Merge to Fedora kernel-2.6.17-1.2187_FC5 patched with stable patch-2.6.17.13-vs2...
[linux-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35 #include <linux/vs_memory.h>
36
37 DEFINE_SPINLOCK(swap_lock);
38 unsigned int nr_swapfiles;
39 long total_swap_pages;
40 static int swap_overflow;
41
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
46
47 struct swap_list_t swap_list = {-1, -1};
48
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50
51 static DEFINE_MUTEX(swapon_mutex);
52
53 /*
54  * We need this because the bdev->unplug_fn can sleep and we cannot
55  * hold swap_lock while calling the unplug_fn. And swap_lock
56  * cannot be turned into a mutex.
57  */
58 static DECLARE_RWSEM(swap_unplug_sem);
59
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 {
62         swp_entry_t entry;
63
64         down_read(&swap_unplug_sem);
65         entry.val = page_private(page);
66         if (PageSwapCache(page)) {
67                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68                 struct backing_dev_info *bdi;
69
70                 /*
71                  * If the page is removed from swapcache from under us (with a
72                  * racy try_to_unuse/swapoff) we need an additional reference
73                  * count to avoid reading garbage from page_private(page) above.
74                  * If the WARN_ON triggers during a swapoff it maybe the race
75                  * condition and it's harmless. However if it triggers without
76                  * swapoff it signals a problem.
77                  */
78                 WARN_ON(page_count(page) <= 1);
79
80                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81                 blk_run_backing_dev(bdi, page);
82         }
83         up_read(&swap_unplug_sem);
84 }
85
86 #define SWAPFILE_CLUSTER        256
87 #define LATENCY_LIMIT           256
88
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 {
91         unsigned long offset, last_in_cluster;
92         int latency_ration = LATENCY_LIMIT;
93
94         /* 
95          * We try to cluster swap pages by allocating them sequentially
96          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97          * way, however, we resort to first-free allocation, starting
98          * a new cluster.  This prevents us from scattering swap pages
99          * all over the entire swap partition, so that we reduce
100          * overall disk seek times between swap pages.  -- sct
101          * But we do now try to find an empty cluster.  -Andrea
102          */
103
104         si->flags += SWP_SCANNING;
105         if (unlikely(!si->cluster_nr)) {
106                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108                         goto lowest;
109                 spin_unlock(&swap_lock);
110
111                 offset = si->lowest_bit;
112                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114                 /* Locate the first empty (unaligned) cluster */
115                 for (; last_in_cluster <= si->highest_bit; offset++) {
116                         if (si->swap_map[offset])
117                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
118                         else if (offset == last_in_cluster) {
119                                 spin_lock(&swap_lock);
120                                 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121                                 goto cluster;
122                         }
123                         if (unlikely(--latency_ration < 0)) {
124                                 cond_resched();
125                                 latency_ration = LATENCY_LIMIT;
126                         }
127                 }
128                 spin_lock(&swap_lock);
129                 goto lowest;
130         }
131
132         si->cluster_nr--;
133 cluster:
134         offset = si->cluster_next;
135         if (offset > si->highest_bit)
136 lowest:         offset = si->lowest_bit;
137 checks: if (!(si->flags & SWP_WRITEOK))
138                 goto no_page;
139         if (!si->highest_bit)
140                 goto no_page;
141         if (!si->swap_map[offset]) {
142                 if (offset == si->lowest_bit)
143                         si->lowest_bit++;
144                 if (offset == si->highest_bit)
145                         si->highest_bit--;
146                 si->inuse_pages++;
147                 if (si->inuse_pages == si->pages) {
148                         si->lowest_bit = si->max;
149                         si->highest_bit = 0;
150                 }
151                 si->swap_map[offset] = 1;
152                 si->cluster_next = offset + 1;
153                 si->flags -= SWP_SCANNING;
154                 return offset;
155         }
156
157         spin_unlock(&swap_lock);
158         while (++offset <= si->highest_bit) {
159                 if (!si->swap_map[offset]) {
160                         spin_lock(&swap_lock);
161                         goto checks;
162                 }
163                 if (unlikely(--latency_ration < 0)) {
164                         cond_resched();
165                         latency_ration = LATENCY_LIMIT;
166                 }
167         }
168         spin_lock(&swap_lock);
169         goto lowest;
170
171 no_page:
172         si->flags -= SWP_SCANNING;
173         return 0;
174 }
175
176 swp_entry_t get_swap_page(void)
177 {
178         struct swap_info_struct *si;
179         pgoff_t offset;
180         int type, next;
181         int wrapped = 0;
182
183         spin_lock(&swap_lock);
184         if (nr_swap_pages <= 0)
185                 goto noswap;
186         nr_swap_pages--;
187
188         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189                 si = swap_info + type;
190                 next = si->next;
191                 if (next < 0 ||
192                     (!wrapped && si->prio != swap_info[next].prio)) {
193                         next = swap_list.head;
194                         wrapped++;
195                 }
196
197                 if (!si->highest_bit)
198                         continue;
199                 if (!(si->flags & SWP_WRITEOK))
200                         continue;
201
202                 swap_list.next = next;
203                 offset = scan_swap_map(si);
204                 if (offset) {
205                         spin_unlock(&swap_lock);
206                         return swp_entry(type, offset);
207                 }
208                 next = swap_list.next;
209         }
210
211         nr_swap_pages++;
212 noswap:
213         spin_unlock(&swap_lock);
214         return (swp_entry_t) {0};
215 }
216
217 swp_entry_t get_swap_page_of_type(int type)
218 {
219         struct swap_info_struct *si;
220         pgoff_t offset;
221
222         spin_lock(&swap_lock);
223         si = swap_info + type;
224         if (si->flags & SWP_WRITEOK) {
225                 nr_swap_pages--;
226                 offset = scan_swap_map(si);
227                 if (offset) {
228                         spin_unlock(&swap_lock);
229                         return swp_entry(type, offset);
230                 }
231                 nr_swap_pages++;
232         }
233         spin_unlock(&swap_lock);
234         return (swp_entry_t) {0};
235 }
236
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 {
239         struct swap_info_struct * p;
240         unsigned long offset, type;
241
242         if (!entry.val)
243                 goto out;
244         type = swp_type(entry);
245         if (type >= nr_swapfiles)
246                 goto bad_nofile;
247         p = & swap_info[type];
248         if (!(p->flags & SWP_USED))
249                 goto bad_device;
250         offset = swp_offset(entry);
251         if (offset >= p->max)
252                 goto bad_offset;
253         if (!p->swap_map[offset])
254                 goto bad_free;
255         spin_lock(&swap_lock);
256         return p;
257
258 bad_free:
259         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260         goto out;
261 bad_offset:
262         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263         goto out;
264 bad_device:
265         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266         goto out;
267 bad_nofile:
268         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270         return NULL;
271 }       
272
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 {
275         int count = p->swap_map[offset];
276
277         if (count < SWAP_MAP_MAX) {
278                 count--;
279                 p->swap_map[offset] = count;
280                 if (!count) {
281                         if (offset < p->lowest_bit)
282                                 p->lowest_bit = offset;
283                         if (offset > p->highest_bit)
284                                 p->highest_bit = offset;
285                         if (p->prio > swap_info[swap_list.next].prio)
286                                 swap_list.next = p - swap_info;
287                         nr_swap_pages++;
288                         p->inuse_pages--;
289                 }
290         }
291         return count;
292 }
293
294 /*
295  * Caller has made sure that the swapdevice corresponding to entry
296  * is still around or has not been recycled.
