vserver 1.9.3
[linux-2.6.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/suspend.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* How many pages shrink_cache() should reclaim */
67         int nr_to_reclaim;
68
69         /* Ask shrink_caches, or shrink_zone to scan at this priority */
70         unsigned int priority;
71
72         /* This context's GFP mask */
73         unsigned int gfp_mask;
74
75         int may_writepage;
76 };
77
78 /*
79  * The list of shrinker callbacks used by to apply pressure to
80  * ageable caches.
81  */
82 struct shrinker {
83         shrinker_t              shrinker;
84         struct list_head        list;
85         int                     seeks;  /* seeks to recreate an obj */
86         long                    nr;     /* objs pending delete */
87 };
88
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field)                    \
93         do {                                                            \
94                 if ((_page)->lru.prev != _base) {                       \
95                         struct page *prev;                              \
96                                                                         \
97                         prev = lru_to_page(&(_page->lru));              \
98                         prefetch(&prev->_field);                        \
99                 }                                                       \
100         } while (0)
101 #else
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
103 #endif
104
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
107         do {                                                            \
108                 if ((_page)->lru.prev != _base) {                       \
109                         struct page *prev;                              \
110                                                                         \
111                         prev = lru_to_page(&(_page->lru));              \
112                         prefetchw(&prev->_field);                       \
113                 }                                                       \
114         } while (0)
115 #else
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118
119 /*
120  * From 0 .. 100.  Higher means more swappy.
121  */
122 int vm_swappiness = 60;
123 static long total_memory;
124
125 static LIST_HEAD(shrinker_list);
126 static DECLARE_RWSEM(shrinker_rwsem);
127
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
132 {
133         struct shrinker *shrinker;
134
135         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
136         if (shrinker) {
137                 shrinker->shrinker = theshrinker;
138                 shrinker->seeks = seeks;
139                 shrinker->nr = 0;
140                 down_write(&shrinker_rwsem);
141                 list_add(&shrinker->list, &shrinker_list);
142                 up_write(&shrinker_rwsem);
143         }
144         return shrinker;
145 }
146 EXPORT_SYMBOL(set_shrinker);
147
148 /*
149  * Remove one
150  */
151 void remove_shrinker(struct shrinker *shrinker)
152 {
153         down_write(&shrinker_rwsem);
154         list_del(&shrinker->list);
155         up_write(&shrinker_rwsem);
156         kfree(shrinker);
157 }
158 EXPORT_SYMBOL(remove_shrinker);
159
160 #define SHRINK_BATCH 128
161 /*
162  * Call the shrink functions to age shrinkable caches
163  *
164  * Here we assume it costs one seek to replace a lru page and that it also
165  * takes a seek to recreate a cache object.  With this in mind we age equal
166  * percentages of the lru and ageable caches.  This should balance the seeks
167  * generated by these structures.
168  *
169  * If the vm encounted mapped pages on the LRU it increase the pressure on
170  * slab to avoid swapping.
171  *
172  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
173  *
174  * `lru_pages' represents the number of on-LRU pages in all the zones which
175  * are eligible for the caller's allocation attempt.  It is used for balancing
176  * slab reclaim versus page reclaim.
177  */
178 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
179                         unsigned long lru_pages)
180 {
181         struct shrinker *shrinker;
182
183         if (scanned == 0)
184                 scanned = SWAP_CLUSTER_MAX;
185
186         if (!down_read_trylock(&shrinker_rwsem))
187                 return 0;
188
189         list_for_each_entry(shrinker, &shrinker_list, list) {
190                 unsigned long long delta;
191                 unsigned long total_scan;
192
193                 delta = (4 * scanned) / shrinker->seeks;
194                 delta *= (*shrinker->shrinker)(0, gfp_mask);
195                 do_div(delta, lru_pages + 1);
196                 shrinker->nr += delta;
197                 if (shrinker->nr < 0)
198                         shrinker->nr = LONG_MAX;        /* It wrapped! */
199
200                 total_scan = shrinker->nr;
201                 shrinker->nr = 0;
202
203                 while (total_scan >= SHRINK_BATCH) {
204                         long this_scan = SHRINK_BATCH;
205                         int shrink_ret;
206
207                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
208                         if (shrink_ret == -1)
209                                 break;
210                         mod_page_state(slabs_scanned, this_scan);
211                         total_scan -= this_scan;
212
213                         cond_resched();
214                 }
215
216                 shrinker->nr += total_scan;
217         }
218         up_read(&shrinker_rwsem);
219         return 0;
220 }
221
222 /* Called without lock on whether page is mapped, so answer is unstable */
223 static inline int page_mapping_inuse(struct page *page)
224 {
225         struct address_space *mapping;
226
227         /* Page is in somebody's page tables. */
228         if (page_mapped(page))
229                 return 1;
230
231         /* Be more reluctant to reclaim swapcache than pagecache */
232         if (PageSwapCache(page))
233                 return 1;
234
235         mapping = page_mapping(page);
236         if (!mapping)
237                 return 0;
238
239         /* File is mmap'd by somebody? */
240         return mapping_mapped(mapping);
241 }
242
243 static inline int is_page_cache_freeable(struct page *page)
244 {
245         return page_count(page) - !!PagePrivate(page) == 2;
246 }
247
248 static int may_write_to_queue(struct backing_dev_info *bdi)
249 {
250         if (current_is_kswapd())
251                 return 1;
252         if (current_is_pdflush())       /* This is unlikely, but why not... */
253                 return 1;
254         if (!bdi_write_congested(bdi))
255                 return 1;
256         if (bdi == current->backing_dev_info)
257                 return 1;
258         return 0;
259 }
260
261 /*
262  * We detected a synchronous write error writing a page out.  Probably
263  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
264  * fsync(), msync() or close().
