBUS;
1310
1311         error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1312         if (error)
1313                 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1314
1315         mark_page_accessed(page);
1316         return page;
1317 }
1318
1319 static int shmem_populate(struct vm_area_struct *vma,
1320         unsigned long addr, unsigned long len,
1321         pgprot_t prot, unsigned long pgoff, int nonblock)
1322 {
1323         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1324         struct mm_struct *mm = vma->vm_mm;
1325         enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1326         unsigned long size;
1327
1328         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1329         if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1330                 return -EINVAL;
1331
1332         while ((long) len > 0) {
1333                 struct page *page = NULL;
1334                 int err;
1335                 /*
1336                  * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1337                  */
1338                 err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1339                 if (err)
1340                         return err;
1341                 /* Page may still be null, but only if nonblock was set. */
1342                 if (page) {
1343                         mark_page_accessed(page);
1344                         err = install_page(mm, vma, addr, page, prot);
1345                         if (err) {
1346                                 page_cache_release(page);
1347                                 return err;
1348                         }
1349                 } else if (vma->vm_flags & VM_NONLINEAR) {
1350                         /* No page was found just because we can't read it in
1351                          * now (being here implies nonblock != 0), but the page
1352                          * may exist, so set the PTE to fault it in later. */
1353                         err = install_file_pte(mm, vma, addr, pgoff, prot);
1354                         if (err)
1355                                 return err;
1356                 }
1357
1358                 len -= PAGE_SIZE;
1359                 addr += PAGE_SIZE;
1360                 pgoff++;
1361         }
1362         return 0;
1363 }
1364
1365 #ifdef CONFIG_NUMA
1366 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1367 {
1368         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1369         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1370 }
1371
1372 struct mempolicy *
1373 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1374 {
1375         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1376         unsigned long idx;
1377
1378         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1379         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1380 }
1381 #endif
1382
1383 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1384 {
1385         struct inode *inode = file->f_path.dentry->d_inode;
1386         struct shmem_inode_info *info = SHMEM_I(inode);
1387         int retval = -ENOMEM;
1388
1389         spin_lock(&info->lock);
1390         if (lock && !(info->flags & VM_LOCKED)) {
1391                 if (!user_shm_lock(inode->i_size, user))
1392                         goto out_nomem;
1393                 info->flags |= VM_LOCKED;
1394         }
1395         if (!lock && (info->flags & VM_LOCKED) && user) {
1396                 user_shm_unlock(inode->i_size, user);
1397                 info->flags &= ~VM_LOCKED;
1398         }
1399         retval = 0;
1400 out_nomem:
1401         spin_unlock(&info->lock);
1402         return retval;
1403 }
1404
1405 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1406 {
1407         file_accessed(file);
1408         vma->vm_ops = &shmem_vm_ops;
1409         return 0;
1410 }
1411
1412 static struct inode *
1413 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1414 {
1415         struct inode *inode;
1416         struct shmem_inode_info *info;
1417         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1418
1419         if (sbinfo->max_inodes) {
1420                 spin_lock(&sbinfo->stat_lock);
1421                 if (!sbinfo->free_inodes) {
1422                         spin_unlock(&sbinfo->stat_lock);
1423                         return NULL;
1424                 }
1425                 sbinfo->free_inodes--;
1426                 spin_unlock(&sbinfo->stat_lock);
1427         }
1428
1429         inode = new_inode(sb);
1430         if (inode) {
1431                 inode->i_mode = mode;
1432                 inode->i_uid = current->fsuid;
1433                 inode->i_gid = current->fsgid;
1434                 inode->i_blocks = 0;
1435                 inode->i_mapping->a_ops = &shmem_aops;
1436                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1437                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1438                 inode->i_generation = get_seconds();
1439                 info = SHMEM_I(inode);
1440                 memset(info, 0, (char *)inode - (char *)info);
1441                 spin_lock_init(&info->lock);
1442                 INIT_LIST_HEAD(&info->swaplist);
1443
1444                 switch (mode & S_IFMT) {
1445                 default:
1446                         inode->i_op = &shmem_special_inode_operations;
1447                         init_special_inode(inode, mode, dev);
1448                         break;
1449                 case S_IFREG:
1450                         inode->i_op = &shmem_inode_operations;
1451                         inode->i_fop = &shmem_file_operations;
1452                         mpol_shared_policy_init(&info->policy, sbinfo->policy,
1453                                                         &sbinfo->policy_nodes);
1454                         break;
1455                 case S_IFDIR:
1456                         inc_nlink(inode);
1457                         /* Some things misbehave if size == 0 on a directory */
1458                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1459                         inode->i_op = &shmem_dir_inode_operations;
1460                         inode->i_fop = &simple_dir_operations;
1461                         break;
1462                 case S_IFLNK:
1463                         /*
1464                          * Must not load anything in the rbtree,
1465                          * mpol_free_shared_policy will not be called.