297  */
298 void swap_free(swp_entry_t entry)
299 {
300         struct swap_info_struct * p;
301
302         p = swap_info_get(entry);
303         if (p) {
304                 swap_entry_free(p, swp_offset(entry));
305                 spin_unlock(&swap_lock);
306         }
307 }
308
309 /*
310  * How many references to page are currently swapped out?
311  */
312 static inline int page_swapcount(struct page *page)
313 {
314         int count = 0;
315         struct swap_info_struct *p;
316         swp_entry_t entry;
317
318         entry.val = page_private(page);
319         p = swap_info_get(entry);
320         if (p) {
321                 /* Subtract the 1 for the swap cache itself */
322                 count = p->swap_map[swp_offset(entry)] - 1;
323                 spin_unlock(&swap_lock);
324         }
325         return count;
326 }
327
328 /*
329  * We can use this swap cache entry directly
330  * if there are no other references to it.
331  */
332 int can_share_swap_page(struct page *page)
333 {
334         int count;
335
336         BUG_ON(!PageLocked(page));
337         count = page_mapcount(page);
338         if (count <= 1 && PageSwapCache(page))
339                 count += page_swapcount(page);
340         return count == 1;
341 }
342
343 /*
344  * Work out if there are any other processes sharing this
345  * swap cache page. Free it if you can. Return success.
346  */
347 int remove_exclusive_swap_page(struct page *page)
348 {
349         int retval;
350         struct swap_info_struct * p;
351         swp_entry_t entry;
352
353         BUG_ON(PagePrivate(page));
354         BUG_ON(!PageLocked(page));
355
356         if (!PageSwapCache(page))
357                 return 0;
358         if (PageWriteback(page))
359                 return 0;
360         if (page_count(page) != 2) /* 2: us + cache */
361                 return 0;
362
363         entry.val = page_private(page);
364         p = swap_info_get(entry);
365         if (!p)
366                 return 0;
367
368         /* Is the only swap cache user the cache itself? */
369         retval = 0;
370         if (p->swap_map[swp_offset(entry)] == 1) {
371                 /* Recheck the page count with the swapcache lock held.. */
372                 write_lock_irq(&swapper_space.tree_lock);
373                 if ((page_count(page) == 2) && !PageWriteback(page)) {
374                         __delete_from_swap_cache(page);
375                         SetPageDirty(page);
376                         retval = 1;
377                 }
378                 write_unlock_irq(&swapper_space.tree_lock);
379         }
380         spin_unlock(&swap_lock);
381
382         if (retval) {
383                 swap_free(entry);
384                 page_cache_release(page);
385         }
386
387         return retval;
388 }
389
390 /*
391  * Free the swap entry like above, but also try to
392  * free the page cache entry if it is the last user.
393  */
394 void free_swap_and_cache(swp_entry_t entry)
395 {
396         struct swap_info_struct * p;
397         struct page *page = NULL;
398
399         p = swap_info_get(entry);
400         if (p) {
401                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
402                         page = find_get_page(&swapper_space, entry.val);
403                         if (page && unlikely(TestSetPageLocked(page))) {
404                                 page_cache_release(page);
405                                 page = NULL;
406                         }
407                 }
408                 spin_unlock(&swap_lock);
409         }
410         if (page) {
411                 int one_user;
412
413                 BUG_ON(PagePrivate(page));
414                 one_user = (page_count(page) == 2);
415                 /* Only cache user (+us), or swap space full? Free it! */
416                 /* Also recheck PageSwapCache after page is locked (above) */
417                 if (PageSwapCache(page) && !PageWriteback(page) &&
418                                         (one_user || vm_swap_full())) {
419                         delete_from_swap_cache(page);
420                         SetPageDirty(page);
421                 }
422                 unlock_page(page);
423                 page_cache_release(page);
424         }
425 }
426
427 #ifdef CONFIG_SOFTWARE_SUSPEND
428 /*
429  * Find the swap type that corresponds to given device (if any)
430  *
431  * This is needed for software suspend and is done in such a way that inode
432  * aliasing is allowed.
433  */
434 int swap_type_of(dev_t device)
435 {
436         int i;
437
438         spin_lock(&swap_lock);
439         for (i = 0; i < nr_swapfiles; i++) {
440                 struct inode *inode;
441
442                 if (!(swap_info[i].flags & SWP_WRITEOK))
443                         continue;
444
445                 if (!device) {
446                         spin_unlock(&swap_lock);
447                         return i;
448                 }
449                 inode = swap_info[i].swap_file->f_dentry->d_inode;
450                 if (S_ISBLK(inode->i_mode) &&
451                     device == MKDEV(imajor(inode), iminor(inode))) {
452                         spin_unlock(&swap_lock);
453                         return i;
454                 }
455         }
456         spin_unlock(&swap_lock);
457         return -ENODEV;
458 }
459
460 /*
461  * Return either the total number of swap pages of given type, or the number
462  * of free pages of that type (depending on @free)
463  *
464  * This is needed for software suspend
465  */
466 unsigned int count_swap_pages(int type, int free)
467 {
468         unsigned int n = 0;
469
470         if (type < nr_swapfiles) {
471                 spin_lock(&swap_lock);
472                 if (swap_info[type].flags & SWP_WRITEOK) {
473                         n = swap_info[type].pages;
474                         if (free)
475                                 n -= swap_info[type].inuse_pages;
476                 }
477                 spin_unlock(&swap_lock);
478         }
479         return n;
480 }
481 #endif
482
483 /*
484  * No need to decide whether this PTE shares the swap entry with others,
485  * just let do_wp_page work it out if a write is requested later - to
486  * force COW, vm_page_prot omits write permission from any private vma.
487  */
488 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
489                 unsigned long addr, swp_entry_t entry, struct page *page)
490 {
491         inc_mm_counter(vma->vm_mm, anon_rss);
492         get_page(page);
493         set_pte_at(vma->vm_mm, addr, pte,
494                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
495         page_add_anon_rmap(page, vma, addr);
496         swap_free(entry);
497         /*
498          * Move the page to the active list so it is not
499          * immediately swapped out again after swapon.
