vserver 1.9.5.x5
[linux-2.6.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <asm/ioctls.h>
30 #include <linux/sunrpc/types.h>
31 #include <linux/sunrpc/cache.h>
32 #include <linux/sunrpc/stats.h>
33
34 #define  RPCDBG_FACILITY RPCDBG_CACHE
35
36 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
37 static void cache_revisit_request(struct cache_head *item);
38
39 void cache_init(struct cache_head *h)
40 {
41         time_t now = get_seconds();
42         h->next = NULL;
43         h->flags = 0;
44         atomic_set(&h->refcnt, 1);
45         h->expiry_time = now + CACHE_NEW_EXPIRY;
46         h->last_refresh = now;
47 }
48
49
50 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
51 /*
52  * This is the generic cache management routine for all
53  * the authentication caches.
54  * It checks the currency of a cache item and will (later)
55  * initiate an upcall to fill it if needed.
56  *
57  *
58  * Returns 0 if the cache_head can be used, or cache_puts it and returns
59  * -EAGAIN if upcall is pending,
60  * -ENOENT if cache entry was negative
61  */
62 int cache_check(struct cache_detail *detail,
63                     struct cache_head *h, struct cache_req *rqstp)
64 {
65         int rv;
66         long refresh_age, age;
67
68         /* First decide return status as best we can */
69         if (!test_bit(CACHE_VALID, &h->flags) ||
70             h->expiry_time < get_seconds())
71                 rv = -EAGAIN;
72         else if (detail->flush_time > h->last_refresh)
73                 rv = -EAGAIN;
74         else {
75                 /* entry is valid */
76                 if (test_bit(CACHE_NEGATIVE, &h->flags))
77                         rv = -ENOENT;
78                 else rv = 0;
79         }
80
81         /* now see if we want to start an upcall */
82         refresh_age = (h->expiry_time - h->last_refresh);
83         age = get_seconds() - h->last_refresh;
84
85         if (rqstp == NULL) {
86                 if (rv == -EAGAIN)
87                         rv = -ENOENT;
88         } else if (rv == -EAGAIN || age > refresh_age/2) {
89                 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
90                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
91                         switch (cache_make_upcall(detail, h)) {
92                         case -EINVAL:
93                                 clear_bit(CACHE_PENDING, &h->flags);
94                                 if (rv == -EAGAIN) {
95                                         set_bit(CACHE_NEGATIVE, &h->flags);
96                                         cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY);
97                                         rv = -ENOENT;
98                                 }
99                                 break;
100
101                         case -EAGAIN:
102                                 clear_bit(CACHE_PENDING, &h->flags);
103                                 cache_revisit_request(h);
104                                 break;
105                         }
106                 }
107         }
108
109         if (rv == -EAGAIN)
110                 cache_defer_req(rqstp, h);
111
112         if (rv && h)
113                 detail->cache_put(h, detail);
114         return rv;
115 }
116
117 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
118
119 void cache_fresh(struct cache_detail *detail,
120                  struct cache_head *head, time_t expiry)
121 {
122
123         head->expiry_time = expiry;
124         head->last_refresh = get_seconds();
125         if (!test_and_set_bit(CACHE_VALID, &head->flags))
126                 cache_revisit_request(head);
127         if (test_and_clear_bit(CACHE_PENDING, &head->flags))
128                 queue_loose(detail, head);
129 }
130
131 /*
132  * caches need to be periodically cleaned.
133  * For this we maintain a list of cache_detail and
134  * a current pointer into that list and into the table
135  * for that entry.
136  *
137  * Each time clean_cache is called it finds the next non-empty entry
138  * in the current table and walks the list in that entry
139  * looking for entries that can be removed.
140  *
141  * An entry gets removed if:
142  * - The expiry is before current time
143  * - The last_refresh time is before the flush_time for that cache
144  *
145  * later we might drop old entries with non-NEVER expiry if that table
146  * is getting 'full' for some definition of 'full'
147  *
148  * The question of "how often to scan a table" is an interesting one
149  * and is answered in part by the use of the "nextcheck" field in the
150  * cache_detail.
151  * When a scan of a table begins, the nextcheck field is set to a time
152  * that is well into the future.
153  * While scanning, if an expiry time is found that is earlier than the
154  * current nextcheck time, nextcheck is set to that expiry time.
155  * If the flush_time is ever set to a time earlier than the nextcheck
156  * time, the nextcheck time is then set to that flush_time.
