VServer 1.9.2 (patch-2.6.8.1-vs1.9.2.diff)
[linux-2.6.git] / net / ipv4 / tcp_minisocks.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro, <bir7@leland.Stanford.Edu>
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 #include <linux/config.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/sysctl.h>
27 #include <linux/workqueue.h>
28 #include <linux/vs_limit.h>
29 #include <linux/vs_socket.h>
30 #include <net/tcp.h>
31 #include <net/inet_common.h>
32 #include <net/xfrm.h>
33
34 #ifdef CONFIG_SYSCTL
35 #define SYNC_INIT 0 /* let the user enable it */
36 #else
37 #define SYNC_INIT 1
38 #endif
39
40 int sysctl_tcp_tw_recycle;
41 int sysctl_tcp_max_tw_buckets = NR_FILE*2;
42
43 int sysctl_tcp_syncookies = SYNC_INIT; 
44 int sysctl_tcp_abort_on_overflow;
45
46 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
47 {
48         if (seq == s_win)
49                 return 1;
50         if (after(end_seq, s_win) && before(seq, e_win))
51                 return 1;
52         return (seq == e_win && seq == end_seq);
53 }
54
55 /* New-style handling of TIME_WAIT sockets. */
56
57 int tcp_tw_count;
58
59
60 /* Must be called with locally disabled BHs. */
61 static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
62 {
63         struct tcp_ehash_bucket *ehead;
64         struct tcp_bind_hashbucket *bhead;
65         struct tcp_bind_bucket *tb;
66
67         /* Unlink from established hashes. */
68         ehead = &tcp_ehash[tw->tw_hashent];
69         write_lock(&ehead->lock);
70         if (hlist_unhashed(&tw->tw_node)) {
71                 write_unlock(&ehead->lock);
72                 return;
73         }
74         __hlist_del(&tw->tw_node);
75         sk_node_init(&tw->tw_node);
76         write_unlock(&ehead->lock);
77
78         /* Disassociate with bind bucket. */
79         bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
80         spin_lock(&bhead->lock);
81         tb = tw->tw_tb;
82         __hlist_del(&tw->tw_bind_node);
83         tw->tw_tb = NULL;
84         tcp_bucket_destroy(tb);
85         spin_unlock(&bhead->lock);
86
87 #ifdef INET_REFCNT_DEBUG
88         if (atomic_read(&tw->tw_refcnt) != 1) {
89                 printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
90                        atomic_read(&tw->tw_refcnt));
91         }
92 #endif
93         tcp_tw_put(tw);
94 }
95
96 /* 
97  * * Main purpose of TIME-WAIT state is to close connection gracefully,
98  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
99  *   (and, probably, tail of data) and one or more our ACKs are lost.
100  * * What is TIME-WAIT timeout? It is associated with maximal packet
101  *   lifetime in the internet, which results in wrong conclusion, that
102  *   it is set to catch "old duplicate segments" wandering out of their path.
103  *   It is not quite correct. This timeout is calculated so that it exceeds
104  *   maximal retransmission timeout enough to allow to lose one (or more)
105  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
106  * * When TIME-WAIT socket receives RST, it means that another end
107  *   finally closed and we are allowed to kill TIME-WAIT too.
108  * * Second purpose of TIME-WAIT is catching old duplicate segments.
109  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
110  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
111  * * If we invented some more clever way to catch duplicates
112  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
113  *
114  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
115  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
116  * from the very beginning.
117  *
118  * NOTE. With recycling (and later with fin-wait-2) TW bucket
119  * is _not_ stateless. It means, that strictly speaking we must
120  * spinlock it. I do not want! Well, probability of misbehaviour
121  * is ridiculously low and, seems, we could use some mb() tricks
122  * to avoid misread sequence numbers, states etc.  --ANK
123  */
124 enum tcp_tw_status
125 tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
126                            struct tcphdr *th, unsigned len)
127 {
128         struct tcp_opt tp;
129         int paws_reject = 0;
130
131         tp.saw_tstamp = 0;
132         if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
133                 tcp_parse_options(skb, &tp, 0);
134
135                 if (tp.saw_tstamp) {
136                         tp.ts_recent       = tw->tw_ts_recent;
137                         tp.ts_recent_stamp = tw->tw_ts_recent_stamp;
138                         paws_reject = tcp_paws_check(&tp, th->rst);
139                 }
140         }
141
142         if (tw->tw_substate == TCP_FIN_WAIT2) {
143                 /* Just repeat all the checks of tcp_rcv_state_process() */
144
145                 /* Out of window, send ACK */
146                 if (paws_reject ||
147                     !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
148                                    tw->tw_rcv_nxt,
149                                    tw->tw_rcv_nxt + tw->tw_rcv_wnd))
150                         return TCP_TW_ACK;
151
152                 if (th->rst)
153                         goto kill;
154
155                 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
156                         goto kill_with_rst;
157
158                 /* Dup ACK? */
159                 if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
160                     TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
161                         tcp_tw_put(tw);
162                         return TCP_TW_SUCCESS;
163                 }
164
165                 /* New data or FIN. If new data arrive after half-duplex close,
166                  * reset.