500          */
501         activate_page(page);
502 }
503
504 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
505                                 unsigned long addr, unsigned long end,
506                                 swp_entry_t entry, struct page *page)
507 {
508         pte_t swp_pte = swp_entry_to_pte(entry);
509         pte_t *pte;
510         spinlock_t *ptl;
511         int found = 0;
512
513         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
514         do {
515                 /*
516                  * swapoff spends a _lot_ of time in this loop!
517                  * Test inline before going to call unuse_pte.
518                  */
519                 if (unlikely(pte_same(*pte, swp_pte))) {
520                         unuse_pte(vma, pte++, addr, entry, page);
521                         found = 1;
522                         break;
523                 }
524         } while (pte++, addr += PAGE_SIZE, addr != end);
525         pte_unmap_unlock(pte - 1, ptl);
526         return found;
527 }
528
529 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
530                                 unsigned long addr, unsigned long end,
531                                 swp_entry_t entry, struct page *page)
532 {
533         pmd_t *pmd;
534         unsigned long next;
535
536         pmd = pmd_offset(pud, addr);
537         do {
538                 next = pmd_addr_end(addr, end);
539                 if (pmd_none_or_clear_bad(pmd))
540                         continue;
541                 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
542                         return 1;
543         } while (pmd++, addr = next, addr != end);
544         return 0;
545 }
546
547 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
548                                 unsigned long addr, unsigned long end,
549                                 swp_entry_t entry, struct page *page)
550 {
551         pud_t *pud;
552         unsigned long next;
553
554         pud = pud_offset(pgd, addr);
555         do {
556                 next = pud_addr_end(addr, end);
557                 if (pud_none_or_clear_bad(pud))
558                         continue;
559                 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
560                         return 1;
561         } while (pud++, addr = next, addr != end);
562         return 0;
563 }
564
565 static int unuse_vma(struct vm_area_struct *vma,
566                                 swp_entry_t entry, struct page *page)
567 {
568         pgd_t *pgd;
569         unsigned long addr, end, next;
570
571         if (page->mapping) {
572                 addr = page_address_in_vma(page, vma);
573                 if (addr == -EFAULT)
574                         return 0;
575                 else
576                         end = addr + PAGE_SIZE;
577         } else {
578                 addr = vma->vm_start;
579                 end = vma->vm_end;
580         }
581
582         pgd = pgd_offset(vma->vm_mm, addr);
583         do {
584                 next = pgd_addr_end(addr, end);
585                 if (pgd_none_or_clear_bad(pgd))
586                         continue;
587                 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
588                         return 1;
589         } while (pgd++, addr = next, addr != end);
590         return 0;
591 }
592
593 static int unuse_mm(struct mm_struct *mm,
594                                 swp_entry_t entry, struct page *page)
595 {
596         struct vm_area_struct *vma;
597
598         if (!down_read_trylock(&mm->mmap_sem)) {
599                 /*
600                  * Activate page so shrink_cache is unlikely to unmap its
601                  * ptes while lock is dropped, so swapoff can make progress.
602                  */
603                 activate_page(page);
604                 unlock_page(page);
605                 down_read(&mm->mmap_sem);
606                 lock_page(page);
607         }
608         for (vma = mm->mmap; vma; vma = vma->vm_next) {
609                 if (vma->anon_vma && unuse_vma(vma, entry, page))
610                         break;
611         }
612         up_read(&mm->mmap_sem);
613         /*
614          * Currently unuse_mm cannot fail, but leave error handling
615          * at call sites for now, since we change it from time to time.
616          */
617         return 0;
618 }
619
620 #ifdef CONFIG_MIGRATION
621 int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
622 {
623         swp_entry_t entry = { .val = page_private(page) };
624
625         return unuse_vma(vma, entry, page);
626 }
627 #endif
628
629 /*
630  * Scan swap_map from current position to next entry still in use.
631  * Recycle to start on reaching the end, returning 0 when empty.
632  */
633 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
634                                         unsigned int prev)
635 {
636         unsigned int max = si->max;
637         unsigned int i = prev;
638         int count;
639
640         /*
641          * No need for swap_lock here: we're just looking
642          * for whether an entry is in use, not modifying it; false
643          * hits are okay, and sys_swapoff() has already prevented new
644          * allocations from this area (while holding swap_lock).
645          */
646         for (;;) {
647                 if (++i >= max) {
648                         if (!prev) {
649                                 i = 0;
650                                 break;
651                         }
652                         /*
653                          * No entries in use at top of swap_map,
654                          * loop back to start and recheck there.
655                          */
656                         max = prev + 1;
657                         prev = 0;
658                         i = 1;
659                 }
660                 count = si->swap_map[i];
661                 if (count && count != SWAP_MAP_BAD)
662                         break;
663         }
664         return i;
665 }
666
667 /*
668  * We completely avoid races by reading each swap page in advance,
669  * and then search for the process using it.  All the necessary
670  * page table adjustments can then be made atomically.
671  */
672 static int try_to_unuse(unsigned int type)
673 {
674         struct swap_info_struct * si = &swap_info[type];
675         struct mm_struct *start_mm;
676         unsigned short *swap_map;
677         unsigned short swcount;
678         struct page *page;
679         swp_entry_t entry;
680         unsigned int i = 0;
681         int retval = 0;
682         int reset_overflow = 0;
683         int shmem;
684
685         /*
686          * When searching mms for an entry, a good strategy is to
687          * start at the first mm we freed the previous entry from
688          * (though actually we don't notice whether we or coincidence
689          * freed the entry).  Initialize this start_mm with a hold.
690          *
691          * A simpler strategy would be to start at the last mm we
692          * freed the previous entry from; but that would take less
693          * advantage of mmlist ordering, which clusters forked mms
694          * together, child after parent.  If we race with dup_mmap(), we
695          * prefer to resolve parent before child, lest we miss entries
696          * duplicated after we scanned child: using last mm would invert
697          * that.  Though it's only a serious concern when an overflowed
698          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
699          */
700         start_mm = &init_mm;
701         atomic_inc(&init_mm.mm_users);
702
703         /*
704          * Keep on scanning until all entries have gone.  Usually,
705          * one pass through swap_map is enough, but not necessarily:
706          * there are races when an instance of an entry might be missed.
707          */
708         while ((i = find_next_to_unuse(si, i)) != 0) {
709                 if (signal_pending(current)) {
710                         retval = -EINTR;
711                         break;
712                 }
713
714                 /* 
715                  * Get a page for the entry, using the existing swap
716                  * cache page if there is one.  Otherwise, get a clean
717                  * page and read the swap into it. 
718                  */
719                 swap_map = &si->swap_map[i];
720                 entry = swp_entry(type, i);
721 again:
722                 page = read_swap_cache_async(entry, NULL, 0);
723                 if (!page) {
724                         /*
725                          * Either swap_duplicate() failed because entry
726                          * has been freed independently, and will not be
727                          * reused since sys_swapoff() already disabled
728                          * allocation from here, or alloc_page() failed.