157  *
158  * A table is then only scanned if the current time is at least
159  * the nextcheck time.
160  * 
161  */
162
163 static LIST_HEAD(cache_list);
164 static DEFINE_SPINLOCK(cache_list_lock);
165 static struct cache_detail *current_detail;
166 static int current_index;
167
168 static struct file_operations cache_file_operations;
169 static struct file_operations content_file_operations;
170 static struct file_operations cache_flush_operations;
171
172 static void do_cache_clean(void *data);
173 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
174
175 void cache_register(struct cache_detail *cd)
176 {
177         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
178         if (cd->proc_ent) {
179                 struct proc_dir_entry *p;
180                 cd->proc_ent->owner = THIS_MODULE;
181                 cd->channel_ent = cd->content_ent = NULL;
182                 
183                 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
184                                       cd->proc_ent);
185                 cd->flush_ent =  p;
186                 if (p) {
187                         p->proc_fops = &cache_flush_operations;
188                         p->owner = THIS_MODULE;
189                         p->data = cd;
190                 }
191  
192                 if (cd->cache_request || cd->cache_parse) {
193                         p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
194                                               cd->proc_ent);
195                         cd->channel_ent = p;
196                         if (p) {
197                                 p->proc_fops = &cache_file_operations;
198                                 p->owner = THIS_MODULE;
199                                 p->data = cd;
200                         }
201                 }
202                 if (cd->cache_show) {
203                         p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
204                                               cd->proc_ent);
205                         cd->content_ent = p;
206                         if (p) {
207                                 p->proc_fops = &content_file_operations;
208                                 p->owner = THIS_MODULE;
209                                 p->data = cd;
210                         }
211                 }
212         }
213         rwlock_init(&cd->hash_lock);
214         INIT_LIST_HEAD(&cd->queue);
215         spin_lock(&cache_list_lock);
216         cd->nextcheck = 0;
217         cd->entries = 0;
218         atomic_set(&cd->readers, 0);
219         cd->last_close = 0;
220         cd->last_warn = -1;
221         list_add(&cd->others, &cache_list);
222         spin_unlock(&cache_list_lock);
223
224         /* start the cleaning process */
225         schedule_work(&cache_cleaner);
226 }
227
228 int cache_unregister(struct cache_detail *cd)
229 {
230         cache_purge(cd);
231         spin_lock(&cache_list_lock);
232         write_lock(&cd->hash_lock);
233         if (cd->entries || atomic_read(&cd->inuse)) {
234                 write_unlock(&cd->hash_lock);
235                 spin_unlock(&cache_list_lock);
236                 return -EBUSY;
237         }
238         if (current_detail == cd)
239                 current_detail = NULL;
240         list_del_init(&cd->others);
241         write_unlock(&cd->hash_lock);
242         spin_unlock(&cache_list_lock);
243         if (cd->proc_ent) {
244                 if (cd->flush_ent)
245                         remove_proc_entry("flush", cd->proc_ent);
246                 if (cd->channel_ent)
247                         remove_proc_entry("channel", cd->proc_ent);
248                 if (cd->content_ent)
249                         remove_proc_entry("content", cd->proc_ent);
250
251                 cd->proc_ent = NULL;
252                 remove_proc_entry(cd->name, proc_net_rpc);
253         }
254         if (list_empty(&cache_list)) {
255                 /* module must be being unloaded so its safe to kill the worker */
256                 cancel_delayed_work(&cache_cleaner);
257                 flush_scheduled_work();
258         }
259         return 0;
260 }
261
262 /* clean cache tries to find something to clean
263  * and cleans it.
264  * It returns 1 if it cleaned something,
265  *            0 if it didn't find anything this time
266  *           -1 if it fell off the end of the list.