1466                          */
1467                         mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1468                                                 NULL);
1469                         break;
1470                 }
1471         } else if (sbinfo->max_inodes) {
1472                 spin_lock(&sbinfo->stat_lock);
1473                 sbinfo->free_inodes++;
1474                 spin_unlock(&sbinfo->stat_lock);
1475         }
1476         return inode;
1477 }
1478
1479 #ifdef CONFIG_TMPFS
1480 static struct inode_operations shmem_symlink_inode_operations;
1481 static struct inode_operations shmem_symlink_inline_operations;
1482
1483 /*
1484  * Normally tmpfs makes no use of shmem_prepare_write, but it
1485  * lets a tmpfs file be used read-write below the loop driver.
1486  */
1487 static int
1488 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1489 {
1490         struct inode *inode = page->mapping->host;
1491         return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1492 }
1493
1494 static ssize_t
1495 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1496 {
1497         struct inode    *inode = file->f_path.dentry->d_inode;
1498         loff_t          pos;
1499         unsigned long   written;
1500         ssize_t         err;
1501
1502         if ((ssize_t) count < 0)
1503                 return -EINVAL;
1504
1505         if (!access_ok(VERIFY_READ, buf, count))
1506                 return -EFAULT;
1507
1508         mutex_lock(&inode->i_mutex);
1509
1510         pos = *ppos;
1511         written = 0;
1512
1513         err = generic_write_checks(file, &pos, &count, 0);
1514         if (err || !count)
1515                 goto out;
1516
1517         err = remove_suid(file->f_path.dentry);
1518         if (err)
1519                 goto out;
1520
1521         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1522
1523         do {
1524                 struct page *page = NULL;
1525                 unsigned long bytes, index, offset;
1526                 char *kaddr;
1527                 int left;
1528
1529                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1530                 index = pos >> PAGE_CACHE_SHIFT;
1531                 bytes = PAGE_CACHE_SIZE - offset;
1532                 if (bytes > count)
1533                         bytes = count;
1534
1535                 /*
1536                  * We don't hold page lock across copy from user -
1537                  * what would it guard against? - so no deadlock here.
1538                  * But it still may be a good idea to prefault below.
1539                  */
1540
1541                 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1542                 if (err)
1543                         break;
1544
1545                 left = bytes;
1546                 if (PageHighMem(page)) {
1547                         volatile unsigned char dummy;
1548                         __get_user(dummy, buf);
1549                         __get_user(dummy, buf + bytes - 1);
1550
1551                         kaddr = kmap_atomic(page, KM_USER0);
1552                         left = __copy_from_user_inatomic(kaddr + offset,
1553                                                         buf, bytes);
1554                         kunmap_atomic(kaddr, KM_USER0);
1555                 }
1556                 if (left) {
1557                         kaddr = kmap(page);
1558                         left = __copy_from_user(kaddr + offset, buf, bytes);
1559                         kunmap(page);
1560                 }
1561
1562                 written += bytes;
1563                 count -= bytes;
1564                 pos += bytes;
1565                 buf += bytes;
1566                 if (pos > inode->i_size)
1567                         i_size_write(inode, pos);
1568
1569                 flush_dcache_page(page);
1570                 set_page_dirty(page);
1571                 mark_page_accessed(page);
1572                 page_cache_release(page);
1573
1574                 if (left) {
1575                         pos -= left;
1576                         written -= left;
1577                         err = -EFAULT;
1578                         break;
1579                 }
1580
1581                 /*
1582                  * Our dirty pages are not counted in nr_dirty,
1583                  * and we do not attempt to balance dirty pages.
1584                  */
1585
1586                 cond_resched();
1587         } while (count);
1588
1589         *ppos = pos;
1590         if (written)
1591                 err = written;
1592 out:
1593         mutex_unlock(&inode->i_mutex);
1594         return err;
1595 }
1596
1597 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1598 {
1599         struct inode *inode = filp->f_path.dentry->d_inode;
1600         struct address_space *mapping = inode->i_mapping;
1601         unsigned long index, offset;
1602
1603         index = *ppos >> PAGE_CACHE_SHIFT;
1604         offset = *ppos & ~PAGE_CACHE_MASK;
1605
1606         for (;;) {
1607                 struct page *page = NULL;
1608                 unsigned long end_index, nr, ret;
1609                 loff_t i_size = i_size_read(inode);
1610
1611                 end_index = i_size >> PAGE_CACHE_SHIFT;
1612                 if (index > end_index)
1613                         break;
1614                 if (index == end_index) {
1615                         nr = i_size & ~PAGE_CACHE_MASK;
1616                         if (nr <= offset)
1617                                 break;
1618                 }
1619
1620                 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1621                 if (desc->error) {
1622                         if (desc->error == -EINVAL)
1623                                 desc->error = 0;
1624                         break;
1625                 }
1626
1627                 /*
1628                  * We must evaluate after, since reads (unlike writes)
1629                  * are called without i_mutex protection against truncate
1630                  */
1631                 nr = PAGE_CACHE_SIZE;
1632                 i_size = i_size_read(inode);
1633                 end_index = i_size >> PAGE_CACHE_SHIFT;
1634                 if (index == end_index) {
1635                         nr = i_size & ~PAGE_CACHE_MASK;
1636                         if (nr <= offset) {
1637                                 if (page)
1638                                         page_cache_release(page);
1639                                 break;
1640                         }
1641                 }
1642                 nr -= offset;
1643
1644                 if (page) {
1645                         /*
1646                          * If users can be writing to this page using arbitrary
1647                          * virtual addresses, take care about potential aliasing
1648                          * before reading the page on the kernel side.