729                          */
730                         if (!*swap_map)
731                                 continue;
732                         retval = -ENOMEM;
733                         break;
734                 }
735
736                 /*
737                  * Don't hold on to start_mm if it looks like exiting.
738                  */
739                 if (atomic_read(&start_mm->mm_users) == 1) {
740                         mmput(start_mm);
741                         start_mm = &init_mm;
742                         atomic_inc(&init_mm.mm_users);
743                 }
744
745                 /*
746                  * Wait for and lock page.  When do_swap_page races with
747                  * try_to_unuse, do_swap_page can handle the fault much
748                  * faster than try_to_unuse can locate the entry.  This
749                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
750                  * defer to do_swap_page in such a case - in some tests,
751                  * do_swap_page and try_to_unuse repeatedly compete.
752                  */
753                 wait_on_page_locked(page);
754                 wait_on_page_writeback(page);
755                 lock_page(page);
756                 if (!PageSwapCache(page)) {
757                         /* Page migration has occured */
758                         unlock_page(page);
759                         page_cache_release(page);
760                         goto again;
761                 }
762                 wait_on_page_writeback(page);
763
764                 /*
765                  * Remove all references to entry.
766                  * Whenever we reach init_mm, there's no address space
767                  * to search, but use it as a reminder to search shmem.
768                  */
769                 shmem = 0;
770                 swcount = *swap_map;
771                 if (swcount > 1) {
772                         if (start_mm == &init_mm)
773                                 shmem = shmem_unuse(entry, page);
774                         else
775                                 retval = unuse_mm(start_mm, entry, page);
776                 }
777                 if (*swap_map > 1) {
778                         int set_start_mm = (*swap_map >= swcount);
779                         struct list_head *p = &start_mm->mmlist;
780                         struct mm_struct *new_start_mm = start_mm;
781                         struct mm_struct *prev_mm = start_mm;
782                         struct mm_struct *mm;
783
784                         atomic_inc(&new_start_mm->mm_users);
785                         atomic_inc(&prev_mm->mm_users);
786                         spin_lock(&mmlist_lock);
787                         while (*swap_map > 1 && !retval &&
788                                         (p = p->next) != &start_mm->mmlist) {
789                                 mm = list_entry(p, struct mm_struct, mmlist);
790                                 if (atomic_inc_return(&mm->mm_users) == 1) {
791                                         atomic_dec(&mm->mm_users);
792                                         continue;
793                                 }
794                                 spin_unlock(&mmlist_lock);
795                                 mmput(prev_mm);
796                                 prev_mm = mm;
797
798                                 cond_resched();
799
800                                 swcount = *swap_map;
801                                 if (swcount <= 1)
802                                         ;
803                                 else if (mm == &init_mm) {
804                                         set_start_mm = 1;
805                                         shmem = shmem_unuse(entry, page);
806                                 } else
807                                         retval = unuse_mm(mm, entry, page);
808                                 if (set_start_mm && *swap_map < swcount) {
809                                         mmput(new_start_mm);
810                                         atomic_inc(&mm->mm_users);
811                                         new_start_mm = mm;
812                                         set_start_mm = 0;
813                                 }
814                                 spin_lock(&mmlist_lock);
815                         }
816                         spin_unlock(&mmlist_lock);
817                         mmput(prev_mm);
818                         mmput(start_mm);
819                         start_mm = new_start_mm;
820                 }
821                 if (retval) {
822                         unlock_page(page);
823                         page_cache_release(page);
824                         break;
825                 }
826
827                 /*
828                  * How could swap count reach 0x7fff when the maximum
829                  * pid is 0x7fff, and there's no way to repeat a swap
830                  * page within an mm (except in shmem, where it's the
831                  * shared object which takes the reference count)?
832                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
833                  *
834                  * If that's wrong, then we should worry more about
835                  * exit_mmap() and do_munmap() cases described above:
836                  * we might be resetting SWAP_MAP_MAX too early here.
837                  * We know "Undead"s can happen, they're okay, so don't
838                  * report them; but do report if we reset SWAP_MAP_MAX.
839                  */
840                 if (*swap_map == SWAP_MAP_MAX) {
841                         spin_lock(&swap_lock);
842                         *swap_map = 1;
843                         spin_unlock(&swap_lock);
844                         reset_overflow = 1;
845                 }
846
847                 /*
848                  * If a reference remains (rare), we would like to leave
849                  * the page in the swap cache; but try_to_unmap could
850                  * then re-duplicate the entry once we drop page lock,
851                  * so we might loop indefinitely; also, that page could
852                  * not be swapped out to other storage meanwhile.  So:
853                  * delete from cache even if there's another reference,
854                  * after ensuring that the data has been saved to disk -
855                  * since if the reference remains (rarer), it will be
856                  * read from disk into another page.  Splitting into two
857                  * pages would be incorrect if swap supported "shared
858                  * private" pages, but they are handled by tmpfs files.
859                  *
860                  * Note shmem_unuse already deleted a swappage from
861                  * the swap cache, unless the move to filepage failed:
862                  * in which case it left swappage in cache, lowered its
863                  * swap count to pass quickly through the loops above,
864                  * and now we must reincrement count to try again later.
865                  */
866                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
867                         struct writeback_control wbc = {
868                                 .sync_mode = WB_SYNC_NONE,
869                         };
870
871                         swap_writepage(page, &wbc);
872                         lock_page(page);
873                         wait_on_page_writeback(page);
874                 }
875                 if (PageSwapCache(page)) {
876                         if (shmem)
877                                 swap_duplicate(entry);
878                         else
879                                 delete_from_swap_cache(page);
880                 }
881
882                 /*
883                  * So we could skip searching mms once swap count went
884                  * to 1, we did not mark any present ptes as dirty: must
885                  * mark page dirty so shrink_list will preserve it.
886                  */
887                 SetPageDirty(page);
888                 unlock_page(page);
889                 page_cache_release(page);
890
891                 /*
892                  * Make sure that we aren't completely killing
893                  * interactive performance.
894                  */
895                 cond_resched();
896         }
897
898         mmput(start_mm);
899         if (reset_overflow) {
900                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
901                 swap_overflow = 0;
902         }
903         return retval;
904 }
905
906 /*
907  * After a successful try_to_unuse, if no swap is now in use, we know
908  * we can empty the mmlist.  swap_lock must be held on entry and exit.
909  * Note that mmlist_lock nests inside swap_lock, and an mm must be
910  * added to the mmlist just after page_duplicate - before would be racy.
911  */
912 static void drain_mmlist(void)
913 {
914         struct list_head *p, *next;
915         unsigned int i;
916
917         for (i = 0; i < nr_swapfiles; i++)
918                 if (swap_info[i].inuse_pages)
919                         return;
920         spin_lock(&mmlist_lock);
921         list_for_each_safe(p, next, &init_mm.mmlist)
922                 list_del_init(p);
923         spin_unlock(&mmlist_lock);
924 }
925
926 /*
927  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
928  * corresponds to page offset `offset'.