267  */
268 static int cache_clean(void)
269 {
270         int rv = 0;
271         struct list_head *next;
272
273         spin_lock(&cache_list_lock);
274
275         /* find a suitable table if we don't already have one */
276         while (current_detail == NULL ||
277             current_index >= current_detail->hash_size) {
278                 if (current_detail)
279                         next = current_detail->others.next;
280                 else
281                         next = cache_list.next;
282                 if (next == &cache_list) {
283                         current_detail = NULL;
284                         spin_unlock(&cache_list_lock);
285                         return -1;
286                 }
287                 current_detail = list_entry(next, struct cache_detail, others);
288                 if (current_detail->nextcheck > get_seconds())
289                         current_index = current_detail->hash_size;
290                 else {
291                         current_index = 0;
292                         current_detail->nextcheck = get_seconds()+30*60;
293                 }
294         }
295
296         /* find a non-empty bucket in the table */
297         while (current_detail &&
298                current_index < current_detail->hash_size &&
299                current_detail->hash_table[current_index] == NULL)
300                 current_index++;
301
302         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
303         
304         if (current_detail && current_index < current_detail->hash_size) {
305                 struct cache_head *ch, **cp;
306                 struct cache_detail *d;
307                 
308                 write_lock(&current_detail->hash_lock);
309
310                 /* Ok, now to clean this strand */
311                         
312                 cp = & current_detail->hash_table[current_index];
313                 ch = *cp;
314                 for (; ch; cp= & ch->next, ch= *cp) {
315                         if (current_detail->nextcheck > ch->expiry_time)
316                                 current_detail->nextcheck = ch->expiry_time+1;
317                         if (ch->expiry_time >= get_seconds()
318                             && ch->last_refresh >= current_detail->flush_time
319                                 )
320                                 continue;
321                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
322                                 queue_loose(current_detail, ch);
323
324                         if (!atomic_read(&ch->refcnt))
325                                 break;
326                 }
327                 if (ch) {
328                         cache_get(ch);
329                         clear_bit(CACHE_HASHED, &ch->flags);
330                         *cp = ch->next;
331                         ch->next = NULL;
332                         current_detail->entries--;
333                         rv = 1;
334                 }
335                 write_unlock(&current_detail->hash_lock);
336                 d = current_detail;
337                 if (!ch)
338                         current_index ++;
339                 spin_unlock(&cache_list_lock);
340                 if (ch)
341                         d->cache_put(ch, d);
342         } else
343                 spin_unlock(&cache_list_lock);
344
345         return rv;
346 }
347
348 /*
349  * We want to regularly clean the cache, so we need to schedule some work ...
350  */
351 static void do_cache_clean(void *data)
352 {
353         int delay = 5;
354         if (cache_clean() == -1)
355                 delay = 30*HZ;
356
357         if (list_empty(&cache_list))
358                 delay = 0;
359
360         if (delay)
361                 schedule_delayed_work(&cache_cleaner, delay);
362 }
363
364
365 /* 
366  * Clean all caches promptly.  This just calls cache_clean
367  * repeatedly until we are sure that every cache has had a chance to 
368  * be fully cleaned
369  */
370 void cache_flush(void)
371 {
372         while (cache_clean() != -1)
373                 cond_resched();
374         while (cache_clean() != -1)
375                 cond_resched();
376 }
377
378 void cache_purge(struct cache_detail *detail)
379 {
380         detail->flush_time = LONG_MAX;
381         detail->nextcheck = get_seconds();
382         cache_flush();
383         detail->flush_time = 1;
384 }
385
386
387
388 /*
389  * Deferral and Revisiting of Requests.
390  *
391  * If a cache lookup finds a pending entry, we
392  * need to defer the request and revisit it later.
393  * All deferred requests are stored in a hash table,
394  * indexed by "struct cache_head *".
395  * As it may be wasteful to store a whole request
396  * structure, we allow the request to provide a 
397  * deferred form, which must contain a
398  * 'struct cache_deferred_req'
399  * This cache_deferred_req contains a method to allow
400  * it to be revisited when cache info is available
401  */
402
403 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
404 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
405
406 #define DFR_MAX 300     /* ??? */
407
408 static DEFINE_SPINLOCK(cache_defer_lock);
409 static LIST_HEAD(cache_defer_list);
410 static struct list_head cache_defer_hash[DFR_HASHSIZE];
411 static int cache_defer_cnt;
412
413 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
414 {
415         struct cache_deferred_req *dreq;
416         int hash = DFR_HASH(item);
417
418         dreq = req->defer(req);