167                  */
168                 if (!th->fin ||
169                     TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
170 kill_with_rst:
171                         tcp_tw_deschedule(tw);
172                         tcp_tw_put(tw);
173                         return TCP_TW_RST;
174                 }
175
176                 /* FIN arrived, enter true time-wait state. */
177                 tw->tw_substate = TCP_TIME_WAIT;
178                 tw->tw_rcv_nxt  = TCP_SKB_CB(skb)->end_seq;
179                 if (tp.saw_tstamp) {
180                         tw->tw_ts_recent_stamp  = xtime.tv_sec;
181                         tw->tw_ts_recent        = tp.rcv_tsval;
182                 }
183
184                 /* I am shamed, but failed to make it more elegant.
185                  * Yes, it is direct reference to IP, which is impossible
186                  * to generalize to IPv6. Taking into account that IPv6
187                  * do not undertsnad recycling in any case, it not
188                  * a big problem in practice. --ANK */
189                 if (tw->tw_family == AF_INET &&
190                     sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
191                     tcp_v4_tw_remember_stamp(tw))
192                         tcp_tw_schedule(tw, tw->tw_timeout);
193                 else
194                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
195                 return TCP_TW_ACK;
196         }
197
198         /*
199          *      Now real TIME-WAIT state.
200          *
201          *      RFC 1122:
202          *      "When a connection is [...] on TIME-WAIT state [...]
203          *      [a TCP] MAY accept a new SYN from the remote TCP to
204          *      reopen the connection directly, if it:
205          *      
206          *      (1)  assigns its initial sequence number for the new
207          *      connection to be larger than the largest sequence
208          *      number it used on the previous connection incarnation,
209          *      and
210          *
211          *      (2)  returns to TIME-WAIT state if the SYN turns out 
212          *      to be an old duplicate".
213          */
214
215         if (!paws_reject &&
216             (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
217              (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
218                 /* In window segment, it may be only reset or bare ack. */
219
220                 if (th->rst) {
221                         /* This is TIME_WAIT assasination, in two flavors.
222                          * Oh well... nobody has a sufficient solution to this
223                          * protocol bug yet.
224                          */
225                         if (sysctl_tcp_rfc1337 == 0) {
226 kill:
227                                 tcp_tw_deschedule(tw);
228                                 tcp_tw_put(tw);
229                                 return TCP_TW_SUCCESS;
230                         }
231                 }
232                 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
233
234                 if (tp.saw_tstamp) {
235                         tw->tw_ts_recent        = tp.rcv_tsval;
236                         tw->tw_ts_recent_stamp  = xtime.tv_sec;
237                 }
238
239                 tcp_tw_put(tw);
240                 return TCP_TW_SUCCESS;
241         }
242
243         /* Out of window segment.
244
245            All the segments are ACKed immediately.
246
247            The only exception is new SYN. We accept it, if it is
248            not old duplicate and we are not in danger to be killed
249            by delayed old duplicates. RFC check is that it has
250            newer sequence number works at rates <40Mbit/sec.
251            However, if paws works, it is reliable AND even more,
252            we even may relax silly seq space cutoff.
253
254            RED-PEN: we violate main RFC requirement, if this SYN will appear
255            old duplicate (i.e. we receive RST in reply to SYN-ACK),
256            we must return socket to time-wait state. It is not good,
257            but not fatal yet.
258          */
259
260         if (th->syn && !th->rst && !th->ack && !paws_reject &&
261             (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
262              (tp.saw_tstamp && (s32)(tw->tw_ts_recent - tp.rcv_tsval) < 0))) {
263                 u32 isn = tw->tw_snd_nxt + 65535 + 2;
264                 if (isn == 0)
265                         isn++;
266                 TCP_SKB_CB(skb)->when = isn;
267                 return TCP_TW_SYN;
268         }
269
270         if (paws_reject)
271                 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
272
273         if(!th->rst) {
274                 /* In this case we must reset the TIMEWAIT timer.
275                  *
276                  * If it is ACKless SYN it may be both old duplicate
277                  * and new good SYN with random sequence number <rcv_nxt.
278                  * Do not reschedule in the last case.
279                  */
280                 if (paws_reject || th->ack)
281                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
282
283                 /* Send ACK. Note, we do not put the bucket,
284                  * it will be released by caller.
285                  */
286                 return TCP_TW_ACK;
287         }
288         tcp_tw_put(tw);
289         return TCP_TW_SUCCESS;
290 }
291
292 /* Enter the time wait state.  This is called with locally disabled BH.