929  */
930 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
931 {
932         struct swap_extent *se = sis->curr_swap_extent;
933         struct swap_extent *start_se = se;
934
935         for ( ; ; ) {
936                 struct list_head *lh;
937
938                 if (se->start_page <= offset &&
939                                 offset < (se->start_page + se->nr_pages)) {
940                         return se->start_block + (offset - se->start_page);
941                 }
942                 lh = se->list.next;
943                 if (lh == &sis->extent_list)
944                         lh = lh->next;
945                 se = list_entry(lh, struct swap_extent, list);
946                 sis->curr_swap_extent = se;
947                 BUG_ON(se == start_se);         /* It *must* be present */
948         }
949 }
950
951 /*
952  * Free all of a swapdev's extent information
953  */
954 static void destroy_swap_extents(struct swap_info_struct *sis)
955 {
956         while (!list_empty(&sis->extent_list)) {
957                 struct swap_extent *se;
958
959                 se = list_entry(sis->extent_list.next,
960                                 struct swap_extent, list);
961                 list_del(&se->list);
962                 kfree(se);
963         }
964 }
965
966 /*
967  * Add a block range (and the corresponding page range) into this swapdev's
968  * extent list.  The extent list is kept sorted in page order.
969  *
970  * This function rather assumes that it is called in ascending page order.
971  */
972 static int
973 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
974                 unsigned long nr_pages, sector_t start_block)
975 {
976         struct swap_extent *se;
977         struct swap_extent *new_se;
978         struct list_head *lh;
979
980         lh = sis->extent_list.prev;     /* The highest page extent */
981         if (lh != &sis->extent_list) {
982                 se = list_entry(lh, struct swap_extent, list);
983                 BUG_ON(se->start_page + se->nr_pages != start_page);
984                 if (se->start_block + se->nr_pages == start_block) {
985                         /* Merge it */
986                         se->nr_pages += nr_pages;
987                         return 0;
988                 }
989         }
990
991         /*
992          * No merge.  Insert a new extent, preserving ordering.
993          */
994         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
995         if (new_se == NULL)
996                 return -ENOMEM;
997         new_se->start_page = start_page;
998         new_se->nr_pages = nr_pages;
999         new_se->start_block = start_block;
1000
1001         list_add_tail(&new_se->list, &sis->extent_list);
1002         return 1;
1003 }
1004
1005 /*
1006  * A `swap extent' is a simple thing which maps a contiguous range of pages
1007  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1008  * is built at swapon time and is then used at swap_writepage/swap_readpage
1009  * time for locating where on disk a page belongs.
1010  *
1011  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1012  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1013  * swap files identically.
1014  *
1015  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1016  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1017  * swapfiles are handled *identically* after swapon time.
1018  *
1019  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1020  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1021  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1022  * requirements, they are simply tossed out - we will never use those blocks
1023  * for swapping.
1024  *
1025  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1026  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1027  * which will scribble on the fs.
1028  *
1029  * The amount of disk space which a single swap extent represents varies.
1030  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1031  * extents in the list.  To avoid much list walking, we cache the previous
1032  * search location in `curr_swap_extent', and start new searches from there.
1033  * This is extremely effective.  The average number of iterations in
1034  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1035  */
1036 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1037 {
1038         struct inode *inode;
1039         unsigned blocks_per_page;
1040         unsigned long page_no;
1041         unsigned blkbits;
1042         sector_t probe_block;
1043         sector_t last_block;
1044         sector_t lowest_block = -1;
1045         sector_t highest_block = 0;
1046         int nr_extents = 0;
1047         int ret;
1048
1049         inode = sis->swap_file->f_mapping->host;
1050         if (S_ISBLK(inode->i_mode)) {
1051                 ret = add_swap_extent(sis, 0, sis->max, 0);
1052                 *span = sis->pages;
1053                 goto done;
1054         }
1055
1056         blkbits = inode->i_blkbits;
1057         blocks_per_page = PAGE_SIZE >> blkbits;
1058
1059         /*
1060          * Map all the blocks into the extent list.  This code doesn't try
1061          * to be very smart.
1062          */
1063         probe_block = 0;
1064         page_no = 0;
1065         last_block = i_size_read(inode) >> blkbits;
1066         while ((probe_block + blocks_per_page) <= last_block &&
1067                         page_no < sis->max) {
1068                 unsigned block_in_page;
1069                 sector_t first_block;
1070
1071                 first_block = bmap(inode, probe_block);
1072                 if (first_block == 0)
1073                         goto bad_bmap;
1074
1075                 /*
1076                  * It must be PAGE_SIZE aligned on-disk
1077                  */
1078                 if (first_block & (blocks_per_page - 1)) {
1079                         probe_block++;
1080                         goto reprobe;
1081                 }
1082
1083                 for (block_in_page = 1; block_in_page < blocks_per_page;
1084                                         block_in_page++) {
1085                         sector_t block;
1086
1087                         block = bmap(inode, probe_block + block_in_page);
1088                         if (block == 0)
1089                                 goto bad_bmap;
1090                         if (block != first_block + block_in_page) {
1091                                 /* Discontiguity */
1092                                 probe_block++;
1093                                 goto reprobe;
1094                         }
1095                 }
1096
1097                 first_block >>= (PAGE_SHIFT - blkbits);
1098                 if (page_no) {  /* exclude the header page */
1099                         if (first_block < lowest_block)
1100                                 lowest_block = first_block;
1101                         if (first_block > highest_block)
1102                                 highest_block = first_block;
1103                 }
1104
1105                 /*
1106                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1107                  */
1108                 ret = add_swap_extent(sis, page_no, 1, first_block);
1109                 if (ret < 0)
1110                         goto out;
1111                 nr_extents += ret;
1112                 page_no++;
1113                 probe_block += blocks_per_page;
1114 reprobe:
1115                 continue;
1116         }
1117         ret = nr_extents;
1118         *span = 1 + highest_block - lowest_block;
1119         if (page_no == 0)
1120                 page_no = 1;    /* force Empty message */
1121         sis->max = page_no;
1122         sis->pages = page_no - 1;
1123         sis->highest_bit = page_no - 1;
1124 done:
1125         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1126                                         struct swap_extent, list);
1127         goto out;
1128 bad_bmap:
1129         printk(KERN_ERR "swapon: swapfile has holes\n");
1130         ret = -EINVAL;
1131 out:
1132         return ret;
1133 }
1134
1135 #if 0   /* We don't need this yet */
1136 #include <linux/backing-dev.h>
1137 int page_queue_congested(struct page *page)
1138 {
1139         struct backing_dev_info *bdi;
1140
1141         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1142
1143         if (PageSwapCache(page)) {
1144                 swp_entry_t entry = { .val = page_private(page) };
1145                 struct swap_info_struct *sis;
1146
1147                 sis = get_swap_info_struct(swp_type(entry));
1148                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1149         } else
1150                 bdi = page->mapping->backing_dev_info;
1151         return bdi_write_congested(bdi);
1152 }
1153 #endif
1154
1155 asmlinkage long sys_swapoff(const char __user * specialfile)
1156 {
1157         struct swap_info_struct * p = NULL;
1158         unsigned short *swap_map;
1159         struct file *swap_file, *victim;
1160         struct address_space *mapping;
1161         struct inode *inode;
1162         char * pathname;
1163         int i, type, prev;
1164         int err;
1165         
1166         if (!capable(CAP_SYS_ADMIN))