419         if (dreq == NULL)
420                 return;
421
422         dreq->item = item;
423         dreq->recv_time = get_seconds();
424
425         spin_lock(&cache_defer_lock);
426
427         list_add(&dreq->recent, &cache_defer_list);
428
429         if (cache_defer_hash[hash].next == NULL)
430                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
431         list_add(&dreq->hash, &cache_defer_hash[hash]);
432
433         /* it is in, now maybe clean up */
434         dreq = NULL;
435         if (++cache_defer_cnt > DFR_MAX) {
436                 /* too much in the cache, randomly drop
437                  * first or last
438                  */
439                 if (net_random()&1) 
440                         dreq = list_entry(cache_defer_list.next,
441                                           struct cache_deferred_req,
442                                           recent);
443                 else
444                         dreq = list_entry(cache_defer_list.prev,
445                                           struct cache_deferred_req,
446                                           recent);
447                 list_del(&dreq->recent);
448                 list_del(&dreq->hash);
449                 cache_defer_cnt--;
450         }
451         spin_unlock(&cache_defer_lock);
452
453         if (dreq) {
454                 /* there was one too many */
455                 dreq->revisit(dreq, 1);
456         }
457         if (test_bit(CACHE_VALID, &item->flags)) {
458                 /* must have just been validated... */
459                 cache_revisit_request(item);
460         }
461 }
462
463 static void cache_revisit_request(struct cache_head *item)
464 {
465         struct cache_deferred_req *dreq;
466         struct list_head pending;
467
468         struct list_head *lp;
469         int hash = DFR_HASH(item);
470
471         INIT_LIST_HEAD(&pending);
472         spin_lock(&cache_defer_lock);
473         
474         lp = cache_defer_hash[hash].next;
475         if (lp) {
476                 while (lp != &cache_defer_hash[hash]) {
477                         dreq = list_entry(lp, struct cache_deferred_req, hash);
478                         lp = lp->next;
479                         if (dreq->item == item) {
480                                 list_del(&dreq->hash);
481                                 list_move(&dreq->recent, &pending);
482                                 cache_defer_cnt--;
483                         }
484                 }
485         }
486         spin_unlock(&cache_defer_lock);
487
488         while (!list_empty(&pending)) {
489                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
490                 list_del_init(&dreq->recent);
491                 dreq->revisit(dreq, 0);
492         }
493 }
494
495 void cache_clean_deferred(void *owner)
496 {
497         struct cache_deferred_req *dreq, *tmp;
498         struct list_head pending;
499
500
501         INIT_LIST_HEAD(&pending);
502         spin_lock(&cache_defer_lock);
503         
504         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
505                 if (dreq->owner == owner) {
506                         list_del(&dreq->hash);
507                         list_move(&dreq->recent, &pending);
508                         cache_defer_cnt--;
509                 }
510         }
511         spin_unlock(&cache_defer_lock);
512
513         while (!list_empty(&pending)) {
514                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
515                 list_del_init(&dreq->recent);
516                 dreq->revisit(dreq, 1);
517         }
518 }
519
520 /*
521  * communicate with user-space
522  *
523  * We have a magic /proc file - /proc/sunrpc/cache
524  * On read, you get a full request, or block
525  * On write, an update request is processed
526  * Poll works if anything to read, and always allows write
527  *
528  * Implemented by linked list of requests.  Each open file has 
529  * a ->private that also exists in this list.  New request are added
530  * to the end and may wakeup and preceding readers.
531  * New readers are added to the head.  If, on read, an item is found with
532  * CACHE_UPCALLING clear, we free it from the list.
533  *
534  */
535
536 static DEFINE_SPINLOCK(queue_lock);
537 static DECLARE_MUTEX(queue_io_sem);
538
539 struct cache_queue {
540         struct list_head        list;
541         int                     reader; /* if 0, then request */
542 };
543 struct cache_request {
544         struct cache_queue      q;
545         struct cache_head       *item;
546         char                    * buf;
547         int                     len;
548         int                     readers;
549 };
550 struct cache_reader {
551         struct cache_queue      q;
552         int                     offset; /* if non-0, we have a refcnt on next request */
553 };
554
555 static ssize_t
556 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
557 {
558         struct cache_reader *rp = filp->private_data;
559         struct cache_request *rq;
560         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
561         int err;
562
563         if (count == 0)
564                 return 0;
565
566         down(&queue_io_sem); /* protect against multiple concurrent
567                               * readers on this file */
568  again:
569         spin_lock(&queue_lock);
570         /* need to find next request */
571         while (rp->q.list.next != &cd->queue &&