265  *
266  * The tricky part is that after writepage we cannot touch the mapping: nothing
267  * prevents it from being freed up.  But we have a ref on the page and once
268  * that page is locked, the mapping is pinned.
269  *
270  * We're allowed to run sleeping lock_page() here because we know the caller has
271  * __GFP_FS.
272  */
273 static void handle_write_error(struct address_space *mapping,
274                                 struct page *page, int error)
275 {
276         lock_page(page);
277         if (page_mapping(page) == mapping) {
278                 if (error == -ENOSPC)
279                         set_bit(AS_ENOSPC, &mapping->flags);
280                 else
281                         set_bit(AS_EIO, &mapping->flags);
282         }
283         unlock_page(page);
284 }
285
286 /*
287  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
288  */
289 static pageout_t pageout(struct page *page, struct address_space *mapping)
290 {
291         /*
292          * If the page is dirty, only perform writeback if that write
293          * will be non-blocking.  To prevent this allocation from being
294          * stalled by pagecache activity.  But note that there may be
295          * stalls if we need to run get_block().  We could test
296          * PagePrivate for that.
297          *
298          * If this process is currently in generic_file_write() against
299          * this page's queue, we can perform writeback even if that
300          * will block.
301          *
302          * If the page is swapcache, write it back even if that would
303          * block, for some throttling. This happens by accident, because
304          * swap_backing_dev_info is bust: it doesn't reflect the
305          * congestion state of the swapdevs.  Easy to fix, if needed.
306          * See swapfile.c:page_queue_congested().
307          */
308         if (!is_page_cache_freeable(page))
309                 return PAGE_KEEP;
310         if (!mapping)
311                 return PAGE_KEEP;
312         if (mapping->a_ops->writepage == NULL)
313                 return PAGE_ACTIVATE;
314         if (!may_write_to_queue(mapping->backing_dev_info))
315                 return PAGE_KEEP;
316
317         if (clear_page_dirty_for_io(page)) {
318                 int res;
319                 struct writeback_control wbc = {
320                         .sync_mode = WB_SYNC_NONE,
321                         .nr_to_write = SWAP_CLUSTER_MAX,
322                         .nonblocking = 1,
323                         .for_reclaim = 1,
324                 };
325
326                 SetPageReclaim(page);
327                 res = mapping->a_ops->writepage(page, &wbc);
328                 if (res < 0)
329                         handle_write_error(mapping, page, res);
330                 if (res == WRITEPAGE_ACTIVATE) {
331                         ClearPageReclaim(page);
332                         return PAGE_ACTIVATE;
333                 }
334                 if (!PageWriteback(page)) {
335                         /* synchronous write or broken a_ops? */
336                         ClearPageReclaim(page);
337                 }
338
339                 return PAGE_SUCCESS;
340         }
341
342         return PAGE_CLEAN;
343 }
344
345 /*
346  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
347  */
348 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
349 {
350         LIST_HEAD(ret_pages);
351         struct pagevec freed_pvec;
352         int pgactivate = 0;
353         int reclaimed = 0;
354
355         cond_resched();
356
357         pagevec_init(&freed_pvec, 1);
358         while (!list_empty(page_list)) {
359                 struct address_space *mapping;
360                 struct page *page;
361                 int may_enter_fs;
362                 int referenced;
363
364                 page = lru_to_page(page_list);
365                 list_del(&page->lru);
366
367                 if (TestSetPageLocked(page))
368                         goto keep;
369
370                 BUG_ON(PageActive(page));
371
372                 if (PageWriteback(page))
373                         goto keep_locked;
374
375                 sc->nr_scanned++;
376                 /* Double the slab pressure for mapped and swapcache pages */
377                 if (page_mapped(page) || PageSwapCache(page))
378                         sc->nr_scanned++;
379
380                 referenced = page_referenced(page, 1);
381                 /* In active use or really unfreeable?  Activate it. */
382                 if (referenced && page_mapping_inuse(page))
383                         goto activate_locked;
384
385 #ifdef CONFIG_SWAP
386                 /*
387                  * Anonymous process memory has backing store?
388                  * Try to allocate it some swap space here.
389                  */
390                 if (PageAnon(page) && !PageSwapCache(page)) {
391                         if (!add_to_swap(page))
392                                 goto activate_locked;
393                 }
394 #endif /* CONFIG_SWAP */
395
396                 mapping = page_mapping(page);
397                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
398                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
399
400                 /*
401                  * The page is mapped into the page tables of one or more
402                  * processes. Try to unmap it here.