1649                          */
1650                         if (mapping_writably_mapped(mapping))
1651                                 flush_dcache_page(page);
1652                         /*
1653                          * Mark the page accessed if we read the beginning.
1654                          */
1655                         if (!offset)
1656                                 mark_page_accessed(page);
1657                 } else {
1658                         page = ZERO_PAGE(0);
1659                         page_cache_get(page);
1660                 }
1661
1662                 /*
1663                  * Ok, we have the page, and it's up-to-date, so
1664                  * now we can copy it to user space...
1665                  *
1666                  * The actor routine returns how many bytes were actually used..
1667                  * NOTE! This may not be the same as how much of a user buffer
1668                  * we filled up (we may be padding etc), so we can only update
1669                  * "pos" here (the actor routine has to update the user buffer
1670                  * pointers and the remaining count).
1671                  */
1672                 ret = actor(desc, page, offset, nr);
1673                 offset += ret;
1674                 index += offset >> PAGE_CACHE_SHIFT;
1675                 offset &= ~PAGE_CACHE_MASK;
1676
1677                 page_cache_release(page);
1678                 if (ret != nr || !desc->count)
1679                         break;
1680
1681                 cond_resched();
1682         }
1683
1684         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1685         file_accessed(filp);
1686 }
1687
1688 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1689 {
1690         read_descriptor_t desc;
1691
1692         if ((ssize_t) count < 0)
1693                 return -EINVAL;
1694         if (!access_ok(VERIFY_WRITE, buf, count))
1695                 return -EFAULT;
1696         if (!count)
1697                 return 0;
1698
1699         desc.written = 0;
1700         desc.count = count;
1701         desc.arg.buf = buf;
1702         desc.error = 0;
1703
1704         do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1705         if (desc.written)
1706                 return desc.written;
1707         return desc.error;
1708 }
1709
1710 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1711                          size_t count, read_actor_t actor, void *target)
1712 {
1713         read_descriptor_t desc;
1714
1715         if (!count)
1716                 return 0;
1717
1718         desc.written = 0;
1719         desc.count = count;
1720         desc.arg.data = target;
1721         desc.error = 0;
1722
1723         do_shmem_file_read(in_file, ppos, &desc, actor);
1724         if (desc.written)
1725                 return desc.written;
1726         return desc.error;
1727 }
1728
1729 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1730 {
1731         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1732
1733         buf->f_type = TMPFS_SUPER_MAGIC;
1734         buf->f_bsize = PAGE_CACHE_SIZE;
1735         buf->f_namelen = NAME_MAX;
1736         spin_lock(&sbinfo->stat_lock);
1737         if (sbinfo->max_blocks) {
1738                 buf->f_blocks = sbinfo->max_blocks;
1739                 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1740         }
1741         if (sbinfo->max_inodes) {
1742                 buf->f_files = sbinfo->max_inodes;
1743                 buf->f_ffree = sbinfo->free_inodes;
1744         }
1745         /* else leave those fields 0 like simple_statfs */
1746         spin_unlock(&sbinfo->stat_lock);
1747         return 0;
1748 }
1749
1750 /*
1751  * File creation. Allocate an inode, and we're done..
1752  */
1753 static int
1754 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1755 {
1756         struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1757         int error = -ENOSPC;
1758
1759         if (inode) {
1760                 error = security_inode_init_security(inode, dir, NULL, NULL,
1761                                                      NULL);
1762                 if (error) {
1763                         if (error != -EOPNOTSUPP) {
1764                                 iput(inode);
1765                                 return error;
1766                         }
1767                 }
1768                 error = shmem_acl_init(inode, dir);
1769                 if (error) {
1770                         iput(inode);
1771                         return error;
1772                 }
1773                 if (dir->i_mode & S_ISGID) {
1774                         inode->i_gid = dir->i_gid;
1775                         if (S_ISDIR(mode))
1776                                 inode->i_mode |= S_ISGID;
1777                 }
1778                 dir->i_size += BOGO_DIRENT_SIZE;
1779                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1780                 d_instantiate(dentry, inode);
1781                 dget(dentry); /* Extra count - pin the dentry in core */
1782         }
1783         return error;
1784 }
1785
1786 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1787 {
1788         int error;
1789
1790         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1791                 return error;
1792         inc_nlink(dir);
1793         return 0;
1794 }
1795
1796 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1797                 struct nameidata *nd)
1798 {
1799         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1800 }
1801
1802 /*
1803  * Link a file..
1804  */
1805 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1806 {
1807         struct inode *inode = old_dentry->d_inode;
1808         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1809
1810         /*
1811          * No ordinary (disk based) filesystem counts links as inodes;
1812          * but each new link needs a new dentry, pinning lowmem, and
1813          * tmpfs dentries cannot be pruned until they are unlinked.