293  * Essentially we whip up a timewait bucket, copy the
294  * relevant info into it from the SK, and mess with hash chains
295  * and list linkage.
296  */
297 static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
298 {
299         struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
300         struct tcp_bind_hashbucket *bhead;
301
302         /* Step 1: Put TW into bind hash. Original socket stays there too.
303            Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
304            binding cache, even if it is closed.
305          */
306         bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
307         spin_lock(&bhead->lock);
308         tw->tw_tb = tcp_sk(sk)->bind_hash;
309         BUG_TRAP(tcp_sk(sk)->bind_hash);
310         tw_add_bind_node(tw, &tw->tw_tb->owners);
311         spin_unlock(&bhead->lock);
312
313         write_lock(&ehead->lock);
314
315         /* Step 2: Remove SK from established hash. */
316         if (__sk_del_node_init(sk))
317                 sock_prot_dec_use(sk->sk_prot);
318
319         /* Step 3: Hash TW into TIMEWAIT half of established hash table. */
320         tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
321         atomic_inc(&tw->tw_refcnt);
322
323         write_unlock(&ehead->lock);
324 }
325
326 /* 
327  * Move a socket to time-wait or dead fin-wait-2 state.
328  */ 
329 void tcp_time_wait(struct sock *sk, int state, int timeo)
330 {
331         struct tcp_tw_bucket *tw = NULL;
332         struct tcp_opt *tp = tcp_sk(sk);
333         int recycle_ok = 0;
334
335         if (sysctl_tcp_tw_recycle && tp->ts_recent_stamp)
336                 recycle_ok = tp->af_specific->remember_stamp(sk);
337
338         if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
339                 tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
340
341         if(tw != NULL) {
342                 struct inet_opt *inet = inet_sk(sk);
343                 int rto = (tp->rto<<2) - (tp->rto>>1);
344
345                 /* Give us an identity. */
346                 tw->tw_daddr            = inet->daddr;
347                 tw->tw_rcv_saddr        = inet->rcv_saddr;
348                 tw->tw_bound_dev_if     = sk->sk_bound_dev_if;
349                 tw->tw_num              = inet->num;
350                 tw->tw_state            = TCP_TIME_WAIT;
351                 tw->tw_substate         = state;
352                 tw->tw_sport            = inet->sport;
353                 tw->tw_dport            = inet->dport;
354                 tw->tw_family           = sk->sk_family;
355                 tw->tw_reuse            = sk->sk_reuse;
356                 tw->tw_rcv_wscale       = tp->rcv_wscale;
357                 atomic_set(&tw->tw_refcnt, 1);
358
359                 tw->tw_hashent          = sk->sk_hashent;
360                 tw->tw_rcv_nxt          = tp->rcv_nxt;
361                 tw->tw_snd_nxt          = tp->snd_nxt;
362                 tw->tw_rcv_wnd          = tcp_receive_window(tp);
363                 tw->tw_ts_recent        = tp->ts_recent;
364                 tw->tw_ts_recent_stamp  = tp->ts_recent_stamp;
365                 tw_dead_node_init(tw);
366
367                 tw->tw_xid              = sk->sk_xid;
368                 tw->tw_vx_info          = NULL;
369                 tw->tw_nid              = sk->sk_nid;
370                 tw->tw_nx_info          = NULL;
371                 
372 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
373                 if (tw->tw_family == PF_INET6) {
374                         struct ipv6_pinfo *np = inet6_sk(sk);
375
376                         ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
377                         ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
378                         tw->tw_v6_ipv6only = np->ipv6only;
379                 } else {
380                         memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
381                         memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
382                         tw->tw_v6_ipv6only = 0;
383                 }
384 #endif
385                 /* Linkage updates. */
386                 __tcp_tw_hashdance(sk, tw);
387
388                 /* Get the TIME_WAIT timeout firing. */
389                 if (timeo < rto)
390                         timeo = rto;
391
392                 if (recycle_ok) {
393                         tw->tw_timeout = rto;
394                 } else {
395                         tw->tw_timeout = TCP_TIMEWAIT_LEN;
396                         if (state == TCP_TIME_WAIT)
397                                 timeo = TCP_TIMEWAIT_LEN;
398                 }
399
400                 tcp_tw_schedule(tw, timeo);
401                 tcp_tw_put(tw);
402         } else {
403                 /* Sorry, if we're out of memory, just CLOSE this
404                  * socket up.  We've got bigger problems than
405                  * non-graceful socket closings.