403                  */
404                 if (page_mapped(page) && mapping) {
405                         switch (try_to_unmap(page)) {
406                         case SWAP_FAIL:
407                                 goto activate_locked;
408                         case SWAP_AGAIN:
409                                 goto keep_locked;
410                         case SWAP_SUCCESS:
411                                 ; /* try to free the page below */
412                         }
413                 }
414
415                 if (PageDirty(page)) {
416                         if (referenced)
417                                 goto keep_locked;
418                         if (!may_enter_fs)
419                                 goto keep_locked;
420                         if (laptop_mode && !sc->may_writepage)
421                                 goto keep_locked;
422
423                         /* Page is dirty, try to write it out here */
424                         switch(pageout(page, mapping)) {
425                         case PAGE_KEEP:
426                                 goto keep_locked;
427                         case PAGE_ACTIVATE:
428                                 goto activate_locked;
429                         case PAGE_SUCCESS:
430                                 if (PageWriteback(page) || PageDirty(page))
431                                         goto keep;
432                                 /*
433                                  * A synchronous write - probably a ramdisk.  Go
434                                  * ahead and try to reclaim the page.
435                                  */
436                                 if (TestSetPageLocked(page))
437                                         goto keep;
438                                 if (PageDirty(page) || PageWriteback(page))
439                                         goto keep_locked;
440                                 mapping = page_mapping(page);
441                         case PAGE_CLEAN:
442                                 ; /* try to free the page below */
443                         }
444                 }
445
446                 /*
447                  * If the page has buffers, try to free the buffer mappings
448                  * associated with this page. If we succeed we try to free
449                  * the page as well.
450                  *
451                  * We do this even if the page is PageDirty().
452                  * try_to_release_page() does not perform I/O, but it is
453                  * possible for a page to have PageDirty set, but it is actually
454                  * clean (all its buffers are clean).  This happens if the
455                  * buffers were written out directly, with submit_bh(). ext3
456                  * will do this, as well as the blockdev mapping. 
457                  * try_to_release_page() will discover that cleanness and will
458                  * drop the buffers and mark the page clean - it can be freed.
459                  *
460                  * Rarely, pages can have buffers and no ->mapping.  These are
461                  * the pages which were not successfully invalidated in
462                  * truncate_complete_page().  We try to drop those buffers here
463                  * and if that worked, and the page is no longer mapped into
464                  * process address space (page_count == 1) it can be freed.
465                  * Otherwise, leave the page on the LRU so it is swappable.
466                  */
467                 if (PagePrivate(page)) {
468                         if (!try_to_release_page(page, sc->gfp_mask))
469                                 goto activate_locked;
470                         if (!mapping && page_count(page) == 1)
471                                 goto free_it;
472                 }
473
474                 if (!mapping)
475                         goto keep_locked;       /* truncate got there first */
476
477                 spin_lock_irq(&mapping->tree_lock);
478
479                 /*
480                  * The non-racy check for busy page.  It is critical to check
481                  * PageDirty _after_ making sure that the page is freeable and
482                  * not in use by anybody.       (pagecache + us == 2)
483                  */
484                 if (page_count(page) != 2 || PageDirty(page)) {
485                         spin_unlock_irq(&mapping->tree_lock);
486                         goto keep_locked;
487                 }
488
489 #ifdef CONFIG_SWAP
490                 if (PageSwapCache(page)) {
491                         swp_entry_t swap = { .val = page->private };
492                         __delete_from_swap_cache(page);
493                         spin_unlock_irq(&mapping->tree_lock);
494                         swap_free(swap);
495                         __put_page(page);       /* The pagecache ref */
496                         goto free_it;
497                 }
498 #endif /* CONFIG_SWAP */
499
500                 __remove_from_page_cache(page);
501                 spin_unlock_irq(&mapping->tree_lock);
502                 __put_page(page);
503
504 free_it:
505                 unlock_page(page);
506                 reclaimed++;
507                 if (!pagevec_add(&freed_pvec, page))
508                         __pagevec_release_nonlru(&freed_pvec);
509                 continue;
510
511 activate_locked:
512                 SetPageActive(page);
513                 pgactivate++;
514 keep_locked:
515                 unlock_page(page);
516 keep:
517                 list_add(&page->lru, &ret_pages);
518                 BUG_ON(PageLRU(page));
519         }
520         list_splice(&ret_pages, page_list);
521         if (pagevec_count(&freed_pvec))
522                 __pagevec_release_nonlru(&freed_pvec);
523         mod_page_state(pgactivate, pgactivate);
524         sc->nr_reclaimed += reclaimed;
525         return reclaimed;
526 }
527
528 /*
529  * zone->lru_lock is heavily contented.  We relieve it by quickly privatising
530  * a batch of pages and working on them outside the lock.  Any pages which were
531  * not freed will be added back to the LRU.
532  *
533  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
534  *
535  * For pagecache intensive workloads, the first loop here is the hottest spot
536  * in the kernel (apart from the copy_*_user functions).