1814          */
1815         if (sbinfo->max_inodes) {
1816                 spin_lock(&sbinfo->stat_lock);
1817                 if (!sbinfo->free_inodes) {
1818                         spin_unlock(&sbinfo->stat_lock);
1819                         return -ENOSPC;
1820                 }
1821                 sbinfo->free_inodes--;
1822                 spin_unlock(&sbinfo->stat_lock);
1823         }
1824
1825         dir->i_size += BOGO_DIRENT_SIZE;
1826         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1827         inc_nlink(inode);
1828         atomic_inc(&inode->i_count);    /* New dentry reference */
1829         dget(dentry);           /* Extra pinning count for the created dentry */
1830         d_instantiate(dentry, inode);
1831         return 0;
1832 }
1833
1834 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1835 {
1836         struct inode *inode = dentry->d_inode;
1837
1838         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1839                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1840                 if (sbinfo->max_inodes) {
1841                         spin_lock(&sbinfo->stat_lock);
1842                         sbinfo->free_inodes++;
1843                         spin_unlock(&sbinfo->stat_lock);
1844                 }
1845         }
1846
1847         dir->i_size -= BOGO_DIRENT_SIZE;
1848         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849         drop_nlink(inode);
1850         dput(dentry);   /* Undo the count from "create" - this does all the work */
1851         return 0;
1852 }
1853
1854 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1855 {
1856         if (!simple_empty(dentry))
1857                 return -ENOTEMPTY;
1858
1859         drop_nlink(dentry->d_inode);
1860         drop_nlink(dir);
1861         return shmem_unlink(dir, dentry);
1862 }
1863
1864 /*
1865  * The VFS layer already does all the dentry stuff for rename,
1866  * we just have to decrement the usage count for the target if
1867  * it exists so that the VFS layer correctly free's it when it
1868  * gets overwritten.
1869  */
1870 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1871 {
1872         struct inode *inode = old_dentry->d_inode;
1873         int they_are_dirs = S_ISDIR(inode->i_mode);
1874
1875         if (!simple_empty(new_dentry))
1876                 return -ENOTEMPTY;
1877
1878         if (new_dentry->d_inode) {
1879                 (void) shmem_unlink(new_dir, new_dentry);
1880                 if (they_are_dirs)
1881                         drop_nlink(old_dir);
1882         } else if (they_are_dirs) {
1883                 drop_nlink(old_dir);
1884                 inc_nlink(new_dir);
1885         }
1886
1887         old_dir->i_size -= BOGO_DIRENT_SIZE;
1888         new_dir->i_size += BOGO_DIRENT_SIZE;
1889         old_dir->i_ctime = old_dir->i_mtime =
1890         new_dir->i_ctime = new_dir->i_mtime =
1891         inode->i_ctime = CURRENT_TIME;
1892         return 0;
1893 }
1894
1895 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1896 {
1897         int error;
1898         int len;
1899         struct inode *inode;
1900         struct page *page = NULL;
1901         char *kaddr;
1902         struct shmem_inode_info *info;
1903
1904         len = strlen(symname) + 1;
1905         if (len > PAGE_CACHE_SIZE)
1906                 return -ENAMETOOLONG;
1907
1908         inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1909         if (!inode)
1910                 return -ENOSPC;
1911
1912         error = security_inode_init_security(inode, dir, NULL, NULL,
1913                                              NULL);
1914         if (error) {
1915                 if (error != -EOPNOTSUPP) {
1916                         iput(inode);
1917                         return error;
1918                 }
1919                 error = 0;
1920         }
1921
1922         info = SHMEM_I(inode);
1923         inode->i_size = len-1;
1924         if (len <= (char *)inode - (char *)info) {
1925                 /* do it inline */
1926                 memcpy(info, symname, len);
1927                 inode->i_op = &shmem_symlink_inline_operations;
1928         } else {
1929                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1930                 if (error) {
1931                         iput(inode);
1932                         return error;
1933                 }
1934                 inode->i_op = &shmem_symlink_inode_operations;
1935                 kaddr = kmap_atomic(page, KM_USER0);
1936                 memcpy(kaddr, symname, len);
1937                 kunmap_atomic(kaddr, KM_USER0);
1938                 set_page_dirty(page);
1939                 page_cache_release(page);
1940         }
1941         if (dir->i_mode & S_ISGID)
1942                 inode->i_gid = dir->i_gid;
1943         dir->i_size += BOGO_DIRENT_SIZE;
1944         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1945         d_instantiate(dentry, inode);
1946         dget(dentry);
1947         return 0;
1948 }
1949
1950 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1951 {
1952         nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1953         return NULL;
1954 }
1955
1956 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1957 {
1958         struct page *page = NULL;
1959         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1960         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1961         return page;
1962 }
1963
1964 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1965 {
1966         if (!IS_ERR(nd_get_link(nd))) {
1967                 struct page *page = cookie;
1968                 kunmap(page);
1969                 mark_page_accessed(page);
1970                 page_cache_release(page);
1971         }
1972 }
1973
1974 static struct inode_operations shmem_symlink_inline_operations = {
1975         .readlink       = generic_readlink,
1976         .follow_link    = shmem_follow_link_inline,
1977 };
1978
1979 static struct inode_operations shmem_symlink_inode_operations = {
1980         .truncate       = shmem_truncate,
1981         .readlink       = generic_readlink,
1982         .follow_link    = shmem_follow_link,
1983         .put_link       = shmem_put_link,
1984 };
1985
1986 #ifdef CONFIG_TMPFS_POSIX_ACL
1987 /**
1988  * Superblocks without xattr inode operations will get security.* xattr
1989  * support from the VFS "for free". As soon as we have any other xattrs
1990  * like ACLs, we also need to implement the security.* handlers at
1991  * filesystem level, though.