406                  */
407                 if (net_ratelimit())
408                         printk(KERN_INFO "TCP: time wait bucket table overflow\n");
409         }
410
411         tcp_update_metrics(sk);
412         tcp_done(sk);
413 }
414
415 /* Kill off TIME_WAIT sockets once their lifetime has expired. */
416 static int tcp_tw_death_row_slot;
417
418 static void tcp_twkill(unsigned long);
419
420 /* TIME_WAIT reaping mechanism. */
421 #define TCP_TWKILL_SLOTS        8       /* Please keep this a power of 2. */
422 #define TCP_TWKILL_PERIOD       (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
423
424 #define TCP_TWKILL_QUOTA        100
425
426 static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
427 static spinlock_t tw_death_lock = SPIN_LOCK_UNLOCKED;
428 static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
429 static void twkill_work(void *);
430 static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
431 static u32 twkill_thread_slots;
432
433 /* Returns non-zero if quota exceeded.  */
434 static int tcp_do_twkill_work(int slot, unsigned int quota)
435 {
436         struct tcp_tw_bucket *tw;
437         struct hlist_node *node;
438         unsigned int killed;
439         int ret;
440
441         /* NOTE: compare this to previous version where lock
442          * was released after detaching chain. It was racy,
443          * because tw buckets are scheduled in not serialized context
444          * in 2.3 (with netfilter), and with softnet it is common, because
445          * soft irqs are not sequenced.
446          */
447         killed = 0;
448         ret = 0;
449 rescan:
450         tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
451                 __tw_del_dead_node(tw);
452                 spin_unlock(&tw_death_lock);
453                 tcp_timewait_kill(tw);
454                 tcp_tw_put(tw);
455                 killed++;
456                 spin_lock(&tw_death_lock);
457                 if (killed > quota) {
458                         ret = 1;
459                         break;
460                 }
461
462                 /* While we dropped tw_death_lock, another cpu may have
463                  * killed off the next TW bucket in the list, therefore
464                  * do a fresh re-read of the hlist head node with the
465                  * lock reacquired.  We still use the hlist traversal
466                  * macro in order to get the prefetches.
467                  */
468                 goto rescan;
469         }
470
471         tcp_tw_count -= killed;
472         NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);
473
474         return ret;
475 }
476
477 static void tcp_twkill(unsigned long dummy)
478 {
479         int need_timer, ret;
480
481         spin_lock(&tw_death_lock);
482
483         if (tcp_tw_count == 0)
484                 goto out;
485
486         need_timer = 0;
487         ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
488         if (ret) {
489                 twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
490                 mb();
491                 schedule_work(&tcp_twkill_work);
492                 need_timer = 1;
493         } else {
494                 /* We purged the entire slot, anything left?  */
495                 if (tcp_tw_count)
496                         need_timer = 1;
497         }
498         tcp_tw_death_row_slot =
499                 ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
500         if (need_timer)
501                 mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
502 out:
503         spin_unlock(&tw_death_lock);
504 }
505
506 extern void twkill_slots_invalid(void);
507
508 static void twkill_work(void *dummy)
509 {
510         int i;
511
512         if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
513                 twkill_slots_invalid();
514
515         while (twkill_thread_slots) {
516                 spin_lock_bh(&tw_death_lock);
517                 for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
518                         if (!(twkill_thread_slots & (1 << i)))
519                                 continue;
520
521                         while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
522                                 if (need_resched()) {
523                                         spin_unlock_bh(&tw_death_lock);
524                                         schedule();
525                                         spin_lock_bh(&tw_death_lock);
526                                 }
527                         }
528
529                         twkill_thread_slots &= ~(1 << i);
530                 }
531                 spin_unlock_bh(&tw_death_lock);
532         }
533 }
534
535 /* These are always called from BH context.  See callers in
536  * tcp_input.c to verify this.
537  */
538
539 /* This is for handling early-kills of TIME_WAIT sockets. */
540 void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
541 {
542         spin_lock(&tw_death_lock);
543         if (tw_del_dead_node(tw)) {
544                 tcp_tw_put(tw);
545                 if (--tcp_tw_count == 0)
546                         del_timer(&tcp_tw_timer);
547         }
548         spin_unlock(&tw_death_lock);
549         tcp_timewait_kill(tw);
550 }
551
552 /* Short-time timewait calendar */
553
554 static int tcp_twcal_hand = -1;
555 static int tcp_twcal_jiffie;
556 static void tcp_twcal_tick(unsigned long);
557 static struct timer_list tcp_twcal_timer =
558                 TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
559 static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
560
561 void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
562 {
563         struct hlist_head *list;
564         int slot;
565
566         /* timeout := RTO * 3.5
567          *
568          * 3.5 = 1+2+0.5 to wait for two retransmits.
569          *
570          * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
571          * our ACK acking that FIN can be lost. If N subsequent retransmitted
572          * FINs (or previous seqments) are lost (probability of such event
573          * is p^(N+1), where p is probability to lose single packet and
574          * time to detect the loss is about RTO*(2^N - 1) with exponential
575          * backoff). Normal timewait length is calculated so, that we
576          * waited at least for one retransmitted FIN (maximal RTO is 120sec).
