ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.6.tar.bz2
[linux-2.6.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/suspend.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/notifier.h>
35
36 #include <asm/pgalloc.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /*
43  * From 0 .. 100.  Higher means more swappy.
44  */
45 int vm_swappiness = 60;
46 static long total_memory;
47
48 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
49
50 #ifdef ARCH_HAS_PREFETCH
51 #define prefetch_prev_lru_page(_page, _base, _field)                    \
52         do {                                                            \
53                 if ((_page)->lru.prev != _base) {                       \
54                         struct page *prev;                              \
55                                                                         \
56                         prev = lru_to_page(&(_page->lru));              \
57                         prefetch(&prev->_field);                        \
58                 }                                                       \
59         } while (0)
60 #else
61 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
62 #endif
63
64 #ifdef ARCH_HAS_PREFETCHW
65 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
66         do {                                                            \
67                 if ((_page)->lru.prev != _base) {                       \
68                         struct page *prev;                              \
69                                                                         \
70                         prev = lru_to_page(&(_page->lru));                      \
71                         prefetchw(&prev->_field);                       \
72                 }                                                       \
73         } while (0)
74 #else
75 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
76 #endif
77
78 /*
79  * The list of shrinker callbacks used by to apply pressure to
80  * ageable caches.
81  */
82 struct shrinker {
83         shrinker_t              shrinker;
84         struct list_head        list;
85         int                     seeks;  /* seeks to recreate an obj */
86         long                    nr;     /* objs pending delete */
87 };
88
89 static LIST_HEAD(shrinker_list);
90 static DECLARE_MUTEX(shrinker_sem);
91
92 /*
93  * Add a shrinker callback to be called from the vm
94  */
95 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
96 {
97         struct shrinker *shrinker;
98
99         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
100         if (shrinker) {
101                 shrinker->shrinker = theshrinker;
102                 shrinker->seeks = seeks;
103                 shrinker->nr = 0;
104                 down(&shrinker_sem);
105                 list_add(&shrinker->list, &shrinker_list);
106                 up(&shrinker_sem);
107         }
108         return shrinker;
109 }
110
111 EXPORT_SYMBOL(set_shrinker);
112
113 /*
114  * Remove one
115  */
116 void remove_shrinker(struct shrinker *shrinker)
117 {
118         down(&shrinker_sem);
119         list_del(&shrinker->list);
120         up(&shrinker_sem);
121         kfree(shrinker);
122 }
123
124 EXPORT_SYMBOL(remove_shrinker);
125  
126 #define SHRINK_BATCH 128
127 /*
128  * Call the shrink functions to age shrinkable caches
129  *
130  * Here we assume it costs one seek to replace a lru page and that it also
131  * takes a seek to recreate a cache object.  With this in mind we age equal
132  * percentages of the lru and ageable caches.  This should balance the seeks
133  * generated by these structures.
134  *
135  * If the vm encounted mapped pages on the LRU it increase the pressure on
136  * slab to avoid swapping.
137  *
138  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
139  */
140 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask)
141 {
142         struct shrinker *shrinker;
143         long pages;
144
145         if (down_trylock(&shrinker_sem))
146                 return 0;
147
148         pages = nr_used_zone_pages();
149         list_for_each_entry(shrinker, &shrinker_list, list) {
150                 unsigned long long delta;
151
152                 delta = (4 * scanned) / shrinker->seeks;
153                 delta *= (*shrinker->shrinker)(0, gfp_mask);
154                 do_div(delta, pages + 1);
155                 shrinker->nr += delta;
156                 if (shrinker->nr > SHRINK_BATCH) {
157                         long nr_to_scan = shrinker->nr;
158
159                         shrinker->nr = 0;
160                         mod_page_state(slabs_scanned, nr_to_scan);
161                         while (nr_to_scan) {
162                                 long this_scan = nr_to_scan;
163
164                                 if (this_scan > 128)
165                                         this_scan = 128;
166                                 (*shrinker->shrinker)(this_scan, gfp_mask);
167                                 nr_to_scan -= this_scan;
168                                 cond_resched();
169                         }
170                 }
171         }
172         up(&shrinker_sem);
173         return 0;
174 }
175
176 /* Must be called with page's rmap lock held. */
177 static inline int page_mapping_inuse(struct page *page)
178 {
179         struct address_space *mapping;
180
181         /* Page is in somebody's page tables. */
182         if (page_mapped(page))
183                 return 1;
184
185         /* Be more reluctant to reclaim swapcache than pagecache */
186         if (PageSwapCache(page))
187                 return 1;
188
189         mapping = page_mapping(page);
190         if (!mapping)
191                 return 0;
192
193         /* File is mmap'd by somebody? */
194         return mapping_mapped(mapping);
195 }
196
197 static inline int is_page_cache_freeable(struct page *page)
198 {
199         return page_count(page) - !!PagePrivate(page) == 2;
200 }
201
202 static int may_write_to_queue(struct backing_dev_info *bdi)
203 {
204         if (current_is_kswapd())
205                 return 1;
206         if (current_is_pdflush())       /* This is unlikely, but why not... */
207                 return 1;
208         if (!bdi_write_congested(bdi))
209                 return 1;
210         if (bdi == current->backing_dev_info)
211                 return 1;
212         return 0;
213 }
214
215 /*
216  * We detected a synchronous write error writing a page out.  Probably
217  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
218  * fsync(), msync() or close().