1167                 return -EPERM;
1168
1169         pathname = getname(specialfile);
1170         err = PTR_ERR(pathname);
1171         if (IS_ERR(pathname))
1172                 goto out;
1173
1174         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1175         putname(pathname);
1176         err = PTR_ERR(victim);
1177         if (IS_ERR(victim))
1178                 goto out;
1179
1180         mapping = victim->f_mapping;
1181         prev = -1;
1182         spin_lock(&swap_lock);
1183         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1184                 p = swap_info + type;
1185                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1186                         if (p->swap_file->f_mapping == mapping)
1187                                 break;
1188                 }
1189                 prev = type;
1190         }
1191         if (type < 0) {
1192                 err = -EINVAL;
1193                 spin_unlock(&swap_lock);
1194                 goto out_dput;
1195         }
1196         if (!security_vm_enough_memory(p->pages))
1197                 vm_unacct_memory(p->pages);
1198         else {
1199                 err = -ENOMEM;
1200                 spin_unlock(&swap_lock);
1201                 goto out_dput;
1202         }
1203         if (prev < 0) {
1204                 swap_list.head = p->next;
1205         } else {
1206                 swap_info[prev].next = p->next;
1207         }
1208         if (type == swap_list.next) {
1209                 /* just pick something that's safe... */
1210                 swap_list.next = swap_list.head;
1211         }
1212         nr_swap_pages -= p->pages;
1213         total_swap_pages -= p->pages;
1214         p->flags &= ~SWP_WRITEOK;
1215         spin_unlock(&swap_lock);
1216
1217         current->flags |= PF_SWAPOFF;
1218         err = try_to_unuse(type);
1219         current->flags &= ~PF_SWAPOFF;
1220
1221         if (err) {
1222                 /* re-insert swap space back into swap_list */
1223                 spin_lock(&swap_lock);
1224                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1225                         if (p->prio >= swap_info[i].prio)
1226                                 break;
1227                 p->next = i;
1228                 if (prev < 0)
1229                         swap_list.head = swap_list.next = p - swap_info;
1230                 else
1231                         swap_info[prev].next = p - swap_info;
1232                 nr_swap_pages += p->pages;
1233                 total_swap_pages += p->pages;
1234                 p->flags |= SWP_WRITEOK;
1235                 spin_unlock(&swap_lock);
1236                 goto out_dput;
1237         }
1238
1239         /* wait for any unplug function to finish */
1240         down_write(&swap_unplug_sem);
1241         up_write(&swap_unplug_sem);
1242
1243         destroy_swap_extents(p);
1244         mutex_lock(&swapon_mutex);
1245         spin_lock(&swap_lock);
1246         drain_mmlist();
1247
1248         /* wait for anyone still in scan_swap_map */
1249         p->highest_bit = 0;             /* cuts scans short */
1250         while (p->flags >= SWP_SCANNING) {
1251                 spin_unlock(&swap_lock);
1252                 schedule_timeout_uninterruptible(1);
1253                 spin_lock(&swap_lock);
1254         }
1255
1256         swap_file = p->swap_file;
1257         p->swap_file = NULL;
1258         p->max = 0;
1259         swap_map = p->swap_map;
1260         p->swap_map = NULL;
1261         p->flags = 0;
1262         spin_unlock(&swap_lock);
1263         mutex_unlock(&swapon_mutex);
1264         vfree(swap_map);
1265         inode = mapping->host;
1266         if (S_ISBLK(inode->i_mode)) {
1267                 struct block_device *bdev = I_BDEV(inode);
1268                 set_blocksize(bdev, p->old_block_size);
1269                 bd_release(bdev);
1270         } else {
1271                 mutex_lock(&inode->i_mutex);
1272                 inode->i_flags &= ~S_SWAPFILE;
1273                 mutex_unlock(&inode->i_mutex);
1274         }
1275         filp_close(swap_file, NULL);
1276         err = 0;
1277
1278 out_dput:
1279         filp_close(victim, NULL);
1280 out:
1281         return err;
1282 }
1283
1284 #ifdef CONFIG_PROC_FS
1285 /* iterator */
1286 static void *swap_start(struct seq_file *swap, loff_t *pos)
1287 {
1288         struct swap_info_struct *ptr = swap_info;
1289         int i;
1290         loff_t l = *pos;
1291
1292         mutex_lock(&swapon_mutex);
1293
1294         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1295                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1296                         continue;
1297                 if (!l--)
1298                         return ptr;
1299         }
1300
1301         return NULL;
1302 }
1303
1304 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1305 {
1306         struct swap_info_struct *ptr = v;
1307         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1308
1309         for (++ptr; ptr < endptr; ptr++) {
1310                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1311                         continue;
1312                 ++*pos;
1313                 return ptr;
1314         }
1315
1316         return NULL;
1317 }
1318
1319 static void swap_stop(struct seq_file *swap, void *v)
1320 {
1321         mutex_unlock(&swapon_mutex);
1322 }
1323
1324 static int swap_show(struct seq_file *swap, void *v)
1325 {
1326         struct swap_info_struct *ptr = v;
1327         struct file *file;
1328         int len;
1329
1330         if (v == swap_info)
1331                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1332
1333         file = ptr->swap_file;
1334         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1335         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1336                        len < 40 ? 40 - len : 1, " ",
1337                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1338                                 "partition" : "file\t",
1339                        ptr->pages << (PAGE_SHIFT - 10),
1340                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1341                        ptr->prio);
1342         return 0;
1343 }
1344
1345 static struct seq_operations swaps_op = {
1346         .start =        swap_start,
1347         .next =         swap_next,
1348         .stop =         swap_stop,
1349         .show =         swap_show
1350 };
1351
1352 static int swaps_open(struct inode *inode, struct file *file)
1353 {
1354         return seq_open(file, &swaps_op);
1355 }
1356
1357 static struct file_operations proc_swaps_operations = {
1358         .open           = swaps_open,
1359         .read           = seq_read,
1360         .llseek         = seq_lseek,
1361         .release        = seq_release,
1362 };
1363
1364 static int __init procswaps_init(void)
1365 {
1366         struct proc_dir_entry *entry;
1367
1368         entry = create_proc_entry("swaps", 0, NULL);
1369         if (entry)
1370                 entry->proc_fops = &proc_swaps_operations;
1371         return 0;
1372 }
1373 __initcall(procswaps_init);
1374 #endif /* CONFIG_PROC_FS */
1375
1376 /*
1377  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1378  *
1379  * The swapon system call
1380  */
1381 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1382 {
1383         struct swap_info_struct * p;
1384         char *name = NULL;
1385         struct block_device *bdev = NULL;
1386         struct file *swap_file = NULL;
1387         struct address_space *mapping;
1388         unsigned int type;
1389         int i, prev;
1390         int error;
1391         static int least_priority;
1392         union swap_header *swap_header = NULL;
1393         int swap_header_version;
1394         unsigned int nr_good_pages = 0;
1395         int nr_extents = 0;
1396         sector_t span;
1397         unsigned long maxpages = 1;
1398         int swapfilesize;
1399         unsigned short *swap_map;
1400         struct page *page = NULL;
1401         struct inode *inode = NULL;
1402         int did_down = 0;
1403
1404         if (!capable(CAP_SYS_ADMIN))
1405                 return -EPERM;
1406         spin_lock(&swap_lock);
1407         p = swap_info;
1408         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1409                 if (!(p->flags & SWP_USED))
1410                         break;
1411         error = -EPERM;
1412         /*
1413          * Test if adding another swap device is possible. There are
1414          * two limiting factors: 1) the number of bits for the swap
1415          * type swp_entry_t definition and 2) the number of bits for
1416          * the swap type in the swap ptes as defined by the different
1417          * architectures. To honor both limitations a swap entry
1418          * with swap offset 0 and swap type ~0UL is created, encoded
1419          * to a swap pte, decoded to a swp_entry_t again and finally
1420          * the swap type part is extracted. This will mask all bits
1421          * from the initial ~0UL that can't be encoded in either the
1422          * swp_entry_t or the architecture definition of a swap pte.