577          * [ BTW Linux. following BSD, violates this requirement waiting
578          *   only for 60sec, we should wait at least for 240 secs.
579          *   Well, 240 consumes too much of resources 8)
580          * ]
581          * This interval is not reduced to catch old duplicate and
582          * responces to our wandering segments living for two MSLs.
583          * However, if we use PAWS to detect
584          * old duplicates, we can reduce the interval to bounds required
585          * by RTO, rather than MSL. So, if peer understands PAWS, we
586          * kill tw bucket after 3.5*RTO (it is important that this number
587          * is greater than TS tick!) and detect old duplicates with help
588          * of PAWS.
589          */
590         slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
591
592         spin_lock(&tw_death_lock);
593
594         /* Unlink it, if it was scheduled */
595         if (tw_del_dead_node(tw))
596                 tcp_tw_count--;
597         else
598                 atomic_inc(&tw->tw_refcnt);
599
600         if (slot >= TCP_TW_RECYCLE_SLOTS) {
601                 /* Schedule to slow timer */
602                 if (timeo >= TCP_TIMEWAIT_LEN) {
603                         slot = TCP_TWKILL_SLOTS-1;
604                 } else {
605                         slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
606                         if (slot >= TCP_TWKILL_SLOTS)
607                                 slot = TCP_TWKILL_SLOTS-1;
608                 }
609                 tw->tw_ttd = jiffies + timeo;
610                 slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
611                 list = &tcp_tw_death_row[slot];
612         } else {
613                 tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
614
615                 if (tcp_twcal_hand < 0) {
616                         tcp_twcal_hand = 0;
617                         tcp_twcal_jiffie = jiffies;
618                         tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
619                         add_timer(&tcp_twcal_timer);
620                 } else {
621                         if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
622                                 mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
623                         slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
624                 }
625                 list = &tcp_twcal_row[slot];
626         }
627
628         hlist_add_head(&tw->tw_death_node, list);
629
630         if (tcp_tw_count++ == 0)
631                 mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
632         spin_unlock(&tw_death_lock);
633 }
634
635 void tcp_twcal_tick(unsigned long dummy)
636 {
637         int n, slot;
638         unsigned long j;
639         unsigned long now = jiffies;
640         int killed = 0;
641         int adv = 0;
642
643         spin_lock(&tw_death_lock);
644         if (tcp_twcal_hand < 0)
645                 goto out;
646
647         slot = tcp_twcal_hand;
648         j = tcp_twcal_jiffie;
649
650         for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
651                 if (time_before_eq(j, now)) {
652                         struct hlist_node *node, *safe;
653                         struct tcp_tw_bucket *tw;
654
655                         tw_for_each_inmate_safe(tw, node, safe,
656                                            &tcp_twcal_row[slot]) {
657                                 __tw_del_dead_node(tw);
658                                 tcp_timewait_kill(tw);
659                                 tcp_tw_put(tw);
660                                 killed++;
661                         }
662                 } else {
663                         if (!adv) {
664                                 adv = 1;
665                                 tcp_twcal_jiffie = j;
666                                 tcp_twcal_hand = slot;
667                         }
668
669                         if (!hlist_empty(&tcp_twcal_row[slot])) {
670                                 mod_timer(&tcp_twcal_timer, j);
671                                 goto out;
672                         }
673                 }
674                 j += (1<<TCP_TW_RECYCLE_TICK);
675                 slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
676         }
677         tcp_twcal_hand = -1;
678
679 out:
680         if ((tcp_tw_count -= killed) == 0)
681                 del_timer(&tcp_tw_timer);
682         NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
683         spin_unlock(&tw_death_lock);
684 }
685
686 /* This is not only more efficient than what we used to do, it eliminates
687  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
688  *
689  * Actually, we could lots of memory writes here. tp of listening
690  * socket contains all necessary default parameters.