219  *
220  * The tricky part is that after writepage we cannot touch the mapping: nothing
221  * prevents it from being freed up.  But we have a ref on the page and once
222  * that page is locked, the mapping is pinned.
223  *
224  * We're allowed to run sleeping lock_page() here because we know the caller has
225  * __GFP_FS.
226  */
227 static void handle_write_error(struct address_space *mapping,
228                                 struct page *page, int error)
229 {
230         lock_page(page);
231         if (page_mapping(page) == mapping) {
232                 if (error == -ENOSPC)
233                         set_bit(AS_ENOSPC, &mapping->flags);
234                 else
235                         set_bit(AS_EIO, &mapping->flags);
236         }
237         unlock_page(page);
238 }
239
240 /*
241  * shrink_list returns the number of reclaimed pages
242  */
243 static int
244 shrink_list(struct list_head *page_list, unsigned int gfp_mask,
245                 int *nr_scanned, int do_writepage)
246 {
247         struct address_space *mapping;
248         LIST_HEAD(ret_pages);
249         struct pagevec freed_pvec;
250         int pgactivate = 0;
251         int ret = 0;
252
253         cond_resched();
254
255         pagevec_init(&freed_pvec, 1);
256         while (!list_empty(page_list)) {
257                 struct page *page;
258                 int may_enter_fs;
259                 int referenced;
260
261                 page = lru_to_page(page_list);
262                 list_del(&page->lru);
263
264                 if (TestSetPageLocked(page))
265                         goto keep;
266
267                 /* Double the slab pressure for mapped and swapcache pages */
268                 if (page_mapped(page) || PageSwapCache(page))
269                         (*nr_scanned)++;
270
271                 BUG_ON(PageActive(page));
272
273                 if (PageWriteback(page))
274                         goto keep_locked;
275
276                 rmap_lock(page);
277                 referenced = page_referenced(page);
278                 if (referenced && page_mapping_inuse(page)) {
279                         /* In active use or really unfreeable.  Activate it. */
280                         rmap_unlock(page);
281                         goto activate_locked;
282                 }
283
284                 mapping = page_mapping(page);
285                 may_enter_fs = (gfp_mask & __GFP_FS);
286
287 #ifdef CONFIG_SWAP
288                 /*
289                  * Anonymous process memory has backing store?
290                  * Try to allocate it some swap space here.
291                  *
292                  * XXX: implement swap clustering ?
293                  */
294                 if (PageAnon(page) && !PageSwapCache(page)) {
295                         rmap_unlock(page);
296                         if (!add_to_swap(page))
297                                 goto activate_locked;
298                         rmap_lock(page);
299                 }
300                 if (PageSwapCache(page)) {
301                         mapping = &swapper_space;
302                         may_enter_fs = (gfp_mask & __GFP_IO);
303                 }
304 #endif /* CONFIG_SWAP */
305
306                 /*
307                  * The page is mapped into the page tables of one or more
308                  * processes. Try to unmap it here.
309                  */
310                 if (page_mapped(page) && mapping) {
311                         switch (try_to_unmap(page)) {
312                         case SWAP_FAIL:
313                                 rmap_unlock(page);
314                                 goto activate_locked;
315                         case SWAP_AGAIN:
316                                 rmap_unlock(page);
317                                 goto keep_locked;
318                         case SWAP_SUCCESS:
319                                 ; /* try to free the page below */
320                         }
321                 }
322                 rmap_unlock(page);
323
324                 /*
325                  * If the page is dirty, only perform writeback if that write
326                  * will be non-blocking.  To prevent this allocation from being
327                  * stalled by pagecache activity.  But note that there may be
328                  * stalls if we need to run get_block().  We could test
329                  * PagePrivate for that.
330                  *
331                  * If this process is currently in generic_file_write() against
332                  * this page's queue, we can perform writeback even if that
333                  * will block.
334                  *
335                  * If the page is swapcache, write it back even if that would
336                  * block, for some throttling. This happens by accident, because
337                  * swap_backing_dev_info is bust: it doesn't reflect the
338                  * congestion state of the swapdevs.  Easy to fix, if needed.
339                  * See swapfile.c:page_queue_congested().