1992  */
1993
1994 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1995                                         size_t list_len, const char *name,
1996                                         size_t name_len)
1997 {
1998         return security_inode_listsecurity(inode, list, list_len);
1999 }
2000
2001 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2002                                     void *buffer, size_t size)
2003 {
2004         if (strcmp(name, "") == 0)
2005                 return -EINVAL;
2006         return security_inode_getsecurity(inode, name, buffer, size,
2007                                           -EOPNOTSUPP);
2008 }
2009
2010 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2011                                     const void *value, size_t size, int flags)
2012 {
2013         if (strcmp(name, "") == 0)
2014                 return -EINVAL;
2015         return security_inode_setsecurity(inode, name, value, size, flags);
2016 }
2017
2018 static struct xattr_handler shmem_xattr_security_handler = {
2019         .prefix = XATTR_SECURITY_PREFIX,
2020         .list   = shmem_xattr_security_list,
2021         .get    = shmem_xattr_security_get,
2022         .set    = shmem_xattr_security_set,
2023 };
2024
2025 static struct xattr_handler *shmem_xattr_handlers[] = {
2026         &shmem_xattr_acl_access_handler,
2027         &shmem_xattr_acl_default_handler,
2028         &shmem_xattr_security_handler,
2029         NULL
2030 };
2031 #endif
2032
2033 static struct dentry *shmem_get_parent(struct dentry *child)
2034 {
2035         return ERR_PTR(-ESTALE);
2036 }
2037
2038 static int shmem_match(struct inode *ino, void *vfh)
2039 {
2040         __u32 *fh = vfh;
2041         __u64 inum = fh[2];
2042         inum = (inum << 32) | fh[1];
2043         return ino->i_ino == inum && fh[0] == ino->i_generation;
2044 }
2045
2046 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2047 {
2048         struct dentry *de = NULL;
2049         struct inode *inode;
2050         __u32 *fh = vfh;
2051         __u64 inum = fh[2];
2052         inum = (inum << 32) | fh[1];
2053
2054         inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2055         if (inode) {
2056                 de = d_find_alias(inode);
2057                 iput(inode);
2058         }
2059
2060         return de? de: ERR_PTR(-ESTALE);
2061 }
2062
2063 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2064                 int len, int type,
2065                 int (*acceptable)(void *context, struct dentry *de),
2066                 void *context)
2067 {
2068         if (len < 3)
2069                 return ERR_PTR(-ESTALE);
2070
2071         return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2072                                                         context);
2073 }
2074
2075 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2076                                 int connectable)
2077 {
2078         struct inode *inode = dentry->d_inode;
2079
2080         if (*len < 3)
2081                 return 255;
2082
2083         if (hlist_unhashed(&inode->i_hash)) {
2084                 /* Unfortunately insert_inode_hash is not idempotent,
2085                  * so as we hash inodes here rather than at creation
2086                  * time, we need a lock to ensure we only try
2087                  * to do it once
2088                  */
2089                 static DEFINE_SPINLOCK(lock);
2090                 spin_lock(&lock);
2091                 if (hlist_unhashed(&inode->i_hash))
2092                         __insert_inode_hash(inode,
2093                                             inode->i_ino + inode->i_generation);
2094                 spin_unlock(&lock);
2095         }
2096
2097         fh[0] = inode->i_generation;
2098         fh[1] = inode->i_ino;
2099         fh[2] = ((__u64)inode->i_ino) >> 32;
2100
2101         *len = 3;
2102         return 1;
2103 }
2104
2105 static struct export_operations shmem_export_ops = {
2106         .get_parent     = shmem_get_parent,
2107         .get_dentry     = shmem_get_dentry,
2108         .encode_fh      = shmem_encode_fh,
2109         .decode_fh      = shmem_decode_fh,
2110 };
2111
2112 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2113         gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2114         int *policy, nodemask_t *policy_nodes)
2115 {
2116         char *this_char, *value, *rest;
2117
2118         while (options != NULL) {
2119                 this_char = options;
2120                 for (;;) {
2121                         /*
2122                          * NUL-terminate this option: unfortunately,
2123                          * mount options form a comma-separated list,
2124                          * but mpol's nodelist may also contain commas.