691  */
692 struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
693 {
694         /* allocate the newsk from the same slab of the master sock,
695          * if not, at sk_free time we'll try to free it from the wrong
696          * slabcache (i.e. is it TCPv4 or v6?) -acme */
697         struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, 0, sk->sk_slab);
698
699         if(newsk != NULL) {
700                 struct tcp_opt *newtp;
701                 struct sk_filter *filter;
702
703                 memcpy(newsk, sk, sizeof(struct tcp_sock));
704                 newsk->sk_state = TCP_SYN_RECV;
705
706                 /* SANITY */
707                 sock_vx_init(newsk);
708                 sock_nx_init(newsk);
709                 sk_node_init(&newsk->sk_node);
710                 tcp_sk(newsk)->bind_hash = NULL;
711
712                 /* Clone the TCP header template */
713                 inet_sk(newsk)->dport = req->rmt_port;
714
715                 sock_lock_init(newsk);
716                 bh_lock_sock(newsk);
717
718                 newsk->sk_dst_lock = RW_LOCK_UNLOCKED;
719                 atomic_set(&newsk->sk_rmem_alloc, 0);
720                 skb_queue_head_init(&newsk->sk_receive_queue);
721                 atomic_set(&newsk->sk_wmem_alloc, 0);
722                 skb_queue_head_init(&newsk->sk_write_queue);
723                 atomic_set(&newsk->sk_omem_alloc, 0);
724                 newsk->sk_wmem_queued = 0;
725                 newsk->sk_forward_alloc = 0;
726
727                 sock_reset_flag(newsk, SOCK_DONE);
728                 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
729                 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
730                 newsk->sk_send_head = NULL;
731                 newsk->sk_callback_lock = RW_LOCK_UNLOCKED;
732                 skb_queue_head_init(&newsk->sk_error_queue);
733                 newsk->sk_write_space = sk_stream_write_space;
734
735                 if ((filter = newsk->sk_filter) != NULL)
736                         sk_filter_charge(newsk, filter);
737
738                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
739                         /* It is still raw copy of parent, so invalidate
740                          * destructor and make plain sk_free() */
741                         newsk->sk_destruct = NULL;
742                         sk_free(newsk);
743                         return NULL;
744                 }
745
746                 /* Now setup tcp_opt */
747                 newtp = tcp_sk(newsk);
748                 newtp->pred_flags = 0;
749                 newtp->rcv_nxt = req->rcv_isn + 1;
750                 newtp->snd_nxt = req->snt_isn + 1;
751                 newtp->snd_una = req->snt_isn + 1;
752                 newtp->snd_sml = req->snt_isn + 1;
753
754                 tcp_prequeue_init(newtp);
755
756                 tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);
757
758                 newtp->retransmits = 0;
759                 newtp->backoff = 0;
760                 newtp->srtt = 0;
761                 newtp->mdev = TCP_TIMEOUT_INIT;
762                 newtp->rto = TCP_TIMEOUT_INIT;
763
764                 newtp->packets_out = 0;
765                 newtp->left_out = 0;
766                 newtp->retrans_out = 0;
767                 newtp->sacked_out = 0;
768                 newtp->fackets_out = 0;
769                 newtp->snd_ssthresh = 0x7fffffff;
770
771                 /* So many TCP implementations out there (incorrectly) count the
772                  * initial SYN frame in their delayed-ACK and congestion control
773                  * algorithms that we must have the following bandaid to talk
774                  * efficiently to them.  -DaveM
775                  */
776                 newtp->snd_cwnd = 2;
777                 newtp->snd_cwnd_cnt = 0;
778
779                 newtp->frto_counter = 0;
780                 newtp->frto_highmark = 0;
781
782                 tcp_set_ca_state(newtp, TCP_CA_Open);
783                 tcp_init_xmit_timers(newsk);
784                 skb_queue_head_init(&newtp->out_of_order_queue);
785                 newtp->rcv_wup = req->rcv_isn + 1;
786                 newtp->write_seq = req->snt_isn + 1;
787                 newtp->pushed_seq = newtp->write_seq;
788                 newtp->copied_seq = req->rcv_isn + 1;
789
790                 newtp->saw_tstamp = 0;
791
792                 newtp->dsack = 0;
793                 newtp->eff_sacks = 0;
794
795                 newtp->probes_out = 0;
796                 newtp->num_sacks = 0;
797                 newtp->urg_data = 0;
798                 newtp->listen_opt = NULL;
799                 newtp->accept_queue = newtp->accept_queue_tail = NULL;
800                 /* Deinitialize syn_wait_lock to trap illegal accesses. */
801                 memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));
802
803                 /* Back to base struct sock members. */
804                 newsk->sk_err = 0;
805                 newsk->sk_priority = 0;
806                 atomic_set(&newsk->sk_refcnt, 2);
807
808                 set_vx_info(&newsk->sk_vx_info, sk->sk_vx_info);
809                 newsk->sk_xid = sk->sk_xid;
810                 vx_sock_inc(newsk);
811                 set_nx_info(&newsk->sk_nx_info, sk->sk_nx_info);
812                 newsk->sk_nid = sk->sk_nid;
813 #ifdef INET_REFCNT_DEBUG
814                 atomic_inc(&inet_sock_nr);
815 #endif
816                 atomic_inc(&tcp_sockets_allocated);
817
818                 if (sock_flag(newsk, SOCK_KEEPOPEN))
819                         tcp_reset_keepalive_timer(newsk,
820                                                   keepalive_time_when(newtp));
821                 newsk->sk_socket = NULL;
822                 newsk->sk_sleep = NULL;
823                 newsk->sk_owner = NULL;
824