537  */
538 static void shrink_cache(struct zone *zone, struct scan_control *sc)
539 {
540         LIST_HEAD(page_list);
541         struct pagevec pvec;
542         int max_scan = sc->nr_to_scan;
543
544         pagevec_init(&pvec, 1);
545
546         lru_add_drain();
547         spin_lock_irq(&zone->lru_lock);
548         while (max_scan > 0) {
549                 struct page *page;
550                 int nr_taken = 0;
551                 int nr_scan = 0;
552                 int nr_freed;
553
554                 while (nr_scan++ < SWAP_CLUSTER_MAX &&
555                                 !list_empty(&zone->inactive_list)) {
556                         page = lru_to_page(&zone->inactive_list);
557
558                         prefetchw_prev_lru_page(page,
559                                                 &zone->inactive_list, flags);
560
561                         if (!TestClearPageLRU(page))
562                                 BUG();
563                         list_del(&page->lru);
564                         if (get_page_testone(page)) {
565                                 /*
566                                  * It is being freed elsewhere
567                                  */
568                                 __put_page(page);
569                                 SetPageLRU(page);
570                                 list_add(&page->lru, &zone->inactive_list);
571                                 continue;
572                         }
573                         list_add(&page->lru, &page_list);
574                         nr_taken++;
575                 }
576                 zone->nr_inactive -= nr_taken;
577                 zone->pages_scanned += nr_taken;
578                 spin_unlock_irq(&zone->lru_lock);
579
580                 if (nr_taken == 0)
581                         goto done;
582
583                 max_scan -= nr_scan;
584                 if (current_is_kswapd())
585                         mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
586                 else
587                         mod_page_state_zone(zone, pgscan_direct, nr_scan);
588                 nr_freed = shrink_list(&page_list, sc);
589                 if (current_is_kswapd())
590                         mod_page_state(kswapd_steal, nr_freed);
591                 mod_page_state_zone(zone, pgsteal, nr_freed);
592                 sc->nr_to_reclaim -= nr_freed;
593
594                 spin_lock_irq(&zone->lru_lock);
595                 /*
596                  * Put back any unfreeable pages.
597                  */
598                 while (!list_empty(&page_list)) {
599                         page = lru_to_page(&page_list);
600                         if (TestSetPageLRU(page))
601                                 BUG();
602                         list_del(&page->lru);
603                         if (PageActive(page))
604                                 add_page_to_active_list(zone, page);
605                         else
606                                 add_page_to_inactive_list(zone, page);
607                         if (!pagevec_add(&pvec, page)) {
608                                 spin_unlock_irq(&zone->lru_lock);
609                                 __pagevec_release(&pvec);
610                                 spin_lock_irq(&zone->lru_lock);
611                         }
612                 }
613         }
614         spin_unlock_irq(&zone->lru_lock);
615 done:
616         pagevec_release(&pvec);
617 }
618
619 /*
620  * This moves pages from the active list to the inactive list.
621  *
622  * We move them the other way if the page is referenced by one or more
623  * processes, from rmap.
624  *
625  * If the pages are mostly unmapped, the processing is fast and it is
626  * appropriate to hold zone->lru_lock across the whole operation.  But if
627  * the pages are mapped, the processing is slow (page_referenced()) so we
628  * should drop zone->lru_lock around each page.  It's impossible to balance
629  * this, so instead we remove the pages from the LRU while processing them.
630  * It is safe to rely on PG_active against the non-LRU pages in here because
631  * nobody will play with that bit on a non-LRU page.
632  *
633  * The downside is that we have to touch page->_count against each page.
634  * But we had to alter page->flags anyway.
635  */
636 static void
637 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
638 {
639         int pgmoved;
640         int pgdeactivate = 0;
641         int pgscanned = 0;
642         int nr_pages = sc->nr_to_scan;
643         LIST_HEAD(l_hold);      /* The pages which were snipped off */
644         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
645         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
646         struct page *page;
647         struct pagevec pvec;
648         int reclaim_mapped = 0;
649         long mapped_ratio;
650         long distress;
651         long swap_tendency;
652
653         lru_add_drain();
654         pgmoved = 0;
655         spin_lock_irq(&zone->lru_lock);
656         while (pgscanned < nr_pages && !list_empty(&zone->active_list)) {
657                 page = lru_to_page(&zone->active_list);
658                 prefetchw_prev_lru_page(page, &zone->active_list, flags);
659                 if (!TestClearPageLRU(page))
660                         BUG();
661                 list_del(&page->lru);
662                 if (get_page_testone(page)) {
663                         /*
664                          * It was already free!  release_pages() or put_page()
665                          * are about to remove it from the LRU and free it. So
666                          * put the refcount back and put the page back on the
667                          * LRU
668                          */
669                         __put_page(page);
670                         SetPageLRU(page);
671                         list_add(&page->lru, &zone->active_list);
672                 } else {
673                         list_add(&page->lru, &l_hold);
674                         pgmoved++;
675                 }
676                 pgscanned++;
677         }
678         zone->nr_active -= pgmoved;
679         spin_unlock_irq(&zone->lru_lock);
680
681         /*
682          * `distress' is a measure of how much trouble we're having reclaiming
683          * pages.  0 -> no problems.  100 -> great trouble.