1423          */
1424         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1425                 spin_unlock(&swap_lock);
1426                 goto out;
1427         }
1428         if (type >= nr_swapfiles)
1429                 nr_swapfiles = type+1;
1430         INIT_LIST_HEAD(&p->extent_list);
1431         p->flags = SWP_USED;
1432         p->swap_file = NULL;
1433         p->old_block_size = 0;
1434         p->swap_map = NULL;
1435         p->lowest_bit = 0;
1436         p->highest_bit = 0;
1437         p->cluster_nr = 0;
1438         p->inuse_pages = 0;
1439         p->next = -1;
1440         if (swap_flags & SWAP_FLAG_PREFER) {
1441                 p->prio =
1442                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1443         } else {
1444                 p->prio = --least_priority;
1445         }
1446         spin_unlock(&swap_lock);
1447         name = getname(specialfile);
1448         error = PTR_ERR(name);
1449         if (IS_ERR(name)) {
1450                 name = NULL;
1451                 goto bad_swap_2;
1452         }
1453         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1454         error = PTR_ERR(swap_file);
1455         if (IS_ERR(swap_file)) {
1456                 swap_file = NULL;
1457                 goto bad_swap_2;
1458         }
1459
1460         p->swap_file = swap_file;
1461         mapping = swap_file->f_mapping;
1462         inode = mapping->host;
1463
1464         error = -EBUSY;
1465         for (i = 0; i < nr_swapfiles; i++) {
1466                 struct swap_info_struct *q = &swap_info[i];
1467
1468                 if (i == type || !q->swap_file)
1469                         continue;
1470                 if (mapping == q->swap_file->f_mapping)
1471                         goto bad_swap;
1472         }
1473
1474         error = -EINVAL;
1475         if (S_ISBLK(inode->i_mode)) {
1476                 bdev = I_BDEV(inode);
1477                 error = bd_claim(bdev, sys_swapon);
1478                 if (error < 0) {
1479                         bdev = NULL;
1480                         error = -EINVAL;
1481                         goto bad_swap;
1482                 }
1483                 p->old_block_size = block_size(bdev);
1484                 error = set_blocksize(bdev, PAGE_SIZE);
1485                 if (error < 0)
1486                         goto bad_swap;
1487                 p->bdev = bdev;
1488         } else if (S_ISREG(inode->i_mode)) {
1489                 p->bdev = inode->i_sb->s_bdev;
1490                 mutex_lock(&inode->i_mutex);
1491                 did_down = 1;
1492                 if (IS_SWAPFILE(inode)) {
1493                         error = -EBUSY;
1494                         goto bad_swap;
1495                 }
1496         } else {
1497                 goto bad_swap;
1498         }
1499
1500         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1501
1502         /*
1503          * Read the swap header.
1504          */
1505         if (!mapping->a_ops->readpage) {
1506                 error = -EINVAL;
1507                 goto bad_swap;
1508         }
1509         page = read_cache_page(mapping, 0,
1510                         (filler_t *)mapping->a_ops->readpage, swap_file);
1511         if (IS_ERR(page)) {
1512                 error = PTR_ERR(page);
1513                 goto bad_swap;
1514         }
1515         wait_on_page_locked(page);
1516         if (!PageUptodate(page))
1517                 goto bad_swap;
1518         kmap(page);
1519         swap_header = page_address(page);
1520
1521         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1522                 swap_header_version = 1;
1523         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1524                 swap_header_version = 2;
1525         else {
1526                 printk(KERN_ERR "Unable to find swap-space signature\n");
1527                 error = -EINVAL;
1528                 goto bad_swap;
1529         }
1530         
1531         switch (swap_header_version) {
1532         case 1:
1533                 printk(KERN_ERR "version 0 swap is no longer supported. "
1534                         "Use mkswap -v1 %s\n", name);
1535                 error = -EINVAL;
1536                 goto bad_swap;
1537         case 2:
1538                 /* Check the swap header's sub-version and the size of
1539                    the swap file and bad block lists */
1540                 if (swap_header->info.version != 1) {
1541                         printk(KERN_WARNING
1542                                "Unable to handle swap header version %d\n",
1543                                swap_header->info.version);
1544                         error = -EINVAL;
1545                         goto bad_swap;
1546                 }
1547
1548                 p->lowest_bit  = 1;
1549                 p->cluster_next = 1;
1550
1551                 /*
1552                  * Find out how many pages are allowed for a single swap
1553                  * device. There are two limiting factors: 1) the number of
1554                  * bits for the swap offset in the swp_entry_t type and
1555                  * 2) the number of bits in the a swap pte as defined by
1556                  * the different architectures. In order to find the
1557                  * largest possible bit mask a swap entry with swap type 0
1558                  * and swap offset ~0UL is created, encoded to a swap pte,
1559                  * decoded to a swp_entry_t again and finally the swap
1560                  * offset is extracted. This will mask all the bits from
1561                  * the initial ~0UL mask that can't be encoded in either
1562                  * the swp_entry_t or the architecture definition of a
1563                  * swap pte.