340                  */
341                 if (PageDirty(page)) {
342                         if (referenced)
343                                 goto keep_locked;
344                         if (!is_page_cache_freeable(page))
345                                 goto keep_locked;
346                         if (!mapping)
347                                 goto keep_locked;
348                         if (mapping->a_ops->writepage == NULL)
349                                 goto activate_locked;
350                         if (!may_enter_fs)
351                                 goto keep_locked;
352                         if (!may_write_to_queue(mapping->backing_dev_info))
353                                 goto keep_locked;
354                         if (laptop_mode && !do_writepage)
355                                 goto keep_locked;
356                         if (clear_page_dirty_for_io(page)) {
357                                 int res;
358                                 struct writeback_control wbc = {
359                                         .sync_mode = WB_SYNC_NONE,
360                                         .nr_to_write = SWAP_CLUSTER_MAX,
361                                         .nonblocking = 1,
362                                         .for_reclaim = 1,
363                                 };
364
365                                 SetPageReclaim(page);
366                                 res = mapping->a_ops->writepage(page, &wbc);
367                                 if (res < 0)
368                                         handle_write_error(mapping, page, res);
369                                 if (res == WRITEPAGE_ACTIVATE) {
370                                         ClearPageReclaim(page);
371                                         goto activate_locked;
372                                 }
373                                 if (!PageWriteback(page)) {
374                                         /* synchronous write or broken a_ops? */
375                                         ClearPageReclaim(page);
376                                 }
377                                 goto keep;
378                         }
379                 }
380
381                 /*
382                  * If the page has buffers, try to free the buffer mappings
383                  * associated with this page. If we succeed we try to free
384                  * the page as well.
385                  *
386                  * We do this even if the page is PageDirty().
387                  * try_to_release_page() does not perform I/O, but it is
388                  * possible for a page to have PageDirty set, but it is actually
389                  * clean (all its buffers are clean).  This happens if the
390                  * buffers were written out directly, with submit_bh(). ext3
391                  * will do this, as well as the blockdev mapping. 
392                  * try_to_release_page() will discover that cleanness and will
393                  * drop the buffers and mark the page clean - it can be freed.
394                  *
395                  * Rarely, pages can have buffers and no ->mapping.  These are
396                  * the pages which were not successfully invalidated in
397                  * truncate_complete_page().  We try to drop those buffers here
398                  * and if that worked, and the page is no longer mapped into
399                  * process address space (page_count == 0) it can be freed.
400                  * Otherwise, leave the page on the LRU so it is swappable.
401                  */
402                 if (PagePrivate(page)) {
403                         if (!try_to_release_page(page, gfp_mask))
404                                 goto activate_locked;
405                         if (!mapping && page_count(page) == 1)
406                                 goto free_it;
407                 }
408
409                 if (!mapping)
410                         goto keep_locked;       /* truncate got there first */
411
412                 spin_lock_irq(&mapping->tree_lock);
413
414                 /*
415                  * The non-racy check for busy page.  It is critical to check
416                  * PageDirty _after_ making sure that the page is freeable and
417                  * not in use by anybody.       (pagecache + us == 2)
418                  */
419                 if (page_count(page) != 2 || PageDirty(page)) {
420                         spin_unlock_irq(&mapping->tree_lock);
421                         goto keep_locked;
422                 }
423
424 #ifdef CONFIG_SWAP
425                 if (PageSwapCache(page)) {
426                         swp_entry_t swap = { .val = page->private };
427                         __delete_from_swap_cache(page);
428                         spin_unlock_irq(&mapping->tree_lock);
429                         swap_free(swap);
430                         __put_page(page);       /* The pagecache ref */
431                         goto free_it;
432                 }
433 #endif /* CONFIG_SWAP */
434
435                 __remove_from_page_cache(page);
436                 spin_unlock_irq(&mapping->tree_lock);
437                 __put_page(page);
438
439 free_it:
440                 unlock_page(page);
441                 ret++;
442                 if (!pagevec_add(&freed_pvec, page))
443                         __pagevec_release_nonlru(&freed_pvec);
444                 continue;
445
446 activate_locked:
447                 SetPageActive(page);
448                 pgactivate++;
449 keep_locked:
450                 unlock_page(page);
451 keep:
452                 list_add(&page->lru, &ret_pages);
453                 BUG_ON(PageLRU(page));
454         }
455         list_splice(&ret_pages, page_list);
456         if (pagevec_count(&freed_pvec))
457                 __pagevec_release_nonlru(&freed_pvec);
458         mod_page_state(pgactivate, pgactivate);
459         return ret;
460 }
461
462 /*
463  * zone->lru_lock is heavily contented.  We relieve it by quickly privatising
464  * a batch of pages and working on them outside the lock.  Any pages which were
465  * not freed will be added back to the LRU.
466  *
467  * shrink_cache() is passed the number of pages to scan and returns the number
468  * of pages which were reclaimed.
469  *
470  * For pagecache intensive workloads, the first loop here is the hottest spot
471  * in the kernel (apart from the copy_*_user functions).