684          */
685         distress = 100 >> zone->prev_priority;
686
687         /*
688          * The point of this algorithm is to decide when to start reclaiming
689          * mapped memory instead of just pagecache.  Work out how much memory
690          * is mapped.
691          */
692         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
693
694         /*
695          * Now decide how much we really want to unmap some pages.  The mapped
696          * ratio is downgraded - just because there's a lot of mapped memory
697          * doesn't necessarily mean that page reclaim isn't succeeding.
698          *
699          * The distress ratio is important - we don't want to start going oom.
700          *
701          * A 100% value of vm_swappiness overrides this algorithm altogether.
702          */
703         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
704
705         /*
706          * Now use this metric to decide whether to start moving mapped memory
707          * onto the inactive list.
708          */
709         if (swap_tendency >= 100)
710                 reclaim_mapped = 1;
711
712         while (!list_empty(&l_hold)) {
713                 page = lru_to_page(&l_hold);
714                 list_del(&page->lru);
715                 if (page_mapped(page)) {
716                         if (!reclaim_mapped ||
717                             (total_swap_pages == 0 && PageAnon(page)) ||
718                             page_referenced(page, 0)) {
719                                 list_add(&page->lru, &l_active);
720                                 continue;
721                         }
722                 }
723                 list_add(&page->lru, &l_inactive);
724         }
725
726         pagevec_init(&pvec, 1);
727         pgmoved = 0;
728         spin_lock_irq(&zone->lru_lock);
729         while (!list_empty(&l_inactive)) {
730                 page = lru_to_page(&l_inactive);
731                 prefetchw_prev_lru_page(page, &l_inactive, flags);
732                 if (TestSetPageLRU(page))
733                         BUG();
734                 if (!TestClearPageActive(page))
735                         BUG();
736                 list_move(&page->lru, &zone->inactive_list);
737                 pgmoved++;
738                 if (!pagevec_add(&pvec, page)) {
739                         zone->nr_inactive += pgmoved;
740                         spin_unlock_irq(&zone->lru_lock);
741                         pgdeactivate += pgmoved;
742                         pgmoved = 0;
743                         if (buffer_heads_over_limit)
744                                 pagevec_strip(&pvec);
745                         __pagevec_release(&pvec);
746                         spin_lock_irq(&zone->lru_lock);
747                 }
748         }
749         zone->nr_inactive += pgmoved;
750         pgdeactivate += pgmoved;
751         if (buffer_heads_over_limit) {
752                 spin_unlock_irq(&zone->lru_lock);
753                 pagevec_strip(&pvec);
754                 spin_lock_irq(&zone->lru_lock);
755         }
756
757         pgmoved = 0;
758         while (!list_empty(&l_active)) {
759                 page = lru_to_page(&l_active);
760                 prefetchw_prev_lru_page(page, &l_active, flags);
761                 if (TestSetPageLRU(page))
762                         BUG();
763                 BUG_ON(!PageActive(page));
764                 list_move(&page->lru, &zone->active_list);
765                 pgmoved++;
766                 if (!pagevec_add(&pvec, page)) {
767                         zone->nr_active += pgmoved;
768                         pgmoved = 0;
769                         spin_unlock_irq(&zone->lru_lock);
770                         __pagevec_release(&pvec);
771                         spin_lock_irq(&zone->lru_lock);
772                 }
773         }
774         zone->nr_active += pgmoved;
775         spin_unlock_irq(&zone->lru_lock);
776         pagevec_release(&pvec);
777
778         mod_page_state_zone(zone, pgrefill, pgscanned);
779         mod_page_state(pgdeactivate, pgdeactivate);
780 }
781
782 /*
783  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
784  */
785 static void
786 shrink_zone(struct zone *zone, struct scan_control *sc)
787 {
788         unsigned long nr_active;
789         unsigned long nr_inactive;
790
791         /*
792          * Add one to `nr_to_scan' just to make sure that the kernel will
793          * slowly sift through the active list.
794          */
795         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
796         nr_active = zone->nr_scan_active;
797         if (nr_active >= SWAP_CLUSTER_MAX)
798                 zone->nr_scan_active = 0;
799         else
800                 nr_active = 0;
801
802         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
803         nr_inactive = zone->nr_scan_inactive;
804         if (nr_inactive >= SWAP_CLUSTER_MAX)
805                 zone->nr_scan_inactive = 0;
806         else
807                 nr_inactive = 0;
808
809         sc->nr_to_reclaim = SWAP_CLUSTER_MAX;
810
811         while (nr_active || nr_inactive) {
812                 if (nr_active) {
813                         sc->nr_to_scan = min(nr_active,
814                                         (unsigned long)SWAP_CLUSTER_MAX);
815                         nr_active -= sc->nr_to_scan;
816                         refill_inactive_zone(zone, sc);
817                 }
818
819                 if (nr_inactive) {
820                         sc->nr_to_scan = min(nr_inactive,
821                                         (unsigned long)SWAP_CLUSTER_MAX);
822                         nr_inactive -= sc->nr_to_scan;
823                         shrink_cache(zone, sc);
824                         if (sc->nr_to_reclaim <= 0)
825                                 break;
826                 }
827         }
828 }
829
830 /*
831  * This is the direct reclaim path, for page-allocating processes.  We only
832  * try to reclaim pages from zones which will satisfy the caller's allocation
833  * request.