2125                          */
2126                         options = strchr(options, ',');
2127                         if (options == NULL)
2128                                 break;
2129                         options++;
2130                         if (!isdigit(*options)) {
2131                                 options[-1] = '\0';
2132                                 break;
2133                         }
2134                 }
2135                 if (!*this_char)
2136                         continue;
2137                 if ((value = strchr(this_char,'=')) != NULL) {
2138                         *value++ = 0;
2139                 } else {
2140                         printk(KERN_ERR
2141                             "tmpfs: No value for mount option '%s'\n",
2142                             this_char);
2143                         return 1;
2144                 }
2145
2146                 if (!strcmp(this_char,"size")) {
2147                         unsigned long long size;
2148                         size = memparse(value,&rest);
2149                         if (*rest == '%') {
2150                                 size <<= PAGE_SHIFT;
2151                                 size *= totalram_pages;
2152                                 do_div(size, 100);
2153                                 rest++;
2154                         }
2155                         if (*rest)
2156                                 goto bad_val;
2157                         *blocks = size >> PAGE_CACHE_SHIFT;
2158                 } else if (!strcmp(this_char,"nr_blocks")) {
2159                         *blocks = memparse(value,&rest);
2160                         if (*rest)
2161                                 goto bad_val;
2162                 } else if (!strcmp(this_char,"nr_inodes")) {
2163                         *inodes = memparse(value,&rest);
2164                         if (*rest)
2165                                 goto bad_val;
2166                 } else if (!strcmp(this_char,"mode")) {
2167                         if (!mode)
2168                                 continue;
2169                         *mode = simple_strtoul(value,&rest,8);
2170                         if (*rest)
2171                                 goto bad_val;
2172                 } else if (!strcmp(this_char,"uid")) {
2173                         if (!uid)
2174                                 continue;
2175                         *uid = simple_strtoul(value,&rest,0);
2176                         if (*rest)
2177                                 goto bad_val;
2178                 } else if (!strcmp(this_char,"gid")) {
2179                         if (!gid)
2180                                 continue;
2181                         *gid = simple_strtoul(value,&rest,0);
2182                         if (*rest)
2183                                 goto bad_val;
2184                 } else if (!strcmp(this_char,"mpol")) {
2185                         if (shmem_parse_mpol(value,policy,policy_nodes))
2186                                 goto bad_val;
2187                 } else {
2188                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2189                                this_char);
2190                         return 1;
2191                 }
2192         }
2193         return 0;
2194
2195 bad_val:
2196         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2197                value, this_char);
2198         return 1;
2199
2200 }
2201
2202 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2203 {
2204         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2205         unsigned long max_blocks = sbinfo->max_blocks;
2206         unsigned long max_inodes = sbinfo->max_inodes;
2207         int policy = sbinfo->policy;
2208         nodemask_t policy_nodes = sbinfo->policy_nodes;
2209         unsigned long blocks;
2210         unsigned long inodes;
2211         int error = -EINVAL;
2212
2213         if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2214                                 &max_inodes, &policy, &policy_nodes))
2215                 return error;
2216
2217         spin_lock(&sbinfo->stat_lock);
2218         blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2219         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2220         if (max_blocks < blocks)
2221                 goto out;
2222         if (max_inodes < inodes)
2223                 goto out;
2224         /*
2225          * Those tests also disallow limited->unlimited while any are in
2226          * use, so i_blocks will always be zero when max_blocks is zero;
2227          * but we must separately disallow unlimited->limited, because
2228          * in that case we have no record of how much is already in use.
2229          */
2230         if (max_blocks && !sbinfo->max_blocks)
2231                 goto out;
2232         if (max_inodes && !sbinfo->max_inodes)
2233                 goto out;
2234
2235         error = 0;
2236         sbinfo->max_blocks  = max_blocks;
2237         sbinfo->free_blocks = max_blocks - blocks;
2238         sbinfo->max_inodes  = max_inodes;
2239         sbinfo->free_inodes = max_inodes - inodes;
2240         sbinfo->policy = policy;
2241         sbinfo->policy_nodes = policy_nodes;
2242 out:
2243         spin_unlock(&sbinfo->stat_lock);
2244         return error;
2245 }
2246 #endif
2247
2248 static void shmem_put_super(struct super_block *sb)
2249 {
2250         kfree(sb->s_fs_info);
2251         sb->s_fs_info = NULL;
2252 }
2253
2254 static int shmem_fill_super(struct super_block *sb,
2255                             void *data, int silent)
2256 {
2257         struct inode *inode;
2258         struct dentry *root;
2259         int mode   = S_IRWXUGO | S_ISVTX;
2260         uid_t uid = current->fsuid;
2261         gid_t gid = current->fsgid;
2262         int err = -ENOMEM;
2263         struct shmem_sb_info *sbinfo;
2264         unsigned long blocks = 0;
2265         unsigned long inodes = 0;
2266         int policy = MPOL_DEFAULT;
2267         nodemask_t policy_nodes = node_online_map;
2268
2269 #ifdef CONFIG_TMPFS
2270         /*
2271          * Per default we only allow half of the physical ram per
2272          * tmpfs instance, limiting inodes to one per page of lowmem;
2273          * but the internal instance is left unlimited.