572                list_entry(rp->q.list.next, struct cache_queue, list)
573                ->reader) {
574                 struct list_head *next = rp->q.list.next;
575                 list_move(&rp->q.list, next);
576         }
577         if (rp->q.list.next == &cd->queue) {
578                 spin_unlock(&queue_lock);
579                 up(&queue_io_sem);
580                 if (rp->offset)
581                         BUG();
582                 return 0;
583         }
584         rq = container_of(rp->q.list.next, struct cache_request, q.list);
585         if (rq->q.reader) BUG();
586         if (rp->offset == 0)
587                 rq->readers++;
588         spin_unlock(&queue_lock);
589
590         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
591                 err = -EAGAIN;
592                 spin_lock(&queue_lock);
593                 list_move(&rp->q.list, &rq->q.list);
594                 spin_unlock(&queue_lock);
595         } else {
596                 if (rp->offset + count > rq->len)
597                         count = rq->len - rp->offset;
598                 err = -EFAULT;
599                 if (copy_to_user(buf, rq->buf + rp->offset, count))
600                         goto out;
601                 rp->offset += count;
602                 if (rp->offset >= rq->len) {
603                         rp->offset = 0;
604                         spin_lock(&queue_lock);
605                         list_move(&rp->q.list, &rq->q.list);
606                         spin_unlock(&queue_lock);
607                 }
608                 err = 0;
609         }
610  out:
611         if (rp->offset == 0) {
612                 /* need to release rq */
613                 spin_lock(&queue_lock);
614                 rq->readers--;
615                 if (rq->readers == 0 &&
616                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
617                         list_del(&rq->q.list);
618                         spin_unlock(&queue_lock);
619                         cd->cache_put(rq->item, cd);
620                         kfree(rq->buf);
621                         kfree(rq);
622                 } else
623                         spin_unlock(&queue_lock);
624         }
625         if (err == -EAGAIN)
626                 goto again;
627         up(&queue_io_sem);
628         return err ? err :  count;
629 }
630
631 static char write_buf[8192]; /* protected by queue_io_sem */
632
633 static ssize_t
634 cache_write(struct file *filp, const char __user *buf, size_t count,
635             loff_t *ppos)
636 {
637         int err;
638         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
639
640         if (count == 0)
641                 return 0;
642         if (count >= sizeof(write_buf))
643                 return -EINVAL;
644
645         down(&queue_io_sem);
646
647         if (copy_from_user(write_buf, buf, count)) {
648                 up(&queue_io_sem);
649                 return -EFAULT;
650         }
651         write_buf[count] = '\0';
652         if (cd->cache_parse)
653                 err = cd->cache_parse(cd, write_buf, count);
654         else
655                 err = -EINVAL;
656
657         up(&queue_io_sem);
658         return err ? err : count;
659 }
660
661 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
662
663 static unsigned int
664 cache_poll(struct file *filp, poll_table *wait)
665 {
666         unsigned int mask;
667         struct cache_reader *rp = filp->private_data;
668         struct cache_queue *cq;
669         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
670
671         poll_wait(filp, &queue_wait, wait);
672
673         /* alway allow write */
674         mask = POLL_OUT | POLLWRNORM;
675
676         if (!rp)
677                 return mask;
678
679         spin_lock(&queue_lock);
680
681         for (cq= &rp->q; &cq->list != &cd->queue;
682              cq = list_entry(cq->list.next, struct cache_queue, list))
683                 if (!cq->reader) {
684                         mask |= POLLIN | POLLRDNORM;
685                         break;
686                 }
687         spin_unlock(&queue_lock);
688         return mask;
689 }
690
691 static int
692 cache_ioctl(struct inode *ino, struct file *filp,
693             unsigned int cmd, unsigned long arg)
694 {
695         int len = 0;
696         struct cache_reader *rp = filp->private_data;
697         struct cache_queue *cq;
698         struct cache_detail *cd = PDE(ino)->data;
699
700         if (cmd != FIONREAD || !rp)
701                 return -EINVAL;
702
703         spin_lock(&queue_lock);
704
705         /* only find the length remaining in current request,
706          * or the length of the next request
707          */
708         for (cq= &rp->q; &cq->list != &cd->queue;
709              cq = list_entry(cq->list.next, struct cache_queue, list))
710                 if (!cq->reader) {
711                         struct cache_request *cr =
712                                 container_of(cq, struct cache_request, q);
713                         len = cr->len - rp->offset;
714                         break;
715                 }
716         spin_unlock(&queue_lock);
717
718         return put_user(len, (int __user *)arg);
719 }
720
721 static int
722 cache_open(struct inode *inode, struct file *filp)
723 {
724         struct cache_reader *rp = NULL;
725
726         nonseekable_open(inode, filp);
727         if (filp->f_mode & FMODE_READ) {
728                 struct cache_detail *cd = PDE(inode)->data;
729