472  */
473 static int
474 shrink_cache(struct zone *zone, unsigned int gfp_mask,
475                 int max_scan, int *total_scanned, int do_writepage)
476 {
477         LIST_HEAD(page_list);
478         struct pagevec pvec;
479         int ret = 0;
480
481         pagevec_init(&pvec, 1);
482
483         lru_add_drain();
484         spin_lock_irq(&zone->lru_lock);
485         while (max_scan > 0) {
486                 struct page *page;
487                 int nr_taken = 0;
488                 int nr_scan = 0;
489                 int nr_freed;
490
491                 while (nr_scan++ < SWAP_CLUSTER_MAX &&
492                                 !list_empty(&zone->inactive_list)) {
493                         page = lru_to_page(&zone->inactive_list);
494
495                         prefetchw_prev_lru_page(page,
496                                                 &zone->inactive_list, flags);
497
498                         if (!TestClearPageLRU(page))
499                                 BUG();
500                         list_del(&page->lru);
501                         if (page_count(page) == 0) {
502                                 /* It is currently in pagevec_release() */
503                                 SetPageLRU(page);
504                                 list_add(&page->lru, &zone->inactive_list);
505                                 continue;
506                         }
507                         list_add(&page->lru, &page_list);
508                         page_cache_get(page);
509                         nr_taken++;
510                 }
511                 zone->nr_inactive -= nr_taken;
512                 zone->pages_scanned += nr_taken;
513                 spin_unlock_irq(&zone->lru_lock);
514
515                 if (nr_taken == 0)
516                         goto done;
517
518                 max_scan -= nr_scan;
519                 if (current_is_kswapd())
520                         mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
521                 else
522                         mod_page_state_zone(zone, pgscan_direct, nr_scan);
523                 nr_freed = shrink_list(&page_list, gfp_mask,
524                                         total_scanned, do_writepage);
525                 *total_scanned += nr_taken;
526                 if (current_is_kswapd())
527                         mod_page_state(kswapd_steal, nr_freed);
528                 mod_page_state_zone(zone, pgsteal, nr_freed);
529
530                 ret += nr_freed;
531                 if (nr_freed <= 0 && list_empty(&page_list))
532                         goto done;
533
534                 spin_lock_irq(&zone->lru_lock);
535                 /*
536                  * Put back any unfreeable pages.
537                  */
538                 while (!list_empty(&page_list)) {
539                         page = lru_to_page(&page_list);
540                         if (TestSetPageLRU(page))
541                                 BUG();
542                         list_del(&page->lru);
543                         if (PageActive(page))
544                                 add_page_to_active_list(zone, page);
545                         else
546                                 add_page_to_inactive_list(zone, page);
547                         if (!pagevec_add(&pvec, page)) {
548                                 spin_unlock_irq(&zone->lru_lock);
549                                 __pagevec_release(&pvec);
550                                 spin_lock_irq(&zone->lru_lock);
551                         }
552                 }
553         }
554         spin_unlock_irq(&zone->lru_lock);
555 done:
556         pagevec_release(&pvec);
557         return ret;
558 }
559
560 /*
561  * This moves pages from the active list to the inactive list.
562  *
563  * We move them the other way if the page is referenced by one or more
564  * processes, from rmap.
565  *
566  * If the pages are mostly unmapped, the processing is fast and it is
567  * appropriate to hold zone->lru_lock across the whole operation.  But if
568  * the pages are mapped, the processing is slow (page_referenced()) so we
569  * should drop zone->lru_lock around each page.  It's impossible to balance
570  * this, so instead we remove the pages from the LRU while processing them.
571  * It is safe to rely on PG_active against the non-LRU pages in here because
572  * nobody will play with that bit on a non-LRU page.
573  *
574  * The downside is that we have to touch page->count against each page.
575  * But we had to alter page->flags anyway.
576  */
577 static void
578 refill_inactive_zone(struct zone *zone, const int nr_pages_in,
579                         struct page_state *ps)
580 {
581         int pgmoved;
582         int pgdeactivate = 0;
583         int nr_pages = nr_pages_in;
584         LIST_HEAD(l_hold);      /* The pages which were snipped off */
585         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
586         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
587         struct page *page;
588         struct pagevec pvec;
589         int reclaim_mapped = 0;
590         long mapped_ratio;
591         long distress;
592         long swap_tendency;
593
594         lru_add_drain();
595         pgmoved = 0;
596         spin_lock_irq(&zone->lru_lock);
597         while (nr_pages && !list_empty(&zone->active_list)) {
598                 page = lru_to_page(&zone->active_list);
599                 prefetchw_prev_lru_page(page, &zone->active_list, flags);
600                 if (!TestClearPageLRU(page))
601                         BUG();
602                 list_del(&page->lru);
603                 if (page_count(page) == 0) {
604                         /* It is currently in pagevec_release() */
605                         SetPageLRU(page);
606                         list_add(&page->lru, &zone->active_list);
607                 } else {
608                         page_cache_get(page);
609                         list_add(&page->lru, &l_hold);
610                         pgmoved++;
611                 }
612                 nr_pages--;
613         }
614         zone->nr_active -= pgmoved;
615         spin_unlock_irq(&zone->lru_lock);
616
617         /*
618          * `distress' is a measure of how much trouble we're having reclaiming
619          * pages.  0 -> no problems.  100 -> great trouble.