1564                  */
1565                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1566                 if (maxpages > swap_header->info.last_page)
1567                         maxpages = swap_header->info.last_page;
1568                 p->highest_bit = maxpages - 1;
1569
1570                 error = -EINVAL;
1571                 if (!maxpages)
1572                         goto bad_swap;
1573                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1574                         goto bad_swap;
1575                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1576                         goto bad_swap;
1577
1578                 /* OK, set up the swap map and apply the bad block list */
1579                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1580                         error = -ENOMEM;
1581                         goto bad_swap;
1582                 }
1583
1584                 error = 0;
1585                 memset(p->swap_map, 0, maxpages * sizeof(short));
1586                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1587                         int page_nr = swap_header->info.badpages[i];
1588                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1589                                 error = -EINVAL;
1590                         else
1591                                 p->swap_map[page_nr] = SWAP_MAP_BAD;
1592                 }
1593                 nr_good_pages = swap_header->info.last_page -
1594                                 swap_header->info.nr_badpages -
1595                                 1 /* header page */;
1596                 if (error)
1597                         goto bad_swap;
1598         }
1599
1600         if (swapfilesize && maxpages > swapfilesize) {
1601                 printk(KERN_WARNING
1602                        "Swap area shorter than signature indicates\n");
1603                 error = -EINVAL;
1604                 goto bad_swap;
1605         }
1606         if (nr_good_pages) {
1607                 p->swap_map[0] = SWAP_MAP_BAD;
1608                 p->max = maxpages;
1609                 p->pages = nr_good_pages;
1610                 nr_extents = setup_swap_extents(p, &span);
1611                 if (nr_extents < 0) {
1612                         error = nr_extents;
1613                         goto bad_swap;
1614                 }
1615                 nr_good_pages = p->pages;
1616         }
1617         if (!nr_good_pages) {
1618                 printk(KERN_WARNING "Empty swap-file\n");
1619                 error = -EINVAL;
1620                 goto bad_swap;
1621         }
1622
1623         mutex_lock(&swapon_mutex);
1624         spin_lock(&swap_lock);
1625         p->flags = SWP_ACTIVE;
1626         nr_swap_pages += nr_good_pages;
1627         total_swap_pages += nr_good_pages;
1628
1629         printk(KERN_INFO "Adding %uk swap on %s.  "
1630                         "Priority:%d extents:%d across:%lluk\n",
1631                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1632                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1633
1634         /* insert swap space into swap_list: */
1635         prev = -1;
1636         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1637                 if (p->prio >= swap_info[i].prio) {
1638                         break;
1639                 }
1640                 prev = i;
1641         }
1642         p->next = i;
1643         if (prev < 0) {
1644                 swap_list.head = swap_list.next = p - swap_info;
1645         } else {
1646                 swap_info[prev].next = p - swap_info;
1647         }
1648         spin_unlock(&swap_lock);
1649         mutex_unlock(&swapon_mutex);
1650         error = 0;
1651         goto out;
1652 bad_swap:
1653         if (bdev) {
1654                 set_blocksize(bdev, p->old_block_size);
1655                 bd_release(bdev);
1656         }
1657         destroy_swap_extents(p);
1658 bad_swap_2:
1659         spin_lock(&swap_lock);
1660         swap_map = p->swap_map;
1661         p->swap_file = NULL;
1662         p->swap_map = NULL;
1663         p->flags = 0;
1664         if (!(swap_flags & SWAP_FLAG_PREFER))
1665                 ++least_priority;
1666         spin_unlock(&swap_lock);
1667         vfree(swap_map);
1668         if (swap_file)
1669                 filp_close(swap_file, NULL);
1670 out:
1671         if (page && !IS_ERR(page)) {
1672                 kunmap(page);
1673                 page_cache_release(page);
1674         }
1675         if (name)
1676                 putname(name);
1677         if (did_down) {
1678                 if (!error)
1679                         inode->i_flags |= S_SWAPFILE;
1680                 mutex_unlock(&inode->i_mutex);
1681         }
1682         return error;
1683 }
1684
1685 void si_swapinfo(struct sysinfo *val)
1686 {
1687         unsigned int i;
1688         unsigned long nr_to_be_unused = 0;
1689
1690         spin_lock(&swap_lock);
1691         for (i = 0; i < nr_swapfiles; i++) {
1692                 if (!(swap_info[i].flags & SWP_USED) ||
1693                      (swap_info[i].flags & SWP_WRITEOK))
1694                         continue;
1695                 nr_to_be_unused += swap_info[i].inuse_pages;
1696         }
1697         val->freeswap = nr_swap_pages + nr_to_be_unused;
1698         val->totalswap = total_swap_pages + nr_to_be_unused;
1699         spin_unlock(&swap_lock);
1700         if (vx_flags(VXF_VIRT_MEM, 0))
1701                 vx_vsi_swapinfo(val);
1702 }
1703
1704 /*
1705  * Verify that a swap entry is valid and increment its swap map count.
1706  *
1707  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1708  * "permanent", but will be reclaimed by the next swapoff.
1709  */
1710 int swap_duplicate(swp_entry_t entry)
1711 {
1712         struct swap_info_struct * p;
1713         unsigned long offset, type;
1714         int result = 0;
1715
1716         type = swp_type(entry);
1717         if (type >= nr_swapfiles)
1718                 goto bad_file;
1719         p = type + swap_info;
1720         offset = swp_offset(entry);
1721
1722         spin_lock(&swap_lock);
1723         if (offset < p->max && p->swap_map[offset]) {
1724                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1725                         p->swap_map[offset]++;
1726                         result = 1;
1727                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1728                         if (swap_overflow++ < 5)
1729                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1730                         p->swap_map[offset] = SWAP_MAP_MAX;
1731                         result = 1;
1732                 }
1733         }
1734         spin_unlock(&swap_lock);
1735 out:
1736         return result;
1737
1738 bad_file:
1739         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1740         goto out;
1741 }
1742
1743 struct swap_info_struct *
1744 get_swap_info_struct(unsigned type)
1745 {
1746         return &swap_info[type];
1747 }
1748
1749 /*
1750  * swap_lock prevents swap_map being freed. Don't grab an extra
1751  * reference on the swaphandle, it doesn't matter if it becomes unused.
1752  */
1753 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1754 {
1755         int ret = 0, i = 1 << page_cluster;
1756         unsigned long toff;
1757         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1758
1759         if (!page_cluster)      /* no readahead */
1760                 return 0;
1761         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1762         if (!toff)              /* first page is swap header */
1763                 toff++, i--;
1764         *offset = toff;
1765
1766         spin_lock(&swap_lock);
1767         do {
1768                 /* Don't read-ahead past the end of the swap area */
1769                 if (toff >= swapdev->max)
1770                         break;
1771                 /* Don't read in free or bad pages */
1772                 if (!swapdev->swap_map[toff])
1773                         break;
1774                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1775                         break;
1776                 toff++;
1777                 ret++;
1778         } while (--i);
1779         spin_unlock(&swap_lock);
1780         return ret;
1781 }