834  *
835  * We reclaim from a zone even if that zone is over pages_high.  Because:
836  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
837  *    allocation or
838  * b) The zones may be over pages_high but they must go *over* pages_high to
839  *    satisfy the `incremental min' zone defense algorithm.
840  *
841  * Returns the number of reclaimed pages.
842  *
843  * If a zone is deemed to be full of pinned pages then just give it a light
844  * scan then give up on it.
845  */
846 static void
847 shrink_caches(struct zone **zones, struct scan_control *sc)
848 {
849         int i;
850
851         for (i = 0; zones[i] != NULL; i++) {
852                 struct zone *zone = zones[i];
853
854                 if (zone->present_pages == 0)
855                         continue;
856
857                 zone->temp_priority = sc->priority;
858                 if (zone->prev_priority > sc->priority)
859                         zone->prev_priority = sc->priority;
860
861                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
862                         continue;       /* Let kswapd poll it */
863
864                 shrink_zone(zone, sc);
865         }
866 }
867  
868 /*
869  * This is the main entry point to direct page reclaim.
870  *
871  * If a full scan of the inactive list fails to free enough memory then we
872  * are "out of memory" and something needs to be killed.
873  *
874  * If the caller is !__GFP_FS then the probability of a failure is reasonably
875  * high - the zone may be full of dirty or under-writeback pages, which this
876  * caller can't do much about.  We kick pdflush and take explicit naps in the
877  * hope that some of these pages can be written.  But if the allocating task
878  * holds filesystem locks which prevent writeout this might not work, and the
879  * allocation attempt will fail.
880  */
881 int try_to_free_pages(struct zone **zones,
882                 unsigned int gfp_mask, unsigned int order)
883 {
884         int priority;
885         int ret = 0;
886         int total_scanned = 0, total_reclaimed = 0;
887         struct reclaim_state *reclaim_state = current->reclaim_state;
888         struct scan_control sc;
889         unsigned long lru_pages = 0;
890         int i;
891
892         sc.gfp_mask = gfp_mask;
893         sc.may_writepage = 0;
894
895         inc_page_state(allocstall);
896
897         for (i = 0; zones[i] != NULL; i++) {
898                 struct zone *zone = zones[i];
899
900                 zone->temp_priority = DEF_PRIORITY;
901                 lru_pages += zone->nr_active + zone->nr_inactive;
902         }
903
904         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
905                 sc.nr_mapped = read_page_state(nr_mapped);
906                 sc.nr_scanned = 0;
907                 sc.nr_reclaimed = 0;
908                 sc.priority = priority;
909                 shrink_caches(zones, &sc);
910                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
911                 if (reclaim_state) {
912                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
913                         reclaim_state->reclaimed_slab = 0;
914                 }
915                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) {
916                         ret = 1;
917                         goto out;
918                 }
919                 total_scanned += sc.nr_scanned;
920                 total_reclaimed += sc.nr_reclaimed;
921
922                 /*
923                  * Try to write back as many pages as we just scanned.  This
924                  * tends to cause slow streaming writers to write data to the
925                  * disk smoothly, at the dirtying rate, which is nice.   But
926                  * that's undesirable in laptop mode, where we *want* lumpy
927                  * writeout.  So in laptop mode, write out the whole world.
928                  */
929                 if (total_scanned > SWAP_CLUSTER_MAX + SWAP_CLUSTER_MAX/2) {
930                         wakeup_bdflush(laptop_mode ? 0 : total_scanned);
931                         sc.may_writepage = 1;
932                 }
933
934                 /* Take a nap, wait for some writeback to complete */
935                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
936                         blk_congestion_wait(WRITE, HZ/10);
937         }
938         if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
939                 out_of_memory(gfp_mask);
940 out:
941         for (i = 0; zones[i] != 0; i++)
942                 zones[i]->prev_priority = zones[i]->temp_priority;
943         return ret;
944 }
945
946 /*
947  * For kswapd, balance_pgdat() will work across all this node's zones until
948  * they are all at pages_high.
949  *
950  * If `nr_pages' is non-zero then it is the number of pages which are to be
951  * reclaimed, regardless of the zone occupancies.  This is a software suspend
952  * special.
953  *
954  * Returns the number of pages which were actually freed.
955  *
956  * There is special handling here for zones which are full of pinned pages.
957  * This can happen if the pages are all mlocked, or if they are all used by
958  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
959  * What we do is to detect the case where all pages in the zone have been
960  * scanned twice and there has been zero successful reclaim.  Mark the zone as
961  * dead and from now on, only perform a short scan.  Basically we're polling
962  * the zone for when the problem goes away.