620          */
621         distress = 100 >> zone->prev_priority;
622
623         /*
624          * The point of this algorithm is to decide when to start reclaiming
625          * mapped memory instead of just pagecache.  Work out how much memory
626          * is mapped.
627          */
628         mapped_ratio = (ps->nr_mapped * 100) / total_memory;
629
630         /*
631          * Now decide how much we really want to unmap some pages.  The mapped
632          * ratio is downgraded - just because there's a lot of mapped memory
633          * doesn't necessarily mean that page reclaim isn't succeeding.
634          *
635          * The distress ratio is important - we don't want to start going oom.
636          *
637          * A 100% value of vm_swappiness overrides this algorithm altogether.
638          */
639         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
640
641         /*
642          * Now use this metric to decide whether to start moving mapped memory
643          * onto the inactive list.
644          */
645         if (swap_tendency >= 100)
646                 reclaim_mapped = 1;
647
648         while (!list_empty(&l_hold)) {
649                 page = lru_to_page(&l_hold);
650                 list_del(&page->lru);
651                 if (page_mapped(page)) {
652                         if (!reclaim_mapped) {
653                                 list_add(&page->lru, &l_active);
654                                 continue;
655                         }
656                         rmap_lock(page);
657                         if (page_referenced(page)) {
658                                 rmap_unlock(page);
659                                 list_add(&page->lru, &l_active);
660                                 continue;
661                         }
662                         rmap_unlock(page);
663                 }
664                 /*
665                  * FIXME: need to consider page_count(page) here if/when we
666                  * reap orphaned pages via the LRU (Daniel's locking stuff)
667                  */
668                 if (total_swap_pages == 0 && PageAnon(page)) {
669                         list_add(&page->lru, &l_active);
670                         continue;
671                 }
672                 list_add(&page->lru, &l_inactive);
673         }
674
675         pagevec_init(&pvec, 1);
676         pgmoved = 0;
677         spin_lock_irq(&zone->lru_lock);
678         while (!list_empty(&l_inactive)) {
679                 page = lru_to_page(&l_inactive);
680                 prefetchw_prev_lru_page(page, &l_inactive, flags);
681                 if (TestSetPageLRU(page))
682                         BUG();
683                 if (!TestClearPageActive(page))
684                         BUG();
685                 list_move(&page->lru, &zone->inactive_list);
686                 pgmoved++;
687                 if (!pagevec_add(&pvec, page)) {
688                         zone->nr_inactive += pgmoved;
689                         spin_unlock_irq(&zone->lru_lock);
690                         pgdeactivate += pgmoved;
691                         pgmoved = 0;
692                         if (buffer_heads_over_limit)
693                                 pagevec_strip(&pvec);
694                         __pagevec_release(&pvec);
695                         spin_lock_irq(&zone->lru_lock);
696                 }
697         }
698         zone->nr_inactive += pgmoved;
699         pgdeactivate += pgmoved;
700         if (buffer_heads_over_limit) {
701                 spin_unlock_irq(&zone->lru_lock);
702                 pagevec_strip(&pvec);
703                 spin_lock_irq(&zone->lru_lock);
704         }
705
706         pgmoved = 0;
707         while (!list_empty(&l_active)) {
708                 page = lru_to_page(&l_active);
709                 prefetchw_prev_lru_page(page, &l_active, flags);
710                 if (TestSetPageLRU(page))
711                         BUG();
712                 BUG_ON(!PageActive(page));
713                 list_move(&page->lru, &zone->active_list);
714                 pgmoved++;
715                 if (!pagevec_add(&pvec, page)) {
716                         zone->nr_active += pgmoved;
717                         pgmoved = 0;
718                         spin_unlock_irq(&zone->lru_lock);
719                         __pagevec_release(&pvec);
720                         spin_lock_irq(&zone->lru_lock);
721                 }
722         }
723         zone->nr_active += pgmoved;
724         spin_unlock_irq(&zone->lru_lock);
725         pagevec_release(&pvec);
726
727         mod_page_state_zone(zone, pgrefill, nr_pages_in - nr_pages);
728         mod_page_state(pgdeactivate, pgdeactivate);
729 }
730
731 /*
732  * Scan `nr_pages' from this zone.  Returns the number of reclaimed pages.
733  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
734  */
735 static int
736 shrink_zone(struct zone *zone, int max_scan, unsigned int gfp_mask,
737                 int *total_scanned, struct page_state *ps, int do_writepage)
738 {
739         unsigned long ratio;
740         int count;
741
742         /*
743          * Try to keep the active list 2/3 of the size of the cache.  And
744          * make sure that refill_inactive is given a decent number of pages.
745          *
746          * The "ratio+1" here is important.  With pagecache-intensive workloads
747          * the inactive list is huge, and `ratio' evaluates to zero all the
748          * time.  Which pins the active list memory.  So we add one to `ratio'
749          * just to make sure that the kernel will slowly sift through the
750          * active list.