730                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
731                 if (!rp)
732                         return -ENOMEM;
733                 rp->offset = 0;
734                 rp->q.reader = 1;
735                 atomic_inc(&cd->readers);
736                 spin_lock(&queue_lock);
737                 list_add(&rp->q.list, &cd->queue);
738                 spin_unlock(&queue_lock);
739         }
740         filp->private_data = rp;
741         return 0;
742 }
743
744 static int
745 cache_release(struct inode *inode, struct file *filp)
746 {
747         struct cache_reader *rp = filp->private_data;
748         struct cache_detail *cd = PDE(inode)->data;
749
750         if (rp) {
751                 spin_lock(&queue_lock);
752                 if (rp->offset) {
753                         struct cache_queue *cq;
754                         for (cq= &rp->q; &cq->list != &cd->queue;
755                              cq = list_entry(cq->list.next, struct cache_queue, list))
756                                 if (!cq->reader) {
757                                         container_of(cq, struct cache_request, q)
758                                                 ->readers--;
759                                         break;
760                                 }
761                         rp->offset = 0;
762                 }
763                 list_del(&rp->q.list);
764                 spin_unlock(&queue_lock);
765
766                 filp->private_data = NULL;
767                 kfree(rp);
768
769                 cd->last_close = get_seconds();
770                 atomic_dec(&cd->readers);
771         }
772         return 0;
773 }
774
775
776
777 static struct file_operations cache_file_operations = {
778         .owner          = THIS_MODULE,
779         .llseek         = no_llseek,
780         .read           = cache_read,
781         .write          = cache_write,
782         .poll           = cache_poll,
783         .ioctl          = cache_ioctl, /* for FIONREAD */
784         .open           = cache_open,
785         .release        = cache_release,
786 };
787
788
789 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
790 {
791         struct cache_queue *cq;
792         spin_lock(&queue_lock);
793         list_for_each_entry(cq, &detail->queue, list)
794                 if (!cq->reader) {
795                         struct cache_request *cr = container_of(cq, struct cache_request, q);
796                         if (cr->item != ch)
797                                 continue;
798                         if (cr->readers != 0)
799                                 break;
800                         list_del(&cr->q.list);
801                         spin_unlock(&queue_lock);
802                         detail->cache_put(cr->item, detail);
803                         kfree(cr->buf);
804                         kfree(cr);
805                         return;
806                 }
807         spin_unlock(&queue_lock);
808 }
809
810 /*
811  * Support routines for text-based upcalls.
812  * Fields are separated by spaces.
813  * Fields are either mangled to quote space tab newline slosh with slosh
814  * or a hexified with a leading \x
815  * Record is terminated with newline.
816  *
817  */
818
819 void qword_add(char **bpp, int *lp, char *str)
820 {
821         char *bp = *bpp;
822         int len = *lp;
823         char c;
824
825         if (len < 0) return;
826
827         while ((c=*str++) && len)
828                 switch(c) {
829                 case ' ':
830                 case '\t':
831                 case '\n':
832                 case '\\':
833                         if (len >= 4) {
834                                 *bp++ = '\\';
835                                 *bp++ = '0' + ((c & 0300)>>6);
836                                 *bp++ = '0' + ((c & 0070)>>3);
837                                 *bp++ = '0' + ((c & 0007)>>0);
838                         }
839                         len -= 4;
840                         break;
841                 default:
842                         *bp++ = c;
843                         len--;
844                 }
845         if (c || len <1) len = -1;
846         else {
847                 *bp++ = ' ';
848                 len--;
849         }
850         *bpp = bp;
851         *lp = len;
852 }
853
854 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
855 {
856         char *bp = *bpp;
857         int len = *lp;
858
859         if (len < 0) return;
860
861         if (len > 2) {
862                 *bp++ = '\\';
863                 *bp++ = 'x';
864                 len -= 2;
865                 while (blen && len >= 2) {
866                         unsigned char c = *buf++;
867                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
868                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
869                         len -= 2;
870                         blen--;
871                 }
872         }
873         if (blen || len<1) len = -1;
874         else {
875                 *bp++ = ' ';
876                 len--;
877         }
878         *bpp = bp;
879         *lp = len;
880 }
881
882 static void warn_no_listener(struct cache_detail *detail)
883 {
884         if (detail->last_warn != detail->last_close) {
885                 detail->last_warn = detail->last_close;
886                 if (detail->warn_no_listener)
887                         detail->warn_no_listener(detail);
888         }
889 }
890
891 /*
892  * register an upcall request to user-space.