963  *
964  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
965  * zones which have free_pages > pages_high, but once a zone is found to have
966  * free_pages <= pages_high, we scan that zone and the lower zones regardless
967  * of the number of free pages in the lower zones.  This interoperates with
968  * the page allocator fallback scheme to ensure that aging of pages is balanced
969  * across the zones.
970  */
971 static int balance_pgdat(pg_data_t *pgdat, int nr_pages)
972 {
973         int to_free = nr_pages;
974         int all_zones_ok;
975         int priority;
976         int i;
977         int total_scanned, total_reclaimed;
978         struct reclaim_state *reclaim_state = current->reclaim_state;
979         struct scan_control sc;
980
981 loop_again:
982         total_scanned = 0;
983         total_reclaimed = 0;
984         sc.gfp_mask = GFP_KERNEL;
985         sc.may_writepage = 0;
986         sc.nr_mapped = read_page_state(nr_mapped);
987
988         inc_page_state(pageoutrun);
989
990         for (i = 0; i < pgdat->nr_zones; i++) {
991                 struct zone *zone = pgdat->node_zones + i;
992
993                 zone->temp_priority = DEF_PRIORITY;
994         }
995
996         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
997                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
998                 unsigned long lru_pages = 0;
999
1000                 all_zones_ok = 1;
1001
1002                 if (nr_pages == 0) {
1003                         /*
1004                          * Scan in the highmem->dma direction for the highest
1005                          * zone which needs scanning
1006                          */
1007                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1008                                 struct zone *zone = pgdat->node_zones + i;
1009
1010                                 if (zone->present_pages == 0)
1011                                         continue;
1012
1013                                 if (zone->all_unreclaimable &&
1014                                                 priority != DEF_PRIORITY)
1015                                         continue;
1016
1017                                 if (zone->free_pages <= zone->pages_high) {
1018                                         end_zone = i;
1019                                         goto scan;
1020                                 }
1021                         }
1022                         goto out;
1023                 } else {
1024                         end_zone = pgdat->nr_zones - 1;
1025                 }
1026 scan:
1027                 for (i = 0; i <= end_zone; i++) {
1028                         struct zone *zone = pgdat->node_zones + i;
1029
1030                         lru_pages += zone->nr_active + zone->nr_inactive;
1031                 }
1032
1033                 /*
1034                  * Now scan the zone in the dma->highmem direction, stopping
1035                  * at the last zone which needs scanning.
1036                  *
1037                  * We do this because the page allocator works in the opposite
1038                  * direction.  This prevents the page allocator from allocating
1039                  * pages behind kswapd's direction of progress, which would
1040                  * cause too much scanning of the lower zones.
1041                  */
1042                 for (i = 0; i <= end_zone; i++) {
1043                         struct zone *zone = pgdat->node_zones + i;
1044
1045                         if (zone->present_pages == 0)
1046                                 continue;
1047
1048                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1049                                 continue;
1050
1051                         if (nr_pages == 0) {    /* Not software suspend */
1052                                 if (zone->free_pages <= zone->pages_high)
1053                                         all_zones_ok = 0;
1054                         }
1055                         zone->temp_priority = priority;
1056                         if (zone->prev_priority > priority)
1057                                 zone->prev_priority = priority;
1058                         sc.nr_scanned = 0;
1059                         sc.nr_reclaimed = 0;
1060                         sc.priority = priority;
1061                         shrink_zone(zone, &sc);
1062                         reclaim_state->reclaimed_slab = 0;
1063                         shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages);
1064                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1065                         total_reclaimed += sc.nr_reclaimed;
1066                         if (zone->all_unreclaimable)
1067                                 continue;
1068                         if (zone->pages_scanned >= (zone->nr_active +
1069                                                         zone->nr_inactive) * 4)
1070                                 zone->all_unreclaimable = 1;
1071                         /*
1072                          * If we've done a decent amount of scanning and
1073                          * the reclaim ratio is low, start doing writepage
1074                          * even in laptop mode
1075                          */
1076                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1077                             total_scanned > total_reclaimed+total_reclaimed/2)
1078                                 sc.may_writepage = 1;
1079                 }
1080                 if (nr_pages && to_free > total_reclaimed)
1081                         continue;       /* swsusp: need to do more work */
1082                 if (all_zones_ok)
1083                         break;          /* kswapd: all done */
1084                 /*
1085                  * OK, kswapd is getting into trouble.  Take a nap, then take
1086                  * another pass across the zones.
1087                  */
1088                 if (total_scanned && priority < DEF_PRIORITY - 2)
1089                         blk_congestion_wait(WRITE, HZ/10);
1090
1091                 /*
1092                  * We do this so kswapd doesn't build up large priorities for
1093                  * example when it is freeing in parallel with allocators. It
1094                  * matches the direct reclaim path behaviour in terms of impact
1095                  * on zone->*_priority.