825                 newtp->tstamp_ok = req->tstamp_ok;
826                 if((newtp->sack_ok = req->sack_ok) != 0) {
827                         if (sysctl_tcp_fack)
828                                 newtp->sack_ok |= 2;
829                 }
830                 newtp->window_clamp = req->window_clamp;
831                 newtp->rcv_ssthresh = req->rcv_wnd;
832                 newtp->rcv_wnd = req->rcv_wnd;
833                 newtp->wscale_ok = req->wscale_ok;
834                 if (newtp->wscale_ok) {
835                         newtp->snd_wscale = req->snd_wscale;
836                         newtp->rcv_wscale = req->rcv_wscale;
837                 } else {
838                         newtp->snd_wscale = newtp->rcv_wscale = 0;
839                         newtp->window_clamp = min(newtp->window_clamp, 65535U);
840                 }
841                 newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->snd_wscale;
842                 newtp->max_window = newtp->snd_wnd;
843
844                 if (newtp->tstamp_ok) {
845                         newtp->ts_recent = req->ts_recent;
846                         newtp->ts_recent_stamp = xtime.tv_sec;
847                         newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
848                 } else {
849                         newtp->ts_recent_stamp = 0;
850                         newtp->tcp_header_len = sizeof(struct tcphdr);
851                 }
852                 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
853                         newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
854                 newtp->mss_clamp = req->mss;
855                 TCP_ECN_openreq_child(newtp, req);
856                 if (newtp->ecn_flags&TCP_ECN_OK)
857                         newsk->sk_no_largesend = 1;
858
859                 tcp_vegas_init(newtp);
860                 TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
861         }
862         return newsk;
863 }
864
865 /* 
866  *      Process an incoming packet for SYN_RECV sockets represented
867  *      as an open_request.
868  */
869
870 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
871                            struct open_request *req,
872                            struct open_request **prev)
873 {
874         struct tcphdr *th = skb->h.th;
875         struct tcp_opt *tp = tcp_sk(sk);
876         u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
877         int paws_reject = 0;
878         struct tcp_opt ttp;
879         struct sock *child;
880
881         ttp.saw_tstamp = 0;
882         if (th->doff > (sizeof(struct tcphdr)>>2)) {
883                 tcp_parse_options(skb, &ttp, 0);
884
885                 if (ttp.saw_tstamp) {
886                         ttp.ts_recent = req->ts_recent;
887                         /* We do not store true stamp, but it is not required,
888                          * it can be estimated (approximately)
889                          * from another data.
890                          */
891                         ttp.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
892                         paws_reject = tcp_paws_check(&ttp, th->rst);
893                 }
894         }
895
896         /* Check for pure retransmitted SYN. */
897         if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
898             flg == TCP_FLAG_SYN &&
899             !paws_reject) {
900                 /*
901                  * RFC793 draws (Incorrectly! It was fixed in RFC1122)
902                  * this case on figure 6 and figure 8, but formal
903                  * protocol description says NOTHING.
904                  * To be more exact, it says that we should send ACK,
905                  * because this segment (at least, if it has no data)
906                  * is out of window.
907                  *
908                  *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
909                  *  describe SYN-RECV state. All the description
910                  *  is wrong, we cannot believe to it and should
911                  *  rely only on common sense and implementation
912                  *  experience.
913                  *
914                  * Enforce "SYN-ACK" according to figure 8, figure 6
915                  * of RFC793, fixed by RFC1122.
916                  */
917                 req->class->rtx_syn_ack(sk, req, NULL);
918                 return NULL;
919         }
920
921         /* Further reproduces section "SEGMENT ARRIVES"
922            for state SYN-RECEIVED of RFC793.
923            It is broken, however, it does not work only
924            when SYNs are crossed.
925
926            You would think that SYN crossing is impossible here, since
927            we should have a SYN_SENT socket (from connect()) on our end,
928            but this is not true if the crossed SYNs were sent to both
929            ends by a malicious third party.  We must defend against this,
930            and to do that we first verify the ACK (as per RFC793, page
931            36) and reset if it is invalid.  Is this a true full defense?
932            To convince ourselves, let us consider a way in which the ACK
933            test can still pass in this 'malicious crossed SYNs' case.
934            Malicious sender sends identical SYNs (and thus identical sequence
935            numbers) to both A and B:
936
937                 A: gets SYN, seq=7
938                 B: gets SYN, seq=7
939
940            By our good fortune, both A and B select the same initial
941            send sequence number of seven :-)
942
943                 A: sends SYN|ACK, seq=7, ack_seq=8
944                 B: sends SYN|ACK, seq=7, ack_seq=8
945
946            So we are now A eating this SYN|ACK, ACK test passes.  So
947            does sequence test, SYN is truncated, and thus we consider
948            it a bare ACK.