893  * Each request is at most one page long.
894  */
895 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
896 {
897
898         char *buf;
899         struct cache_request *crq;
900         char *bp;
901         int len;
902
903         if (detail->cache_request == NULL)
904                 return -EINVAL;
905
906         if (atomic_read(&detail->readers) == 0 &&
907             detail->last_close < get_seconds() - 30) {
908                         warn_no_listener(detail);
909                         return -EINVAL;
910         }
911
912         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
913         if (!buf)
914                 return -EAGAIN;
915
916         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
917         if (!crq) {
918                 kfree(buf);
919                 return -EAGAIN;
920         }
921
922         bp = buf; len = PAGE_SIZE;
923
924         detail->cache_request(detail, h, &bp, &len);
925
926         if (len < 0) {
927                 kfree(buf);
928                 kfree(crq);
929                 return -EAGAIN;
930         }
931         crq->q.reader = 0;
932         crq->item = cache_get(h);
933         crq->buf = buf;
934         crq->len = PAGE_SIZE - len;
935         crq->readers = 0;
936         spin_lock(&queue_lock);
937         list_add_tail(&crq->q.list, &detail->queue);
938         spin_unlock(&queue_lock);
939         wake_up(&queue_wait);
940         return 0;
941 }
942
943 /*
944  * parse a message from user-space and pass it
945  * to an appropriate cache
946  * Messages are, like requests, separated into fields by
947  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
948  *
949  * Message is 
950  *   reply cachename expiry key ... content....
951  *
952  * key and content are both parsed by cache 
953  */
954
955 #define isodigit(c) (isdigit(c) && c <= '7')
956 int qword_get(char **bpp, char *dest, int bufsize)
957 {
958         /* return bytes copied, or -1 on error */
959         char *bp = *bpp;
960         int len = 0;
961
962         while (*bp == ' ') bp++;
963
964         if (bp[0] == '\\' && bp[1] == 'x') {
965                 /* HEX STRING */
966                 bp += 2;
967                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
968                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
969                         bp++;
970                         byte <<= 4;
971                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
972                         *dest++ = byte;
973                         bp++;
974                         len++;
975                 }
976         } else {
977                 /* text with \nnn octal quoting */
978                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
979                         if (*bp == '\\' &&
980                             isodigit(bp[1]) && (bp[1] <= '3') &&
981                             isodigit(bp[2]) &&
982                             isodigit(bp[3])) {
983                                 int byte = (*++bp -'0');
984                                 bp++;
985                                 byte = (byte << 3) | (*bp++ - '0');
986                                 byte = (byte << 3) | (*bp++ - '0');
987                                 *dest++ = byte;
988                                 len++;
989                         } else {
990                                 *dest++ = *bp++;
991                                 len++;
992                         }
993                 }
994         }
995
996         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
997                 return -1;
998         while (*bp == ' ') bp++;
999         *bpp = bp;
1000         *dest = '\0';
1001         return len;
1002 }
1003
1004
1005 /*
1006  * support /proc/sunrpc/cache/$CACHENAME/content
1007  * as a seqfile.