1096                  */
1097                 if (total_reclaimed >= SWAP_CLUSTER_MAX)
1098                         break;
1099         }
1100 out:
1101         for (i = 0; i < pgdat->nr_zones; i++) {
1102                 struct zone *zone = pgdat->node_zones + i;
1103
1104                 zone->prev_priority = zone->temp_priority;
1105         }
1106         if (!all_zones_ok) {
1107                 cond_resched();
1108                 goto loop_again;
1109         }
1110
1111         return total_reclaimed;
1112 }
1113
1114 /*
1115  * The background pageout daemon, started as a kernel thread
1116  * from the init process. 
1117  *
1118  * This basically trickles out pages so that we have _some_
1119  * free memory available even if there is no other activity
1120  * that frees anything up. This is needed for things like routing
1121  * etc, where we otherwise might have all activity going on in
1122  * asynchronous contexts that cannot page things out.
1123  *
1124  * If there are applications that are active memory-allocators
1125  * (most normal use), this basically shouldn't matter.
1126  */
1127 static int kswapd(void *p)
1128 {
1129         pg_data_t *pgdat = (pg_data_t*)p;
1130         struct task_struct *tsk = current;
1131         DEFINE_WAIT(wait);
1132         struct reclaim_state reclaim_state = {
1133                 .reclaimed_slab = 0,
1134         };
1135         cpumask_t cpumask;
1136
1137         daemonize("kswapd%d", pgdat->node_id);
1138         cpumask = node_to_cpumask(pgdat->node_id);
1139         if (!cpus_empty(cpumask))
1140                 set_cpus_allowed(tsk, cpumask);
1141         current->reclaim_state = &reclaim_state;
1142
1143         /*
1144          * Tell the memory management that we're a "memory allocator",
1145          * and that if we need more memory we should get access to it
1146          * regardless (see "__alloc_pages()"). "kswapd" should
1147          * never get caught in the normal page freeing logic.
1148          *
1149          * (Kswapd normally doesn't need memory anyway, but sometimes
1150          * you need a small amount of memory in order to be able to
1151          * page out something else, and this flag essentially protects
1152          * us from recursively trying to free more memory as we're
1153          * trying to free the first piece of memory in the first place).
1154          */
1155         tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1156
1157         for ( ; ; ) {
1158                 if (current->flags & PF_FREEZE)
1159                         refrigerator(PF_FREEZE);
1160                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1161                 schedule();
1162                 finish_wait(&pgdat->kswapd_wait, &wait);
1163
1164                 balance_pgdat(pgdat, 0);
1165         }
1166         return 0;
1167 }
1168
1169 /*
1170  * A zone is low on free memory, so wake its kswapd task to service it.
1171  */
1172 void wakeup_kswapd(struct zone *zone)
1173 {
1174         if (zone->present_pages == 0)
1175                 return;
1176         if (zone->free_pages > zone->pages_low)
1177                 return;
1178         if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1179                 return;
1180         wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1181 }
1182
1183 #ifdef CONFIG_PM
1184 /*
1185  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1186  * pages.
1187  */
1188 int shrink_all_memory(int nr_pages)
1189 {
1190         pg_data_t *pgdat;
1191         int nr_to_free = nr_pages;
1192         int ret = 0;
1193         struct reclaim_state reclaim_state = {
1194                 .reclaimed_slab = 0,
1195         };
1196
1197         current->reclaim_state = &reclaim_state;
1198         for_each_pgdat(pgdat) {
1199                 int freed;
1200                 freed = balance_pgdat(pgdat, nr_to_free);
1201                 ret += freed;
1202                 nr_to_free -= freed;
1203                 if (nr_to_free <= 0)
1204                         break;
1205         }
1206         current->reclaim_state = NULL;
1207         return ret;
1208 }
1209 #endif
1210
1211 #ifdef CONFIG_HOTPLUG_CPU
1212 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1213    not required for correctness.  So if the last cpu in a node goes
1214    away, we get changed to run anywhere: as the first one comes back,
1215    restore their cpu bindings. */
1216 static int __devinit cpu_callback(struct notifier_block *nfb,
1217                                   unsigned long action,
1218                                   void *hcpu)
1219 {
1220         pg_data_t *pgdat;
1221         cpumask_t mask;
1222
1223         if (action == CPU_ONLINE) {
1224                 for_each_pgdat(pgdat) {
1225                         mask = node_to_cpumask(pgdat->node_id);
1226                         if (any_online_cpu(mask) != NR_CPUS)
1227                                 /* One of our CPUs online: restore mask */
1228                                 set_cpus_allowed(pgdat->kswapd, mask);
1229                 }
1230         }
1231         return NOTIFY_OK;
1232 }
1233 #endif /* CONFIG_HOTPLUG_CPU */
1234
1235 static int __init kswapd_init(void)
1236 {
1237         pg_data_t *pgdat;
1238         swap_setup();
1239         for_each_pgdat(pgdat)
1240                 pgdat->kswapd
1241                 = find_task_by_real_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1242         total_memory = nr_free_pagecache_pages();
1243         hotcpu_notifier(cpu_callback, 0);
1244         return 0;
1245 }
1246
1247 module_init(kswapd_init)