751          */
752         ratio = (unsigned long)SWAP_CLUSTER_MAX * zone->nr_active /
753                                 ((zone->nr_inactive | 1) * 2);
754
755         atomic_add(ratio+1, &zone->nr_scan_active);
756         count = atomic_read(&zone->nr_scan_active);
757         if (count >= SWAP_CLUSTER_MAX) {
758                 atomic_set(&zone->nr_scan_active, 0);
759                 refill_inactive_zone(zone, count, ps);
760         }
761
762         atomic_add(max_scan, &zone->nr_scan_inactive);
763         count = atomic_read(&zone->nr_scan_inactive);
764         if (count >= SWAP_CLUSTER_MAX) {
765                 atomic_set(&zone->nr_scan_inactive, 0);
766                 return shrink_cache(zone, gfp_mask, count,
767                                         total_scanned, do_writepage);
768         }
769         return 0;
770 }
771
772 /*
773  * This is the direct reclaim path, for page-allocating processes.  We only
774  * try to reclaim pages from zones which will satisfy the caller's allocation
775  * request.
776  *
777  * We reclaim from a zone even if that zone is over pages_high.  Because:
778  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
779  *    allocation or
780  * b) The zones may be over pages_high but they must go *over* pages_high to
781  *    satisfy the `incremental min' zone defense algorithm.
782  *
783  * Returns the number of reclaimed pages.
784  *
785  * If a zone is deemed to be full of pinned pages then just give it a light
786  * scan then give up on it.
787  */
788 static int
789 shrink_caches(struct zone **zones, int priority, int *total_scanned,
790                 int gfp_mask, struct page_state *ps, int do_writepage)
791 {
792         int ret = 0;
793         int i;
794
795         for (i = 0; zones[i] != NULL; i++) {
796                 struct zone *zone = zones[i];
797                 int max_scan;
798
799                 if (zone->free_pages < zone->pages_high)
800                         zone->temp_priority = priority;
801
802                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
803                         continue;       /* Let kswapd poll it */
804
805                 max_scan = zone->nr_inactive >> priority;
806                 ret += shrink_zone(zone, max_scan, gfp_mask,
807                                         total_scanned, ps, do_writepage);
808         }
809         return ret;
810 }
811  
812 /*
813  * This is the main entry point to direct page reclaim.
814  *
815  * If a full scan of the inactive list fails to free enough memory then we
816  * are "out of memory" and something needs to be killed.
817  *
818  * If the caller is !__GFP_FS then the probability of a failure is reasonably
819  * high - the zone may be full of dirty or under-writeback pages, which this
820  * caller can't do much about.  So for !__GFP_FS callers, we just perform a
821  * small LRU walk and if that didn't work out, fail the allocation back to the
822  * caller.  GFP_NOFS allocators need to know how to deal with it.  Kicking
823  * bdflush, waiting and retrying will work.
824  *
825  * This is a fairly lame algorithm - it can result in excessive CPU burning and
826  * excessive rotation of the inactive list, which is _supposed_ to be an LRU,
827  * yes?
828  */
829 int try_to_free_pages(struct zone **zones,
830                 unsigned int gfp_mask, unsigned int order)
831 {
832         int priority;
833         int ret = 0;
834         int nr_reclaimed = 0;
835         struct reclaim_state *reclaim_state = current->reclaim_state;
836         int i;
837         unsigned long total_scanned = 0;
838         int do_writepage = 0;
839
840         inc_page_state(allocstall);
841
842         for (i = 0; zones[i] != 0; i++)
843                 zones[i]->temp_priority = DEF_PRIORITY;
844
845         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
846                 int scanned = 0;
847                 struct page_state ps;
848
849                 get_page_state(&ps);
850                 nr_reclaimed += shrink_caches(zones, priority, &scanned,
851                                                 gfp_mask, &ps, do_writepage);
852                 shrink_slab(scanned, gfp_mask);
853                 if (reclaim_state) {
854                         nr_reclaimed += reclaim_state->reclaimed_slab;
855                         reclaim_state->reclaimed_slab = 0;
856                 }
857                 if (nr_reclaimed >= SWAP_CLUSTER_MAX) {
858                         ret = 1;
859                         goto out;
860                 }
861                 if (!(gfp_mask & __GFP_FS))
862                         break;          /* Let the caller handle it */
863                 /*
864                  * Try to write back as many pages as we just scanned.  This
865                  * tends to cause slow streaming writers to write data to the
866                  * disk smoothly, at the dirtying rate, which is nice.   But
867                  * that's undesirable in laptop mode, where we *want* lumpy
868                  * writeout.  So in laptop mode, write out the whole world.