1008  * We call ->cache_show passing NULL for the item to
1009  * get a header, then pass each real item in the cache
1010  */
1011
1012 struct handle {
1013         struct cache_detail *cd;
1014 };
1015
1016 static void *c_start(struct seq_file *m, loff_t *pos)
1017 {
1018         loff_t n = *pos;
1019         unsigned hash, entry;
1020         struct cache_head *ch;
1021         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1022         
1023
1024         read_lock(&cd->hash_lock);
1025         if (!n--)
1026                 return SEQ_START_TOKEN;
1027         hash = n >> 32;
1028         entry = n & ((1LL<<32) - 1);
1029
1030         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1031                 if (!entry--)
1032                         return ch;
1033         n &= ~((1LL<<32) - 1);
1034         do {
1035                 hash++;
1036                 n += 1LL<<32;
1037         } while(hash < cd->hash_size && 
1038                 cd->hash_table[hash]==NULL);
1039         if (hash >= cd->hash_size)
1040                 return NULL;
1041         *pos = n+1;
1042         return cd->hash_table[hash];
1043 }
1044
1045 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1046 {
1047         struct cache_head *ch = p;
1048         int hash = (*pos >> 32);
1049         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1050
1051         if (p == SEQ_START_TOKEN)
1052                 hash = 0;
1053         else if (ch->next == NULL) {
1054                 hash++;
1055                 *pos += 1LL<<32;
1056         } else {
1057                 ++*pos;
1058                 return ch->next;
1059         }
1060         *pos &= ~((1LL<<32) - 1);
1061         while (hash < cd->hash_size &&
1062                cd->hash_table[hash] == NULL) {
1063                 hash++;
1064                 *pos += 1LL<<32;
1065         }
1066         if (hash >= cd->hash_size)
1067                 return NULL;
1068         ++*pos;
1069         return cd->hash_table[hash];
1070 }
1071
1072 static void c_stop(struct seq_file *m, void *p)
1073 {
1074         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1075         read_unlock(&cd->hash_lock);
1076 }
1077
1078 static int c_show(struct seq_file *m, void *p)
1079 {
1080         struct cache_head *cp = p;
1081         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1082
1083         if (p == SEQ_START_TOKEN)
1084                 return cd->cache_show(m, cd, NULL);
1085
1086         ifdebug(CACHE)
1087                 seq_printf(m, "# expiry=%ld refcnt=%d\n",
1088                            cp->expiry_time, atomic_read(&cp->refcnt));
1089         cache_get(cp);
1090         if (cache_check(cd, cp, NULL))
1091                 /* cache_check does a cache_put on failure */
1092                 seq_printf(m, "# ");
1093         else
1094                 cache_put(cp, cd);
1095
1096         return cd->cache_show(m, cd, cp);
1097 }
1098
1099 static struct seq_operations cache_content_op = {
1100         .start  = c_start,
1101         .next   = c_next,
1102         .stop   = c_stop,
1103         .show   = c_show,
1104 };
1105
1106 static int content_open(struct inode *inode, struct file *file)
1107 {
1108         int res;
1109         struct handle *han;
1110         struct cache_detail *cd = PDE(inode)->data;
1111
1112         han = kmalloc(sizeof(*han), GFP_KERNEL);
1113         if (han == NULL)
1114                 return -ENOMEM;
1115
1116         han->cd = cd;
1117
1118         res = seq_open(file, &cache_content_op);
1119         if (res)
1120                 kfree(han);
1121         else
1122                 ((struct seq_file *)file->private_data)->private = han;
1123
1124         return res;
1125 }
1126 static int content_release(struct inode *inode, struct file *file)
1127 {
1128         struct seq_file *m = (struct seq_file *)file->private_data;
1129         struct handle *han = m->private;
1130         kfree(han);
1131         m->private = NULL;
1132         return seq_release(inode, file);
1133 }
1134
1135 static struct file_operations content_file_operations = {
1136         .open           = content_open,
1137         .read           = seq_read,
1138         .llseek         = seq_lseek,
1139         .release        = content_release,
1140 };
1141
1142 static ssize_t read_flush(struct file *file, char __user *buf,
1143                             size_t count, loff_t *ppos)
1144 {
1145         struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1146         char tbuf[20];
1147         unsigned long p = *ppos;
1148         int len;
1149
1150         sprintf(tbuf, "%lu\n", cd->flush_time);
1151         len = strlen(tbuf);
1152         if (p >= len)
1153                 return 0;
1154         len -= p;
1155         if (len > count) len = count;
1156         if (copy_to_user(buf, (void*)(tbuf+p), len))
1157                 len = -EFAULT;
1158         else
1159                 *ppos += len;
1160         return len;
1161 }
1162
1163 static ssize_t write_flush(struct file * file, const char __user * buf,
1164                              size_t count, loff_t *ppos)
1165 {
1166         struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1167         char tbuf[20];
1168         char *ep;
1169         long flushtime;
1170         if (*ppos || count > sizeof(tbuf)-1)
1171                 return -EINVAL;
1172         if (copy_from_user(tbuf, buf, count))
1173                 return -EFAULT;
1174         tbuf[count] = 0;
1175         flushtime = simple_strtoul(tbuf, &ep, 0);
1176         if (*ep && *ep != '\n')
1177                 return -EINVAL;
1178
1179         cd->flush_time = flushtime;
1180         cd->nextcheck = get_seconds();
1181         cache_flush();
1182
1183         *ppos += count;
1184         return count;
1185 }
1186
1187 static struct file_operations cache_flush_operations = {
1188         .open           = nonseekable_open,
1189         .read           = read_flush,
1190         .write          = write_flush,
1191 };