949
950            If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
951            we create an established connection.  Both ends (listening sockets)
952            accept the new incoming connection and try to talk to each other. 8-)
953
954            Note: This case is both harmless, and rare.  Possibility is about the
955            same as us discovering intelligent life on another plant tomorrow.
956
957            But generally, we should (RFC lies!) to accept ACK
958            from SYNACK both here and in tcp_rcv_state_process().
959            tcp_rcv_state_process() does not, hence, we do not too.
960
961            Note that the case is absolutely generic:
962            we cannot optimize anything here without
963            violating protocol. All the checks must be made
964            before attempt to create socket.
965          */
966
967         /* RFC793 page 36: "If the connection is in any non-synchronized state ...
968          *                  and the incoming segment acknowledges something not yet
969          *                  sent (the segment carries an unaccaptable ACK) ...
970          *                  a reset is sent."
971          *
972          * Invalid ACK: reset will be sent by listening socket
973          */
974         if ((flg & TCP_FLAG_ACK) &&
975             (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
976                 return sk;
977
978         /* Also, it would be not so bad idea to check rcv_tsecr, which
979          * is essentially ACK extension and too early or too late values
980          * should cause reset in unsynchronized states.
981          */
982
983         /* RFC793: "first check sequence number". */
984
985         if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
986                                           req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
987                 /* Out of window: send ACK and drop. */
988                 if (!(flg & TCP_FLAG_RST))
989                         req->class->send_ack(skb, req);
990                 if (paws_reject)
991                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
992                 return NULL;
993         }
994
995         /* In sequence, PAWS is OK. */
996
997         if (ttp.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
998                 req->ts_recent = ttp.rcv_tsval;
999
1000         if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
1001                 /* Truncate SYN, it is out of window starting
1002                    at req->rcv_isn+1. */
1003                 flg &= ~TCP_FLAG_SYN;
1004         }
1005
1006         /* RFC793: "second check the RST bit" and
1007          *         "fourth, check the SYN bit"
1008          */
1009         if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
1010                 goto embryonic_reset;
1011
1012         /* ACK sequence verified above, just make sure ACK is
1013          * set.  If ACK not set, just silently drop the packet.
1014          */
1015         if (!(flg & TCP_FLAG_ACK))
1016                 return NULL;
1017
1018         /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
1019         if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
1020                 req->acked = 1;
1021                 return NULL;
1022         }
1023
1024         /* OK, ACK is valid, create big socket and
1025          * feed this segment to it. It will repeat all
1026          * the tests. THIS SEGMENT MUST MOVE SOCKET TO
1027          * ESTABLISHED STATE. If it will be dropped after
1028          * socket is created, wait for troubles.
1029          */
1030         child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
1031         if (child == NULL)
1032                 goto listen_overflow;
1033
1034         sk_set_owner(child, sk->sk_owner);
1035         tcp_synq_unlink(tp, req, prev);
1036         tcp_synq_removed(sk, req);
1037
1038         tcp_acceptq_queue(sk, req, child);
1039         return child;
1040
1041 listen_overflow:
1042         if (!sysctl_tcp_abort_on_overflow) {
1043                 req->acked = 1;
1044                 return NULL;
1045         }
1046
1047 embryonic_reset:
1048         NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
1049         if (!(flg & TCP_FLAG_RST))
1050                 req->class->send_reset(skb);
1051
1052         tcp_synq_drop(sk, req, prev);
1053         return NULL;
1054 }
1055
1056 /*
1057  * Queue segment on the new socket if the new socket is active,
1058  * otherwise we just shortcircuit this and continue with
1059  * the new socket.
1060  */
1061
1062 int tcp_child_process(struct sock *parent, struct sock *child,
1063                       struct sk_buff *skb)
1064 {
1065         int ret = 0;
1066         int state = child->sk_state;
1067
1068         if (!sock_owned_by_user(child)) {
1069                 ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
1070
1071                 /* Wakeup parent, send SIGIO */
1072                 if (state == TCP_SYN_RECV && child->sk_state != state)
1073                         parent->sk_data_ready(parent, 0);
1074         } else {
1075                 /* Alas, it is possible again, because we do lookup
1076                  * in main socket hash table and lock on listening
1077                  * socket does not protect us more.
1078                  */
1079                 sk_add_backlog(child, skb);
1080         }
1081
1082         bh_unlock_sock(child);
1083         sock_put(child);
1084         return ret;
1085 }
1086
1087 EXPORT_SYMBOL(tcp_check_req);
1088 EXPORT_SYMBOL(tcp_child_process);
1089 EXPORT_SYMBOL(tcp_create_openreq_child);
1090 EXPORT_SYMBOL(tcp_timewait_state_process);
1091 EXPORT_SYMBOL(tcp_tw_deschedule);
1092
1093 #ifdef CONFIG_SYSCTL
1094 EXPORT_SYMBOL(sysctl_tcp_tw_recycle);
1095 #endif