2274          */
2275         if (!(sb->s_flags & MS_NOUSER)) {
2276                 blocks = totalram_pages / 2;
2277                 inodes = totalram_pages - totalhigh_pages;
2278                 if (inodes > blocks)
2279                         inodes = blocks;
2280                 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2281                                         &inodes, &policy, &policy_nodes))
2282                         return -EINVAL;
2283         }
2284         sb->s_export_op = &shmem_export_ops;
2285 #else
2286         sb->s_flags |= MS_NOUSER;
2287 #endif
2288
2289         /* Round up to L1_CACHE_BYTES to resist false sharing */
2290         sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2291                                 L1_CACHE_BYTES), GFP_KERNEL);
2292         if (!sbinfo)
2293                 return -ENOMEM;
2294
2295         spin_lock_init(&sbinfo->stat_lock);
2296         sbinfo->max_blocks = blocks;
2297         sbinfo->free_blocks = blocks;
2298         sbinfo->max_inodes = inodes;
2299         sbinfo->free_inodes = inodes;
2300         sbinfo->policy = policy;
2301         sbinfo->policy_nodes = policy_nodes;
2302
2303         sb->s_fs_info = sbinfo;
2304         sb->s_maxbytes = SHMEM_MAX_BYTES;
2305         sb->s_blocksize = PAGE_CACHE_SIZE;
2306         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2307         sb->s_magic = TMPFS_SUPER_MAGIC;
2308         sb->s_op = &shmem_ops;
2309         sb->s_time_gran = 1;
2310 #ifdef CONFIG_TMPFS_POSIX_ACL
2311         sb->s_xattr = shmem_xattr_handlers;
2312         sb->s_flags |= MS_POSIXACL;
2313 #endif
2314
2315         inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2316         if (!inode)
2317                 goto failed;
2318         inode->i_uid = uid;
2319         inode->i_gid = gid;
2320         root = d_alloc_root(inode);
2321         if (!root)
2322                 goto failed_iput;
2323         sb->s_root = root;
2324         return 0;
2325
2326 failed_iput:
2327         iput(inode);
2328 failed:
2329         shmem_put_super(sb);
2330         return err;
2331 }
2332
2333 static struct kmem_cache *shmem_inode_cachep;
2334
2335 static struct inode *shmem_alloc_inode(struct super_block *sb)
2336 {
2337         struct shmem_inode_info *p;
2338         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2339         if (!p)
2340                 return NULL;
2341         return &p->vfs_inode;
2342 }
2343
2344 static void shmem_destroy_inode(struct inode *inode)
2345 {
2346         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2347                 /* only struct inode is valid if it's an inline symlink */
2348                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2349         }
2350         shmem_acl_destroy_inode(inode);
2351         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2352 }
2353
2354 static void init_once(void *foo, struct kmem_cache *cachep,
2355                       unsigned long flags)
2356 {
2357         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2358
2359         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2360             SLAB_CTOR_CONSTRUCTOR) {
2361                 inode_init_once(&p->vfs_inode);
2362 #ifdef CONFIG_TMPFS_POSIX_ACL
2363                 p->i_acl = NULL;
2364                 p->i_default_acl = NULL;
2365 #endif
2366         }
2367 }
2368
2369 static int init_inodecache(void)
2370 {
2371         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2372                                 sizeof(struct shmem_inode_info),
2373                                 0, 0, init_once, NULL);
2374         if (shmem_inode_cachep == NULL)
2375                 return -ENOMEM;
2376         return 0;
2377 }
2378
2379 static void destroy_inodecache(void)
2380 {
2381         kmem_cache_destroy(shmem_inode_cachep);
2382 }
2383
2384 static const struct address_space_operations shmem_aops = {
2385         .writepage      = shmem_writepage,
2386         .set_page_dirty = __set_page_dirty_nobuffers,
2387 #ifdef CONFIG_TMPFS
2388         .prepare_write  = shmem_prepare_write,
2389         .commit_write   = simple_commit_write,
2390 #endif
2391         .migratepage    = migrate_page,
2392 };
2393
2394 static const struct file_operations shmem_file_operations = {
2395         .mmap           = shmem_mmap,
2396 #ifdef CONFIG_TMPFS
2397         .llseek         = generic_file_llseek,
2398         .read           = shmem_file_read,
2399         .write          = shmem_file_write,
2400         .fsync          = simple_sync_file,
2401         .sendfile       = shmem_file_sendfile,
2402 #endif
2403 };
2404
2405 static struct inode_operations shmem_inode_operations = {
2406         .truncate       = shmem_truncate,
2407         .setattr        = shmem_notify_change,
2408         .truncate_range = shmem_truncate_range,
2409 #ifdef CONFIG_TMPFS_POSIX_ACL
2410         .setxattr       = generic_setxattr,
2411         .getxattr       = generic_getxattr,
2412         .listxattr      = generic_listxattr,
2413         .removexattr    = generic_removexattr,
2414         .permission     = shmem_permission,
2415 #endif
2416
2417 };
2418
2419 static struct inode_operations shmem_dir_inode_operations = {
2420 #ifdef CONFIG_TMPFS
2421         .create         = shmem_create,
2422         .lookup         = simple_lookup,
2423         .link           = shmem_link,
2424         .unlink         = shmem_unlink,
2425         .symlink        = shmem_symlink,
2426         .mkdir          = shmem_mkdir,
2427         .rmdir          = shmem_rmdir,
2428         .mknod          = shmem_mknod,
2429         .rename         = shmem_rename,