869                  */
870                 total_scanned += scanned;
871                 if (total_scanned > SWAP_CLUSTER_MAX + SWAP_CLUSTER_MAX/2) {
872                         wakeup_bdflush(laptop_mode ? 0 : total_scanned);
873                         do_writepage = 1;
874                 }
875
876                 /* Take a nap, wait for some writeback to complete */
877                 if (scanned && priority < DEF_PRIORITY - 2)
878                         blk_congestion_wait(WRITE, HZ/10);
879         }
880         if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
881                 out_of_memory();
882 out:
883         for (i = 0; zones[i] != 0; i++)
884                 zones[i]->prev_priority = zones[i]->temp_priority;
885         return ret;
886 }
887
888 /*
889  * For kswapd, balance_pgdat() will work across all this node's zones until
890  * they are all at pages_high.
891  *
892  * If `nr_pages' is non-zero then it is the number of pages which are to be
893  * reclaimed, regardless of the zone occupancies.  This is a software suspend
894  * special.
895  *
896  * Returns the number of pages which were actually freed.
897  *
898  * There is special handling here for zones which are full of pinned pages.
899  * This can happen if the pages are all mlocked, or if they are all used by
900  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
901  * What we do is to detect the case where all pages in the zone have been
902  * scanned twice and there has been zero successful reclaim.  Mark the zone as
903  * dead and from now on, only perform a short scan.  Basically we're polling
904  * the zone for when the problem goes away.
905  *
906  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
907  * zones which have free_pages > pages_high, but once a zone is found to have
908  * free_pages <= pages_high, we scan that zone and the lower zones regardless
909  * of the number of free pages in the lower zones.  This interoperates with
910  * the page allocator fallback scheme to ensure that aging of pages is balanced
911  * across the zones.
912  */
913 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, struct page_state *ps)
914 {
915         int to_free = nr_pages;
916         int priority;
917         int i;
918         struct reclaim_state *reclaim_state = current->reclaim_state;
919         unsigned long total_scanned = 0;
920         unsigned long total_reclaimed = 0;
921         int do_writepage = 0;
922
923         inc_page_state(pageoutrun);
924
925         for (i = 0; i < pgdat->nr_zones; i++) {
926                 struct zone *zone = pgdat->node_zones + i;
927
928                 zone->temp_priority = DEF_PRIORITY;
929         }
930
931         for (priority = DEF_PRIORITY; priority; priority--) {
932                 int all_zones_ok = 1;
933                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
934
935
936                 if (nr_pages == 0) {
937                         /*
938                          * Scan in the highmem->dma direction for the highest
939                          * zone which needs scanning
940                          */
941                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
942                                 struct zone *zone = pgdat->node_zones + i;
943
944                                 if (zone->all_unreclaimable &&
945                                                 priority != DEF_PRIORITY)
946                                         continue;
947
948                                 if (zone->free_pages <= zone->pages_high) {
949                                         end_zone = i;
950                                         goto scan;
951                                 }
952                         }
953                         goto out;
954                 } else {
955                         end_zone = pgdat->nr_zones - 1;
956                 }
957 scan:
958                 /*
959                  * Now scan the zone in the dma->highmem direction, stopping
960                  * at the last zone which needs scanning.
961                  *
962                  * We do this because the page allocator works in the opposite
963                  * direction.  This prevents the page allocator from allocating
964                  * pages behind kswapd's direction of progress, which would
965                  * cause too much scanning of the lower zones.
966                  */
967                 for (i = 0; i <= end_zone; i++) {
968                         struct zone *zone = pgdat->node_zones + i;
969                         int max_scan;
970                         int reclaimed;
971                         int scanned = 0;
972
973                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
974                                 continue;
975
976                         if (nr_pages == 0) {    /* Not software suspend */
977                                 if (zone->free_pages <= zone->pages_high)
978                                         all_zones_ok = 0;
979                         }
980                         zone->temp_priority = priority;
981                         max_scan = zone->nr_inactive >> priority;
982                         reclaimed = shrink_zone(zone, max_scan, GFP_KERNEL,
983                                         &scanned, ps, do_writepage);
984                         total_scanned += scanned;
985                         reclaim_state->reclaimed_slab = 0;
986                         shrink_slab(scanned, GFP_KERNEL);
987                         reclaimed += reclaim_state->reclaimed_slab;
988                         total_reclaimed += reclaimed;
989                         to_free -= reclaimed;
990                         if (zone->all_unreclaimable)
991                                 continue;
992                         if (zone->pages_scanned > zone->present_pages * 2)
993                                 zone->all_unreclaimable = 1;
994                         /*
995                          * If we've done a decent amount of scanning and
996                          * the reclaim ratio is low, start doing writepage
997                          * even in laptop mode
998                          */
999                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1000                             total_scanned > total_reclaimed+total_reclaimed/2)
1001                                 do_writepage = 1;
1002                 }
1003                 if (nr_pages && to_free > 0)
1004                         continue;       /* swsusp: need to do more work */
1005                 if (all_zones_ok)
1006                         break;          /* kswapd: all done */
1007                 /*
1008                  * OK, kswapd is getting into trouble.  Take a nap, then take
1009                  * another pass across the zones.