2430 #endif
2431 #ifdef CONFIG_TMPFS_POSIX_ACL
2432         .setattr        = shmem_notify_change,
2433         .setxattr       = generic_setxattr,
2434         .getxattr       = generic_getxattr,
2435         .listxattr      = generic_listxattr,
2436         .removexattr    = generic_removexattr,
2437         .permission     = shmem_permission,
2438 #endif
2439 };
2440
2441 static struct inode_operations shmem_special_inode_operations = {
2442 #ifdef CONFIG_TMPFS_POSIX_ACL
2443         .setattr        = shmem_notify_change,
2444         .setxattr       = generic_setxattr,
2445         .getxattr       = generic_getxattr,
2446         .listxattr      = generic_listxattr,
2447         .removexattr    = generic_removexattr,
2448         .permission     = shmem_permission,
2449 #endif
2450 };
2451
2452 static struct super_operations shmem_ops = {
2453         .alloc_inode    = shmem_alloc_inode,
2454         .destroy_inode  = shmem_destroy_inode,
2455 #ifdef CONFIG_TMPFS
2456         .statfs         = shmem_statfs,
2457         .remount_fs     = shmem_remount_fs,
2458 #endif
2459         .delete_inode   = shmem_delete_inode,
2460         .drop_inode     = generic_delete_inode,
2461         .put_super      = shmem_put_super,
2462 };
2463
2464 static struct vm_operations_struct shmem_vm_ops = {
2465         .nopage         = shmem_nopage,
2466         .populate       = shmem_populate,
2467 #ifdef CONFIG_NUMA
2468         .set_policy     = shmem_set_policy,
2469         .get_policy     = shmem_get_policy,
2470 #endif
2471 };
2472
2473
2474 static int shmem_get_sb(struct file_system_type *fs_type,
2475         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2476 {
2477         return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2478 }
2479
2480 static struct file_system_type tmpfs_fs_type = {
2481         .owner          = THIS_MODULE,
2482         .name           = "tmpfs",
2483         .get_sb         = shmem_get_sb,
2484         .kill_sb        = kill_litter_super,
2485 };
2486 static struct vfsmount *shm_mnt;
2487
2488 static int __init init_tmpfs(void)
2489 {
2490         int error;
2491
2492         error = init_inodecache();
2493         if (error)
2494                 goto out3;
2495
2496         error = register_filesystem(&tmpfs_fs_type);
2497         if (error) {
2498                 printk(KERN_ERR "Could not register tmpfs\n");
2499                 goto out2;
2500         }
2501
2502         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2503                                 tmpfs_fs_type.name, NULL);
2504         if (IS_ERR(shm_mnt)) {
2505                 error = PTR_ERR(shm_mnt);
2506                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2507                 goto out1;
2508         }
2509         return 0;
2510
2511 out1:
2512         unregister_filesystem(&tmpfs_fs_type);
2513 out2:
2514         destroy_inodecache();
2515 out3:
2516         shm_mnt = ERR_PTR(error);
2517         return error;
2518 }
2519 module_init(init_tmpfs)
2520
2521 /*
2522  * shmem_file_setup - get an unlinked file living in tmpfs
2523  *
2524  * @name: name for dentry (to be seen in /proc/<pid>/maps
2525  * @size: size to be set for the file
2526  *
2527  */
2528 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2529 {
2530         int error;
2531         struct file *file;
2532         struct inode *inode;
2533         struct dentry *dentry, *root;
2534         struct qstr this;
2535
2536         if (IS_ERR(shm_mnt))
2537                 return (void *)shm_mnt;
2538
2539         if (size < 0 || size > SHMEM_MAX_BYTES)
2540                 return ERR_PTR(-EINVAL);
2541
2542         if (shmem_acct_size(flags, size))
2543                 return ERR_PTR(-ENOMEM);
2544
2545         error = -ENOMEM;
2546         this.name = name;
2547         this.len = strlen(name);
2548         this.hash = 0; /* will go */
2549         root = shm_mnt->mnt_root;
2550         dentry = d_alloc(root, &this);
2551         if (!dentry)
2552                 goto put_memory;
2553
2554         error = -ENFILE;
2555         file = get_empty_filp();
2556         if (!file)
2557                 goto put_dentry;
2558
2559         error = -ENOSPC;
2560         inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2561         if (!inode)
2562                 goto close_file;
2563
2564         SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2565         d_instantiate(dentry, inode);
2566         inode->i_size = size;
2567         inode->i_nlink = 0;     /* It is unlinked */
2568         file->f_path.mnt = mntget(shm_mnt);
2569         file->f_path.dentry = dentry;
2570         file->f_mapping = inode->i_mapping;
2571         file->f_op = &shmem_file_operations;
2572         file->f_mode = FMODE_WRITE | FMODE_READ;
2573         return file;
2574
2575 close_file:
2576         put_filp(file);
2577 put_dentry:
2578         dput(dentry);
2579 put_memory:
2580         shmem_unacct_size(flags, size);
2581         return ERR_PTR(error);
2582 }
2583
2584 /*
2585  * shmem_zero_setup - setup a shared anonymous mapping
2586  *
2587  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2588  */
2589 int shmem_zero_setup(struct vm_area_struct *vma)
2590 {
2591         struct file *file;
2592         loff_t size = vma->vm_end - vma->vm_start;
2593
2594         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2595         if (IS_ERR(file))
2596                 return PTR_ERR(file);
2597
2598         if (vma->vm_file)
2599                 fput(vma->vm_file);
2600         vma->vm_file = file;
2601         vma->vm_ops = &shmem_vm_ops;
2602         return 0;
2603 }