1010                  */
1011                 if (total_scanned && priority < DEF_PRIORITY - 2)
1012                         blk_congestion_wait(WRITE, HZ/10);
1013         }
1014 out:
1015         for (i = 0; i < pgdat->nr_zones; i++) {
1016                 struct zone *zone = pgdat->node_zones + i;
1017
1018                 zone->prev_priority = zone->temp_priority;
1019         }
1020         return total_reclaimed;
1021 }
1022
1023 /*
1024  * The background pageout daemon, started as a kernel thread
1025  * from the init process. 
1026  *
1027  * This basically trickles out pages so that we have _some_
1028  * free memory available even if there is no other activity
1029  * that frees anything up. This is needed for things like routing
1030  * etc, where we otherwise might have all activity going on in
1031  * asynchronous contexts that cannot page things out.
1032  *
1033  * If there are applications that are active memory-allocators
1034  * (most normal use), this basically shouldn't matter.
1035  */
1036 int kswapd(void *p)
1037 {
1038         pg_data_t *pgdat = (pg_data_t*)p;
1039         struct task_struct *tsk = current;
1040         DEFINE_WAIT(wait);
1041         struct reclaim_state reclaim_state = {
1042                 .reclaimed_slab = 0,
1043         };
1044         cpumask_t cpumask;
1045
1046         daemonize("kswapd%d", pgdat->node_id);
1047         cpumask = node_to_cpumask(pgdat->node_id);
1048         if (!cpus_empty(cpumask))
1049                 set_cpus_allowed(tsk, cpumask);
1050         current->reclaim_state = &reclaim_state;
1051
1052         /*
1053          * Tell the memory management that we're a "memory allocator",
1054          * and that if we need more memory we should get access to it
1055          * regardless (see "__alloc_pages()"). "kswapd" should
1056          * never get caught in the normal page freeing logic.
1057          *
1058          * (Kswapd normally doesn't need memory anyway, but sometimes
1059          * you need a small amount of memory in order to be able to
1060          * page out something else, and this flag essentially protects
1061          * us from recursively trying to free more memory as we're
1062          * trying to free the first piece of memory in the first place).
1063          */
1064         tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1065
1066         for ( ; ; ) {
1067                 struct page_state ps;
1068
1069                 if (current->flags & PF_FREEZE)
1070                         refrigerator(PF_FREEZE);
1071                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1072                 schedule();
1073                 finish_wait(&pgdat->kswapd_wait, &wait);
1074                 get_page_state(&ps);
1075                 balance_pgdat(pgdat, 0, &ps);
1076         }
1077 }
1078
1079 /*
1080  * A zone is low on free memory, so wake its kswapd task to service it.
1081  */
1082 void wakeup_kswapd(struct zone *zone)
1083 {
1084         if (zone->free_pages > zone->pages_low)
1085                 return;
1086         if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1087                 return;
1088         wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1089 }
1090
1091 #ifdef CONFIG_PM
1092 /*
1093  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1094  * pages.
1095  */
1096 int shrink_all_memory(int nr_pages)
1097 {
1098         pg_data_t *pgdat;
1099         int nr_to_free = nr_pages;
1100         int ret = 0;
1101         struct reclaim_state reclaim_state = {
1102                 .reclaimed_slab = 0,
1103         };
1104
1105         current->reclaim_state = &reclaim_state;
1106         for_each_pgdat(pgdat) {
1107                 int freed;
1108                 struct page_state ps;
1109
1110                 get_page_state(&ps);
1111                 freed = balance_pgdat(pgdat, nr_to_free, &ps);
1112                 ret += freed;
1113                 nr_to_free -= freed;
1114                 if (nr_to_free <= 0)
1115                         break;
1116         }
1117         current->reclaim_state = NULL;
1118         return ret;
1119 }
1120 #endif
1121
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1124    not required for correctness.  So if the last cpu in a node goes
1125    away, we get changed to run anywhere: as the first one comes back,
1126    restore their cpu bindings. */
1127 static int __devinit cpu_callback(struct notifier_block *nfb,
1128                                   unsigned long action,
1129                                   void *hcpu)
1130 {
1131         pg_data_t *pgdat;
1132         cpumask_t mask;
1133
1134         if (action == CPU_ONLINE) {
1135                 for_each_pgdat(pgdat) {
1136                         mask = node_to_cpumask(pgdat->node_id);
1137                         if (any_online_cpu(mask) != NR_CPUS)
1138                                 /* One of our CPUs online: restore mask */
1139                                 set_cpus_allowed(pgdat->kswapd, mask);
1140                 }
1141         }
1142         return NOTIFY_OK;
1143 }
1144 #endif /* CONFIG_HOTPLUG_CPU */
1145
1146 static int __init kswapd_init(void)
1147 {
1148         pg_data_t *pgdat;
1149         swap_setup();
1150         for_each_pgdat(pgdat)
1151                 pgdat->kswapd
1152                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1153         total_memory = nr_free_pagecache_pages();
1154         hotcpu_notifier(cpu_callback, 0);
1155         return 0;
1156 }
1157
1158 module_init(kswapd_init)